
Fixed-Priority Preemptive Multiprocessor Scheduling:
To Partition or not to Partition

Björn Andersson and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology

SE–412 96 G¨oteborg, Sweden
fba,janjog@ce.chalmers.se

Abstract
Traditional multiprocessor real-time scheduling parti-

tions a task set and applies uniprocessor scheduling on each
processor. For architectures where the penalty of migra-
tion is low, such as uniform-memory access shared-memory
multiprocessors, the non-partitioned method becomes a vi-
able alternative. By allowing a task to resume on another
processor than the task was preempted on, some task sets
can be scheduled where the partitioned method fails.

We address fixed-priority scheduling of periodically ar-
riving tasks onm equally powerful processors having a
non-partitioned ready queue. We propose a new priority-
assignment scheme for the non-partitioned method. Using
an extensive simulation study, we show that the priority-
assignment scheme has equivalent performance to the best
existing partitioning algorithms, and outperforms existing
fixed-priority assignment schemes for the non-partitioned
method. We also propose a dispatcher for the non-
partitioned method which reduces the number of preemp-
tions to levels below the best partitioning schemes.

1 Introduction
Shared-memory multiprocessor systems have recently

made the transition from being resources dedicated
for computing-intensive calculations to common-place
general-purpose computing facilities. The main reason for
this is the increasing commercial availability of such sys-
tems. The significant advances in design methods for par-
allel architectures have resulted in very competitive cost–
performance ratios for off-the-shelf multiprocessor sys-
tems. Another important factor that has increased the avail-
ability of these systems is that they have become relatively
easy to program.

Based on current trends [1] one can foresee an increas-
ing demand for computing power in modern real-time ap-
plications such as multimedia and virtual-reality servers.
Shared-memory multiprocessors constitute a viable remedy

for meeting this demand, and their availability thus paves
the way for cost-effective, high-performance real-time sys-
tems. Naturally, this new application domain introduces a
new intriguing research problem of how to take advantage
of the available processing power in a multiprocessor sys-
tem while at the same time account for the real-time con-
straints of the application.

This paper contributes to solving this problem by ad-
dressing the issue of how to utilize processors to execute
a set of application tasks in a dynamic operating environ-
ment with frequent mode changes. By mode changes we
mean that the characteristics of the entire task set changes
at certain points in time, for example, because new tasks
enter or leave the system (dynamically arriving events), or
because the existing tasks need to be re-scheduled with new
real-time constraints (QoS negotiation). In particular, this
paper elaborates on the problem to decide whether apar-
titioned (all instances of a task should be executed on the
same processor) ornon-partitioned(execution of a task is
allowed to be preempted and resume on another processor)
method should be used to schedule tasks to processors at
run-time. The relevance of this problem is motivated by the
fact that many multiprocessor versions of modern operat-
ing systems (for example, Solaris or Windows NT) today
offer run-time support for both the partitioned and the non-
partitioned method.

We study the addressed problem in the context ofpre-
emptive, fixed-priority scheduling. The reasons for this are
the following. First, the fixed-priority scheduling policy is
considered to be the most mature (in terms of theoretical
framework) of all priority-based scheduling disciplines. As
a consequence thereof, most (if not all) existing task par-
titioning schemes for multiprocessor real-time systems are
based on a fixed-priority scheme. Second, most modern op-
erating systems provide support for fixed-priority schedul-
ing as part of their standard configuration, which makes
it possible to implement real-time scheduling policies on



these systems.

It has long been claimed by real-time researchers [2, 3, 4,
5, 6] that tasks should be partitioned. The intuition behind
this recommendation has been that a partitioning method (i)
allows for the use of well-established uniprocessor schedul-
ing techniques and (ii) prevents task sets to be unschedu-
lable with a low utilization. In this paper, we show that
the decision of whether to partition or not cannot solely be
based on such intuition. In fact, we demonstrate in this pa-
per that the partitioned method isnot the best approach to
use in a dynamic operating environment. To this end, we
make two main research contributions.

C1. We propose a new fixed-priority scheme for the
non-partitioned method which circumvents many of
the problems identified with traditional fixed-priority
schemes. We evaluate this new priority-assignment
scheme together with the rate-monotonic scheme for
the non-partitioned method and compare their per-
formance with that of a set of existing bin-packing-
based partitioning algorithms. The evaluation indi-
cates that the new scheme clearly outperforms the non-
partitioned rate-monotonic scheme and provides per-
formance at least as good as the best bin-packing-
based partitioning algorithms.

C2. We propose a dispatcher for the non-partitioned
method which reduces the number of preemptions.
The dispatcher combined with our proposed priority-
assignment scheme causes the number of preemptions
to be less than the number of preemptions generated
by the best partitioning schemes.

We evaluate the performance of the scheduling algo-
rithms for multiprocessor real-time systems in the context
of resource-limitedsystems where the number of proces-
sors is fixed, and use as our performance metrics the success
ratio and least system utilization when scheduling a popu-
lation of randomly-generated task sets. Since existing par-
titioning algorithms have been proposed to be applied in a
slightly different context — minimizing the number of used
processors in a system with an unlimited amount of proces-
sors — their actual performance on a real multiprocessor
system has not been clear.

The rest of this paper is organized as follows. In Sec-
tion 2, we define our task model and review related work in
fixed-priority multiprocessor scheduling. We then present
the new priority-assignment scheme in Section 3, and eval-
uate its performance in Section 4. In Section 5, we propose
and evaluate the new context-switch-aware dispatcher. We
conclude the paper with a discussion in Section 6 and sum-
marize our contributions in Section 7.

2 Background
We consider a task set� = f�1; �2; : : : ; �ng of n inde-

pendent, periodically-arriving real-time tasks. The charac-
teristics of each task�i 2 � is described by the pair(Ti; Ci).
A task arrives periodically with a period ofTi and with a
constant execution time ofCi. Each task has a prescribed
deadline, which is the time of the next arrival of the task.

Theutilizationui of a task�i is ui = Ci=Ti, that is, the
ratio of the task’s execution time to its period. The utiliza-
tionU of a task set is the sum of the utilizations of the tasks
belonging to that task set, that is,U =

P
i
Ci=Ti. Since we

consider scheduling on a multiprocessor system, the utiliza-
tion is not always indicative on the load of the system. This
is because the original definition of utilization is a property
of the task set only, and does not consider the number of
processors. To also reflect the amount of processing capa-
bility available, we introduce the concept ofsystem utiliza-
tion,Us, for a task set onm processors, which is the average
utilization of each processor, that is,Us = U=m.

We consider a multiprocessor system withm equally
powerful processors. The system uses a run-time mecha-
nism where each task is assigned a unique and fixed prior-
ity. There is a ready queue which stores tasks that currently
do not execute but are permitted to execute. As soon as a
processor becomes idle or a task arrives, a dispatcher selects
the next task (the task with the highest priority) in the ready
queue and schedules it on a suitable processor.

Recall that the focus of this paper is on preemptive
scheduling on a multiprocessor architecture. Multiproces-
sor real-time scheduling differs from uniprocessor real-time
scheduling in that we need to determine not only whena
task should execute, but also on whichprocessor to exe-
cute. In preemptive uniprocessor scheduling, a task can be
preempted by another task, and resume its execution later at
a different time on the same processor. In preemptive multi-
processor real-time scheduling, a task that is preempted by
another task still needs to resume its execution later at a dif-
ferent time, but the task may resume its execution on a dif-
ferent processor. Based on how the system wants to resume
a task’s execution, two fundamentally different methods can
be used to implement preemptive multiprocessor schedul-
ing, namely, the partitioned method and the non-partitioned
method1.

With the partitioned method, the tasks in the task set are
divided in such a way that a task can only execute on one
processor. In this case, each processor has its own ready
queue and tasks are not allowed to migrate between proces-
sors. With the non-partitioned method, all tasks reside in a
global ready queue and can be dispatched to any processor.
After being preempted, the task can resume its execution on
any processor. The principle for the partitioned method and

1Some authors refer to the non-partitioned method as “dynamic bind-
ing” or “global scheduling”.



P2P1 P3 P1 P2 P3

Partitioned method Non-partitioned method

Figure 1: With the partitioned method a task can only execute on one processor. With the non-partitioned method a task can
execute on any processor.

the non-partitioned method is illustrated in Figure 1.
For fixed-priority scheduling of periodically-arriving

tasks on a multiprocessor system, both the partitioned
method and the non-partitioned method have been ad-
dressed in previous research. Important properties of
the real-time multiprocessor scheduling problem were pre-
sented in a seminal paper by Leung and Whitehead [7].
For example, they showed that the problem of deciding
if a task set is schedulable (that is, all tasks will meet
their deadlines at run-time) is NP-hard for both the parti-
tioned method and the non-partitioned method. They also
observed that the two methods are not comparable in ef-
fectiveness in the sense that there are task sets which are
schedulable with an optimal priority assignment with the
non-partitioned method, but cannot be scheduled with an
optimal partitioning algorithm and conversely.

When comparing the partitioned method and the non-
partitioned method, other researchers have listed the fol-
lowing disadvantages for the non-partitioned method. First,
a task set may not be schedulable on multiple processors
even though it has a system utilization that approaches zero
[2, 3, 4, 5]. Second, the plethora of well-known techniques
for uniprocessor scheduling algorithms (such as shared re-
source protocols), cannot be used [8]. Third, the run-time
overhead is greater because the assignment of a processor to
a task needs to be done each time the task arrives or resumes
its execution after being preempted [9].

Among the two methods, the partitioned method has re-
ceived the most attention in the research literature. The
main reason for this is probably that the partitioned method
can easily be used to guarantee run-time performance (in
terms of schedulability). By using a uniprocessor schedu-
lability test as the admission condition when adding a new
task to a processor, all tasks will meet their deadlines at run-
time. Now, recall that the partitioned method requires that
the task set has been divided into several partitions, each

having its own dedicated processor. Since an optimal so-
lution to the problem of partitioning the tasks is compu-
tationally intractable, many heuristics for partitioning have
been proposed, a majority of which are versions of the bin-
packing algorithm2 [2, 3, 4, 5, 8, 10, 11, 6, 9]. All of these
bin-packing-based partitioning algorithms provide perfor-
mance guarantees, they all exhibit fairly good average-case
performance, and they can all be applied in polynomial time
(using sufficient schedulability tests).

The non-partitioned method has received considerably
less attention, mainly because of the disadvantages listed
above, but also because of the following two reasons. First,
no effective optimal priority-assignment scheme has been
found for the non-partitioned method. It is a well-known
fact that the rate-monotonic priority assignment scheme
proposed by Liu and Layland [12] is an optimal priority
assignment for the uniprocessor case. Unfortunately, it
has been shown that the rate-monotonic priority-assignment
scheme is no longer optimal for the non-partitioned method
[3, 7]. Second, no effective schedulability tests exist for
the non-partitioned method. Recall that, for the partitioned
method, existing uniprocessor schedulability tests can be
used. The only known exact (necessary and sufficient)
schedulability test for the non-partitioned method has an
exponential time-complexity [13]. Liu has proposed a suf-
ficient schedulability test for the rate-monotonic priority-
assignment scheme [14], which, unfortunately, becomes
very pessimistic when the number of tasks increases. Re-
cently, another sufficient schedulability test for the rate-
monotonic priority-assignment scheme was proposed inde-

2The bin-packing algorithm works as follows: (1) sort the tasks accord-
ing to some criterion; (2) select the first task and an arbitrary processor; (3)
attempt to assign the selected task to the selected processor by applying a
schedulability test for the processor; (4) if the schedulability test fails, se-
lect the next available processor; if it succeeds, select the next task; (5)
goto step 3.



pendently by three research groups [15, 16, 17]. Unfortu-
nately, this schedulability test has the disadvantage of be-
coming pessimistic for task sets running on a large num-
ber of processors [15, 16]. These schedulability tests all
have a polynomial (for [17], a pseudo-polynomial) time-
complexity. These research groups also found that the con-
dition for a critical instant in uniprocessor scheduling can-
not be applied in multiprocessor scheduling. This is an im-
portant observation since it indicates that completely new
approaches must be used to devise a schedulability test for
the non-partitioned method.

Since there currently exist no efficient3 schedulability
tests for non-partitioned method, it is tempting to believe
that the non-partitioned method is inappropriate for real-
time systems. However, our study of the non-partitioned
method for real-time systems is motivated by the follow-
ing two reasons. First, many real-time systems do not rely
on a schedulability test, for example, those which employ
feedback control scheduling [18, 19, 20] or QoS negotia-
tion techniques [21]. Second, even if a real-time system
does rely on a schedulability test, we believe that in devel-
oping better priority-assignment schemes, we may pave the
way for effective schedulability tests in the future.

To focus on the core problem, we make the following
assumptions in the remainder of this paper:

A1. Tasks require no other resources than the processors.
This implies that tasks do not contend for an intercon-
nect, such as a bus, or critical sections.

A2. Tasks are synchronous in the sense that their initial ar-
rivals occur at the same instant of time and then the
tasks arrive periodically.

A3. A task can always be preempted. In practice, though,
one has to be aware of the fact that operating systems
typically use tick-driven scheduling where the ready
queue can only be inspected at a maximum rate.

A4. The cost of preemption is zero. We will use this as-
sumption even if a task is resumed on another proces-
sor than the task was originally preempted on. In a real
system, though, the cost of context switch is typically
in the order of100 �s [22].

3 Priority assignment
One of our major contributions in this paper is a new

priority-assignment scheme for the non-partitioned method.
In this section, we begin by recapitulate some known results
concerning priority-assignment schemes for multiprocessor

3By “efficient” we mean that the schedulability test can be done in
polynomial time (as a function of tasks, not task invocations) and that the
schedulability test always deems task sets as schedulable if the task set has
a utilization which is less than a fixed ratio of the number of processors.

scheduling. We then proceed to motivate our new priority-
assignment scheme and discuss how it can be optimized for
the non-partitioned method.

While the partitioned method relies on well-known opti-
mal uniprocessor priority-assignment schemes, such as the
rate-monotonic scheme, it is not clear as to what priority-
assignment scheme should be used for the non-partitioned
method. To that end, Leung [13], and later S´aezet al.
[9], evaluated dynamic-priority schemes and showed that
the least-laxity-first strategy performs the best for the non-
partitioned case. In the case of fixed-priority schedul-
ing, adopting the idea used by Audsley [23] and Baruah
[24] (testing for lowest priority viability) is unsuitable be-
cause existing schedulability tests for non-partitioned fixed-
priority scheduling are too pessimistic. The only known
results report that the rate-monotonic priority assignment
scheme does not work well for the non-partitioned method.
This is because, for rate-monotonic scheduling on a unipro-
cessor, a sufficient (but not necessary) condition for schedu-
lability of a task set is that the utilization of the task set
is less than or equal toln 2. For non-partitioned multi-
processor scheduling using the rate-monotonic priority as-
signment, no such property exists. Originally presented by
Dhall [2, 3] (and later repeated in, for example, [4, 5, 7]),
the basic argument is as follows. Assume that the task
set (T1 = 1; C1 = 2�); (T2 = 1; C2 = 2�); : : : ; (Tm =
1; Cm = 2�); (Tm+1 = 1+ �; Cm+1 = 1) should be sched-
uled using the rate-monotonic priority assignment scheme
onm processors. The situation form = 3 is shown in Fig-
ure 2. In this case,�m+1 will have the lowest priority and
will only be scheduled after all other tasks have executed in
parallel. The task set is unschedulable and as� ! 0, the
utilization becomesU = 1 no matter how many processors
are used. Another way of formulating this is that the sys-
tem utilizationUs = U=m will decrease towards zero asm
increases. We will refer to this observation asDhall’s effect.

Now, we observe that if�m+1 could somehow be as-
signed a higher priority, the given task set would be schedu-
lable. To see this, simply assign task priorities according to
the difference between period and execution time of each
task. Then,�m+1 would be assigned the highest priority,
and the task set would still be schedulable even if the exe-
cution time of any single task would increase slightly.

The fundamental problem demonstrated with the exam-
ple above can be summarized as follows. In fixed-priority
scheduling using the rate-monotonic scheme, many tasks
with short period, but with relatively (with respect to pe-
riod) short execution time, can block the available comput-
ing resources so that tasks with longer period, but with rel-
atively long execution time, will miss their deadlines. This
indicates that a more appropriate strategy to assign priori-
ties for the non-partitioned method would be to reflect both
time criticality and resource demands of each task.



P1

P2

P3

1
�1
�2
�3
�4

2� 1 + �

�4 needs to compute
2� more time units.

0

�1

�2

�3

�1

�2

�3�4

Figure 2: If the rate-monotonic priority assignment for the non-partitioned method is used, there are unschedulable task sets
with a low utilization.

An example of such a strategy would be one that priori-
tizes tasks according to the difference between the period of
a task and its execution time4. Based on this, we now pro-
pose a new priority assignment scheme, calledTkC, where
the priority of task�i is assigned according to the weighted
difference between its period and its execution time, that
is, Ti � k � Ci, wherek is a globalslack factor. Note
that, by using this model, we can represent two traditionally
used priority assignment schemes, namely the rate mono-
tonic (whenk = 0) and the slack monotonic (whenk = 1)
schemes. Below, we will reason about whatk should be
selected to contribute to the best performance for the non-
partitioned method.

3.1 Reasoning about k
It is clear from the discussion above that, in order to es-

cape from Dhall’s effect, we should selectk > 05. The
remaining question is then what values ofk yield the best
performance. Even for all0 < k � 1, something sim-
ilar to Dhall’s effect can occur. Assume that the task set
(T1 = 1; C1 = 1

L
); (T2 = 1; C2 = 1

L
); : : : ; (Tm =

1; Cm = 1

L
); (Tm+1 = L2+ 1

L
; Cm+1 = L2� 1

2
�L) should

be scheduled using the TkC priority-assignment scheme
with 0 < k � 1 onm processors. The situation form = 3
is shown in Figure 3. Now, asL ! 1, the task set is un-
schedulable with a utilizationU = 1. On the other hand,
selecting too large ak is a bad idea since task priorities will
then be selected such that the tasks with the longest exe-
cution time obtains the highest priority. Assume that the
task set(T1 = 1; C1 = �); (T2 = 1; C2 = �); : : : ; (Tm =
1; Cm = �); (Tm+1 = �; Cm+1 = �2) should be scheduled

4This is what is typically referred to as theslackof the task.
5Selectingk < 0 can also cause Dhall’s effect.

using the TkC priority-assignment scheme withk !1 on
m processors. The situation form = 3 is illustrated in Fig-
ure 4. Now, as� ! 0, this task set is unschedulable with a
utilizationU = 0 no matter how many processors are used.
Of course, the system utilizationUs = U=m will also de-
crease toward0 asm increases. Consequently, this effect is
even worse than Dhall’s effect.

In conclusion, we observe thatk should be greater than
1, but not too large. Lauzacet al. [16] evaluated the per-
formance of the non-partitioned fixed-priority scheduling.
Unfortunately, they only consideredk = 0 (that is, the
rate-monotonic scheme), which clearly is not the bestk.
In Section 4.2, we simulate scheduling with different val-
ues of k to determine whichk is best. In Section 4.3,
we show that the non-partitioned method using the TkC
priority-assignment scheme outperforms all existing fixed-
priority schemes for the non-partitioned method and per-
forms at least as good as the best practical online partition-
ing schemes.

4 Performance evaluation

In this section, we will conduct a performance evaluation
of the non-partitioned and partitioned method. Our evalua-
tion methodology is based on simulation experiments using
randomly-generated task sets. The reasons for this are that
(i) simulation using synthetic task sets more easily reveal
the average-case performance and robustness of a schedul-
ing algorithm than can be achieved by scheduling a single
application benchmark, and (ii) with the use of simulation
we can compare the bestk from simulation with the derived
interval ofk from our reasoning in Section 3.1.



P1

P2

P3

�1
�2
�3
�4

1=L0 1 + 1=L L2 + 1=LL21

�2

�3

�1

�2

�1 �1

�2

�3�4 �3

Figure 3: If the TkC priority assignment (0 < k � 1) for the non-partitioned method is used, there are unschedulable task
sets with a low utilization.

4.1 Experimental setup
Below, we describe our performance evaluation. Unless

otherwise stated, we conduct the performance evaluation
using the following experimental setup.

Task sets are randomly generated and their scheduling
is simulated with the respective method on four processors.
The number of tasks,n, follows a uniform distribution with
an expected value ofE[n] = 8 and a standard deviation of
0:5E[n]. The period,Ti, of a task�i is taken from a set
f100; 200; 300; : : : ; 1600g, each number having an equal
probability of being selected. The utilization,ui, of a task
�i follows a normal distribution with an expected value of
E[ui] = 0:5 and a standard deviation ofstddev [ui] = 0:4.
If ui < 0 or ui > 1 then a newui is generated. The exe-
cution time,Ci, of a task�i is computed from the generated
utilization of the task, and rounded down to the next lower
integer. If the execution time becomes zero, then the task is
generated again.

The priorities of tasks are assigned with the respective
priority-assignment scheme, and, if applicable, tasks are
partitioned and assigned to processors. All tasks arrive at
time0 and scheduling is simulated duringlcm(T1; : : : ; Tn).
The reason for selecting small values ofm andE[n] is that
lcm(T1; : : : ; Tn) grows rapidly asn is increased, causing
simulations to take too long time.

Two performance metrics are used for evaluating the
simulation experiments, namelysuccess ratioandleast sys-
tem utilization. The success ratio is the fraction of all gen-
erated task sets that are schedulable with respect to an al-
gorithm6 . The success ratio is a recognized performance

6Since the number of task sets for each point differs between plots (5
000 000 in Figure 5 and 2 000 000 in Figures 6 and 7, we obtain different
estimates of the error. With 95% confidence, we obtain errors that are less

metric in the real-time community and measures the proba-
bility that an arbitrary task set is schedulable with respect to
a certain algorithm. The least system utilization is defined
as the minimum of the system utilization of all the task sets
that we simulated and found to be unschedulable. The least
system utilization is primarily used to see if an algorithm is
likely to suffer from Dhall’s effect and similar effects, that
is, if a task set will be unschedulable even for a low uti-
lization. The plots showing the least system utilization will
be less smooth than those from the simulations of success
ratio. This is because the least system utilization reflects a
minimum of numbers rather than an average.

Two non-partitioned priority-assignment schemes are
evaluated, namelyRMwhich is the rate-monotonic priority-
assignment scheme, andTk1.1Cwhich is the TkC priority-
assignment scheme withk = 1:1 (in Section 4.2, we will
show that this is indeed the bestk). Four bin-packing-based
partitioning schemes are studied, namely RRM-BF [10],
RM-FFDU [11], RMGT [8], and R-BOUND-MP [6]7. The
reason for selecting these algorithms is that we have found
that they are the partitioning algorithms which provide the
best performance in our experimental environment. Since
partitioning schemes use a schedulability test as a part of the
partitioning, the success ratio is here also a guarantee ratio.
Note that this property does not apply for scheduling algo-
rithms using the non-partitioned method. We have also eval-
uated a hybrid partitioned/non-partitioned algorithm, which
we will call RM-FFDU+Tk1.1C. The reason for consider-
ing a hybrid solution is that we may be able to increase

than 0.0006 for Figure 5 and 0.0014 for Figures 6 and 7.
7To ensure correct operation of our simulator, we repeated previous

experiments [10, pages 235–236 ] and [8, pages 1440–1441] with identical
results, and [11, pages 36–37] with similar results.



P1

P2

P3

�4

�1
�2
�3

�4 needs to
execute�2 time units.

�0

�3

�2

�1

Figure 4: If the TkC priority assignment (k ! 1) for the non-partitioned method is used, there are unschedulable task sets
with a low utilization.

processor utilization with the use of non-partitioned tasks,
without jeopardizing the guarantees given to partitioned
tasks. The RM-FFDU+Tk1.1C scheme operates in the fol-
lowing manner. First, as many tasks as possible are parti-
tioned with RM-FFDU on the given number of processors.
Then, the remaining tasks (if any) are assigned priorities ac-
cording to the Tk1.1C priority-assignment scheme. In order
not to jeopardize the partitioned tasks, the priorities of the
non-partitioned tasks are set to be lower than the priority of
any partitioned task.

Below, we make two major experiments. First, we will
vary k to find the bestk and compare the results with our
reasoning in Section 3.1. Second, we will compare the per-
formance of the Tk1.1C method with that of the partitioning
algorithms.

4.2 Finding the best k
Figure 5 shows the success ratio and the least system uti-

lization as a function of the slack factork. From the plot we
make two important observations. First, the least system
utilization and the success ratio are correlated. This implies
that selecting an appropriatek to maximize the least sys-
tem utilization will provide a good (though not necessary
optimal)k for the success ratio. Second, choosingk = 1:1
provides the best success ratio. This corroborates that our
reasoning in Section 3.1 was accurate.

4.3 Performance comparison
In Figures 6 and 7, we show the performance as a func-

tion of the number of processors. The success ratio associ-
ated with the Tk1.1C priority-assignment scheme is higher
than that of any other scheduling algorithm. This clearly

indicates that our new parametrized priority-assignment
scheme works as predicted. In particular, we notice that
the traditional RM scheme is outperformed by more than
10 percentage units. The least system utilization associated
with Tk1.1C is equivalent to that of the best existing par-
titioning algorithms. Note how the least system utilization
of RM decreases considerably as the number of processors
increases, simply because of Dhall’s effect. Also observe
that Tk1.1C does not appear to suffer from Dhall’s effect.

In a complementary study [25], we have also investi-
gated the robustness of the scheduling algorithms by vary-
ing the other parameters (E[n], E[ui] andstddev [ui]) that
determine the task set. Here, we observed that the rela-
tive ranking of the algorithms does not change; the Tk1.1C
priority-assignment scheme still offers the highest success
ratio. Furthermore, Tk1.1C continues to provide a least uti-
lization which is equivalent to that of the best existing par-
titioning algorithms. This further supports our hypothesis
that Dhall’s effect does not occur for Tk1.1C.

From the plots in Figures 6 and 7, we can also
make the following two observations. First, the hybrid
partitioning/non-partitioning scheme consistently outper-
forms the corresponding partitioning schemes. This indi-
cates that such a hybrid scheme is a viable alternative to use
in multiprocessor systems that mixes real-time tasks of dif-
ferent criticality. Second, the success ratio of RM is not as
bad as suggested by previous studies [2, 3, 4, 5, 7]. The rea-
son for this is of course that Dhall’s effect, although it exists,
does not occur frequently. This observation corroborates a
recent study [16].



0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 0.5 1 1.5 2 2.5 3
0.3

0.35

0.4

0.45

0.5

0.55

0.6

su
cc

es
s 

ra
tio

sy
st

em
 u

til
iz

at
io

n

k

[m=4,E[n]=8,E[u]=0.5,stddev[u]=0.4]

success ratio (TkC)
system utilization (TkC)

Figure 5: Success ratio and least system utilization as a function of the slack factork.

For all partitioning algorithms, sufficient schedulabil-
ity tests were originally proposed to be used. Now, if we
instead use a schedulability test based on response-time
analysis for the partitioning schemes, the success ratio can
be expected to increase, albeit at the expense of a signif-
icant increase in computational complexity. Recall that
response-time analysis has pseudo-polynomial time com-
plexity, while sufficient schedulability tests typically have
polynomial time-complexity. We have simulated the par-
titioning algorithms using response-time analysis [25] and
made the following observation. The FFDU algorithm now
occasionally provides a slightly higher success ratio than
Tk1.1C, while other partitioning algorithms did not improve
their performance that much, and still had a lower success
ratio than the Tk1.1C. Note that this means that, even if the
best partitioning algorithm (R-BOUND-MP) were to use
response-time analysis, it would still perform worse than
Tk1.1C. This should not come as a surprise since, for R-
BOUND-MP, the performance bottleneck is the partitioning
and not the schedulability test [6].

5 Context switches

It is tempting to believe that the non-partitioned method
causes a larger amount of (and more costly) context
switches than the partitioned method. In this section, we
will propose a dispatcher for the non-partitioned method
that reduces the number of context switches by analyzing
the current state of the scheduler. We will also compare
the number of context switches generated by the best non-
partitioned method using our dispatcher with that of the best
partitioning scheme.

5.1 Dispatcher
The non-partitioned method using fixed-priority

scheduling does only require that, at each instant, them
tasks with the highest priorities are executed; it does not
require a task to run on a specific processor. Hence, as long
as the cost for a context switch is zero, the task-to-processor
assignment at each instant does not affect schedulability.
However, on real computers the time required for a context
switch is non-negligible. If the task-to-processor assign-
ment is selected arbitrarily, it could happen (in theory) that
all m highest-priority tasks execute on another processor
than they did the last time they were dispatched, even if
thesem tasks were the ones that executed last. Hence, to
reduce the risk of unnecessary context switches, we need
a dispatcher that not only selects them highest-priority
tasks, but also selects a task-to-processor assignment such
that the number of context switches is minimized.

We now propose a heuristic for the task-to-processor as-
signment that will reduce the number of context switches
for the non-partitioned method. The heuristic is intended
to be used as a subroutine in the dispatcher in an operating
system. The basic idea of the task-to-processor assignment
algorithm is to determine which of the tasks that must ex-
ecute now (that is, have the highest priority) have recently
executed, and then try to execute those tasks on the same
processor as their previous execution. The algorithm for
this is described in Algorithm 1.

5.2 Comparison of the number of context
switches

Two terms contribute to the time for context switches: (i)
operating system overhead, including register save and re-
store and time to acquire a lock for the ready queue, and (ii)



0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

su
cc

es
s 

ra
tio

m

[E[n]=8,E[u]=0.5,stddev[u]=0.4]

RM (=Tk0C)
Tk1.1C

RRM-BF
RM-FFDU

RM-FFDU+Tk1.1C
RMGT

R-BOUND-MP

Figure 6: Success ratio as a function of the number of processors.

Algorithm 1 Task-to-processor assignment algorithm for
the non-partitioned method.

Input : Let �before be the set of tasks that just executed on the
m processors. On each processorpi, a (possibly non-existing)
task�ij;before executed. Let�highest be the set of tasks that are
in the ready queue and has the highest priority.
Output : On each processorpi, a (possibly non-existing) task
�ij;after should execute.

1: E = fpi : (�ij;before 6= non� existing) ^ (�ij;before 2
�highest)g

2: for each pi 2 E
3: remove �ij;before from �highest
4: �ij;after  �ij;before
5: for each pi =2 E
6: if �highest 6= ;
7: select an arbitrary �j from �highest
8: remove �j from �highest
9: �ij;after  �j

10: else
11: �ij;after  non� existing

an increase in execuction time due to cache reloading. We
assume that the penalty for cache reloading when a task is
preempted, and resumes on another processor, is the same
as if the task would resume on the same processor after be-
ing preempted. If the preempting task (that is, the new task)
has a large working set, this should be a reasonable assump-
tion. We also assume that the operating system overhead
to resume a preempted task on the same processor is the
same as when the task resumes on another processor. Under
these assumptions, the cost of a context switch is the same
for the partitioned method and the non-partitioned method.
Hence, we can count the number of preemptions during an

interval of lcm(T1; T2; : : : ; Tn) and use that as a measure
of the impact of context switches on the performance of the
partitioned method and the non-partitioned method. Note,
however, that this does not measure the impact of context
switches on schedulability, but gives an indication on the
amount of overhead introduced.

To reveal which of the two methods (partitioned or non-
partitioned) that suffers the highest penalty due to context
switches, we have simulated the scheduling of randomly-
generated task sets and counted the number of preemptions.
We simulate scheduling using Tk1.1C and R-BOUND-MP
because they are the best (as demonstrated in Section 4.3)
schemes for the non-partitioned method and the partitioned
method, respectively. We use the same experimental setup
as described in Section 4.1. We varied the number of
tasks and counted the number of preemptions only for
those task sets for which both Tk1.1C and R-BOUND-
MP were schedulable. Since different task sets have dif-
ferent lcm(T1; : : : ; Tn), the impact of task sets with large
lcm(T1; : : : ; Tn) will be too large. To make each task set
equally important, we select to usepreemption densityas a
measure of the context-switch overhead. Preemption den-
sity of a task set is defined as the number of preemptions
during alcm(T1; : : : ; Tn) divided by thelcm(T1; : : : ; Tn)
itself. We then take the average of the preemption density
over a set of 100 000 simulated task sets8.

The results from the simulations are shown in Figure 8.
We observe that, on average, the preemption density for
the best non-partitioned method (Tk1.1C) is lower than
the preemption density for the best partitioned method (R-
BOUND-MP). The reason for this is that, for the partitioned

8Hence we obtain an error of 0.0004 with 95% confidence.



0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

sy
st

em
 u

til
iz

at
io

n

m

[E[n]=8,E[u]=0.5,stddev[u]=0.4]

RM (=Tk0C)
Tk1.1C

RRM-BF
RM-FFDU

RM-FFDU+Tk1.1C
RMGT

R-BOUND-MP

Figure 7: Least system utilization as a function of the number of processors.

method, an arriving higher-priority task must preempt a
lower-priority task. With the non-partitioned method, a
higher priority task can sometimes execute on another idle
processor, thereby avoiding a preemption. Figure 9 illus-
trates a situation where the non-partitioned method with a
context-switch-aware dispatcher causes the number of pre-
emptions to be less than the number of context switches for
a partitioned method.

The reasoning and evaluations in this section indicate
that the cost of context switches for the non-partitioned
method can be made significantly less than for the parti-
tioned method. This means that it is should be possible
to demonstrate even more significant performance gain in
terms of schedulability for the non-partitioned method rela-
tive to the partitioned method on a real multiprocessor sys-
tem.

6 Discussion
The simulation results reported in Section 4.3 indicate

that the non-partitioned method in fact performs better
than its reputation. Besides the advantages demonstrated
through our experimental studies, there are also other bene-
fits in using the non-partitioned method. Below, we discuss
some of those benefits.

The non-partitioned method is the best way of maximiz-
ing the resource utilization when a task’s actual execution
time is much lower than its stated worst-case execution time
[16]. This situation can occur when the execution time of
a task depends highly on user input or sensor values. Since
the partitioned method is guided by the worst-case excution
time during the partitioning decisions, there is a risk that
the actual resource usage will be lower than anticipated, and
thus wasted if no dynamic exploitation of the spare capacity

is made. Our suggested hybrid approach offers one solution
to exploiting system resources effectively, while at the same
time providing guarantees for those tasks that require so.
The hybrid solution proposed in this paper applies the parti-
tioned method to the task set until all processors have been
filled. The remaining tasks are then scheduled using the
non-partitioned approach. An alternativ approach would be
to partition only the tasks that have strict (that is, hard) real-
time constraints, and then let the tasks with less strict con-
straints be scheduled by the non-partitioned method. Since
it is likely that shared-memory multiprocessors will be used
to schedule mostly tasks of the latter type, we expect even
better performance (in terms of success ratio) for the hybrid
solution.

The non-partitioned method can perform mode changes
faster than the partitioned method since tasks are not as-
signed to dedicated processors. For the partitioned method
it may be necessary to repartition the task set during the
mode change, something which significantly decreases the
number of instants in time that a mode change can take
place at. In a complementary study, we have observed pairs
of task sets between which a mode change can only be al-
lowed to take place at a few instants in time, otherwise dead-
lines will be missed. The lack of capability to perform fast
mode changes limits the degree of flexibility in the system,
which is a serious drawback when working with dynamic
application environments.

As shown in this paper, the non-partitioned method can
be extended to account for processor affinity with the aid of
our proposed context-switch-aware dispatcher. The net re-
sult of this extension is that the non-partitioned method in-
curs fewer context switches at run-time than the partitioned
method on the average. However, it is important to real-



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

4 5 6 7 8 9 10 11 12 13 14

pr
ee

m
pt

io
n 

de
ns

ity

E[n]

[m=4,E[u]=0.5,stddev[u]=0.4]

Tk1.1C
R-BOUND-MP

Figure 8: Preemption density as a function of the number of tasks in the system.

ize that this new dispatcher requires more synchronization
between processors. The overall effect of this extra syn-
chronization remains to be seen and is consequently a sub-
ject for future research. Also, it will be necessary to assess
the real costs for context switches and cache reloading and
its impact on schedulability. However, this warrants eval-
uation of real applications on real multiprocessor architec-
tures, which introduces several new system parameters to
consider.

Finally, it should be mentioned that the results obtained
for the TkC priority-assignment scheme constitute a strong
conjecture regarding the existence of a fixed-priority assign-
ment scheme for the non-partitioned method that does not
suffer from Dhall’s effect. The results also indicate that
there is a need to configure TkC for each application and
system size. However, in order to use TkC in a system
with exclusively strict real-time constraints, it is also im-
portant to find an effective schedulability test. In our future
research we will therefore focus on (i) proving that TkC
does in fact not suffer from Dhall’s effect, (ii) constructing
a (most likely, sufficient) schedulability test for TkC, and
(iii) devising a method to derive the best slack factork for
any given task set and multiprocessor system.

7 Conclusions
In this paper, we have addressed the problem of schedul-

ing tasks on a multiprocessor system with changing work-
loads. To that end, we have made two major contribu-
tions. First, we proposed a new fixed-priority assign-
ment scheme that gives the non-partitioned method equal
or better performance than the best partitioning schemes.
Since the partitioned method can guarantee that deadlines
will be met at run-time for the tasks that are partitioned,

we have also evaluated a hybrid solution that combined
the resource-effective characteristics of the non-partitioned
method with the guarantee-based characteristics of the par-
titioned method. The performance of the hybrid solution
was found to be at least as good as any partitioned method.
Second, we proposed a context-switch-aware dispatcher for
the non-partitioned method that contributes to significantly
reducing the number of context switches taken at run-time.
In fact, we show that the number of context switches taken
is less than that of the partitioned method for similar task
sets.

References
[1] K. Diefendorff and P. K. Dubey. How multimedia

workloads will change processor design.IEEE Com-
puter, 30(9):43–45, September 1997.

[2] S. Dhall. Scheduling Periodic-Time-Critical Jobs on
Single Processor and Multiprocessor Computing Sys-
tems. PhD thesis, Department of Computer Science,
University of Illinois at Urbana-Champain, 1977.

[3] S. K. Dhall and C. L. Liu. On a real-time scheduling
problem. Operations Research, 26(1):127–140, Jan-
uary/February 1978.

[4] S. Davari and S.K. Dhall. On a real-time task alloca-
tion problem. In19th Annual Hawaii International
Conference on System Sciences, pages 8–10, Hon-
olulu, Hawaii, 1985.

[5] S. Davari and S.K. Dhall. An on-line algorithm for
real-time task allocation. InProc. of the IEEE Real-
Time Systems Symposium, volume 7, pages 194–200,
New Orleans, LA, December 1986.



[6] S. Lauzac, R. Melhem, and D. Moss´e. An efficient
RMS admission control and its application to multi-
processor scheduling. InProc. of the IEEE Int’l Par-
allel Processing Symposium, pages 511–518, Orlando,
Florida, March 1998.

[7] J. Y.-T. Leung and J. Whitehead. On the complex-
ity of fixed-priority scheduling of periodic, real-time
tasks. Performance Evaluation, 2(4):237–250, De-
cember 1982.

[8] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New
strategies for assigning real-time tasks to multipro-
cessor systems.IEEE Transactions on Computers,
44(12):1429–1442, December 1995.

[9] S. Sáez, J. Vila, and A. Crespo. Using exact feasibility
tests for allocating real-time tasks in multiprocessor
systems. In10th Euromicro Workshop on Real Time
Systems, pages 53–60, Berlin, Germany, June 17–19,
1998.

[10] Y. Oh and S. H. Son. Allocating fixed-priority periodic
tasks on multiprocessor systems.Real-Time Systems,
9(3):207–239, November 1995.

[11] Y. Oh and S. H. Son. Fixed-priority scheduling
of periodic tasks on multiprocessor systems. Tech-
nical Report 95-16, Department of Computer Sci-
ence, University of Virginia, March 1995. Avail-
able at ftp://ftp.cs.virginia.edu/pub/techreports/CS-
95-16.ps.Z.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment. Journal of the Association for Computing Ma-
chinery, 20(1):46–61, January 1973.

[13] J. Y.-T. Leung. A new algorithm for scheduling pe-
riodic, real-time tasks.Algorithmica, 4(2):209–219,
1989.

[14] C. L. Liu. Scheduling algorithms for multiprocessors
in a hard real-time environment. InJPL Space Pro-
grams Summary 37-60, volume II, pages 28–31. 1969.

[15] B. Andersson. Adaption of time-sensitive tasks
on shared memory multiprocessors: A frame-
work suggestion. Master’s thesis, Department
of Computer Engineering, Chalmers Univer-
sity of Technology, January 1999. Available at
http://www.ce.chalmers.se/staff/ba/masterthesis/ps/thesis.ps
and http://www.docs.uu.se/snart/prizes.shtml#1999.

[16] S. Lauzac, R. Melhem, and D. Moss´e. Comparison
of global and partitioning schemes for scheduling rate

monotonic tasks on a multiprocessor. In10th Euromi-
cro Workshop on Real Time Systems, pages 188–195,
Berlin, Germany, June 17–19, 1998.

[17] L. Lundberg. Multiprocessor scheduling of age con-
traint processes. In5th International Conference on
Real-Time Computing Systems and Applications, Hi-
roshima, Japan, October 27–29, 1998.

[18] J. A. Stankovic, C. Lu, and S. H. Son. The case
for feedback control real-time scheduling. Tech-
nical Report 98-35, Dept. of Computer Science,
University of Virginia, November 1998. Avail-
able at ftp://ftp.cs.virginia.edu/pub/techreports/CS-
98-35.ps.Z.

[19] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao. The case
for feedback control real-time scheduling. InProc.
of the EuroMicro Conference on Real-Time Systems,
volume 11, pages 11–20, York, England, June 9–11,
1999.

[20] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Design
and evaluation of a feedback control EDF scheduling
algorithm. InProc. of the IEEE Real-Time Systems
Symposium, Phoenix, Arizona, December 1–3, 1995.

[21] S. Brandt and G. Nutt. A dynamic quality of service
middleware agent for mediating application resource
usage. InProc. of the IEEE Real-Time Systems Sym-
posium, volume 19, pages 307–317, Madrid, Spain,
1998.

[22] J. C. Mogul and A. Borg. Effect of context switches
on cache performance. InInternational Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 75–84, Santa Clara, CA
USA, April 8–11, 1991.

[23] N. C. Audsley. Optimal priority assignment and feasi-
bility of static priority tasks with arbitrary start times.
Technical Report YCS 164, Dept. of Computer Sci-
ence, University of York, York, England Y01 5DD,
December 1991.

[24] S. K. Baruah. Static-priority scheduling of re-
curring real-time tasks. Technical report, De-
partment of Computer Science, The University of
North Carolina at Chapel Hill, 1999. Available at
http://www.cs.unc.edu/˜baruah/Papers/staticdag.ps.

[25] B. Andersson and J. Jonsson. Fixed-priority preemp-
tive scheduling: To partition or not to partition. Tech-
nical Report No. 00-1, Dept. of Computer Engineer-
ing, Chalmers University of Technology, S–412 96
Göteborg, Sweden, January 2000. Available at
http://www.ce.chalmers.se/staff/ba/TR/TR-00-1.ps.



P1

P2

non-partitioning with Tk1.1C, using a dispatcher aware of context switches

preemptions

P2

P1

preemption

non-partitioning with Tk1.1C, using a dispatcher unaware of context switches

preemptionspartitioning with R-BOUND-MP

P1

P2

�1
�2
�3

�3

�1

�1
�2

�2
�3

�3 �3 �3

�1�3

�2 �1

�1

�3 �1

�2�2�2

�1

�1

�2

�1 �1�1 �3�1 �3

�2 �3 �2 �2�3

�1

�2

�1

Figure 9: Preemptions for non-partitioned method and partitioned method.


