INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

@

UMI

AUTOMATIC CODE GENERATION FOR REAL-TIME
REACTIVE SYSTEMS IN TROMLAB ENVIRONMENT

DA QING ZHANG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2001
© DA QING ZHANG, 2001

il

National Library
of Canada

uisitions and
Bibliographic Services
385 Wellington Street

Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et

services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your i@ Votre réldrence

Our Sle Notre référence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant i la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-59345-2

Canada

Abstract

Automatic Code Generation for Real-Time Reactive Systems in
TROMLAB Environment

DA QING ZHANG

Real-time reactive systems are among the most difficult systems to design and im-
plement because of their complex functional and timing requirements. TROMLAB is
a rigorous framework founded on TROM formalism for developing real-time reactive
systems. The framework provides a number of tools that make formalism trans-
parent to the application developer. The work presented in this thesis adds a new
component to TROMLAB. The thesis gives a methodology for the implementation of
a real-time reactive system designed and validated in TROMLAB. The methodology
consists of defining a real-time execution model in C++ that fits the TROM formal-
ism, automatically translating TROM specifications into Larch/C++, an interface
specification language, and finally mechanically generating C++ code that conforms
to the interface specification. The code generation methodology is illustrated for
the Train-Gate-Controller problem, a bench-mark case study in real-time systems
community.

Acknowledgments

I would like to deeply thank my supervisor, Dr. V.S.Alagar, who introduced me to
the topic of the thesis, and guided me in developing the methodology to mechanical
code generation. I deeply thank him for his kindness and patient reading of my thesis
drafts. His understanding and support throughout the period of my work is greatly
appreciated.

I also thank all members of TROMLAB research group for their technical support
and friendship.

I thank my family for their understanding and support during my studies.

iv

Contents

List of Figures
List of Tables

1 Introduction
1.1 Real-time ReactiveSystem
1.2 Contributionof the Thesis«

2 TROMLAR Environment
21 TROMFormalismcc0icc....
22 TROMLABTools i ittt e et e
2.3 Significance of Automatic Code Generation

3 Object-Oriented Concepts in TROM
3.1 Object-Oriented Concepts in Real-time Reactive System
3.2 C++ Implementation of Real-time Reactive System

4 TROM Implementation Model
4.1 Abstract TROMClasst unine..
42 Events e e e e e e e e e e e e e
43 Statesand Attributes
44 Ports e e e e e
45 Tramsitions. e

46 TimeConstraintst i i v i i v e et e e e e e e

5 Real-Time C++4+ Model
5.1 Multi-threaded Mechanism

vii

11
13

15
15
17

19
19
21
22
24
25
26

28

5.2 Shared Resources of Multiple Threads
53 TheClass Thread
5.4 Implementationon UNIX

6 Code Generation Methodology
6.1 From TROMtoLarch/C++
62 C++CodeGeneration00uunn...
63 Conformancettt

7 Case Study
7.1 Train-Gate-Controller Problem
7.2 Implementation

8 Conclusions

Bibliography

39
39
41
43

48
48
58

81

83

List of Figures

O 00 ~ O U A~ W N -

DO DD B 2 e e s s e b e e

Mlustration of the implementation

An overview of TROM Formalism 6
Template for Class Specification. 9
Class definition of Arbiter 10
TROMLAB Architecture 12
Shared resources and thread-specific resources 31
A Example of DynamicData 33
TheClass Thread 34
Implementeation Thread 36
The Function Run() 37
The Function Sleep() 38
Template for Larch/C++ transition interface specification 41
Main Class Diagram for Train-Gate-Controller 49
Statechart Diagram for Train 50
Formal specification for GRCTrain 51
Statechart Diagram for Controller 52
Formal specification for GRC Controller 53
Statechart DiagramforGate 55
Formal specification for GRCGate 55
Collaboration diagram for subsystem TrainGateController2 56
Formal specification for subsystem TrainGateController2 57
Generated C++ Codeof Class Train 59
Generated Larch/C++ interface specification of TrainR1 60
Generated C++ Codeof Class TrainR1 61
Generated Larch/C++ interface specification of TrainR2 62
Generated C++ Code of Class TrainR2 62

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Generated Larch/C++ interface specification of TrainR3
Generated C++ Code of Class TrainR3
Generated Larch/C++ interface specification of TrainR4
Generated C++ Code of Class TrainR4
Generated C++ Code of Class Controller
Generated Larch/C++ interface specification of ControllerR1
Generated C++ Code of Class ControllerR1.
Generated Larch/C++ interface specification of ControllerR2
Generated C++ Code of Class ControllerR2.
Generated Larch/C++ interface specification of ControllerR3
Generated C++ Code of Class ControllerR3.
Generated Larch/C++ interface specification of ControllerR4
Generated C++ Code of Class ControllerR4
Generated Larch/C++ interface specification of ControllerR5
Generated C++ Code of Class ControllerRS
Generated Larch/C++ interface specification of ControllerR6
Generated C++ Code of Class ControllerR6
Generated Larch/C++ interface specification of ControllerR7
Generated C++ Code of Class ControllerR7
Generated C++ Code of Class Gate
Generated Larch/C++ interface specification of GateR1
Generated C++ Code of Class GateR1
Generated Larch/C++ interface specification of GateR2
Generated C++ Code of Class GateR2
Generated Larch/C++ interface specification of GateR3
Generated C++ Code of Class GateR3
Generated Larch/C++ interface specification of GateR4
Generated C++ Code of Class GateR4
Genetarcd Code of the Subsystem: TrainControllerGate.

List of Tables

00 ~J O OV &~ W N =

Features of different kind of inheritance supported in TROM 17
TheClass TROM it 20
TheClassEvent 21
TheClassState 23
TheClass Attribute 23
TheClassPort @ ... 24
The Class Transition0c00cc..... 26
The Class Constrainto ve.en.. 27

Chapter 1

Introduction

1.1 Real-time Reactive System

Real-time reactive systems are largely event-driven, interact continuously with the
environment through stimulus-response behavior, and the behaviors are regulated by
strict timing constraints.

In general, the behavior of a real-time reactive system is infinite: a process in a real-
time reactive system is usually non-terminating. In this respect, real-time reactive
systems are different from common transformational systems, which can be regarded
as functions from the input space at the start of a computation to an output space on
termination. Real-time reactive systems are also different from interactive systems.
The major difference between them is the availability of synchronization mechanism: a
real-time reactive system is fully responsible for synchronization with its environment.
Two important hypothesis for real-time reactive systems are as following:

e stimulus synchronization: the process always reacts to a stimulus from its en-
vironment;

e response synchronization: the time elapsed between a stimulus and its response
is acceptable to the reactive dynamics of the environment so that the environ-
ment is still receptive to the response;

Examples of real-time reactive systems include air traffic control systems, nuclear

reactors, avionic control systems, and communication network switches, etc.

Real-time reactive systems run in safety-critical contexts with concurrency, hard real-
time requirements, large variations in timing regulations, and various possibility of
system executions caused by the interleaving of concurrent activities. The functional
behavior and real-time constraints on the actions must be analyzed to guarantee
the satisfaction of safety requirements before the system brought into action. But
the complexity of the interactions makes it difficult to comprehend or analyze the
behavior of real-time reactive systems.

The largeness, criticality, concurrency, and the time-dependent behavior are some
of the critical factors that contribute to the complexity of a reactive system. Large
real-time reactive systems become more difficult to understand, maintain, and mod-
ify. A formal approach that can model the real-world entities of real-time reactive
systems could help to reduce these difficulties. For this purpose, a formal specifica-

tion methodology for real-time reactive system development, TROM formalism, was
introduced by Acuthan{Ach95).

1.2 Contribution of the Thesis

Thesis topic arose in the context of TROMLAB and its work is based on the following
ideas: (1) TROM formalism, which has object-oriented features, can be mapped into
object-oriented language. (Here we select C++, an object-oriented language which
is widely used, as the implementation language); (2) In the C++ implementation of
real-time reactive system, each specific reactive object can be regarded as a thread in
run time C++. The running of a real-time object reactive system, therefore, could
be regarded as a multi-threaded execution.

The objective of my work is to give a methodology for the implementation, from
design model in TROM formalism to C++. Based on the methodology, the code

generation process of real-time reactive system is automated so that the resulting
program is correct and efficient.

The main contributions of my work are the followings:

e Mapping TROM formalism into a C++ Implementation model;

2

e Implementation of TROM objects and subsystems;

e Implementation of real-time C++ model;

e Development of tools to generate Larch/C++ specification and C++ code;
e Generating the data type library in C++;

e Conformance evaluation of the generated C++ code to Larch/C++ specifica-
tion.

Figure 1 shows an implementation model of the research components

The organization of this thesis is as follows. Chapter 2, introduces the TROM for-
malism, TROMLAB tools, and the significance of code generation. In Chapter 3, we
discuss the object-oriented features of TROM formalism that need to be implemented
in C++. We also provide a discussion on the advantages and defects of C++ for the
implementation. Chapter 4 gives the mapping from TROM formalism to C++ class
hierarchy. Chapter 5 gives the implementation of real-time C++ model. Chapter
6 presents how to implement the code generation—from TROM to Larch/C++ and
C++ code. Chapter 7 shows the code generation steps for the Train-Gate-Controller
case study. Chapter 8 gives the conclusions and the future work.

"]

IMPLEMENTATION

Real-time C++ Model

implementation of real-time
C++ Model

Formal Specfication

TROM Implementation
Model

Code Generation Tools

Implamentation of Timed
reactive Object Mode!

e |
|

implemented Code (Compile —> link ->execute/conformance)

Figure 1: Illustration of the implementation

Chapter 2

TROMLAB Environment

2.1 TROM Formalism

Achuthan [Ach95] introduced an abstract reactive system model, it has three tiers:
(1) mathematical abstractions of data models used in specifying a reactive object,
(2) reactive objects with time-constrained stimulus-response behavior, and (3) object
collaborations. The three tiers independently specify abstract data types, generic
reactive classes, and system configurations, respectively. Reactive class specifications
include abstract data types specified as LSL (Larch Shared Language) [GH93] traits.
A subsystem specifies instantiations of generic reactive classes, links to configure
interaction channels among the objects, and compositions of subsystems. Figure 2
shows an overview of the TROM formalism.

In TROM formalism [Ach95], a reactive object is assumed to have a single thread of
control. The communication mechanism is based on synchronous message passing.
A port abstracts an access point for bidirectional communication between reactive
objects. The port type dictates the set of messages allowed at the port. Instances of
a generic reactive class conform to the same functional and temporal behavior; their
structure differ only in the number of ports for each port type.

In TROM formalism [Ach95], a reactive object consists of port types, event, states,
attributes, LSL traits, an attribute function, transition specifications , and time con-
straints. A states can be simple, or complex (with substates). The attributes function
defines the association of attributes to states; A transition specification describes the

Animation Requirements specification in Larch
Tool Allen’s Temporal Logic(ATL) Prover
Validation Formal Verification
: . |System Conﬁguraﬁo1 : o System Theory:
: Subsystem 4 : Y :
' Computations ! Specification ! Synch. Axioms in ATL | |
3 TROM ' | Timed Reactive : TROM theory: E
' Computations : Object Model : Axioms in ATL
; : Larch Shared : First ord ;
: Data Model : Language (LSL) : l;.so ; A er :
PTTmmmmmm e ' 3-Tiered Design ~ '~TTTTTTTTToTeesmoostmeoeess '
Operational Semantics Specification Logical Semantics

Figure 2: An overview of TROM Formalism

computational step associated with the occurrence of an event. A time constraint as-
sociates a reaction with a transition; the reaction corresponds to firing an output or
an internal event within a time interval subsequent to the transition. An occurrence
of the transition cause the constrained event to be enabled; the enabled reaction is
disabled when the object enters one of the disabling states associated with the time
constraint.

Formally, timed reactive object model (TROM) [Ach95] defining a reactive object, is
an 8-tuple (P,£,0,X,L£,8,A,T) such that:

e P is a finite set of port-types with a finite set of ports associated with each

port-type. A distinguished port-type is the null-type P, whose only port is the
null port o.

o £ is a finite set of events and includes the silent-event tick. The set £ - {tick}
is partitioned into three disjoint subsets: &, is the set of input events, &gy
is the set of output events, and &;,; is the set of internal events. Each event
e € (€in U &) is associated with a unique port-type P € P — {P,}.

e O is a finite set of states. 8y € ©,is the initial state.

e X is a finite set of typed attributes. The attributes can be one of the following
two types: i) an abstract data type supporting a data model; ii) a port reference
type.

e L is a finite set of LSL traits introducing the abstract data types used in X.
e & is a function-vector (®,, ®,;:) where,

— ®,: © — 2° associates with each state § a set of states, possibly empty,
called substates. A state 8 is called atomic, if ®,() = ¢. By definition,
the initial state 6, is atomic. For each non-atomic state 8, there exists a
unique atomic state §* € &,(6), called the entry-state.

— ®&,: © — 2% associates with each state 8 a set of attributes, possibly
empty, called active attribute set. At each state 6, the set ®,£() = X —
®,:(0) is called the dormant attribute set of 6.

e A is a finite set of transition specifications including M;i;- A transition specifi-
cation A € A — { it} is represented as A: (6, 8'); e(@port); Pen => Ppost;Where:

— (0,6'), where 6,6’ € © are the source and destination states of the transi-
tion, respectively.

— e(pport) Where event e € £ labels the transition; @port is an assertion on the
attributes in X and a reserved variable pid. pid signifies the identifier of
the port at which an interaction associated with the transition can occur.
If e € £ U {tick}, then the assertion ¢y, is absent and e is assumed to
occur at the null-port o.

— Pen => Ypost, Where ., is the enabling condition and p,, is the post-
condition of the transition.,., is an assertion on the attributes in X spec-
ifying the condition under which the transition is enabled. ., is an
assertion on the attributes in X, primed attributes in ®,,(6’) and the vari-
able pid specifying the data computation associated with the transition.

For each 8 € ©, the silent-transition A,y € A is such that,

Aso : (0,8); tick; true = V; € ®,t(0) : z =7;

The initial-transition A, is such that A : (6o); Create(); Pinie where Qinie is
an assertion on active-attributes of §,.

e T is a finite set of time-constraints. A timing constraint v; € T is a tuple
(M €, [1, u), ©;) where,
-Ai # A, is a transition specification.
-€} € (Eout U Eine) is the constrained event.
-[1,u] defines the minimum and maximum response times.
-©; C O is the set of states wherein the timing constraint v; will be ignored.

Figure 3 illustrates the template for class specification of generic reactive class in
TROM formalism. The keyword Class introduces a reactive class with its identifier

and associated port types with parametric cardinality. The sections labeled with the
keywords Events, States, Attributes, Traits, Attribute_Function, Transition-Specifications,
and Time_constraints capture the structure and behavior of instances of generic reac-
tive class.

Class < emidentifier > [< porttypes >]
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
Time-Constraints:

end

Figure 3: Template for Class Specification.

Figure 4 shows a TROM class description for specifying an arbiter. An arbiter allo-
cates shared resources to processes requesting them. The arbiter modeled in Figure 4
enqueues the requests for a resource received from processes and allocates the resource
to the next process waiting in the queue. The specification uses the functions insert
and tail from the trait Queue(@U,UQueue), imported into the Arbiter class, to add
and delete requests made at a port of type @U. The attribute hold in class Arbiter
denotes the most recent port at which the resource was granted. Input and output
events are marked by the suffix symbols ‘?’ and ‘!" respectively. Internal events are
unmarked. The output event Grant! is time constrained and must occur within 2
units of time from the instant the input event Req? and Ret? have occurred.

In TROM formalism [Ach95], the status of a TROM object captures the state in
which the TROM object is at that instant, the value of the attributes at that instant
as reflected in the assignment vector, and the timing behavior of the TROM object as
specified in the reaction vector. The reaction vector associates a set of reaction win-
dows with each time constraint, where a reaction window represents an outstanding
timing requirement to be satisfied by the output event or the internal event associated
with this time constraint. The TROM object is in a stable status when the reaction

Class Arbiter [QU]
Events: Req?U, Grant!U, Ret?U
States: *idle, allot, wait
Attributes: rgSet: USet; hold:@U
Traits: Set/@U, USet/
Attribute-function:
allot — {rgSet}; wait — {rgSet, hold};
Transition-Specifications:
R, : (idle, allot); Req?(true);
true => rgSet/ = insert(pid, {});
R; : (allot, wait); Grant!(pid € rgSet);
true => rqSet/ = delete(pid, rgSet)) A (holds = pid);
Rj3 : (allot, allot), (wait, wait); Reg?(not pid € rqSet);
true =>rqSet/ = insert(pid, rgSet);
Ry : (wait, allot); Ret? (pid = hold);
- isEmpty(rqSet) => rqSet’ = rqSet;
Rs : (wait, idle); Ret? (pid = hold);
isEmpty(rqgSet) = true;
Time-Constraints:
TC, : (R, Grant, [0,2], 0)
TC; : (R4, Grant, [0,2], 0)
end

Figure 4: Class definition of Arbiter

10

vector is null.

A computational step [Ach95] of a TROM object is an atomic step which takens the
TROM object from one status to its succeeding status as defined by the transition
specifications. Each computational step of a TROM object is associated with a transi-
tion in the TROM object; and each transition is associated with either an interaction
signal, an internal signal, or a ‘seilent signal. A computation step occurs when the
TROM object receives a signal and there exists a transition specification such that:
the triggering event for the transition is the event causing the signal; the TROM
object is in the source state or substate of the source state of the transition specifi-
cation; the port-condition is satisfied if the signal is an interaction; and the enabling
condition is satisfied by the assignment vector. The effects of the computational step
are: the TROM object enters the destination state or the entry state of the destina-
tion state of the transition specification; the assignment vector is modified to satisfy
the post-condition; and the reaction vector is modified to reflect the firing, disabling,
and enabling of reactions. The status of a reactive system (subsystem) is the set of
statues of the TROM objects in the system (subsystem). And the computation of a
TROM object is a sequence of computational steps.

A computational step causes time-constrained responses to be activated or deac-
tivated. If the constrained event of an outstanding reaction is the event associated
with the transition, and the time that the event occurs is within the reaction windows
of the outstanding reaction, then the reaction is fired. If the destination state of the
transition associated with a computational step is a disabling state of the outstanding
reaction, then the reactionis disabled. Whenever a reaction is time-constrained by
the transition associated with the computational step, the reaction is enabled.

2.2 TROMLAB Tools

TROMLARB is a framework for applying TROM formalism and constructing real-time
reactive systems in concordance with the process model.

Figure 5 illustrates the architecture of TROMLAB.

11

~
GRAPHICAL USER INTERFACE \
TROMLAB-GUI l Rational Rose I
Rose-GRC Transiator
/ ’
Formal Specification j
_ t _)
| I
EDITOR INTERPRETER
- SIMULATION TOOL
l TROM Class Specs ’
Sebepstem —_—
VALIDATION
TOOLSET
r [nteractive/ Batch

LS Libeary Mamager

LSL Liberary Support

Linked @

Larch-Ce+ Anaiyer / Larch Prover

umnsm——)

WY

Figure 5: TROMLAB Architecture

12

Time

The following components of TROMLAB are completed:

Interpreter [Tao96] parses, syntactically checks a specification, and constructs an
internal representation;

Simulator [Mut96] animates a subsystem based on the internal representation, and
enables a systematic validation of the specified system;

Browser for Reuse [Nag99] which is an interface to the library, to help users navigate,
query and access various system components for reuse during system development;

Graphical User Interface [Sri99] is a visual modeling and interaction facility for a
developer using the TROMLAB environment;

UML-RT Support [Oana99] is a translator to generate TROM specification from real-
time UML;

Verification Assistant [Pop99] is a tool to generate PVS theory from TROM specifi-
cation for proving timing properties;

Reasoning System [Hai99] provides a means of debugging the system during animation
by facilitating interactive queries of hypothetical nature on system behavior.

Alagar and Muthiayen [AM98] proposed minimum extension to Unified Modeling
Language(UML) notations to model real-time reactive systems as conceived in the
TROM formalism, and gave the research work [Mut98] in integrating object-oriented
methodology as practiced through the UML notations in industries and formal verifi-

cation approaches based on the formal specification language Prototype Verification
System(PVS) [ORS92].

2.3 Significance of Automatic Code Generation

Automatic code generation from formal reactive system design is a new area of re-
search. Given that real-time reactive systems are time-critical, efficiency of imple-
mentation is more important than in other systems. Responding to situations where
all the timing constraints cannot be met and meeting the timing requirements that
may change dynamically are two of the most difficult issues to satisfy in an imple-
mentation. In practice it is impossible to design and implement systems which will

13

guarantee that the appropriate output will be generated at the appropriate time un-
der all possible conditions. The accuracy of modeling environment constraints and
real-world entities that interact with the system is crucial in an implementation. In
particular, when the system is large, the implementation will become more difficult.
It is necessary to give an efficient methodology for system design as well as a generic
approach from design model to the implementation of the system. The work accom-
plished so far in TROMLAB framework provides a setting for implementation on a
design that has been validated and verified. That is, at the design level timing analy-
sis and functional behavior are conducted prior to committing to an implementation.
Moreover, the iterative cycle in the TROMLAB process model allows faulty implemen-
tations to go through an inner cycle of redesign, validation, and verification. This
improves the level of reuse of specifications, design, and implementation modules.

In addition, the approach of the implementation and code generation gives a facility
to verify whether the functional and timing constraints in the implemented program
are consistent with the implicit functionality specified in the transition specifications
and the timing constraints specified for the time-constrained events. A good imple-
mentation must seamlessly mesh with the design. This quality depends upon the
expressive power of the programming language that used to implement the design
notations. In the following Chapter, we will discuss the advantages and defects in
C++ for this implementation, together with the conformance of the generated code
to design notations.

14

Chapter 3

Object-Oriented Concepts in
TROM

3.1 Object-Oriented Concepts in Real-time Reac-

tive System

One of the important features of the TROM methodology is the conciseness achieved
in specification with object-oriented concepts such as encapsulation, inheritance and
subtyping. Moreover, the three-tiered design framework provides a clear separation
of concerns for system refinement and promotes reuse.

Consider the application of data abstraction in real-time reactive system. Larch traits
can be developed incrementally by including one trait in another. The components in
the second and third tiers of a design framework can use abstract types from the lowest
tier in a black-box fashion. That is, the interface between tiers completely insulates
the implementation from its details. This is advantageous to real-time reactive system
because detailed information concerning data members of objects, such as resources,
need not be known until later stages of design.

A reactive object is a black-box which can respond to a fixed set of messages from
outside by carrying out some of its operations. An object combines state and behav-
ior in a single encapsulated entity. The property of encapsulation essentially means
that an object’s state may change only as a result of internal actions or as a result

15

of interaction with the environment through explicitly defined external interface op-
erations. The object-oriented concepts relevant to this methodology are defined and
interpreted in the context of specifications.

Objects communicate by messages sent through the ports associated with them. Com-
munication mechanism between objects is based on synchrony hypothesis. That is,
an object that sends the message e? and the object that receives e! change their states

simultaneously. The synchrony hypothesis assumes that computation times are null
and transition is instantaneous. '

A subsystem is an aggregation of objects. Objects in a subsystem interact through
messages sent/received along the portlinks that connect the compatible ports in the
interaction. While two objects are interacting, other objects in the system may
perform internal actions. Thus, system may execute concurrently. A subsystem may
include other subsystems. That is, subsystems provide a coarser level of encapsulation
and help to structure large systems.

Inheritance is used as a kind of design technique by which one class definition is
derived incrementally from one or more class definitions. In TROM formalism, inher-
itance is used for the refinement of system design, which add more details, such as
more states, more transition, and strengthening time constraints. The refined design
should preserve essential properties of the original design and aid the implementation
process, but the design from an unconstrained inheritance principle cannot guaran-
tee the preservation. For this reason, three forms of constrained inheritances based
on subtyping were introduced in TROM formalism. They are behavioral inheritance,
eztensional inheritance and polymorphic inheritance.

TROM formalism supports inheritance by which a type (new class) can be derived
from one or more existing direct base class (single inheritance or muitiple inheri-
tances). Inheritance in object oriented paradigm defines new classes using the classes
that already exist in the system, and only the properties of the new classes that differ
from the existing classes should be defined explicitly, while other properties will be
inherited from the existing classes. The utilization of inheritance exists between the
class hierarchies. With this feature, the abstract classes are built as the generic model,

16

| Inheritance | Behavior-Preservation Substitutability
Behavioral | yes Context — independent | yes Contezt — independent
Extensional | yes Contezt — independent | no
Polymorphic | yes Context — dependent yes Context — independent

Table 1: Features of different kind of inheritance supported in TROM

and the classes of a special case inherits the properties from the abstract classes.

Inheritance that is behavior preserving is referred to as subtype-inheritance. The
subtype-inheritance can be of different kinds whereby substitution polymorphism
or behavioral extensions are achieved. This provides the basis for incremental and
iterative system development in the framework.

Polymorphism is the notion of behavioral compatibility used as a design technique by
which an object can be substituted by another compatible object. Class hierarchies
with polymorphism through inheritance are of special interest for both system design
(system enhancement) and implementation (instantiation).

3.2 C++ Implementation of Real-time Reactive
System

C++ lacks the ability to react to external stimuli and often cannot describe concur-
rency. For this reason, when it is required to implement a real-time reactive system,
an extension to C++ should be developed. The goals are to be able to have different
concurrent modules, to describe their interconnections and provide an event-driven
communication scheme, with methods to suspend and resume a task, or abort a
certain task when a given condition occurs.

Different from Java (another popular object oriented language), portability in C++
is an issue; it is because portability is taken into account during the design of Java
language, but it is not so for C++. Moreover, as an object oriented language evolved
from C, there are some problems of historical legacy that plague C++.

The syntax in C++, specially in the expression of abstract data type and its behavior

17

as well as some mathematical theories, is different from the TROM formalism which
expresses its data model by Larch Shared Language based on first-order logic. Be-
sides, C++ lacks the strong capability to express time properties. The difference in
expression logic between C++ and the specification language may augment the risk
of inconsistency in the C++ implementation and its formal specification.

The standard C++ does not provide multi-threaded mechanism for object oriented
programming. In the implementation of real-time reactive system, the mechanism
should be developed on specified platform and based on some features of the specified
C++ version. In Chapter 5, the implementation of the mechanism is given.

Even if some extension in C++, that makes a program react to stimuli, can be
achieved by using the developed thread synchronization, as the number of signal
increases, it sometimes becomes less tractable, in particular, when more than one
inputs are expected at the same time. For this cause, there are also several problems
with the thread mechanism in general, and with its implementation in C++ also.

Some of the problems that may arise due to a “weak” thread mechanism can be listed
as follows:

1. Provides designers with a low-level control of parallelism and a great deal of
freedom for developing parallel applications, which is usually not required, and
often leads to bad designs with difficult-to-find bugs;

2. Lacks control structures for communication between threads; and

3. Lacks a standard scheduling algorithm for different environment

We will discuss solutions to these problems in the following Chapters.

18

Chapter 4

TROM Implementation Model

4.1 Abstract TROM Class

In TROM formalism, a reactive object is regarded as a finite state machine, extended
with attributes. TROMs interact synchronously by signaling output events and by
responding to input events signaled in their ports. The reactive behavior of a TROM
is controlled by time-constrained causal relationship between the events and the com-
putations they trigger. Among its outstanding features, a TROM allows concise
specification of encapsulated time-constraints, and allows object modeling at various
levels of abstraction.

A reactive system is modeled as a collection of interacting reactive objects. The
specification of a reactive system is made from the specifications of individual reactive
objects and their collaborations. An object is the smallest unit of encapsulation with
a single thread of control. Each object has its unique identifier.

In the implementation, Class TROM, as the basic type of reactive system, is defined
as the concrete type of C++, with the data member of ports, states, events,attributes,
transitions, and constraints. It is defined as a derived class of Class Thread.

A generic reactive class (GRC), as a derived class of Class TROM, models the struc-
ture and behavior of a family of real-world reactive objects.

19

TROM(abstract TROM class)

set(Port) ports;

set(Event) events;

set(State) states;

set(Attribute) attributes;
set(Transition) transitions;
set(Constraint) constraints;

string name;

deque { event) eventq;

int localclock;

TROM();

~TROM() ;

void SetName(string nm);

string GetName();

string ConnectObj(string pn);

bool TimeConstraint(string ename);
string GetType(string ename);

string GetPortName(string ename);
bool EventNamelnEvents(string ename);
bool PortNamelnPorts(string pname);
void* Run(void* buf);

Table 2: The Class TROM

20

Event(abstract event class)
string eventname;

string eventtype;

string porttype;

Event();

~Event();

Event(string name,string type,string ptype);
void SetEventName(string ens);
string GetEventName();

void SetEventType(string t);
string GetEventType();

void SetPortType(string pas);
string GetPortType();

Table 3: The Class Event

4.2 Events

Because reactive objects are event-driven, it is possible to describe them in terms of
their dynamic behaviors. The specification of a reactive object is succinctly captured
by a set of behaviors, where each behavior is a trace of massage passing that occurs
at the interface between the object and its environment.

As a group of threads, objects need to synchronize their activities to effectively in-
teract. The approach for synchronization includes: implicit communications through
the modification of shared data and/or explicit communications by informing each
other of events that have occurred.

In the implementation, the communications are realized by the way of modifying
shared data space—event_buffer.

Class Event defines an event with the properties of the name of the event: eventname,
the type (“input”, “output”, “internal” or a silent event) of the event: eventtype, and
the port type associated with this event: porttype.

21

4.3 States and Attributes

A TROM, at any time, is in an abstract state. Each state in a TROM abstractly
represents a collection of properties that is held when the TROM is in this state. There
is a set of attributes that are associated with each state. States signify the qualitative
aspects of the behavior of an object, while the attributes signify the quantitative
aspects. A change in value of an attribute does not mean a change of state, and
attributes do not need to have different values in different states, as well.

The state in a TROM can have substates, and therefore, can be hierarchical. Hi-
erarchical state helps to control the complexity of specification by structuring the
behavior into sets of simpler units which could be comprehended individually. Any
property associated to a state will be inherited in all of its substates. Furthermore,
there are great advantages in selecting the right level for a detailed specification.

A set of states, together with a set of attributes, are encapsulated in the generic reac-
tive class, and they can only be changed by computations local to it . A computation
usually involves a state transition and an assignment of values to attributes. Compu-
tations are triggered by events, and may be required to meet the requirement of time
constraints. At any instant, the state and its attribute values determine whether or
not a TROM undergoes an interaction, at a particular port and with a particular
object in its environment.

Class State defines a state with the properties of the state name: statename, an

adjustment of either an initial state or not: initialstate, and the substates of the
state.

Class Attribute defines a kind of attribute with the attribute name: attributename
and the attribute type: attribute type.

The abstract data types of the value in attribute are introduced by LSL traits.

If the attribute type is a port type, porttype will be used to set its value. when the
attribute type is a trait, trait will be used to set its value.

22

State (abstract state class)

string statename;
bool initialstate;
set (state) substate;

State();

~State();

State(string name,bool ini, set< state > subs);
bool Atomic();

void SetStateName(string n);

string GetStateName();

void SetInitial(bool i);

bool Getlinitial();

void SetSubs(set(state) s);

set (state) GetSubs();

Table 4: The Class State

Attribute(abstract attribute class)

string attributename;
bool attributetype;
string trait;

string porttype;

Attribute();

~Attribute();

Attribute(string na,bool t,string tra,string p);
void SetAttributeName(string n);
string GetAttributeName();

void SetAttributeType(bool t);
bool GetAttributeType();

void SetTrait(string tra);

string GetTrait();

void SetPortType(string p);
string GetPortType();

Table 5: The Class Attribute

23

Port(abstract port class)

string portname;
string portype;
string objectname;
string conportname;
string conportype;
string conobjname;

Port(string tp);

~Port();

Port(string na,string tp,string obn,string cna,string ctp,string cobn);
void SetPortName(string n);

string GetPortName();

void SetPorType(string t);

string GetPorType();

void SetObjectName(string ct);
string GetObjectName();

void SetConPortName(string cna);
string GetConPortName();

void SetConPortType(string ctp);
string GetConPortType();

void SetConObjName(string cobn);
string GetConObjName();

Table 6: The Class Port

4.4 Ports

A port is an abstraction of an access point for a bidirectional communication channel

between a TROM and its environment.

Each port has a unique port-type.

A port-type dictates the set of message and the possible message sequences that are

allowed at a port of that particular type.

A TROM can have multiple port-types associated with it, and a TROM can also have

multiple ports of the same type associated with it.

A null-port, denoted by o, is associated with every TROM.

In the C++ implementation, port-type is a property concerned with each port.

24

Two port types P and Q are compatible if

o e? e Enf & el € E,ut?

o el € Eutf & e? € En?

Class Port defines an port with port name: portname, port type: port type, name
of the object which is with this port: objectname, the connecting port name: conport-
name, the connecting port type conportype and the connecting object name conobj-
name.

4.5 Transitions

Transitions are labeled by events, which are the message components used to capture
the interaction of an object with its environment. The attributes of a state not only
enhance the expressive power of the model in a concise way, but also help to model the
data computations associated with transitions. The abstract behaviors of attributes
are specified in a definitional style using LSL.

Assertions associated with each transition are:
1. enabling-condition, specifying the conditions to be satisfied for the transition to
be initiated,
2. post-condition, specifying the data computation associated with the transition,

3. port-condition, specifying the port at which an interaction can happen. The
associated LSL traits provide the vocabulary for these assertions.

Class Transition defines a transition with the source state sstate, destination state
dstate, the trigger event of the transition: triggername, and the timer timer to record
the time, together with the enabling-condition of the transition, the port-condition of

25

Transition (abstract transition class)

string transitionname;

string triggername;

string sstate, dstate;

int timer;

Transition();

~Transition();

Transition(string n, string en, string ss, string ds);
void SetTransitionName(string n);

string GetTransitionName();

void SetTriggerName(string en);

string GetTriggerName();

void SetSourState(string s);

string GetSourState();

void SetDestState(string s);

string GetDestState();

void SetTimer(int i);

int GetTimer();

virtual bool port_condition(string pid) = 0;
virtual bool pre_condition(string pid)= 0;
virtual void effect() = 0;

virtual bool post_condition(string pid) = 0;

Table 7: The Class Transition

the trigger event, and the post-condition. The predicates are defined as pure virtual
functions, so the class is of polymorphic type.

A generic transition class (GTC) is the derived class of Class Transition, in which the
virtual functions from Class Transition must be defined the details.

4.6 Time Constraints

The timing constraints define the reactions of a TROM. Every reaction has an asso-
ciated trigger which corresponds to a transition — that is, the occurrence of an event
when the TROM is in a certain state. This means that the occurrence of an event
may or may not be a trigger depending on the state of the TROM. Any reaction
of a TROM can involve only one output event or one internal event. It is because
the input events are not under the control of the concerned TROM, instead they are

26

Constraint (abstract time_Constraint Class)
string constraintname;

string tranname;

string conseventname;

int mintime,maxtime;

set (string) distates;

Constraint();

~Constraint();

Constraint(string na,string tr,string en,int mi,int ma, set< string > s);
void SetConstraintName(string n);
string GetConstraintName();

void SetTransitionName(string t);
string GetTransitionName();

void SetConsEventName(string en);
string GetConsEventName();

void SetMinTime(int i);

int GetMinTime();

void SetMaxTime(int a);

int GetMaxTime();

void SetDisableStates(set (string) s);
set (string) GetDisableStates();

Table 8: The Class Constraint

determined by the TROM’s environment.

The Class Constraint defines a time-constraint with the constrained transition name
transname, the constrained event name conseventname, the bounds of response times:
mintime and maztime, and the set of states where in this timing constraint will be
ignored: distates.

27

Chapter 5

Real-Time C+4+4+ Model

5.1 Multi-threaded Mechanism

Multi-threaded programming as an alternative to multi-process programming, is less
demanding of system resources. In my implementation, the collection of reactive
objects is developed as a group of threads within a single process. The individual
threads can be regarded as running concurrently and need not implement task switch-
ing explicitly, instead it is handled by the operating system and the multi-threaded
mechanism developed.

In the implementation, one of the threads in the process is the primary thread, it
corresponds to the lone thread in a single-threaded program. This primary thread is
activated when the operating system invokes the main() function, and then it creates
additional secondary threads which run as the reactive objects. Each of the secondary
threads executes its own thread function, just as the main() of the primary thread.
The thread functions is passed initialization parameters. All the threads within the
process share the memory allocated to the process. Therefore, the reactive objects
can communicate directly through ordinary program variables.

The principal approach for communications between reactive objects is by modifi-
cation of the shared process environment. However, the scheduler can interrupt the
execution of a thread at unpredictable instants and this opens the possibility that
one thread may not leave the process environment in a consistent state ready for the
next thread to be activated. The solution to this problem is to apply the technique

28

of thread synchronizati,, £0 Te8u th the activjties of the interacting reactive objectg.
Three basic techniquey 4r€ geneban used in ¢pe thfeads synchropization: mutegeg
condition variables, ang]”‘m 9. More cOmplex syAchropization can be built Using
the primitive approach,

A mutex is used to pwqﬂd utllall)’ exclysive 8°C®Ss to a shared resource. The
resource will be assignyg 2 mt e\ to protect it. Before a reactive object is admitteq
to manipulate the resy, fCe’ Mgt 8Cdlite the Mitex. No other reactive Object
can access the resourcy when the mute* is held. After the reactive object using the
resource finishes, the asgoaate muteX will pe releasGd and other reactive Objects
can compete to acquirg jt-

The C++ language suhpofts ObJQ\:t oriented progfé™Ring. A reactive object in C4.4
comprises a data stryg,yr© leb g the QbJects Static property together With 5
collection of functions th”t de the capabiljties of the object. The current State of
the reactive object deter;ﬂ’nes th exact Pfocess 10 be Performed by it whenever the
functions are invoked. If’ nlhl entation each Teactive object, as an object in
C++, belongs to a partic“l ar Cy. Y class and all of thege objects in this class shage
the same set of functigy,g. The individual Objects Withjp, the class are distinguished
by their own independgy,t data.

An event is either seng of % petWeeh reacti'e Objects through a buffer. The
buffer, as shared envir, gﬂen pl% role of handlifE the event sent. When an evep
on a specific port, as tflgg Q tranﬂtmn of 3 °bJect, is available in the buffer
the transition of this vJec Wil be trig8ered if other requirements (ie., the time

constraints) are met. Wben a thl‘ead is invoked, Mutex as a lock is used tO avgig
other threads from acQ&‘ging Sh&%d esource,

From the point of view gof SChedlllln & the computatlon of a real-time reactive System
here can be thought ay 48 mstaq% of the dxstnbuted Computation, Which admits g
lution that contains a y} 35° whep, some Bloba or 199 property needs to be detecteq,
The ability to constrth 5 “Bloby state” Of the syS*®Q and evaluate 2 predicate over
such a “global state” ﬂsﬂt tes the core Of the solutiqy,

A solution for the reayjve syst Q‘h Scheduhng is deSCribed as follows: each reactjye
object is allotted a tiy,¢ slice, Ater Which it is P*mpted to allow others to ryp

29

Based on this scheduling algorithm, buffer is used as a shared storage to record the
event sent or received through ports.

The advantage of developing and using the thread mechanism instead of a normal
serial program is that several operations may be carried out in “parallel”, and thus
events can be handled “immediately” as they arrive.

The advantage of using a thread group over using a process group is that context
switching between threads is much faster then context switching between processes.
Also, communications between two threads are usually faster and easier to implement
than communications between two processes.

On the other hand, just as we discussed above, threads in a group all use the same
memory space. Without a synchronization mechanism, whenever a thread corrupts
the contents of its memory, other threads might suffer as well. But the situation is
different for processes; the operating system normally protects a process from oth-
ers, and thus if one process corrupts its own memory space, other processes would
not suffer. Another difference between them is that, processes can run on different
machines, while all the threads normally run on the same machine.

In my implementation, the abstract data types of TROM as well as the real-time C++
model, was developed, which make it possible to run a case of real-time reactive system
when it is generated within C++ code. Besides that, the code generation tool, which
generates the C++ code of a case from its formal specification, was implemented.

The principal application of thread synchronization here is to ensure that each mod-
ification of the process state is complete before control can be passed to another
thread. The development and use of real-time C++ model is for meeting the two
synchronization requirements of real-time reactive system.

C++ does not supply synchronization mechanism among different threads when ac-
cessing shared resources, neither it provides the multi-threading mechanism for object
oriented programming. For this reason, it is necessary to implement these mechanisms
for the real-time C++ model.

30

Threadl Thread2 Threadn

stack storage stack storage stack storage
CPU registers CPU registers CPU registers
User-defined Keyy [User—defined Keys User—defined Keyd
executable code

dynamic storage

static storage

Figure 6: Shared resources and thread-specific resources

5.2 Shared Resources of Multiple Threads

A group of threads, as a collection of reactive objects, is created in a process envi-
ronment. Part of this environment is shared by all threads in this process, while the
rest is specific to individual threads. The situation is illustrated in Figure 6.

The shared environment of the reactive system comprises executable code, static
storage and dynamic storage; the thread-specific context comprises stack storage,
CPU registers and user-defined keys.

Because all reactive objects share the program’s executable code, it is possible that
more than one thread execute the same piece of code at the same time.

The remaining elements of the environment principally contain data. To manage the
manipulation of these data structures by a collection of interacting threads is the key
problem for these reactive objects running successfully.

Data in static storage is a globe variable in program, it exists all the time when

31

the program running. Static storage is shared. When several reactive objects access
the same data in static storage, they must synchronize their activities to avoid data
corruption. When a reactive object is running, it will hold the storage and visit it
randomly. No other reactive objects can access the buffer at this time.

Data held in a thread’s stack storage is specific to an individual reactive object, the
stack storage forms part of the thread context and is switched when a new reactive
object is allocated a time-slice. When a reactive object makes a function call, space is
allocated from the thread’s stack storage to hold the stack frame for the function. The
stack frame contains function parameters, local variables declared in the function and
the address of the code that invoked the function, so that the reactive object knows
where to resume execution when it returns from the function.

Because the stack storage is a part of each thread context, different reactive objects
can simultaneously execute the same function, without fear of a thread modifying the
function parameters and local variables of other threads.

Data in the CPU registers is also a part of the thread-specific context, and it is
updated during a context switch. The scheduling algorithm may interrupt an active
thread (the running of a reactive object) at any point in its execution so the next
program instruction to be executed by this thread should be remembered, the relevant
address in the program code is held in a CPU register.

Using the C++ new operator, data held in dynamic memory is allocated, which re-
turns a pointer to the allocated memory. The memory can be deallocated by applying
the delete operator to this pointer.

Dynamic data belongs to either the shared environment or the thread-specific context.
This depends on the pointer. If the pointer is held in static storage then the dynamic
memory is a shared resource; if the pointer is held in a thread’s stack then the dynamic
is thread-specific.

In the example of Figure 7, the event_buffer pointer references a double-ended queue
which can be shared by other reactive objects. But the local buffer pointer is in
the stack frame of the current thread and references a buffer which is specific to
this reactive object. The local_buffer pointer will be lost when the function returns,
so the double-ended queue which it references must be deleted within the function.

32

set{event)* event_buffer;

void Function(void) {
event_buffer = new set (event);
set(event) local_buffer = new set(event);

static_cast (set(event)*) (event_buffer) — push front(trigger);

.

elete local_buffer;
b

Figure 7: A Example of Dynamic Data

This technique is used when allocating large temporary structures. The advantage of
using a local variable is that only the pointer appears in the function stack frame and
the object is allocated in dynamic storage. Stack storage is smaller than the space
available for dynamic storage.

These utilizations of dynamic storage allow for either shared data or thread-specific
data. However, to provide long-lived thread-specific dynamic data, the thread-context
may be extended by creating user-defined keys, which are essentially static pointers
to thread-specific dynamic memory.

5.3 The Class Thread

As in Figure 8, Class Thread is defined to provide generic support for reactive objects.

Figure 8 defines the interface used by external code to work with threads. The internal
implementation of the Class Thread depends on the operating system.

The Start() function of Class Thread is called to start the thread associated with a
Thread object. Each Thread object corresponds to one reactive object. The Start()
function invokes the Run() function which acts as its thread function, defines all

33

class Thread {
public:

Thread(void);
virtual ~Thread(void);
int Start(void*=NULL);
void Detach(void);
void* Wait(void);
void Stop(void);
unsigned int GetThreadID(void);
static unsigned int GetCurrentThreadID(void);
static void Sleep(int);

b

Figure 8: The Class Thread

processing performed by the reactive object. The Run() function receives the void*

parameter which is originally passed to Start() and this may be used to individualize
the actions of different reactive objects.

In general, when Run() function eventually completes its processing, the function
returns a void* value and the thread enters the terminated state where it remains
until destroyed. Another thread may wait for the thread’s return value by calling
Wait() on the associated Thread object. If the return value is unwanted, the Detach()
function should be called to allow the operating system to destroy the thread as soon
as it terminates. The Detach() function can be called before or after Start(). Once a
thread has been detached, the Wait() and Stop() functions will not work. The Stop()
function is provided to abruptly terminate a thread but, if possible, its use should
be avoided in favour of more controlled methods. Because the behavior of a reactive
object generally is infinite, in the implementation of a real time reactive system, the
thread as a running of reactive object will never be terminated.

Each reactive object as a thread, may have a unique ID which can be retrieved by
calling the GetThreadID() function of the associated Thread object. The function
GetCurrentThreadID() is static. It can be called without reference to a particular
Thread object. This function returns the ID of the reactive object that calls the

34

function. The Sleep() function is provided to allow a reactive object to pause its
execution for a specified period of time, this function will move the threads to the
sleeping state.

5.4 Implementation on UNIX

In this section, we give the implementation of the Class Thread on a UNIX system
which supports the POSIX (Portable Operating System Interface for UNIX) stan-
dard, e.g. Solaris. It supports multi-threading functions such as the pthread_create()
function.

The Class Thread under UNIX is shown as the header file in Figure 9. Under UNIX,
the Thread class acquires some additions. Similarly, to implement the Class Thread
on Windows, some additions are required as well.

The ThreadFunction() function is called by Start() and then it calls Run(). It is
required just for the reason that: the thread creation function provided by Unix must
be supplied with a global thread function, rather than that belongs to a C++ class.
The ThreadFunction() function is a friend of the Class Thread so that it can invoke
the protected Run() function; otherwise the Run() function is only available for the
Class Thread and its derived classes. The ThreadFunction() function is declared as
static to avoid being called by external code. The reactive object associated with the
Thread object is identified by both a ThreadHandle as well as a ThreadID. The former
is an opaque structure used only within the Class Thread while the latter is simply an
unsigned integer retrievable with the function GetThreadID(). The pthread.h header
file gives all the necessary declarations for working with POSIX threads.

The constructor function Thread() initializes variables when the Thread object is
created. The destructor function ~Thread() is invoked when an object is no longer
required.

Using the pthread_create() function we create a new thread which corresponds to a
reactive object. The newly created thread starts to execute the function ThreadFunc-
tion() and receives a pointer to the reactive object as a parameter. This pointer is
used to call the object’s Run() function with the parameter which is originally passed

35

#include “unix.h”
#include (pthread.h)

static void* ThreadFunction(void*);
class Thread {
friend void* ThreadFunction(void*);
public:

Thread(void);

virtual ~Thread(void);

int Start(void*=NULL);

void Detach(void);

void* Wait(void);

void Stop(void);

unsigned int GetThreadID(void);

static unsigned int GetcurrentThreadID(void);

static void Sleep(void);
protected:

virtual void* Run(void*);
private:

pthread_t ThreadHandle;

unsigned int ThreadID;

kb

Figure 9: Implementeation Thread

36

void* Thread::Run(void* param) {

return NULL;
b

Figure 10: The Function Run()

to the Start() function.

The virtual function Run() will be redefined in derived class, to give the process of
reactive objects.

The Wait() function automatically detaches the thread. It uses the pthread_join()
function which provided by POSIX standard.

The Stop() function abruptly terminates the thread if it is still running and has not
previously been detached. Using the pthread_cancel() and pthread_detach() functions,
it can be implemented under POSIX.

The basic mechanism we need, as shown above, can be developed under POSIX
standard. But it is hard to limit whole the implementation within POSIX. At first,
the POSIX standard does not give direct mechanism for the implementation of the
ThreadID field as well as the functions GetThreadID() and the function GetCurrent-
ThreadID().

The Sleep() function can be implemented by using the select() function, as illustrated
in Figure 11. The select() function is not in the POSIX standard, but it is commonly
available on UNIX system.

The mutex functions Demand() and GiveUp(), are implemented by system func-
tion pthread_mutez_lock() and pthread_mutez_unlock(). The function Demand() cre-
ats a mutex to hold the resource. The function GiveUp() kills the mutex to unlock
the resource. The pthread_mutez_lock() and pthread_mutez_unlock() functions are
available under POSIX standard.

37

void Thread::Sleep(int delay) {
timeval timeout = {(delay/1000),((delay*1000)

select(0, (fdset*) NULL,(fdset*) NULL, (fd_set*) NULL,&timeout);
b

Figure 11: The Function Sleep()

38

Chapter 6

Code Generation Methodology

6.1 From TROM to Larch/C++

In traditional object-oriented approach, a system is developed in two levels: the
first level is to define classes, and then the second level to instantiate the classes to
compose subsystems. The TROM methodology adds a level for defining data models
with Larch Shared Language. Thus, the TROM formalism has three levels: data
models, object models and subsystem models. Here, object models use abstractions
of data models, and subsystem models use instances of object models. It is to say
that the data models of TROM formalism are based on Larch Shared Language.

Larch provides a two-tiered approach to the specification of program interfaces: the
basic constructions are specified in shared tier and programming details are specified
in the interface tier. In the shared tier, Larch Shared Language (LSL) is used to
specify state independent, and mathematical abstraction that will be referred to in
the interface tier. The unit of encapsulation in LSL, ¢rait, introduces some operators
and specifies some of their properties.

Larch/C++ is an interface specification language of Larch. In my implementation, the
TROM transition specifications are at first automatically translated into Larch/C++
interface specifications. The C++ code of the transitions are generated automatically
from their Larch/C++ interface specifications. Larch/C++, based on logic (LSL),
has the features of C++ as well. So the conformance from the program generated in
C++ to the interface specification in Larch/C++ is more easy to be given. This is

39

why Larch/C++ is introduced in the implementation.

In Larch/C++ interface specification, the interface is given on the first line; And the
body, its behavior, uses a group of predicates to describe the effect of the function
invocation. The requires clause defines constraints on the state and parameters at
the instance of the function invoked. The modifies and ensures clauses describe
the behavior of the function while it is invoked properly. If a function is called when
the program state satisfies the predicate in the requires clause, it will terminate in a
state that satisfies the predicate in the ensures clause, and only those visible objects
listed in the modifies clause can be changed.

In TROM model, the Transition-specifications is formally defined as following:

e A is a finite set of transition specifications including A;n;;. A transition spec-
ification A € A~ {Ainit}, is represented as A: (8,8'); e(@port); Pen = Ppost; Where:

-{(0,8'),where 8,8’ € © are the source and destination states of the transition,
respectively.

-e(pport) Where event e € & labels the transition; ¢pere is an assertion on the
attributes in X and a reserved variable pid. pid signifies the identifier of
the port at which an interaction associated with the transition can occur. If
e € £ U {tick}, then the assertion @p. is absent and e is assumed to occur at
the null-port o.

~Pen => Ppost, Where ., is the enabling condition and (g, is the post-condition
of the transition. ., is an assertion on the attributes in X specifying the condi-
tion under which the transition is enabled. 4 is an assertion on the attributes
in X, primed attributes in ®,,(6’) and the variable pid specifying the data com-
putation associated with the transition.

For each 6 € ©, the silent-transition A,y € A is such that,

Aso 2 (0,0); tick; true = V. € $,t() : z = 7';

The initial-transition A is such that Ay : (6p); Create(); pinit Where @i, is
an assertion on active-attributes of 6.

40

In my code generation methodology, the predicates in the requires clause of a tran-
sition function specification refer to the assertions @pors, @en, and currentstate =
sourcestate 8, these are the pre-condition that must be satisfied to invoke the func-
tion. The predicate in the ensures clause of the transition function specification

refers to the assertion @pos, the post-condition that the function establishes upon
termination.

The semantics of transition is as follows: the pre-condition of this transition must

logically imply the post-condition of the transition. Figure 12 illustrates the template
for Larch/C++ transition interface specification.

void (Transition’s Name) (Parameter Table)
behavior

{

requires port; Pen; currentstate = sourcestate 6;
modifies (visible object(s) in parameter table);
€nsures Ypost;

}

Figure 12: Template for Larch/C++ transition interface specification

The shared tier of Larch is Property-oriented specification method and Larch/C++
uses the models from the shared tier(LSL). In LSL, objects are built from types, and
operations on types are given as assertions in first-order predicate logic. For this
reason, the validation and verification of implementation from TROM design model,
can use Larch/C++ as a facility.

6.2 C+4+4+ Code Generation

In the implementation, the C++ code of reactive objects in the system is generated
from their class specifications in TROM formalism.

According to the implementation model, a generic reactive class, is a derived class
of Class TROM. In implementation, the C++ code of each generic reactive class will
be generated automatically. Each generated generic reactive class, which with the

41

properties inherited from Class TROM, will be initialized when it is created. Here the
properties initialized are events, states, attributes, transitions and constraints. Other
properties, such as ports, will be initialized in subsystem configuration class (SCS)

The property events is a set of events, each event is an instance of class Event. The
instantiation of the each Event object is through the constructor function of Class
Event . That is,

events = set (events)();
events.add(event(event/ls name, eventl’s type, eventl’s porttype));
events.add(event(event2’s name, event2’s type, event2’s porttype));

The instantiation of each state object and the initialization of property states in the
class, are the same as events. However, because of the hierarchical structure of state,
it is more difficult to be implemented.

The property transitions refers to a set of transition_specifications, where each tran-
sition._specification is defined as a generic transition class (GTC). Each generic tran-
sition class (GTC) is a derived class of Class Transition. With a group of virtual
functions (predicates) that should be indicated, the Class Transition is a polymor-
phic type, its derived class must define the virtual functions inherited from Class
Transition.

The Constraints is a set of time_constraints, the initialization is the same as Events
and States. This property involves the time calculation during the computation.

The data structure event_buffer is used for communications, and the assignment vector
as well as reaction vector are maintained during the system execution. Both of the two
vectors are specific to individual reactive object, and are of thread-specific context.

A subsystem specifies a complete and consistent view of a solution to one aspect
of the problem being modeled. Each subsystem encapsulates the collaboration, and
concurrent interactions among a collection of objects is instantiated from the second

42

tier class specifications. A system configuration specification (SCS) specifies a reactive
system (or a subsystem) by composing of objects or smaller subsystems.

SCS (identifier)
Include:
Instantiate:
Configure:
Constraints:
end

The template above gives the syntax for system (or subsystem) configuration specifi-
cations. The keyword SCS introduces the identifier for the subsystem. The Include
clause is optional and is useful for importing system (subsystem) definitions from
other system configuration specification (SCS). A reactive object is defined in the
Instantiate clause by parameterizing a TROM with cardinality of ports and the
values of the active attributes (if any) in the initial state of the TROM. The Con-
figure clause defines a configuration obtained by composing objects specified in the
Instantiate clause and the subsystem specifications imported through the Include
clause. The symbol > is used here to note communication links between compati-
ble ports of interacting objects. For example, a link controllerl @Gl > gatel.@S1
in the Configure clause connects the port G1 of object controller! and port S1 of
object gatel. The Constraints clause specifies the constraints among the attribute
initialization of a collection of interacting objects.

6.3 Conformance

The conformance analysis focuses on the transition.specifications in TROM, it is
because that the behaviors of TROM is governed by the predicates in transition
specifications.

According to the operational semantics of TROM, a computational step has an as-
sociated transition and it enables a step of computation when the values of the at-
tributes in the source state of the transition satisfy the enabling condition of the

43

transition. The synchronization condition for computation (section 2.1) means that
the port_condition is satisfied for the message passing. In the destination state, the
new values of the active attributes should satisfy the post_condition of the transition.
A post_condition specified as {rue means that the active attributes are unconstrained;
Whilst a post_condition specified as false, from the point of view of designer, means
that the transition specification is inconsistency.

In Larch/C++, the precondition to invoke the transition, is described in the requires
clause; and the postcondition that the transition establishes upon termination, is in
the ensures clause. The precondition of the transition must logically imply the
postcondition.

Two data structures, the assignment vector and reactive vector, are handled during
the execution of my implementation. By knowing them, we can check whether the
conditions of transition specification are satisfied or not.

The data structure assignment vector is obtained when code is generated from TROM
class specification. The attributes are specified in Attributes section of the TROM
specification, while its data type is given in Traits section.

Consider the following TROM specification sections,

Attributes:inSet:PSet
Traits:Set[@P,PSet]

The data structure inSet is defined as an attribute with the type PSet. The PSet is
a Trait. In C++ implementation, PSet is a user defined type.

An assertion in C++, is simply a statement that holds a given logical criterion. As-
sertions can be used to express preconditions and postconditions of a function. That
is, checking the basic assumptions about input and verifying whether the function
leaves the world in the excepted state upon exit.

The assertions associated with the computation, are given by the predicates of the

44

specified transitions in the specific case.

As an example, consider the following transition interface specification in Larch/C++.
It is from the rail-road crossing problem.

R4(obj pid,obj inSet)

{

trigger Exit?

requires member(pid,inSet); size(inSet)=1; curstate=“monitor”;
modifies inSet;

ensures inset’'= delete(pid,inSet);

}

The informal semantics of this transition is : when event Ezit occurs in state monitor,
if the identified pid of the port where event Erit was received is a member of inSet
and if the size of inSet is equal to 1, then this is the only train in the crossing, and
the current pid is deleted from inSet and the object goes into state deactivate.

In the execution of the resulting program, if the event Ezit? as trigger is received, the
current state is monitor, the assertion inSet.member(pid) as port.condition is satis-

fied, and inSet.size() = 1 as enabling condition is also satisfied, then the transition
will be invoked.

After the transition, the assertion inSet’ = inSet.delete(pid) should be satisfied. If
not, the execution will fail with an ezception. An ezception is provided to help deal
with error reporting, that is:

post_conform(vector assignment_vactor)

{

if (postcondition == false)

throw Post_error(assignment_vector);
return (assignment_vector);

}

45

The function post.con form() either returns the vector assignment_vector or throws a
Post_error. It is to say that when the post_condition is not satisfied, the execution will
“throw” the problem to special module for dealing with the exception. The function
to handle the problem will catch this ezception and report the error.

When the system executes the program segment corresponding to a transition speci-
fication, the conformance is processed to check whether the generated C++ code of
a transition meets the requirements in its Larch/C++ specification. If the status of
the running case satisfies the predicates in the requires clause before a transition,
and satisfies the predicates in the ensures clause after the transition, then the im-
plementation of this transition is guaranteed to be consistent with its Larch/C++
interface specification.

The process of conformance goes with the case running phase in which some abstract
test cases are selected. These cases are used to test the execution of the implementa-
tion. By ensuring the consistency between the implementation and its specification,
the implementation is guaranteed to be what it was intended and designed to do.

Reactive objects are event-driven, that makes it possible to describe them in terms
of their dynamic behaviors. As we discussed in previous section, the specification of
a reactive object is succinctly captured by a set of behaviors, and each behavior is
a trace of massage passing that occurs at the interface between the object and the
environment. The event sequence, which generated by each reactive object of the
system during the execution, is used as the test case for the conformance. By this
approach, we can check if the implemented system is running in the way described in
the specification.

A TROM'’s behavior, which associated with a set of transitions, is marked by se-
quences of events appearing at its incoming ports (incoming events) and the responses
which in the form of outgoing events. From the point of view of conformance, the
purpose of test is to check if the implementation satisfies its specification require-
ments with respect to a transition. A test case does this by applying sequences of
events to the implementation and inspecting the status of the reactive object with
the predicates stated in the Larch/C++ specification. For each testing process, a test
result will be reported to indicate whether the implementation passes the test, or fails

46

(or behaves in an inconclusive manner). If the observed behavior of the implemen-
tation is allowed by the Larch/C++ specification and the test purpose is satisfied,
then a “pass” result is posted and the execution will be continued. If any run-time
status of the system is not consistent with the Larch/C++ specification, then the test
case gives a “fail” result and reports the error. When an inconsistency is reported,
the history of the computation can be examined to find the errors that might have
caused such an inconsistency. The iterative design, validate, and implement cycle in
TROMLAB framework promotes re-implementation with only necessary changes.

47

Chapter 7

Case Study

7.1 Train-Gate-Controller Problem

The Train-gate-controller problem has been discussed previously in [HL94|, [Ach95]
and [AMO98] as a case study to illustrate the expressive of the TROM formalism. In
this chapter we use it to show how the C++ code is generated from its design model.

In Train-gate-controller problem, several trains cross a gate independently and si-
multaneously using non-overlapping tracks. A train may choose to cross any gate on
its way. A controller controls each gate. When a train is near the gate, it sends a
message to the associated controller which commands the gate to close. While While
the train exits the crossing, it sends a message to the controller which instructs the
gate to open.

To ensure safety of the system, some time constraints are attached on messages. For
example, a train should be inside the crossing within 2 to 4 time units after sending
the message indicating that it is near the gate. The train should send a message
indicating that it is ready to exit the crossing within 6 time units from the first
message. Within 1 time unit after receiving the initial message from the train, the
controller should let the gate lower and the controller begins to monitor it. If the
controller receives a near message when it is monitoring the gate, it should keep on
monitoring the gate. The controller will let the gate raise within 1 time unit after
the last train exits the crossing. The gate must close within 1 time unit after the

48

<<GRC>> <<PortType>>
Train o — ac
<<PortType>>cr: @C ovents : Set = {Near!,Exitl}
<<PortType>> <<GRC>> <<PortType>>
G Controller | eP
events : Set = (Lowerl,Raisel} <<DataType>> inSet : Sei{ @P.PSat] events : Set = {Near? Exit?}
<<PontType>> <<GRC>>
as Gate
events : Set = {Lower?.Raise?)

Figure 13: Main Class Diagram for Train-Gate-Controller

controller let it lower. The gate must open within the period of 1 to 2 time unit after
the controller instructs it to rise.

The class diagram, as depicted in Figurel3, shows the three generic reactive classes:
Train, Gate, Controller, and their connections.

Train has a group of ports with port type @C. Controller has a group of of ports with
port types @G and @P.Gate has a group of ports with port type @S.

There is an association between port type @C of Train and port type @P of Controller,
which means that the generic reactive class Train uses port(s) with port type @C
to communicate to the generic reactive class Controller through the port(s) with port
type @P. The association between port type @S of Gate and port type @G of con-
troller, means that generic reactive class Controller uses port(s) with port type @G to
communicate to generic reactive class Gate through the port(s) with port type @S.

Train has one port type @C. At the port(s) with this port type, the outgoing event
Near! and the incoming event Erit? may occur. Train has one attribute cr, whose
type is port type @QC.

Controller has two port type: @P and @G. The incoming event Near? and incoming
event Ezit? may occur at port(s) with port type @P. The outgoing event Lower!
and outgoing event Raise/! may occur at port(s) with port type @G. Controller
has one attribute inSet, its type is the abstract data type defined in the LSL trait

49

Set[@P,PSet].

Gate has one port type @S. The incoming event Lower? and incoming event Raise?
may occur at port with port type @C.

Figure 14 and Figure 15 show the statechart diagrams and the formal specification
of generic reactive class Train .

\‘ Near / cr'=pid && TCvari=0 &
[idle W TCvar2=0 >[toCross j

Exit[pid=cr && true &&
TCvar2<=6]

In[true && true && TCvari>=2 &

TCvari<=4]\l/

[loave J(out [cross }

Figure 14: Statechart Diagram for Train

A Train object can be in one of four states: idle, toCross, cross, leave. Here, idle is
the initial state.

When event Near! occurs in state idle, attribute cr is set to pid. The pid is the
identifier of the port at which event Near! occurs. A possible transition here is a
constraining transition for two time constraints, TCvarl: R1, In, [2, 4], {} and
TCuar2: R1, Exit, [0, 6], {} . By the transition, Train goes into state toCross.

A transition from state toCross to state cross happens when internal event In occurs
in state toCross, and if the time constraint condition TCvarl > 2 AND TCuvarl < 4
is true. This time constraint means that internal event In should occur within 2 to 4

50

Class Train [@C]
Events: Near!@C, Out, Exit!@C, In
States: *idle, cross, leave, toCross
Attributes: cr:@QC
Traits:
Attribute-Function: idle — {}; cross — {} ;leave — {}; toCross — {cr};
Transition-Specifications:
R1: <idle,toCross>; Near(true); true = cr/=pid;
R2: <cross,leave>; Out(true); true = true;
R3: <leave,idle>; Exit(pid=cr); true => true;
R4: <toCross,cross>; In(true); true = true;
Time-Constraints:
TCvar2: R1, Exit, [0, 6], {};
TCvarl: R1, In, {2, 4], {};
end

Figure 15: Formal specification for GRC Train

time units after Near! occurs in state idle.
When internal Out occurs in state cross, Train goes into state leave.

A transition from state leave to idle happens when event Ezit! occurs in state leave,
if the attribute cr has the value pid (the identifier of the port where Ezit occurs),
and if the time constraints condition T'Cvar2 < 6 is true. This time constraint means
that event Ezit should occur within 6 time units after event Near occurs in state idle.

Figure 16 and Figure 17 show the statechart diagram and the formal specification of
generic reactive class Controller

A Controller object can be in one of four states: idle, activate, monitor, and deactivate.
idle is the initial state.

When event Near? occurs in state idle, the attribute inSet is modified to include
the new entry pid (the identifier of port where Near? occurs). The Controller goes
into state activate. This transition is the constraining transition of time constraint

51

Nearf {((member(pid,inSet)) && true]
/ inSet'=insert(pid,inSet)

Near / inSet'=insert(pid,inSet)

Raise[true && true 4& Lower true 8;_8&::; f:; 1inar1 >=0&
TCvar2>=0 & TCvar2 <=1}

Near{ {{member(pid,inSet)) &&
true | / inSet’ = insert(pid,inSet)

deactivate monitor

Exit{ member(pid,inSet) &&
size(inSet)=1]/inSet’ =
delete(pid,inSet) && TCvar2 =0

Exit{ member(pid,inSet) &&
size(inSet) > 1]/inSet =
delete(pid,inSet)

Figure 16: Statechart Diagram for Controller

Class Controller [@P, QG]
Events: Lower!@G, Near?@P, Raise!@G, Exit?@P
States: *idle, activate, deactivate, monitor
Attributes: inSet:PSet
Traits: Set{@P,PSet]
Attribute-Function: activate — {inSet}; deactivate — {inSet}; monitor — {inSet};
idle = {};
Transition-Specifications:
R1: <activate,monitor>; Lower(true);
true = true;
R2: <activate,activate>; Near(!(member(pid,inSet)));
true => inSet/=insert(pid,inSet);
R3: <deactivate,idle>; Raise(true);
true = true;
R4: <monitor,deactivate>; Exit(member(pid,inSet));
size(inSet)=1 = inSet/=delete(pid,inSet);
R5: <monitor,monitor>; Exit(member(pid,inSet));
size(inSet)>1 = inSet/=delete(pid,inSet);
R6: <monitor,monitor>; Near(!(member(pid,inSet)));
true => inSet/=insert(pid,inSet);
R7: <idle,activate>; Near(true);
true = inSet/=insert(pid,inSet);
Time-Constraints:
TCvarl: R7, Lower, [0, 1}, {};
TCvar2: R4, Raise, [0, 1}, {};
end

Figure 17: Formal specification for GRC Controller

53

TCuarl: R7, Lower, [0, 1], {}.

When event Near? occurs in state activate from a different Train (pid is not already a
member of set inSet), the attribute inSet is modified to include the new pid (identifier
of the port where the new event Near? occurs). The Controller remains in the state
activate.

When event Lower! occurs in state activate, if the time constraint condition TCvarl <
1 is true, the Controller goes into state monitor. This time constraint means that event
Lower! should occur within one time unit after event Near? occurs in state idle.

When event Near? occurs in state monitor from a different Train(pid is not already a
member of set inSet), the attribute inSet is modified to include the new pid(identifier
of the port where the new event Near? occurs). The Controller remains in state
monitor.

When event Ezit? occurs in state monitor, if the identifier pid of the port where
event Ezit? was received is a member of inSet and if the size of inSet is greater than
1, then the current pid is deleted from inSet and Controller remains in state monitor.

When event Ezit? occurs in state monitor, if the identifier pid of the port where
event Erit? was received is a member of inSet and if the size of inSet equals to 1,
then the current pid is deleted from inSet and Controller goes into state deactivate.
This is the constraining transition for time constraint TCvar2: R4, Raise, [0, 1], {}.

When event Raise!/ occurs in state deactivate, if time constraint condition TCvar2 <
1 is true, the Controller goes into state idle. This time constraint means that event
Raise! should occur within 1 time unit after event Ezit? was received from the last
Train in the crossing.

Figure 18 and Figure 19 show the statechart diagram and the formal specification of
generic reactive class Gate .

A Gate object can be in one of four states: opened, toClose, closed, and toOpen.

54

\
(apened J Lower/ true && TCvar1=0)[toClosa]

Up[true && true && TCvar2 >=1 &
TCvar2<=2]

Down([true && true && TCvar1>=0
& TCvarl <=1]

[toOpen](Raise / true && TCvar2=0 f closed]

Figure 18: Statechart Diagram for Gate

Class Gate [@S]
Events: Lower?@S, Down, Up, Raise?@S
States: *opened, toClose, toOpen, closed
Attributes:
Traits:
Attribute-Function: opened — {}; toClose — {}; toOpen — {}; closed — {};
Transition-Specifications:
R1: <opened,toClose>; Lower(true); true = true;
R2: <toClose,closed>; Down(true); true = true;
R3: <toOpen,opened>; Up(true); true => true;
R4: <closed,toOpen>; Raise(true); true => true;
Time-Constraints:
TCvarl: R1, Down, [0, 1}, {};
TCvar2: R4, Up, [1, 2}, {};
end

Figure 19: Formal specification for GRC Gate

lecs:ec| |ecs:ec] [acs:ec] |ecs:ec|

|@ps:or| [@rs:op| |@Ps:eP| [sm.ﬁ]

N [

:‘3 E=e
= =

Gaje2 ; Gate

Figure 20: Collaboration diagram for subsystem TrainGateController2

opened is the initial state.

When event Lower? occurs in state opened, the Gate goes into state toClose. This is
the constraining transition of time constraint TCuvarl: R1, Doum, [0, 1], {}.

When event Down occurs in state toClose, if TCvarl < 1 is true, meaning that event
Down should occurs within 1 time unit after event Lower occurs in state opened, Gate
goes into state closed.

When event Raise? occurs in state closed, the Gate goes into state toOpen. This is
the constraining transition of time constraint TCvar2: R4, Up, [1, 2], {}.

When event Up occurs in state toOpen, if TCvar2 > 1 and TCvarl < 2 is true,
meaning that event Up should occurs within 1 to 2 time unit after event Raise?
occurs in state closd, Gate goes into state opened.

The Railroad subsystem with 5 trains , 2 Controllers and 2 Gates, is an example used
here for code generation. Figure 20 and Figure 21 show the Collaboration diagram
and the formal specification of the subsystem.

56

SCS TrainGateController2

Includes:

Instantiate:
Gate2::Gate[@S:1};
Gatel::Gate[@S:1];
Controllerl::Controller[@P:3, @G:1];
Controller2::Controller[@P:3, @G:1];
trainl::Train[@C:1];
train2::Train[@C:1};
train3::Train[@C:2};
traind::Train[@C:1];
train5::Train{@C:1];

Configure:
Gatel.@S1:@S < Controllerl.@G1:QG;
Controller2.@G2:QG + Gate2.@S2:@S:;
Controller1.@P2:@P & train2.@C2:QC;
Controllerl.@P1:@QP « trainl.QC1:QC;
Controllerl.@P3:@P « train3.@C3:@C;
Controller2.@P5:@P « traind.@C5:QC;
Controller2.@P6:@P « train5.@C6:QC;
Controller2.@QP4:@QP « train3.QC4:QC;

end

Figure 21: Formal specification for subsystem TrainGateController2

o7

7.2 Implementation

The generated Class Train is an inheritance of Class TROM. As shown in Figure 22,
the constructor function Train() initializes the properties events, states, attributes,
transitions and constraints, when the Class Train is created.

Each transition.specification in design model, is generated as a generic transition
class (GTC) in C++. Each GTC is a derived class of Class Transition which with
polymorphic type. So the virtual functions inherited from Class Transition, such as
enabling_condition, port_condition, post_condition, and effect() are defined the details
in each GTC.

The events in Train is initialized as a set of events, such that Near/@C, Out, Ezit!@C
and In.

The states in Train is initialized as a set of states: idle, cross, leave and toCross. The
state idle is the initial state. And all of the four states are without substates in this
design model.

The attributes in Train is initialized as a set of attributes with only one element: cr,
cr is a attribute with the type of @C.

The constraints in Train is initialized as a set of time_constraints : TCuvar! and
TCvar2. The transition specification of TCvar! is TrainRl1, the constrained event of
TCuvarl is In, and the response time bounds is [2,4], the set of disable states is null.

In TCvar2, The transition_specification is TrainR1, the constrained event is Ezit, the
response time bounds is [2,4], and the set of disable states is null.

The transitions in Train is initialized as a set of generic transition classes(GTCs),
such that Class TrainR1, Class TrainR2, Class TrainR3 and Class TrainR4.

The transition specifications in design model, are translated into Larch/C++ interface
specification at first. In these Larch/C++ Modules, the precondition, postcondition
of transition_specifications in Train, together with the visible object modified in it, is
specified. Figure 23 shows the generated Larch/C++ interface specification of transi-
tion TrainR1. In this generated interface specification, the pre-condition of transition
TrainR1 is current state equals “idle”, (the condition is specified in requires clause).

58

class Train: public TROM
{

public:
Train()
{
events = set (event)();
events.add(event(“Near”, “I”, “@C"));
events.add(event(“Out”, “7, “*));
events.add(event(“Exit”, “I”, “@C"));
events.add(event(“In”, “, “*));
states = set (state)();
states.add(state(“idle”, true, set (state)()));
states.add(state(“cross”, false, set (state }()));
states.add(state(“leave”, false, set (state)()));
states.add(state(“toCross”, false, set (state)()));
atts = set (attribute) ();
atts.add(attribute(“cr” true,“”,“@C"));
trans = set (transition)();
trans.add(TrainR1());
trans.add(TrainR2());
trans.add(TrainR3());
trans.add(TrainR4());
cons = set(constraint)();
cons.add(constraint(“TCvar2”, “R1”, “Exit”, 0, 6, set (string)()));
cons.add(constraint(“TCvarl”, “R1", “In”, 2, 4, set (string }()));
}

Figure 22: Generated C++ Code of Class Train

The post-condition is the updated value of cr equals pid. (specified in ensures clause).
The visible object modified in this function is cr.

The generated Class TrainR1 is a generic transition class. In Class TrainR1, the virtual
functions inherited from Class Transition are redefined.

Figure 24 shows the generated C++ code of Class TrainR1. The name of the tran-
sition, the source state sstate, the destination state dstate and the triggering event
eveniname are initialized in constractor function TrainR1(). The virtual functions
port_condition(), enabling_condition(), effect() and post.condition() are defined the

59

TrainR1(obj cr)

{

requires curstate="“idle”;
modifies cr;

ensures cr/=pid;

}

Figure 23: Generated Larch/C++ interface specification of TrainR1

functions’ details in this specific transition.

Figure 25 is the generated Larch/C++ interface specification of transition TrainR2.
Figure 26 shows the generated code of this transition.

Figure 27 is the generated Larch/C++ interface specification of transition TrainR3,
and Figure 28 shows its generated code in C++.

Figure 29 is the generated Larch/C++ interface specification of transition TrainR4.
Figure 30 is the generated code of Class TrainR4.

The generic reactive class Controller is also a derived class of Class TROM, The prop-
erties in Controller are initialized by its constructor function Controller() in the same
way as being done in Class Train.

As well as shown in Class Train, each transition specification in Controller also refers
to a generic transition class in which the virtual functions are defined as well.

Figure 31 shows the generated code of Class Controller.

The constraints in Controller is initialized as a set of time_constraints : TCvar! and
TCuar2. The transition specification of T'Cvar! is ControllerR7, the constrained
event of TCuar! is Lower, and the response time bounds is [0,1], the set of disable
states is null. In T'Cvar2, the transition_specification is ControllerR4, the constrained
event is Raise, the response time bounds is [0,1}], and the set of disable states is null.

60

class TrainR1 : public transition
{ -
private:
string cr, cx/;
public:
TrainR1()
{
name="“TrainR1”;
sstate="idle”;
dstate="“toCross”;
eventname="*“Near”
b
bool port-condition(string pid)
{ return true};
bool enabling-condition(string pid)
{ return true};
void effect()
{ AssignmentVector(cr/,pid);};
bool post-condition(string pid)
{return cr/==pid}

Figure 24: Generated C++ Code of Class TrainR1

The transitions in Controller is initialized as set of generic transition classes: Con-
trollerR1, ControllerR2, ControllerR3, ControllerR4, ControllerR5, ControllerR6 and Con-
trollerR7.

Figure 32 is the generated Larch/C++ interface specification of transition Con-
trollerR1, and Figure 33 shows the Class ControllerR1 which is generated from the

61

TrainR2()
{
requires curstate="“cross”;

}

Figure 25: Generated Larch/C++ interface specification of TrainR2

class TrainR2 : public transition
{
private:
string cr,cr/;
public:

TrainR2()
{
name="TrainR2";
sstate="cross”;
dstate=*“leave”;
eventname=“QOut”;
b
bool port-condition(string pid)
{ return true};
bool enabling-condition(string pid)
{ return true};
void effect()
{:
bool post-condition(string pid)
{return true}

Figure 26: Generated C++ Code of Class TrainR2

{
requires pid=cr; curstate="“leave”;

}

Figure 27: Generated Larch/C++ interface specification of TrainR3

62

class TrainR3 : public transition
{ -
private:
string cr,cr/;
public:
TrainR3()
{
name=“TrainR3";
sstate="leave”;
dstate=*“idle";
eventname=“Exit”;
b
bool port-condition(string pid)
{ return pid==cr};
bool enabling-condition(string pid)
{ return true};
void effect()

{+
bool post-condition(string pid)
{return true}

Figure 28: Generated C++ Code of Class TrainR3

TrainR4()
{

requires curstate=“toCross”;

}

Figure 29: Generated Larch/C++ interface specification of TrainR4

63

class TrainR4 : public transition
{ -

private:
string cr,cr/;

public:
TrainR4()
{
name="“TrainR4";
sstate="“toCross”;
dstate="*cross”;
eventname="“In"
b
bool port-condition(string pid)
{ return true};
bool enabling-condition(string pid)
{ return true};
void effect()
85
bool post-condition(string pid)
{return true}

Figure 30: Generated C++ Code of Class TrainR4

Larch/C++ interface specification.

Figure 34 is the generated Larch/C++ interface specification of transition Con-
trollerR2, and Figure 35 is the generated C++ code of Class ControllerR2.

Figure 36 is the generated Larch/C++ interface specification of transition Con-
trollerR3. Figure 37 is the generated C++ code of ControllerR3

Figure 38 and Figure 39 are the generated Larch/C++ interface specification of tran-
sition ControllerR4 and the C++ code generated form this Larch/C++ specification.

Figure 40 is the Larch/C++ interface specification of transition ControllerR5, Figure
41 is the generated C++ code of this transition.

Figure 42 is the generated Larch/C++ interface specification of transition Con-
trollerR6, Figure 43 is the generated C++ code of Class ControllerR6.

Figure 44 is the generated Larch/C++ interface specification of transition Con-
trollerR7, Figure 45 is the generated C++ code.

Figure 46 shows the generated code of Class Gate. The constraints in Gate is a set
of time_constraints : TCuvar! and TCuvar2. The transitionspecification of TCvar!
is GateR1, the constrained event of TCvar! is Down, and the response time bounds
is [0,1], the set of disable states is null. In T'Cvar2, The transition_specification is
GateR4, the constrained event is Up, the response time bounds is [1,2], and the set
of disable states is null.

The transitions in Gate is initialized as a set of generic transition classes: GateR1,

65

class Controller: public TROM

{

public:
Controller()
{
events = set (event)();
events.add(event(“Lower”, “I”, “@QG"));
events.add(event(“Near”, “7”, “@QP"));
events.add(event(“Raise”, “!”, “@G"));
events.add (event(“Exit”, “?", “@P”));
states = set (state) ();
states.add(state(“idle”, true, set(state)()));
states.add(state(“activate”, false, set(state)()));
states.add(state(“deactivate”, false, set(state)()));
states.add(state(“monitor”, false, set(state)()));
atts = set(attribute)();
atts.add(attribute(“inSet”, false, “PSet”,“"));
trans = set(transition)();
trans.add(ControllerR1());
trans.add(ControllerR2());
trans.add(ControllerR3());
trans.add(ControllerR4());
trans.add(ControllerR5());
trans.add(ControllerR6());
trans.add(ControllerR7());
cons = set(constraint)();
cons.add(constraint(“TCvarl”, “R7", “Lower”, 0, 1, set(string)()));
cons.add(constraint(“TCvar2”, “R4”, “Raise”, 0, 1, set(string)()));
}

Figure 31: Generated C++ Code of Class Controller

ControllerR1()
{

requires curstate="activate”;

}

Figure 32: Generated Larch/C++ interface specification of ControllerR1

66

class ControllerR1 : public transition
{ I3

private:
PSet inSet,inSet/;

public:
ControllerR1()
{
name="“ControllerR1”;
sstate="activate”;
dstate=“monitor”;
eventname="“Lower”;
h
bool port-condition(string pid)
{ return true};
bool enabling-condition(string pid)
{ return true};
void effect()
{3
bool post-condition(string pid)
{return true}

Figure 33: Generated C++ Code of Class ControllerR1

ControllerR2(obj inSet,obj pid)

{

requires !(member(pid, inSet)); curstate="“activate”;
modifies inSet;

ensures inSet/=insert(pid,inSet);

}

Figure 34: Generated Larch/C++ interface specification of ControllerR2

67

class ControllerR2 : public transition
{ »
private:
PSet inSet,inSet/;
public:
ControllerR2()
{
name="“ControllerR2";
sstate="“activate”;
dstate="activate”;
eventname="*“Near”;
&
bool port-condition(string pid)
{ return !(inSet.member(pid))};
bool enabling-condition(string pid)
{ return true};
void effect()
{ AssignmentVector(inSet/, inSet.insert(pid)); };
bool post-condition(string pid)
{return inSet/==inSet.insert(pid)

}

Figure 35: Generated C++ Code of Class ControllerR2

ControllerR3()
{

requires curstate=“deactivate”;

}

Figure 36: Generated Larch/C++ interface specification of ControllerR3

68

class ControllerR3 : public transition
{

private:
PSet inSet,inSet’;

public:
ControllerR3()
{
name=“ControllerR3”;
sstate="“deactivate”;
dstate=*“idle”;
eventname="“Raijse”
b
bool port-condition(string pid)
{ return true};
bool enabling-condition(string pid)
{ return true};
void effect()
85
bool post-condition(string pid)
{return true}

Figure 37: Generated C++ Code of Class ControllerR3

ControllerR4(obj pid,obj inSet)

{

requires member(pid,inSet); curstate="“monitor”;
modifies inSet;

ensures inset/=delete(pid,inSet);

}

Figure 38: Generated Larch/C++ interface specification of ControllerR4

69

class ControllerR4 : public transition
{

private:
PSet inSet,inSet’;

public:
ControllerR4()
{
name="“ControllerR4";
sstate=“monitor”;
dstate=*“deactivate”;
eventname="“Exit”;
b
bool port-condition(string pid)
{ return inSet.member(pid)};
bool enabling-condition(string pid)
{ return inSet.size()==1};
void effect()
{ AssignmentVector(inSet/,inSet.deletel(pid)); };
bool post-condition(string pid)
{return inSet/==inSet.deletel(pid)}

Figure 39: Generated C++ Code of Class ControllerR4

ControllerR5(obj pid,obj inSet)

{

requires member(pid,inSet); curstate="“monitor”;
modifies inSet;

ensures inse/t=delete(pid,inSet);

}

Figure 40: Generated Larch/C++ interface specification of ControllerR5

70

class ControllerR5 : public transition
{
private:
PSet inSet,inSet’;
public:
ControllerR5()
{
name="“ControllerR5";
sstate=“monitor”;
dstate=“monitor”;
eventname="Exit”;
b
bool port-condition(string pid)
{ return inSet.member(pid)};
bool enabling-condition(string pid)
{ return inSet.size() > 1};
void effect()
{ AssignmentVector(inSet/,inSet.deletel(pid)); };
bool post-condition(string pid)
{return inSet/==inSet.deletel(pid)}

Figure 41: Generated C++ Code of Class ControllerR5

ControllerR6(obj inSet,obj pid)

{

requires !(member(pid,inSet)); curstate="“monitor”;
modifies inSet;

ensures inSet/=insert(pid,inSet);

}

Figure 42: Generated Larch/C++ interface specification of ControllerR6

class ControllerR6 : public transition
{

private:
PSet inSet,inSet/;

public:
ControllerR6()
{
name="“ControllerR6”;
sstate="“monitor”;
dstate="“monitor”;
eventname="“Near”;
}
bool port-condition(string pid)
{ return !(inSet.member(pid))};
bool enabling-condition(string pid)
{ return true};
void effect()
{ AssignmentVector(inSet/,inSet.insert(pid)); };
bool post-condition(string pid)
{return inSet/==inSet.insert(pid)}

Figure 43: Generated C++ Code of Class ControllerR6

ControllerR7(obj inSet,obj pid)
{

requires curstate=*“idle”;
modifies inSet;

ensures inSet/=insert(pid,inSet);

}

Figure 44: Generated Larch/C++ interface specification of ControllerR7

72

class ControllerR7 : public transition
{ -
private:

PSet inSet,inSest;

public:
ControllerR7()
{
name="*“ControllerR7”;
sstate="idle”;
dstate=*activate”;
eventname=“Near”;
|5
bool port-condition(string pid)
{ return true};
bool enabling-condition(string pid)
{ return true};
void effect()
{ AssignmentVector(inSet/,inSet.insert(pid)); };
bool post-condition(string pid)
{return inSet/==inSet.insert(pid)}

Figure 45: Generated C++ Code of Class ControllerR7

73

class Gate: public TROM {
public:

Gate() {
events = set(event)();
events.add(event(“Lower”, “?”, “@S"));
events.add(event(“Down”, “7, “"));
events.add(event(“Up”, “*, “"));
events.add(event(“Raise”, “?”, “@S"));
states = set(state)();
states.add(state(“opened”, true, set(state)()));
states.add(state(“toClose”, false, set(state)()));
states.add(state(“toOpen”, false, set(state)()));
states.add(state(“closed”, false, set{state)()));
atts = set(attribute)();
trans = set(transition) ();
trans.add(GateR1());
trans.add(GateR2());
trans.add(GateR3());
trans.add(GateR4());
cons = set(constraint)();
cons.add(constraint(“TCvarl”, “R1", “Down”, 0, 1, set(string)()));
cons.add(constraint(“TCvar2”, “R4”, “Up”, 1, 2, set(state)()));
}

Figure 46: Generated C++ Code of Class Gate

GateR2, GateR3 and GateR4.

The generated Larch/C++ interface specification of transition GateR1, and the gen-
erated C++ code of Class GateR1 are shown in Figure 47 and Figure 48.

Figure 49 and Figure 50 are the generated Larch/C++ interface specification of tran-
sition GateR2, and the generated C++ code of Class GateR2.

Figure 51 and Figure 52 are the generated Larch/C++ interface specification of tran-
sition GateR3 and the generated code of Class GateR3.

Figure 53 and Figure 54 are the generated Larch/C++ interface specification of tran-
sition GateR4 and the generated C++ code of Class GateR4.

74

GateR1()

{

requires curstate="opened”;

}

Figure 47: Generated Larch/C++ interface specification of GateR1

class GateR1 : public transition

{

private:

public:

GateR1()

{

name=“GateR1";
sstate="“opened”;
dstate="“toClose”;
eventname="“Lower”;

5

bool port-condition(string pid)
{ return true};

bool enabling-condition(string pid)
{ return true};

void effect()

{+:

bool post-condition(string pid)
{return true}

Figure 48: Generated C++ Code of Class GateR1

GateR2()

{

requires curstate=“toClose”;

}

Figure 49: Generated Larch/C++ interface specification of GateR2

7

class GateR2 : public transition

{

private:

public:
GateR2()
{
name=“GateR2";
sstate=“toClose”;
dstate="“closed”;
eventname=“Down”;
&
bool port-condition(string pid)
{ return true};
bool enabling-condition(string pid)
{ return true};
void effect()
{};
bool post-condition(string pid)
{return true}

Figure 50: Generated C++ Code of Class GateR2

GateR3()
{

requires curstate=*“toOpen”;

}

Figure 51: Generated Larch/C++ interface specification of GateR3

76

class GateR3 : public transition

{

private:

public:
GateR3()
{
name=“GateR3";
sstate=“toOpen”;
dstate="“opened”;
eventname="“Up";
b
bool port-condition(string pid)
{ return true};
bool enabling-condition(string pid)
{ return true};
void effect()
{}:
bool post-condition(string pid)
{return true}

Figure 52: Generated C++ Code of Class GateR3

GateR4()
{

requires curstate=“colsed”;

}

Figure 53: Generated Larch/C++ interface specification of GateR4

(44

class GateR4 : public transition

{

private:

public:

GateR4()

{

name="“GateR4";
sstate="“closed”;
dstate=“toOpen”;
eventname=*“Raise”;

5

bool port-condition(string pid)
{ return true};

bool enabling-condition(string pid)
{ return true};

void effect()

%

bool post-condition(string pid)
{return true}

Figure 54: Generated C++ Code of Class GateR4

78

Figure 55 shows the generated C++ code of subsystem Trani-Controller-Gate which
with 5 Trains, 2 Controllers and 2 Gates. The properties neme and Ports of each
reactive object are instantiated here. The communication links between compatible
ports of interacting objects are also be given in it.

79

Class TrainControllerGate

{

Gate Gatel, Gate2;

Controller Controllerl,Controller2;

Train Trainl, Train2, Train3, Traind, Train5;

Gatel.set_name(“Gatel”);

Gate2.set_name(“Gate2");

Gatel.ports =set(port)();

Gate2.ports =set(port)();

Controllerl.set_name(“Controller1”);

Controller2.set_name(“Controller2”);

Controllerl.ports = set(port)();

Controller2.ports = set(port)();

Trainl.set_name(“Trainl”);

Train2.set_name(“Train2”);

Train3.set_name(“Train3");

Train4.set_name(“Train4");

Train5.set_name(“Train5");

Trainl.ports = set{port)();

Train2.ports = set(port)();

Train3.ports = set(port)();

Traind.ports = set(port)();

Train5.ports = set(port)();
Gatel.ports.add(port(“@S1”,“@S”,“Gatel”,“@G1",“@G”,“Controller1™));
Gate2.ports.add(port(“@S2”,“@S” ,“Gate2”,“@G2",“@G",“Controller2”));
Controllerl.ports.add(port(“@G1”,“@G”,“Controllerl”, “@S1",“@S”,“Gatel™));
Controller2.ports.add(port(“@G2”,“@G",“Controller2”,“@S2” ,“@S", “Gate2"));
Controllerl.ports.add(port(“@P1”,“@G", “Controller1”,“@C1”,“@C" ,“Trainl"));
Controllerl.ports.add(port(“@P2”,“@G”, “Controllerl”,“@QC2",“@C”, “Train2"));
Controllerl.ports.add(port(“@P3",“@G", “Controllerl”,“@C3",“@C",“Train3"));
Controller2.ports.add(port(“@P4”,“@G”, “Controller2”, “@C4",“@C”, “Train3"));
Controller2.ports.add(port(“@P5”,“@G”, “Controller2”,“@C5”,“@C” , “Train4”));
Controller2.ports.add(port(“@P6”,“@G”, “Controller2”,“@C6”,“@C", “Train5"));
Trainl.ports.add(port(“@C1”,“@C”,“Trainl”,“@P1”,“@G",“Controllerl”));
Train2.ports.add(port(“@C2",“@C",“Train2”,“@P2",“@G",“Controller1”));
Train3.ports.add(port(“@C3",“@C",“Train3”,“@P3",“@G", “Controllerl™));
Train3.ports.add(port(“@C4”,“@C”,“Train3",“@P4”,“@G",“Controller2”));
Traind.ports.add(port(“@C5”,“@C”,“Traind”,“@P5",“@G", “Controller2”));
Train5.ports.add(port(“@C6”,“@QC”,“Train5”,“@P6",“@G”, “Controller2”))

Figure 55: Generated Code of the Subsystem: TrainControllerGate

80

Chapter 8
Conclusions

An important issue in real-time reactive system development is the implementation of
the system that performs as intended in its environment. Due to inherent complexities
in tracking and analyzing the requirements, arriving at a design that meets both the
functional requirements and timing requirement is very difficult. In particular, when
the size of the system is very large, the design and its validation become more difficult.
TROMLAB environment provides TROM methodology for the design and a group of
tools for design analysis. The implementation method discussed in this thesis adds
an important component to TROMLAB, making the environment more complete with
respect to life-cycle activities.

The implementation component has three sub-components:

e data type implementation;
e real-time execution model; and
e mapping from TROM design to Larch/C++ and C++ programs

Satisfying the timing requirements in the implementation is a challenging problem.
In general, it depends on the hardware resources. We have assumed that the de-
sign stage has already taken the resource constraints. The implementation addresses
concerns on the different functional and time sensitive capabilities of the physical
and software components in the system, together with the time delay of message
passing. The system is currently implemented in an uniprocessor environment. So,
insufficient computing capacity may bring about some default, especially in the case

81

when more than one event is delivered to the same object at the same time. Notice
that, in a system two objects may be interacting while another object is executing an
internal action. The sequential implementation uses interleaving semantics, which is
technically correct; however, it may cause an adverse impact in a system run. When
the size of the system becomes very large, the partial order of the events cannot be
guaranteed in the implementation.

The transition specifications are mapped onto Larch/C++ interface specifications,
and C++ programs are generated. The primary advantage is that the program can
be tested with respect to the specification. This is achieved while the C++ program is
run for a given set of environmental events. The result of a program fragment, a value
or a status (state, attribute vector, reaction vector), should satisfy the postcondition
of the Larch/C++ specification corresponding to the program fragment.

Future work include the following:

1. Integrate specification-based testing with the code generation;
2. Evaluate the performance of the generated code on different case studies;

3. Code reuse for class refinements and systems composed from other implemented
(and tested) subsystems.

82

Bibliography

[AAM96] V. S. Alagar, R. Achuthan, and D. Muthiayen. TROMLAB: A software

[AAR95]

[Ach95]

[AM98]

[AOMO0)]

[GHO3]

[Haigg]

[HL94]

development environment for real-time reactive systems. Technical Re-
port, Department of Computer Science, Concordia University, Montréal,
October 1996 (first draft), June 2000 (revised).

R. Achuthan, V. S. Alagar, and T. Radhakrishnan. TROM - an object
model for reactive system development. In The 1995 Asian Computing
Science Conference, ASIAN’95, Thailand, December 1995.

R. Achuthan. A Formal Model for Object-Oriented Development of Real-
Time Reactive Systems. PhD thesis, Department of Computer Science,
Concordia University, Montréal, Canada, October 1995.

V. S. Alagar and D. Muthiayen. Specification and verification of complex
real-time reactive systems modeled in UML. Technical Report, Depart-
ment of Computer Science, Concordia University, Montréal, June 1999.

V. S. Alagar, O. Ormandjeva and M. Zheng. Specification-Based Test-
ing of Real-Time Reactive Systems. In TOOLS USA (to appear), Santa
Barbara, CA, July 2000.

J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal
Specifications. Springer Verlag, 1993.

G. Haidar. Simulated reasoning and debugging of TROMLAB environ-
ment. Master’s thesis, Department of Computer Science, Concordia Uni-
versity, Montréal, Canada, December 1999.

C. Heitmeyer and N. Lynch. The generalized railroad crossing: A case
study in formal verification of real-time systems. In Proceedings of the

83

[KAROO]

[LEA99]

[Mut96]

[Mut98]

[Nag99]

[Oana99]

[ORS92]

[Pop99]

15th IEEE Real-Time Systems Symposium, RTSS’94, pages 120131, San
Juan, Puerto Rico, December 1994.

P. Karvelas. Schedulability analysis and automated implementation of
real-time object-oriented design models. Master’s thesis, Department of
Computer Science, Concordia University, Montréal, Canada, April 2000.

G. T.Leavens. Larch/C++ Reference Manual. http://www.cs.iastate.edu
/~leavens/larchc++manual/lcpp_toc.html.

D. Muthiayen. Animation and formal verification of real-time reactive
systems in an object-oriented environment. Master’s thesis, Department
of Computer Science, Concordia University, Montréal, Canada, October
1996.

D. Muthiayen. Real-time reactive system development - a formal ap-
proach based on UML and PVS. In Proceedings of Doctoral Symposium
held at Thirteenth IEEE International Conference on Automated Software
FEngineering, ASE98, Honolulu, Hawaii, October 1998.

R. Nagarajan. Vista - a visual interface for software reuse in TROMLAB
environment. Master’s thesis, Department of Computer Science, Concor-
dia University, Montréal, Canada, April 1999.

O. Popista. Rose-GRC translator: Mapping UML visual models onto
formal specifications. Master’s thesis, Department of Computer Science,
Concordia University, Montréal, Canada, March 1999.

S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification
system. In Proceedings of 11th International Conference on Automated
Deduction, CADE, volume 607 of Lecture Notes in Artificial Intelligence,
pages 748-752, Saratoga, New York, 1992. Springer Verlag.

F. Pompeo. A formal verification assistant for TROMLAB environment.
Master’s thesis, Department of Computer Science, Concordia University,
Montréal, Canada, March 1999. Under preparation.

84

[Rat97]

[Rat98a]

[SGWa4]

[Sri99]

[Ta096]

Rational Software Corporation. UML Notation Guide, Version 1.1,
September 1997.

Rational Software Corporation. Rational Rose 98 Enterprise Edition Rose
Exztensibility Interface, February 1998.

B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Mod-
eling. Wiley, 1994.

V. Srinivasan. An intelligent graphical interface system for TROMLAB.
Master’s thesis, Department of Computer Science, Concordia University,
Montréal, Canada, December 1999.

H. Tao. Static analyzer: A design tool for TROM. Master’s thesis, De-

‘partment of Computer Science, Concordia University, Montréal, Canada,

August 1996.

85

