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Abstract

 A humanoid robot is a real-time system controlled 
by a complex computer system that requires huge 
computing power for perception and planning, high 
energy efficiency for self-contained control, reduction 
of physical dimensions, and high reliability. This paper 
proposes a distributed architecture for the humanoid 
robot control substituting conventional centralized 
control architectures.  In addition to the parallelism 
that provides scalable computing power at low clock 
namely at low energy, the distributed architecture con-
tributes to reliable operations by replacing many frag-
ile analog signal wires with a digital network with 
redundant routes. In order to accomplish a real-time 
control over the network, RMTP (Responsive Multi-
Threaded Processor) for parallel and real-time com-
putation has been newly designed. RMTP can syn-
chronize more than thirty nodes distributed over a 
robot body in less than 5 micro second with a real-
time network called the Responsive Link (RL). Archi-
tectures of RMTP, RL and Linux-based real-time sys-
tem software are presented.

1. Introduction 

Recent advances of robot technologies greatly de-
pend on the development of embedded computing 
technologies as well as advances in mechanisms, sen-
sors, and actuators.   In 1996, Honda-P2 revealed bi-
ped walk of a life-size humanoid robot with a totally 
self-contained computer system [1].  This was enabled 
by microprocessors backpacked on the robot.   One of 
the innovations there was an application of workstation 
processors to embedded robot control with a modern 
real-time operating system. 

Most following humanoid robots have taken the 
similar control architecture, for the real-time control of 
the centralized computer has been the only feasible 
way to realize 1ms servo loop of more than 30 joints of 

a humanoid robot.  Biped walking, however, is not the 
only function for a humanoid robot to perform mean-
ingful tasks, and the computer system is requested to 
respond to a growing demand of huge computing 
power.  Although processor technologies following 
Moore’s law could have provided the computing 
power, they also raised the problem of growing energy 
consumption.  In addition, increasing length of signal 
cables from sensors and actuators to the central proces-
sor spoils the reliability of the total robot system.  

This paper describes a project to break through 
these problems by introducing distributed real-time 
computing system in a humanoid robot with newly 
designed processor, Responsive Multi-Threaded Proc-
essor (RMTP)1.  An actual installation will be made as 
an upgrade of HRP-3 inheriting HRP-2 mechatronics 
(Fig. 1) [2].  Processor nodes for servo, real-time 
communication, a real-time operating system based on 
Linux, and distributed robot software for perception 
and control are presented.

Figure 1. 

Humanoid Robot,  HRP-2

Height 1539 , Weight 58Kg, Number 
of joints 30 (6 DOF for each leg and 
arm), walking speed 2km/h.  

                                                          
1 This project is supported by Japan Science and Technology 

Agency (JST) as a CREST project titled Distributed Real-Time Proc-
essing for Humanoid Robots in the field of New High-performance 
Information Processing Technology.
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2. Problems of Humanoid’s Computer Sys-
tem

Four micro-sparc processors piggybacked on the 
Honda P-2 realized its smooth biped walking [3]. 
HRP-2 developed by Kawada and AIST with other 
contractors in 2002 was controlled by two Pentium-3s. 
HRP-2 is estimated to utilize 20-times greater comput-
ing power than P-2.  Although this computer power is 
enough for blind walk on a flat floor, capabilities for 
task planning and visual recognition are limited. 

The processors of P-2 were connected on VME bus, 
while processors of HRP-2 on separate PC mother-
boards are connected via 100Mbps Ethernet (Fig. 2).  
HRP-2 has 30 actuated joints and 180 I/O cables to 
connect them to the central computer. Most cables run 
through narrow gaps in joints where heating motors sit. 
Under these circumstances, arrangement of the cables 
and connectors often causes troubles. Robot’s continu-
ous vibrations and sudden impacts occasionally make 
cables break.  While usual acceleration is at most 1.5G 
when HRP-2 is walking, it reaches 10G when it falls 
down on the buttocks covered by an absorbing cushion. 

Growing energy consumption of the processors is 
also a problem. Two Pentium-3 processors of HRP-2 
running at 1.2GHz consume 60W while four proces-
sors of Honda P-2 consumed 20W.  Pentium-4 at 
3GHz consumes 80W, i.e. 288KJ per an hour. A hu-
manoid robot can carry 2000-3000KJ of battery energy. 
To keep practical operational hours, the computer sys-
tem can never be too conservative.     

To summarize the above, the centralized control ar-
chitecture of current humanoid robots suffers from 
shortage of computing power, inability of expansion 
due to physical and energy limitations, and reliability 
caused by crowded cables. 

3. Information Processing for Humanoid 
Control

We estimate computing power needed for improv-
ing humanoid behaviors discussing the state of the art 
of the motion planning, perception, real-time control, 
and communication. 
3.1 Motion planning 

In order for a humanoid robot to walk stably, foot-
steps to reach a goal and collision-free trajectories of 
all joints are computed before an actual action.  At run 
time, each trajectory is traced and torque commands 
are sent to 30 actuators at 5ms interval.  To keep track 
of the trajectory, sensory information from joint angle 
encoders, touch sensor on the foot bottom, and gyro-
scopes are monitored.  

Vision and tactile sensors are used to build envi-
ronment model, on which global and longer term plan-
ning is performed.  The planning task is basically a 
search in a huge configuration space. If we divide each 
joint angle into 360, the search space formed by 30 
joints ends up with 1077, disabling a complete search.  
To choose natural solutions if not the best, heuristic 
approaches such as a genetic algorithm or a random-
ized planning must be taken into considerations.  Fig-
ure 3 shows the result of a task planning to grasp an 
object without hitting obstacles. 

Kagami [5] succeeded implementing an on-line bi-
ped motion planning, which controls the H-5 human-
oid robot according to a simple joystick command.  In 
there, footstep planning and torque pattern generation 
of 15 actuators in the lower body are computed within 
100ms. The robot requires a complete flat floor since 
the motion plan is generated every second and any 
environmental change or external disturbance is not 
allowed for this duration.  Replanning for changing 
situation is not allowed after a step motion starts.  For 
more robust walk, 10 times faster planning is desirable. 

Figure 2.  HRP-2 Computer Configuration 
Figure 3. Motion planning to reach a bottle 

avoiding obstacles and its visualized simulation
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H-7 robot’s longer term planner generates a se-
quence of footsteps in a particular gait pattern. A floor 
of 5m x 5m is divided into 256 x 256 tiles, each of 
which is assigned with the existence information of 
obstacles.  50,000 search branches are tested for one-
meter walk spending 1 second on 1.4GHz Pentium-3 
[6].  For a longer path planning, time roughly equiva-
lent to the path length raised to the second power is 
needed.

3.2 Perception 
Among five sensations, vision is the most useful to 

understand the environment. Although vision’s re-
sponse does not need to synchronize to the 5 ms inter-
val of the joint trajectory samples, it is desirable to 
respond in the 33ms frame interval. 

Vision sensing requires huge computing power.  
Unlike feature-based vision systems for object recogni-
tion, the depth map of environment is important for 
walking robots. A depth map is composed by binocular 
stereovision, which searches for corresponding pixels 
in right and left images. The match is computed by 
summing every absolute value of difference of pixel 
intensity in a window (SAD method). Depth map gen-
eration for a 320 x 240 image with a window size of 
11 x 11 finishes in 20ms on 1.4GHz Pentium-3.  If we 
use a 35mm semi-wide lens, 320 x 240 resolution cor-
responds to eye sight 0.1 (20/200). 35mm lens cover-
age is one fifth of human view at best. 

Audio processing of a humanoid is used to find di-
rections to the sound sources, to recognize spoken lan-
guage, and to generate artificial voice. Among these, 
recognition is the heaviest. Current speech recognition 
technology can produce results almost in real time with 
a 1GHz Pentium-3.  Recognition score trades off with 
the speed.  Thus 1-2Gips would be required for hu-
manoid’s audio processing. 

3.3 Servo  control 
HRP-2 uses two 1.2GHz Pentium-3 processors  

(Fig. 2).  The first processor performs real-time servo 
tasks for the biped walk control, while the second 
processor is assigned to non real-time tasks such as 
vision and speech processing. Joint trajectory is refer-
enced every 5 ms and the motor servo runs every 1 ms. 

The shorter the servo cycle, the more stable and 
stiffer the control. All the humanoid robots so far do 
position control. Though compliance control is diffi-
cult because of the high gear reduction ratio, shorter 
control cycle and force sensing can give similar effect.  
We plan to speed up the servo cycle five times faster 
than the current HRP-2 to enable compliant and flexi-
ble motion.  Joint angle reference will be generated 
every 1ms and the servo is performed at every 0.2ms. 

3.4 Communication and system management 
The operating system is requested to provide the 

following functions: communication and synchroniza-
tion between tasks, I/O device drivers, resource man-
agement, exception handling, file systems, etc.  Since 
users of these services are real-time tasks, these ser-
vices also need to guarantee to finish within predict-
able periods. 

The operating system of the H-7 humanoid robot, 
which is a prototype to HRP-2, bases upon RT-Linux 
and HRP-2 on ART-Linux [12, 13].  Both operating 
systems are extensions of Linux toward real-time con-
trol to wake up kernel tasks (RT-Linux) or user proc-
esses (ART-Linux) according to external events (RT-
Linux) or in synchronization with fine grained timer 
intervals (ART-Linux).  In order to accomplish 0.2ms 
servo synchronized over the whole body, communica-
tion latency should be maintained under 0.1ms at the 
system software layer, and 0.05ms at the hardware 
communication level.  

4. Distributed Real-Time Humanoid Con-
trol

The above considerations lead to the following con-
clusions:

1. For low-level servo, synchronized task control 
within 0.2ms over dozens of joints is required. 

2. For high-level recognition and planning tasks, 
computing power equivalent to several 3GHz 
Pentium-4 is required.  However, since these are 
open problems, extensibility (scalable computa-
tion power) is important. 

3. Maximum power affordable to processors is 
limited to 100W. 

4. Reduction of signal wire length is necessary for 
higher reliability. 

To cope with these statements, we propose a dis-
tributed control architecture based on multi-threading 
and a real-time network. Distribution enables addition 
of computation nodes, i.e. scalable computation power.  
Inherent parallelisms in image processing and geomet-
ric computation can take advantages of multithread and 
vector processing.  Reliability can be improved by 
replacing crowded analog signal wires with a simple 
digital network connecting computation nodes placed 
in the vicinity of joints. 

While centralized control could enjoy low latency 
communication between multiple tasks under the con-
trol of the single operating system sharing memory, 
distributed control demands real-time communication 
and real-time task scheduling among processors over 
the network.  Since it seems very difficult to achieve 
these functions with existing processors and networks, 
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we have designed a new processor with real-time 
communication capability. 

 As for a magnitude of distribution, we can take ei-
ther per-joint processor architecture or per-limb archi-
tecture.  In other words, number of distributed proces-
sors can either be 30 or 5. We chose per-joint distribu-
tion to minimize the signal wire length and to maxi-
mize redundancy.  In this architecture, each peripheral 
processor is integrated with a motor driver interfacing 
to an encoder and to an amplifier.  

Figure 4. Responsive Multi-Threaded 
Processor (RMTP).  130 nm, CMOS 8 layers, 
Cu wiring, approx. 10 million gates, 10x10 ,
1000 pins 

5. Processor Design 
5.1 RMT Processor (RMTP) 

We designed two types of new processor chips of 
the single architecture; one for servo and the other for 
planning and recognition.  The former is called micro-
RMTP, which focuses on the conservation of space and 
power. The latter is HP-RMTP, which focuses on 
processing power. RMTP is the abbreviation for Re-
sponsive Multi-Threaded Processor [8,10]. 

Micro-RMTP and HP-RMTP are based on the 
common RMT  architecture (Fig. 4)2.   Its instruction 
set is compatible with MIPS-II and includes some of 
MIPS-III, and extends to support vector and SIMD 
instructions that operate on 512 vector registers.

The most prominent feature of RMTP is that up to 
eight prioritized threads run in parallel in a single CPU. 

                                                          
2 The RMT processor was developed by Keio Univer-
sity in the distributed real-time network project 
(2000-2004) subsidized by Ministry of Education of 
Japan. 

In addition to the eight active threads, 32 threads are 
maintained in the thread context cache, enabling thread 
switching in 4 clocks. Four instructions out of above 8 
threads are issued simultaneously.  

Figure 5.  RMTP architecture 

Instructions from eight threads are chosen by the 
thread control unit and the instruction issue selector 
according to thread scheduling policy described in the 
next section. Ready instructions are buffered in the 
reservation stations waiting for operands (Fig. 5).  
When operands become ready, they are sent to one of 
the fourteen execution units.  If the instruction is a 
vector instruction, the integer vector unit executes 8 
operations and the FP vector unit executes 4 operations 
in parallel.  The peak performance of RMTP is de-
scribed in Table-1.  When all the parallel computation 
gadgets work simultaneously, RMTP outperforms Pen-
tium-4.   

Since above performance is mostly brought by par-
allel computation, the clock speed can hold back to 
100-300MHz, reducing the power consumption down 
to 8W at maximum.  Further low-power operation by 
cutting off power supply to idling units and dynamic 
clock control is available as well. 

For real-time communication with external nodes, 
one RMTP has four Responsive Links. Besides a wide-
band memory interface, a number of I/O interfaces, 
such as  PCI bus slave, IEEE-1394 video layer, PWM 
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generator, PWM interpreter, etc. are implemented on-
board [8, 9, 10].   
5.2 Multi-thread scheduling 
RMTP performs multi-thread scheduling by the hard-
ware, thus eliminating an intervention of the operating 
system at task switching.  The system can choose one 
of three scheduling policies: dynamic prioritized 
scheduling, high performance scheduling, and fixed 
slot scheduling.  In the dynamic prioritized scheduling, 
tasks with higher priorities are favored: the task with 
the highest priority can use multiple execution units 
simultaneously.  The high performance scheduling 
tries to use as many execution units as possible: at each 
cycle, each thread can get the equal favor.  The fixed 
slot scheduling allocates fixed number of execution 
units to specified tasks.  The fixed slot scheduling is 
hard-real-time oriented since it can guarantee the allo-
cation of processing units to the highest priority tasks.  
For most applications, the dynamic priority scheduling 
is a good compromise both for real-time processing 
and total throughput. 
5.3 Responsive Link (RL) 

RMTP has real-time and high speed communication 
links, called Responsive Link3 [9, 10].  We proposed 
the Responsive Link in 1998 and released the first 
ULSI implementation, Responsive Processor with the 
Sparc core in 1999. The Responsive Link has the fol-
lowing features: 

Each link is composed of two channels: high-
throughput Data channel with 64-byte packets and 
low-latency Event channel with 16-byte packets 
(both are bi-directional). 

Every packet is assigned with a priority, which con-
trols packet overtaking at RL routers in RMTP.

Packets of different priorities can take different paths. 

A packet has per-byte ECC for 1-bit error correction 
and 2-bits error detection. 

The maximum speed is 800MHz and applications can 
choose lower speeds for lower power operation. 

                                                          
3The Responsive Link and the Responsive Processor 
have been developed by Electrotechnical Laboratory,  
former AIST. The protocol is proposed as an interna-
tional standard to ISO JTC-1 SC25/WG4. 

Since each RL router can perform routing by read-
ing the first 32 bits in a packet, delay in one stage rout-
ing is 480ns at 100Mbps, and overall communication 
in an entire humanoid body finishes in 5 micro second 
for a 8-byte payload on the Event channel.  Hundreds 
of RL nodes can configure a low-latency and high-
bandwidth network. 

Table-1 Peak computing performance of RMTP@300MHz 

Scalar Integer 1.2 GIPS 

Scalar Floating point 0.6 GFLOPS 

Vector Integer 

5.4 Micro RMTP Node 
As depicted in Fig. 6, a Micro-RMTP is integrated 

in 30x80x10mm space including power amplifiers so 
that it is attached to a motor. The micro-RMTP will be 
packaged on SIP (system-in-package) with the mem-
ory subsystem to reduce number of pins for external 
interconnection.

Micro RMTP’s main task is the motor servo, which 
performs frequent I/O but is not accelerated by parallel 
or vector computation.  However, as member nodes of 
the total humanoid system, these small processors exe-
cute parallel computations for recognition and plan-
ning allocated by the HP-RMTP nodes. 

The specifications of the micro RMTP follows. 
1 Design rule: 130 nm 

Size: die 10x10 , SIP30 45 mm
Power : core 1V,  memory 2.5V,  I/O 3.3V, total 
power 1W 
CPU performance: 133MHz, eight threads 
On-chip I/O 
(i) Responsive Link x 4
(ii)  encoder counter  and PWM generator x9 
(iii) PWM interpreter x 3  
(iv)  Serial  4 ch

6.   On SIP functions
(i)  memory: 64MB 32bit DDR SDRAM without 
ECC
(ii)  Flash ROM: 16 MB 

7.   On-board functions 
(i) ADC: 12bit x 8ch 
(ii) DAC: 12bit x 8ch 
(iii) Current sensor x 3 
(iv) Motor drive amplifier x 1  

5.5 HP-RMT Processor HP-RMTP
HP-RMTP will be designed in 2005 with finer de-

sign scale. Clock speed will be 3-500MHz to provide 
higher performance together with higher parallelism.  
We expect at least twice faster performance than our 
current RMTP. HP-RMTP will implement on-chip 
IEEE-1394 and PCI-bus interfaces to connect digital 
TV cameras and other devices. 

6. System Software for Real-Time Control 
The operating system of the RMTP is based on 

Linux-2.6 for common programmers’ benefits and to 

9.6 GIPS 

Vector Floating point 4.8 GFLOPS 
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allow easy porting of CORBA.  So far, we have con-
firmed booting of Linux on the clock level simulator 
and on the instruction level simulator. 

Since RMTP supports the simultaneous execution 
of multiple threads, the low-cost thread switching, the 
priority-based multi-thread scheduling, and the prior-
ity-based real-time communication network, the oper-
ating system does not need to implement sophisticated 
scheduling algorithms.  However, in order to avoid 
sporadic insertion of irresponsible time by interrupts 
and device drivers, interrupt generation is limited to a 
timer running at relatively short ticks.  Device drivers 
run as normal threads, not in the interrupt contexts. 

In addition, a deadline scheduling is applied to hard 
real-time tasks. Although it is well acknowledged that 
robot control requires real-time scheduling, conven-
tional robot software only relies on cyclic task invoca-
tions, that is, the capability to start a task at a specified 
time, not to finish by the deadline.  A challenge of our 
new operating system is to precisely implement this 
deadline scheduling and to impose robot applications 
to specify the deadline.

To make the deadline scheduling possible, the sys-
tem has to be able to estimate a time required to finish 
a given task.  For this, we are developing a static 
WCET analysis tool referring to the RTL representa-
tions in the GNU Compiler Collection.  Modeling of 
the cache behavior is also incorporated. Accordingly 
the operating system bounds the time required for 
every system call.  Programmers of hard real-time 
tasks are requested to provide the worst case parame-
ters such as the maximum values of loop counts. 

7.  Conclusion 
In order for the real-time distributed control of a 

humanoid robot, RMTP will be attached to each of 30 
joints and connected by the Responsive Link network.  
The humanoid robot will be controlled in the 200 mi-
cro second servo loop which traces trajectory points 
generated every 1 ms based upon the motion plans 
updated every 100 ms. Thread management of the 

Linux-2.6 based real-time operating system is facili-
tated by the hardware multithread scheduler of RMTP.
WCET analysis is used for hard real-time program-
ming. As results, coming HRP-3 humanoid robot will 
be able to perform tasks with force control, irregular 
terrain walking, whole body motion, and quick recov-
ery from communication failures. 
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