
Predictable Interrupt Scheduling with Low Overhead for Real-Time Kernels

aLuis E. Leyva-del-Foyo, bPedro Mejia-Alvarez, cDionisio de Niz
aDpto. Computación, Universidad de Oriente, 90500, Santiago de Cuba, Cuba

bDepartamento de Computación, CINVESTAV-IPN, Av. I.P.N. 2508, México, D.F., 07300
cDESI, ITESO, Periférico Sur 8585, Tlaquepaque, Jal. México,

E-mail: luisleyva@acm.org, pmejia@cs.cinvestav.mx, dionisio@iteso.mx

Abstract

In this paper we analyze the traditional model of interrupt
management and its inability to incorporate the reliability
and temporal predictability demanded by real-time systems.
As a result of this analysis, we propose a model that
integrates interrupts and tasks handling. We introduce a
novel implementation of this model that uses an adaptation
of the optimistic interrupt protection technique [12] for
achieving predictability and low overhead. The detailed
design of a flexible and portable kernel interrupt subsystem
for this integrated optimistic model is presented. We make a
schedulability analysis to evaluate the optimistic integrated
model and perform experiments to verify its deterministic
behavior and its overhead

1. Introduction
Most embedded systems use the interrupt mechanisms to

provide an interface with different peripheral devices. These
devices communicate the system with its external
environment. Many of these embedded systems perform
control activities demanding strict timing restrictions and
hence predictability [11]. As a result, the interrupt
mechanism needs to meet this predictability.

The scheme used for interrupts management in general
purpose operating systems is designed to provide a fast
response to external events disregarding temporal
requirements of the interrupted tasks. Although this scheme
is adequate in systems with high processing demands, as
those found in database and networking operating systems, it
constitutes one of the main causes of temporal
unpredictability. Some drawbacks of this model are:
(1) There is a mismatch between some of the assumptions of

the scheduling analysis and the runtime behavior which,
among other things, includes assuming negligible
interrupt execution time. This mismatch has been the
focus of study in [6][15] where an analysis is introduced
to take into account the effect of interrupt activity.

(2) Timing requirements are jeopardized due to temporal
input/output overload. In [9] and [1] different approaches
to cope with this interrupt overload are proposed.

(3) There is an excessive memory consumption due to the
stack usage in the Interrupt Service Routine (ISR). An
approach to cope with this problem is proposed in [10].

(4) There is a lack of preemption control over sections of the
interrupt handlers. An approach to schedule non-
preemptive interrupt handlers is presented in [4].

Although these research works provide solutions to some
aspects of the problem, they deal with different
manifestations of the same underlying problem: the lack of
predictability of a mechanism not designed for real-time
systems. On the other hand, these solutions miss another
important issue: the use of interrupts in the traditional model
is inherently error-prone (due to different task-to-task and
interrupt-to-task synchronization schemes) [14] which can
easily lead to unreliable systems. An example of this
synchronization problem is when a medium-priority ISR that
blocks low-priority interrupts is interrupted by a high-
priority ISR. If the latter blocks all interrupts at the
beginning and unblocks them at the end it will leave the
medium-priority ISR exposed to low-priority interrupts for
which it is not prepared. Concerning temporal predictability
the most common example is the livelock induced by the
reception of an infinite stream of network packets that causes
all processing time (or an important portion) to be spent on
the ISR as discussed in [8].

In order to cope with these drawbacks, in [7] a completely
integrated mechanism for interrupt and task management
was introduced. This mechanism allows a direct application
of the real-time scheduling and concurrency theory while
achieving a predictable and dependable behavior without
sacrificing the advantages of the asynchronous handling of
external events. This scheme allows us to avoid the explicit
disabling of interrupts avoiding, in turn, the synchronization
problem between ISRs mentioned earlier. In addition,
because it blocks interrupts with lower priority than the
current task, it also avoids livelocks and unpredictable
temporal disruptions.

However, the implementation proposed in [7] has an
important overhead that causes a utilization loss, an interrupt
latency higher than the one that can be achieved with the
traditional interrupt mechanism, and a worse average-case
performance. In practical systems, where both hard and soft
real-time tasks are included, average performance is as
important as the worst-case response.

In this context, the contributions of this work are:
• The introduction of an efficient implementation of the

integrated model for the management of interrupts and
tasks proposed in [7].

• The introduction of an approach for the optimistic
interrupt masking presented in [12] that is adequate for its
use in real-time systems and its schedulabilty analysis.

• A detailed design of an interrupt management subsystem
based on the integrated model. This subsystem can be

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

customized to a wide range of embedded applications
with different cost and real-time requirements.
This work is organized as follows: Section 2 briefly

presents the integrated interrupt and task model proposed in
[7] highlighting its overhead. In Section 3, the optimistic
interrupt masking, as introduced in [12], is presented. This is
followed by our adaptation to a real-time systems context.
Section 4 discusses the design alternatives of the integrated
model using virtual masking and the algorithms for its
implementation. In Section 5 an analysis of the overhead of
this implementation is presented. The experimental results to
highlight the advantages of this implementation are
presented in Section 6. Finally, Section 7 presents our
conclusions.

2. The Integrated Interrupt and Task
Management Model

In this section we introduce the integrated interrupt and
task management model as well as its analysis and
implementation over traditional interrupts hardware.

2.1. Notation Used in this Paper
Throughout this paper we will use the following notation:

δI Total CPU time for the code to enter and leave the
ISR. This includes the time to save and restore the
state of the CPU, send an end-of-interrupt signal to
the hardware interrupt controller, and other kernel
requirements.

δM Time needed to change, by software, the hardware
interrupt priority level (in the hardware interrupt
controller).

δP The context-switch time without changing the
hardware interrupt priority level.

cx Worst-case execution time (without kernel or system
overhead) of an asynchronous activity tx (task or
ISR).

Tx Period or minimum inter-arrival time of the
asynchronous activity tx (task or ISR).

Cx Worst-case execution time (including any execution
time for kernel or system overhead) of the
asynchronous activity tx (task or ISR): For an ISR Cx
= cx + δI. For a Task Cx = cx + 2δP.

px Priority of task tx.
ti Hard real-time task with period (or minimum inter-

arrival time) Ti, execution time Ci and priority pi.
P(i) Activity set (ISRs or tasks) with priority higher than

the priority pi of the task ti.
U(i) Task set with priority lower than the priority pi of the

task ti.
S(i) ISR set tk

S with no hard real-time requirement that
has minimum inter-arrival times Tk

S smaller than
those of task ti and computation time Ck

S.
L(i) ISR set tk

L with hard real-time requirement that has
minimum inter-arrival times Tk

L greater than those of
task ti and computation time Ck

L.

H(i) IRQ handler set tj
H with hard real-time requirement

that has minimum inter-arrival times Tj
H lower than

those of task ti and computation time Cj
L.

ISRs

Higher
Priority

Lower
Priority

disturbance

Tk
S Ck

STk
S < Ti < Tk

L

Ti Ci

Tk
L Ck

L
tkS ∈ S(i)
(non
 real-time)

tiL∈ L(i)
(real-time)

ti
(real-time)

Tasks

tkU∈ U(i)
(un-
interfered)

Figure 1 � Traditional Interrupt Handling Model

2.2. Motivation of the Integrated Model
According to the real-time scheduling theory, a task ti is

schedulable if the following condition holds:
iUU ≥lub (1)

where Ulub is the least upper utilization bound, which is
i(21/i-1) for a static rate-monotonic priority assignment, or 1
if a dynamic priority assignment scheme is used (e.g.,
Earliest Deadline First). It is assumed that Ui is the CPU
utilization due to task ti, plus the utilization from the
interference of higher priority tasks. This can be computed as
follows:

∑
∈

+=
)(iPj j

j

i

i
i T

C
T
C

U (2)

As shown in Figure 1, Equation 2 does not take into
account the disturbances from interrupts. This Figure shows
the temporal behavior of a group of asynchronous activities
(ISRs and Tasks) in a real-time operating system that uses
the traditional model of interrupts management (i.e.,
Windows CE 3.0+ [13], Real Time Linux [5], etc.) In this
model all ISRs hold a priority above the task priorities,
therefore H(i) ∈ P(i), S(i) ∈ P(i), L(i) ∈ P(i). As a result,
the ISRs associated to S(i) and L(i) introduce a disturbance
in the execution of task ti. This disturbance is manifested as a
decrease of the least upper utilization bound Uloss :

iloss UUU ≥−lub (3)
In the traditional model, Uloss = UiS, where UiS can be

obtained as follows [7]:

∑∑
∈∈

+=
)()(

1
iLk

L
k

iiSk
S

k

S
k

iS C
TT

CU (4)

In order to minimize UiS, the code of the ISRs (Ck
S, Ck

L)
must be maintained to a minimum. Therefore, in the
traditional model, the interrupt handling is executed in two
phases (see Figure 1): in the first phase, an ISR will perform

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

the processing necessary to avoid data losses and to activate
an interrupt service task (IST). Once activated, this task will
execute, as other tasks, under the control of the scheduler,
assigning a priority to the task (according to the requirements
of the real-time application). The actual response to the
interrupt occurs in the second phase as part of this IST.

Although this approach minimizes the disturbance
produced by the ISRs, it faces two important drawbacks:

The remainder disturbance (given by Equation 4) is not
negligible: the time needed to service an ISR is dominated by
the input/output operations. Yet with this scheme the ISR has
to do at least two port operations: one for servicing the
device that issues the interrupt request and another for
acknowledging the hardware interrupt controller.

It does not solve the predictability problem. The
predictability problem originates from the inability to predict
the frequency of the interrupts from all devices in the system.
Too many interrupts occurring during a short time interval
make the system unpredictable and may cause deadline
misses.

In order to remove these drawbacks (and many other
related to the synchronization between ISRs and Tasks) an
integrated model for task and interrupt management was
introduced in [7].

2.3. The Integrated Model
The integrated interrupt and task model unifies two

important aspects of the interrupt and task management:
(1) The scheduling and priority space: all activities in the

system (ISRs and Tasks) share a unified and flexible
space of dynamic priorities and are scheduled
cooperatively by the kernel and the interrupt hardware.

(2) The synchronization mechanism: all IRQs are handled
by a Low Level Interrupt Handler (LLIH) at the lowest
level of the kernel, which converts them into
synchronization events using the abstractions of
communication and synchronization among tasks (i.e.,
semaphores, mailboxes, etc).

With this model we have Software Activated Tasks (SAT)
and Hardware Activated Tasks (HAT)1. HATs are used to
handle interrupts instead of the traditional ISRs. Both kinds
of tasks are the same type of asynchronous activities and
allow the following: S(i) ∈ U(i), L(i) ∈ U(i). As U(i) ∪ P(i)
= Ø, the disturbance associated to S(i) and L(i) is completely
avoided and UiS = 0.

2.4. Low Level Interrupt Management
The implementation of this model lies on two software

components: the Kernel Interrupt Management Component
(KRNLINT) which unifies the synchronization mechanism
and the Interrupt Hardware Abstraction Layer (INTHAL)
which unifies the priority space. The UML diagram in Figure
2 shows the relationships between these two components.

1 Although in [7] the term IST was used, here we prefer to use the term

HAT to emphasize the difference against the ISTs present in other
systems (Windows CE 3+) which do not integrate the priority space
for IRQs and tasks

The iKRNLINT interface allows the communication
between the interrupt management subsystems and the rest of
the kernel. This interface is implemented by the KRNLINT
using the interface iINTHAL provided by the INTHAL.

+setInterruptPriority)() : void
+getInterruptPriority() : Byte
+addSync()() : int
+deleteSync()() : int

«interface»
iKRN LINT

+IRQHandler(irq:BYTE)() : void
+panic(irq:BYTE)() : void

«im plem entation class»
KRNLINT

+enableIrq() : int
+disableirq() : int
+setIrqPriority() : void
+setIrqLevel() : void

«interface»
iINTH AL

INTHAL interface

KR NLIN T Interface
It associates Syncronization
object Abstraction to IRQs

Figure 2 � INTHAL component Interfaces

2.4.1. Interrupt Hardware Abstraction Layer.
When the system is started, all IRQs are in an ignored

state. An IRQ changes to a captured state when the kernel
requests attention to the IRQ explicitly by invoking an
enableIrq() service. A captured IRQ can be in an enabled or
disabled state. It is enabled when their IRQ level is above the
current IRQ level. The activation of the captured and
enabled IRQs produces the invocation of the IRQHandler()
kernel routine. An IRQ is disabled when its level is below or
equal to the current IRQ level (in this case IRQHandler() is
not invoked).

Once an IRQ is captured, its priority can be modified at
any moment using the setIrqPriority(irq, priority) service.
The current system interrupt level can be set at any moment
using the setIrqLevel(priority) service. All IRQs with a
priority below the system interrupt level are disabled. After
an IRQ has been captured and each time it is triggered, if its
priority is greater than the current system interrupt level then
control is transferred to the IRQHandler(irq) service
(passing the corresponding IRQ as a parameter).

2.5. Original Emulation
Computer systems using Intel family processors and

compliant with the industry standard, use standard interrupt
hardware composed by two Programmable Interrupts
Controllers (PIC) 8259A chips (or equivalent inside the
motherboard chipset) connected in cascade. This
configuration provides 16 IRQ lines (IRQ0�IRQ15) ordered
by priorities in the following way: IRQ0 (highest priority),
IRQ1, IRQ8, IRQ9,�, IRQ15, IRQ3 ,�, IRQ7 (lowest
priority). This hardware (and the modern advanced PIC
included in the most recent PCs) does not provide the
necessary flexibility to implement the integrated interrupt
and task priority space. To address this problem in the
emulation presented in [7], the INTHAL provides a Virtual
Custom Programmable Interrupt Controller (VCPIC) which
manipulates the Interrupt Service Register (ISR) and the
Interrupt Mask Register (IMR) of the two PIC 8259A [3].
This emulation is performed in two stages:

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

(1) Cancellation of the PICs automatic priority handling:
assuring that the ISR registers of both 8259A be set to
allow all IRQ enabled explicitly by the IMRs. This is
possible by capturing all ISRs and:
• EOI Mode: sending the end of interrupt command

(EOI) to the 8259A controller.
• AEOI Mode: using the 8259A automatic end of

interrupt operation mode.
(2) Software Priority Management: Once each IRQ occurs,

it must set explicitly the IMR registers of each 8259A
with a mask to disable all IRQs with smaller or equal
priority (included the current IRQ) and to enable the
others.

2.6. Overhead of this Implementation
To implement the integrated model, the kernel must call

the service setIRQLevel() (which yields a worst-case
execution time of δM), as part of any context switch to inform
the VCPIC about the current priority level. This service must
calculate the IMR for the current interrupt level and set it
executing an expensive port operation. This introduces an
important overhead in the context switch time, causing a
decrease in the least upper utilization bound. This decrease
Uloss = Ui

PI* can be expressed by the following equation [7]:

 ∑∑
∈−∈

−+++=
)())()((

* 22 22
iHj j

IMp

iHiPj j

M

i

M
PI
i TTT

U δδδδδ (5)

Modern processors use deep pipeline and superscalar
execution. In these processors, any modification to the
interrupt mask typically requires a pipeline flush which
limits the capacity of simultaneous execution, limiting the
performance severely. Also, most of the processors only
incorporate part of the interruption masking logic in the chip
and the rest is implemented by a hardware controller outside
the processor package requiring a potentially expensive off-
chip access.

In this context we identify two fundamental problems: (1)
the increase in speed and complexity of the processors
implies that any modification to the current interrupt priority
level is relatively more expensive, causing an important
contribution of δM in the above equation (for example, using
a Pentium 4 3GHz the setIRQLevel() service has a worst
case execution time of 1.04292 µs [7]); (2) the decrease in
the utilization bound does not depend only on the HATs
(H(i) set) but also on all the tasks in the P(i) set. This
dependence affects the scalability of the model considerably.

3. The Virtual Interrupt Masking
In this section, we introduce a novel approach for

interrupt handling named Optimistic Interrupt Masking and
then we present its adaptations for real-time systems.

3.1. Optimistic Interrupt Masking
Kernels of general purpose operating systems must often

disable interrupts to avoid preemptions while certain code
sections that modify critical data structures are being
executed. When the execution of this critical code finishes,

the kernel must enable the interrupts again. With the aim of
speeding up this entry/leave protocol to the critical sections
in these systems, a technique called optimistic interrupt
protection was introduced in [12].

The idea of optimistic interrupt protection consists of the
following steps: (1) When entering to a critical section inside
the kernel the protocol sets a software interrupt mask to
indicate what interrupts must be masked. The hardware
interrupt mask is not changed. (2) A prologue code section is
located at the entry of all interrupt handlers. This prologue
code checks the software interrupt mask to verify if the
issued interrupt is logically masked, and if so the execution
of the remainder of the ISR is deferred to a later moment. (3)
When leaving the critical section the protocol checks if there
are any pending interrupts. If this is the case, the control is
transferred to the corresponding interrupt handler before
resuming the �normal� computation.

In order to simplify the code, optimistic masking
recommends the following: In the event of a logically
masked interrupt, besides remembering the interrupt request
and before returning the control the interrupt prologue should
update the hardware mask as specified in the software
interrupt mask. In this case, after the deferred interrupts are
handled as part of the leaving protocol of the critical section,
the hardware interrupt mask must also be restored to its
original level.

3.2. Adapting to Real-Time Systems
The performance penalty analyzed in section 2.6 can be

diminished greatly if the optimistic interrupt handling
approach is adapted to our integrated model. With this
technique, when the system interrupt level is raised from a
level A to a level B, the IRQs with priority levels between A
and B are not really disabled so that these undesired IRQs
can occur. If any of these IRQs occur, then the IRQ is really
masked to avoid future occurrences.

Unlike the original idea of optimistic protection, in this
case, the masking of undesired IRQs after their occurrence is
not optional (with the purpose of simplifying the
implementation logic) but rather becomes obligatory in order
to guarantee the temporal predictability. In this case, the
interrupt request is recorded so that it can be issued after the
priority level is low enough. This avoids the interrupt
masking overhead, because most of the times the interrupt
request does not occur when the system is executing high
priority tasks. Furthermore, when the system priority is
decreased, it is necessary to verify whether an IRQ that has
been masked could occur at the new level, and if this is the
case, modify the mask of those IRQs that should be enabled.

4. Implementing The Integrated Model with
Virtual Masking

This section presents the detailed design of the interrupt
subsystem for a real-time kernel that is compliant with the
integrated interrupt and task model. This subsystem can be
configured in different emulation modes to satisfy the
different trade-offs between cost and temporal predictability.

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

We introduce an analysis of the implementation alternatives
for the virtual masking mode and discuss its implementation
algorithms. Our implementation was made in a custom real-
time kernel that runs on a PC running in real mode.

4.1. INTHAL Status Data
In order to maintain the state of the VCPIC, it is

necessary to maintain a group of internal variables that are
described next.

The following arrays, with one element for each of the 16
IRQs in the system, are maintained:
• IRQ_Priority: An array of 16 elements of a type

compatible with the type of the system priorities (byte or
word) that holds the priority of each IRQ in the system.

• IRQ_Mask: An array of words (16 bits). Each word
keeps one mask to be set in the IMR registers of both
8259s when the corresponding IRQ occurs. This word
unmasks the IRQ of greater priority than the
corresponding IRQ and masks all remaining IRQs
(including the corresponding IRQ).
In addition the following variables are maintained:

• Virtual_Mask_Mode: Flag that signals the masking
mode in operation: virtual (TRUE) or physical (FALSE).

• IRQ_Level: Byte or word (according to the system) that
keeps the current (unified) system priority level.

• Logical_Mask: Interrupt mask (word value) that
corresponds to the current system priority (IRQ_Level).

• Physical_Mask: Interrupt mask (word value) set in the
IMR registers of both 8259s. In the physical masking
mode, this mask will always be equal to Logical_Mask,
however, in virtual masking mode it may be different to
Logical_Mask.

4.2. General Emulation Logic and
Implementation Alternatives

In the virtual masking mode, the occurrence of undesired
interrupts is possible. Any undesired interrupt I with priority
Pi must fulfill the condition Pi ≤ IRQ_Level. If this happens,
this IRQ is physically masked in the IMR register of the
corresponding 8259 (the Physical_Mask is updated to
reflect this fact), so that the occurrence of a second undesired
interrupt is avoided. Also, the occurrence of this IRQ must
be recorded. In this case the current interrupt level (value of
IRQ_Level) is not modified.

4.2.1. Mechanism for masking an undesired IRQ
To guarantee temporal predictability in the virtual mask

mode the masking of the undesired IRQ I inside of the LLIH
(section 3.2) is required. There are three possible ways to
carry out this masking, all of them guaranteeing a maximum
bound in the priority inversion due to the disturbance of
these undesired IRQs:

Masking only the undesired IRQ I that took place: This
masking involves computing and setting a mask that disables
the specific IRQ (without modifying the others).

Masking all IRQs with priorities below or equal to Pi: this
option has two advantages: (1) it is easy to implement,

because it is only needed to set the mask located in
IRQ_Mask[I] (pre-calculated by setIrqPriority()); (2)
when setIrqLevel() is called to rise the priority level, it does
not have to calculate the mask corresponding to the new
priority level (it must be done only if it is called to decrease
the priority level). Since setIrqLevel() must be executed at
each context switch, advantage (2) implies a smaller context
switch overhead. However, this option has the drawback of
allowing the occurrence of other undesired IRQs (all those x
that fulfill the condition IRQ_Level < Px < Pi). This not only
would cause the masking of other IRQs, but also would
produce a larger worst-case disturbance due to undesired
interrupts.

Masking all IRQs with priorities below or equal to
IRQ_Level: this option is equivalent to set the physical IRQ
level (physical mask) equal to the system (logical) priority
level (logical mask). With this option, the service
setIrqLevel() must compute the interrupt mask that
corresponds to each level. This must be done even if the
invocation raises or diminishes the current system priority
level. The drawback here is a higher context switch
overhead. However, it guarantees that once an undesired
interrupt occurs, any other one will not occur when the
system priority level is higher or equal to the current level
(the first undesired IRQ masks all the others). This provides
the best possible worst-case in the disturbance due to
undesired interrupts.

4.2.2. Mechanism for recording an undesired IRQ
After an undesired interrupt occurred and it is masked, it

must be recorded to allow its occurrence only when the
system priority goes below the priority of this interrupt.
Here, the integrated model of interrupt management allows
two options:

a). VCPIC (INTHAL) recording. This option is
equivalent to the original idea of the interrupt prologue in the
optimistic interrupt masking. In order to achieve this it is
necessary to keep an occurrence flag for each possible IRQ
(called continuation in [12]) to record the occurrence of the
undesired interrupts. When the system interrupt level goes
down, the interrupt occurrence is simulated executing
IRQHandler(irq) in the service setIrqLevel() of the
INTHAL. This option has the advantage of making the
kernel independent of the masking modes in the INTHAL.

It is worth noting that this option is the only one available
when a traditional interrupt management scheme is used.
Also, note that it causes an increase in the execution time of
setIrqLevel() δM. This increase does not cause any problem
in traditional interrupt management systems neither in
general purpose operating systems (for which the optimistic
masking was designed). This is because setIrqLevel() is not
executed at every context switching (as in the integrated
model), but as part of the entry/leave protocol of the kernel�s
critical sections. In fact, this service is less expensive than
handling the interrupt level directly.

In the context of the integrated scheme of interrupt and
task management and for real-time operating systems, the
previous arguments are not valid. This is due to a complete
change in the scheme and the design objectives of the kernel:

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

1. Now setIrqLevel() is not called as part of the entry/leave
protocol to the kernel critical sections, but as part of each
context switch. In fact, the context switch itself
constitutes a critical section, hence it is not possible to
simulate an interrupt within setIrqLevel(). It must be
noted that, using the proposed integrated model
eliminates the need to disable the interrupts inside the
kernel. The critical sections inside the kernel are protected
simply by disabling the preemption (which is modeled
using the immediate priority ceiling protocol [1]).

2. The efficiency of the integrated scheme and the
schedulability that can be achieved, is very sensitive to
the worst-case execution time of the setIrqLevel() service
δM. Hence, any small increase in δM is an important
disadvantage.

b). Kernel (KRNLINT) recording. A solution to the

difficulties of using the optimistic masking with the
integrated model can be found in the model itself. Since this
model integrates the communication and synchronization
mechanism between interrupt handlers and tasks, then the
VCPIC does not need to hide the occurrence of an undesired
interrupt from the kernel. Therefore, it is feasible now to
notify this event to the kernel for its recording. However, it
must be noted that the VCPIC does not need to notify the
kernel if an interrupt is desired or not. The kernel itself has
enough information to differentiate desired from undesired
interrupts (using the system priority level).

The fact is that, when an interrupt occurs
(IRQHandler(irq) is called) the kernel signals the
synchronization objects associated to that IRQ and calls the
scheduler. Due to the restriction that only signal-recording
objects (semaphores, mailbox, etc) can be associated to IRQs
the recording of an undesired interrupt is achieved in a
transparent form. In this case, a desired interrupt would
cause the preemption of the current task to execute the HAT
that waits for the IRQ (because it has higher priority), while
an undesired interrupt would set ready the associated HAT
without preempting the current task (because its HAT has
lower priority). The HAT is automatically scheduled when
the system priority level goes down.

4.3. Algorithms for the Main VCPIC Services
The implementation of the VCPIC is carried out by two

INTHAL components: the priority management services and
the LLIH for the captured IRQs.

4.3.1. Priority management services
These services achieve the goal of having IRQs with

dynamic priorities within the same priority space of the
kernel scheduler. The interface services provided are
setIrqPriority() and setIrqLevel() and the auxiliary services
provided are set8259IMR() and setIRQMask().

The auxiliary service set8259IMR(...) must be invoked
whenever it is necessary to set the mask in the interrupt
hardware. It allows keeping the current value of the mask
registers in the Physical_Mask variable so that, whenever
the new mask matches the mask already set, the expensive

input/output operations are avoided. The algorithm for this
service is shown in Figure 3. First, it verifies if the physical
mask is different from the new mask. If this is true, it sets the
masks in both 8259 IMR registers and updates the values of
Logical_Mask and Physical_Mask.

The setIRQMask(�) service provides support for virtual
masking. As shown in Figure 3, its behavior is related to the
masking mode stored in the state variable
Virtual_Mask_Mode:
• Physical masking: this service only calls the

set8259IMR() service to set the mask in both 8259s.
• Virtual masking: this service sets the mask only if it

causes an IRQ enable (unmasking). When the new mask
causes an IRQ disabling (masking) then only the value of
the logical mask (variable Logical_Mask) is updated.
When operating in physical masking mode, the value of

Logical_Mask is always equal to the value of the IMR
registers of both 8259s. On the other hand, in virtual masking
mode, the value of Logical_Mask may be equal or different
to Physical_Mask (and the IMR registers). However, this
mode must always fulfill the condition that the bits in 1 in
the Physical_Mask must be a subset of the bits in 1 of the
Logical_Mask. In other words, the following condition must
always be true:

 (NOT Logical_Mask AND Physical_Mask) = 0

set8259IMR (mask) {
 if (mask ≠ Fisical_Mask) {
 Logical_Mask ! mask
 Physical_Mask ! mask
 IMR registers of both 8259 ! mask
 }

setIRQMask (mask) {
 if (VirtualMaskMode = TRUE) {
 if (Physical_Mask AND (NOT mask))
 set8259IMR(mask)
 else
 Logical_Mask = mask
 }
 else {
 set8259IMR (mask)
 }
}

Figure 3 � Auxiliary Services Set8259IMR and setIRQMask

Service setIrqPriority (irq, priority). This service
allows the setting of the priority level of an IRQ. Its function
is to establish a correspondence between the priorities
assigned to each IRQ (within the system priority space) with
the value of the mask to be set in the interrupt hardware
(IMR registers of both 8259).

Figure 4 shows setIrqPriority() algorithm. This
algorithm modifies the IRQ_Priority and IRQ_Mask arrays
(see subsection 4.1). At each invocation, the entry in
IRQ_Priority that corresponds with the IRQ being changed
is updated. Next, it obtains the mask associated to each IRQ
from the new priority configuration. These masks are stored
in the IRQ_Mask array. In addition, if this IRQ goes from
enabled to disabled or vice versa, then setIRQMask() is
called to update the interrupt mask.

Service setIrqLevel(priority). This service sets the
current system interrupt level and maintains the IRQ_Level

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

variable. As shown in Figure 5, it uses the IRQ_Priority
and IRQ_Mask arrays to determine the mask to be set for
the new priority level. This mask is the one that disables all
IRQs with a priority level less than or equal to the
IRQ_Level. After this mask has been computed, if this
implies the masking or the unmasking of some IRQ then it is
set according to the masking mode (physical or virtual); with
the help of setIRQMask().

setIrqPriority (irq, priority) {
 /* Compute all masks for the priority setting*/
 IRQ_Priority[irq] ! priority

 - Obtain IRQ masks in IRQ_Masks[] array

 /* Update de current 8259 mask */
 irqMaskBit ! (1 << irq /* 1 in IRQ position*/
 if (priority ≤ irqLevel) { /* mask IRQ */
 setIRQMask(Phyisical_Mask OR irqMaskBit)
 }
 else { /* IRQ activation*/
 setIRQMask(Physical_Mask AND NOT irqMaskBit)
 }
}

Figure 4 � Service setIrqPriority

setIrqLevel (priority) {
 /* Get the new interrupt mask */
 - obtain the mask which corresponds to the
 actual priorities configuration
 (IRQ_Priority[] and IRQ_Mask[] arrays)
 and the priority parameter
 /* Set the mask in accordance to the
 masking mode */
 setIRQMask(mask);
}

Figure 5 � Service setIrqLevel

4.3.2. INTHAL Low Level Interrupt Handler (LLIH)
The INTHAL has a LLIH for each possible ISR state

(captured or ignored). The control is transferred to these
handlers whenever an IRQ with the associated state takes
place. The handler gets the requested IRQ as an argument.
The CAPTURED_ENTRY algorithm (which is the LLIH
associated to the captured interrupts), is shown in Figure 6.
Its main responsibilities are: (1) to cancel the PICs traditional
priority scheme, (2) to enforce the unified priority space and
(3) to transfer the control to the kernel interrupt handler
(IRQHandler()).

CAPTURED_ENTRY(irq) {
 - Save CPU registers
 if (Virtual_Mask_Mode = TRUE) {
 if (IRQ_Priority[irq] ≤ irqLevel) {
 Set8259IMR (Logical_Mask)
 } else {
 Logical_Mask ! IRQ_Mask[irq]
 IRQ_Level ! IRQ_Priority[irq]
 }
 } else {
 Set8259IMR(IRQ_Mask[irq])
 IRQ_Level ! IRQ_Priority[irq]
 }
 sendEOI
 IRQHAndler(irq) /* Enter to the kernel */
 - Restore used CPU registers
}

Figure 6 � LLIH for captured IRQs

When operating in the physical masking mode, if an
interrupt I with priority Pi, occurs, it is because the condition
Pi > IRQ_Level is satisfied. In this case, all IRQs with
priority less than or equal to IRQ_Level are masked and the
system priority level is raised, to set it equal to Pi. Finally,
the kernel handler (IRQHandler()) is called.

When operating in the virtual masking mode, in spite of
the current system priority level IRQ_Level, the occurrence
of any interrupt is possible. In this case, two situations may
occur:
• An interrupt I with priority Pi > IRQ_Level, took place

(desired interrupt). In this case, the same operations that
took place in the physical masking mode must be carried
out, with the exception of the IRQ masking.

• An interrupt I with priority Pi ≤ IRQ_Level took place
(undesired interrupt). In this case, to avoid the occurrence
of a second undesired interrupt, the IMR register of both
8259s must be set using the mask which correspond to the
priority level active when the interrupt took place (in
addition, the physical mask is updated). Finally, the
IRQHandler() is invoked to record its occurrence (even
though the interrupt is undesired, see subsection 4.2.2).
Note that in this case, the current interrupt level
(IRQ_Level) is not modified.

5. Analysis with Virtual Masking
When virtual masking is used, the masking of an IRQ

may occur only if this IRQ really takes place (in undesired
form), whereas the unmasking only takes place, if as part of
a context switch, which exits some activity, it is needed to
enable this IRQ again.

For the activities in the P(i) set, the worst-case situation
occurs when all the IRQs in the H(i) subset occur in an
undesired form while the activities in P(i) of greater priority
than the corresponding IRQ are being executed. In this case,
each of them would imply a first writing of the mask from its
handler and a second writing when the preempted (in an
undesirable way) activity in P(i), ends. However, since this
writing takes place only when the IRQs occur, it should not
be associated to each context switch in P(i). Instead, it is
enough to associate two mask writings (2δM) to each possible
activation of the activities in H(i).

However, now it is also necessary to take into account the
disturbance associated to the potential execution of a small
prologue dedicated to attend one of the IRQs associated to
any of the activities in the S(i) and L(i) sets (not the handling
activity itself). In fact, this prologue is the one who sets the
real mask, so it can be executed only once. Also, in this case
only one masking must be taken into account, because the
context switch of any activity in P(i) never produces the
unmasking of any of the IRQs associated to activities in S(i)
or L(i).

Consequently, now Uloss (equation 4) can be expressed as
follows:

∑∑
∈−∈

+++
++

++
=

)())()((

22

iHj j

MpH
j

iHiPj j

j

i

M
iP

i T
c

T
C

T
CU

δγδδγ

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

Where γ is the execution time of the prologue associated
to the undesired IRQs, which is needed to record their
occurrence. Hence, the decrease in the utilization Uloss = Ui

PI*
due to the overhead of the integrated model with virtual
masking is:

∑
∈

++++=
)(

* 22
iHj j

Mp

i

M
PI
i TT

U δδγδγ (6)

Note that, different from the traditional scheme, which
uses a minimal ISR and delegate the service at task level
(subsection 2 and Figure 1), this virtual masking scheme is
temporally predictable. It introduces a priority inversion due
to a small disturbance caused by the execution of a prologue
of an undesired interrupt (given by γ + δM). However, as
showed in equation (6), this priority inversion is bounded.
This scheme guarantees a predictable and efficient interrupts
management with a very small utilization loss. Also, note
that now Ui

PI* in Equation 6 depends only on the HATs in
the H(i) set and not on the SAT (as occurs in Equation 5),
making the system more scalable.

6. Experimental Results
Two types of experiments were conducted. The first type

allows us to verify experimentally the deterministic behavior
of the implementation of a single priority space with and
without virtual masking. The second type was developed to
compare the overhead of this new implementation against the
overhead of the implementation using physical masking. All
experiments were executed using an Intel Pentium 4 PC
running at 2.8GHz with 1GB of memory and 1MB of L2
cache memory. All timing measurements were made using
the Time Stamp Counter register of the Pentium processor.

6.1. Behavior Characterization
In the first type of experiments we used a task set

composed of the following:
• t1S is an IRQ handler (without hard real-time

requirements) that attends the serial port (receiving 100
bytes per second) with a minimum inter-arrival time T1

S
of 10 ms and a worst-case execution time C1

S of 5 ms
(utilization U1

S = 0.5).
• t2 is a periodic hard real-time task with a period T2 of

50ms, a worst-case execution time C2 of 20ms (with a
utilization U2 = 0.4), and a deadline of 30ms.
A task set like this can be found in digital control systems

where t2 executes the control loop, while t1 attends the
communications with a remote system (e.g., for reporting or
configuration).

Two experiments were executed assigning the periodic
task t2 a priority greater than the priority of the HAT t1

S. Note
that, for this particular task set, this priority configuration is
the only one that guarantees the temporal requirements of the
periodic task. Also, this configuration is only possible with
the integrated interrupt and task model. In both experiments,
the traces for the start and end of both tasks were logged, and
as well as, a trace for each time that the INTHAL LLIH is
invoked passing as a parameter the IRQ associated to the
serial port (and to the HAT t1

S).

In te g ra te P r i o r i ty S p a c e w i t h P h y s i c a l M a s k i n g
(IR Q P r i o r i ty < P e r i o d i c T a s k P r i o r i t y)

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0

u s

L L IH

IR Q 4
(H A T)

T a s k
 (t 2)

Id l e

Figure 7 - Execution Trace � Physical Masking Mode

Integrate Priority Space with Virtual Masking
(IRQ Priority < Periodic Task Priority)

0 50000 100000 150000

us

LLIH

IRQ4
(HAT)

Task
 (t2)

Idle

Figure 8 - Execution Trace � Virtual Masking Mode

In the first experiment we use the emulation of the

VCPIC with the physical masking mode as proposed in [7].
Figure 7 depicts the execution trace of this experiment. It is
worth noting that: (1) the IRQ can not preempt the periodic
task t2, (there is not LLIH trace) hence, once it is actived (at
0 µs, 50000 µs, 10000 µs and 150000 µs) it runs without
disturbance. Without this disturbance, task t2 can finish
properly before its deadline in all instances, as shown in the
figure (at 30000 µs, 80000 µs and 13000 µs); (2) for each
period of t2 only 4 IRQs are accepted and handled (instead of
5 that should be accepted). During the 20 ms of execution of
t2 two IRQs are issued by the serial port, but they are not
attended because they have lower priority than task t2.
However, the hardware �remembers� one of them causing
the back-to-back execution of the HAT at 20000 µs, 70000
µs, and 12000 µs.

It is worth to make some comments about the losing of
some interrupt request signals observed in Figure 7 and that
it is caused by this priority configuration. The first comment
is that at this point we have an unavoidable trade off: In this
task set, the system cannot guarantee the processing of all
interrupts and also guarantee the meeting of the deadline of
the periodic hard real- time task. Indeed, this is the reason of
this priority configuration: to guarantee the temporal
requirements of those software activated tasks which have

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

hard real-time requirements, in spite of the overload caused
by those hardware activated non real-time tasks. The second
comment is that by the usage of a real-time analysis we
certainly can guarantee that interrupts are never missed when
all interrupt sources behave as expected and, at the same
time, do not affect the timing requirements of the hard real-
time tasks.

In the second experiment we used the emulation of the
VCPIC with virtual masking mode. Figure 8 depicts its
execution trace. In this case it is worth mentioning that the
HAT associated to the IRQ cannot preempt periodic task t2,
hence, similar to the previous experiment, task t2 can finish
before its deadline in all instances (as shown in the Figure at
30000 µs, 80000 µs and 13000 µs). However, in this case
there is a difference with respect to the execution of the
physical masking mode. Now the IRQ really preempt the
execution of t2. This is shown in the Figure by the LLIH
traces (depicted by diamonds), which occur a little later of 0
µs, 50000 µs, 100000µs and 150000 µs. Note that, here the
corresponding HAT is not executed and that, this undesired
interrupts are not serviced at those instants of time, but
instead they are recorded (by the synchronization object)
until the end of the periodic task (at 20000µs, 70000µs and
120000µs). This is illustrated by the activations of the
corresponding HAT (where the corresponding LLIH traces
are not executed). In this case it is important to note that,
only one undesired interrupt by activation of t2 is possible.
Again, for each period of t2 only 4 IRQs are accepted and
handled (instead of the 5 IRQs that were issued by the serial
port). On each execution of t2 one IRQ is ignored. This
restriction guarantees a small bound in the disturbance due to
undesired interrupts (as denoted by equation 6).

6.2. Overhead Measurement
In this section, we analyze the implementation overhead

of the integrated interrupt and task model. In the integrated
model, the interrupt latency includes the time to setup the
priority in the interrupt controller, the time to signal to the
interrupt synchronization object (i.e. semaphore) and the
context switch time from the interrupted task to the HAT
(this timings are not included in the traditional model).
Therefore the interrupt latency (of the HAT) is the main
overhead indicator.

In our measurements, we used a task with an endless loop
that logged a trace with an identification code and a time
stamp. Also we used a HAT associated to the IRQ, logging a
trace with another identification code and the current time
stamp. The values were collected for the four combinations
of the two emulation modes (Physical or Virtual Masking)
and the two EOI modes (Explicit or Automatic). Figure 9
plots 1000 latency samples2.

In all modes the behavior of the interrupt latency is
practically stable around the average latency: 4.869 µs (for
EOI with physical masking), 4.158 µs (for AEOI with
physical masking), 3.469 µs (for EOI with virtual masking)

2 We believe the spikes in the plots are due to speculative

execution and/or cache misses.

and (2.716 µs for AEOI with virtual masking). This is a very
important factor for real-time systems. Another observation
is that the average values for the virtual masking modes are a
72.9% and a 67% of the corresponding values for the
physical masking. This represents a significant reduction in
the overhead of this implementation compared with the
implementation proposed in [7]. The two virtual masking
modes yield better results than the two physical masking
modes. The automatic EOI mode with virtual masking shows
the best performance with a very low result for the worst-
case interrupt latency of 3.06 µs.

It is interesting to analyze how the results for the interrupt
latency for each emulation mode are related with the number
of writing operations to the input/output port for that mode.
This relation is shown in Table 1, where it is easy to identify
that the number of port access is the dominant factor for the
kernel interrupt latency.

K e r n e l I n t e r r u p t L a t e n c y
(P e n t i u m 4 2 . 8 G H z)

0

1

2

3

4

5

6

1 1 0 2 2 0 3 3 0 4 4 0 5 5 0 6 6 0 7 7 0 8 8 0 9 9 1 0
In t e r r u p t E v e n t s (IR Q)

L
at

en
cy

 (u
s)

E O I - P h y s i c a l M a s k i n g

A E O I - P h y s i c a l M a s k i n g

E O I - V i r t u a l M a s k i n g

A E O I - V ir t u a l M a s k i n g

Figure 9 - Execution Trace � Kernel Interrupt Latency

Table 1. Interrupt latency figures and port operations
Emu. Mode I/0 Write Interrupt Latency (µs)
 EOI Mask EOI IMR # Min Ave Max
Explí-

cit
Phy-
sical 1 21 3 4.781

µs
4.869

µs
5.318

µs
Auto-
matic

Phy-
sical 0 21 2 4.097

µs
4.158

µs
4.564

µs
Explí-

Cit
Vir-
tual 1 02 1 3.340

µs
3.469

µs
3.877

µs
Auto-
matic

Vir-
tual 0 02 0 2.672

µs
2.716

µs
3.060

µs
1. It assumes that it has been necessary to set the IMR in both 8259.

Really, often it is only necessary to establish a single IMR.
However, this measurement was done with an implementation that
always sets the IMR in both 8259 (worst case).

2. A desired IRQ is assumed. In case of an undesired one, the LLIH
writes both masks. However, this is not included into the interrupt
latency because the ISR is not invoked.

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

6.3. Evaluation of the Experimental Results
As final comments of our experiments, we will compare

the overhead of the port access between the integrated and
the traditional model.
1. In the case of the traditional scheme, the interrupt latency

is not affected by the overhead of any port access.
Nevertheless, before leaving the ISR, it is incurred in this
overhead due to the need to issue an EOI command.
Consequently, the port access overhead is indeed
reflected in the disturbance (or interference) causing a
decrease in the utilization bound.

2. In the case of the integrated model using the automatic
EOI mode, the port operations are included in the
interrupt latency (due to the need of setting the IMR).
Nevertheless, the EOI writing is eliminated completely.
Consequently, since the port writing is the dominant
factor in the execution time, we expect that the overhead
introduced by our scheme to be of the same order as the
traditional interrupt management scheme.

3. If the automatic EOI mode is used in combination with
the virtual masking then (for desired interrupts) there are
no port writings (neither at the entry, nor at the exit of the
HAT). Consequently, due to the need to use explicit EOI
in the traditional interrupt management, we expect that
the overhead introduced by the integrated model indeed
be lower than that of the traditional model.

In summary, as demonstrated by equation 6 and the

experimental results, the implementation of the integrated
model using the AEOI and virtual masking emulation mode
allows (in modern architectures) an interrupt management
scheme completely predictable and without overhead. Also,
the decrease on the complexity of this integrated design
favors the development of reliable systems. Consequently, in
real-time system kernels, where the timely response to events
and the reliability are determining factors, no justification
exists to maintain both activities (ISRs and tasks) as
separated abstractions. Therefore, our proposed unified
design is well adapted for real-time systems.

7. Conclusions
The details in the implementation of the interrupts

handling have a dramatic impact in the design and use of the
synchronization mechanisms in real-time and non-real-time
operating systems. As a result of the separation of ISRs and
tasks, severe restrictions appear on the services of the system
that can be invoked within the ISRs. This causes the problem
of an increase in the complexity of the design and
implementation, which decreases the reliability of resulting
software. In addition, the real-time scheduling theory
considers only one priority space which conflicts with the
actual model implemented in real-time operating systems
that has one space for interrupts and another for tasks. The
use of these two spaces of independent priorities severely
affects the determinism and utilization level in the
scheduling of tasks with real-time requirements.

This work eliminates the overhead of the integrated
interrupt and task priority space when implemented as in [7].

We introduced a detailed design of a low level interrupt
handling component for an operating system based on the
integrated model. This component is portable to various
hardware platforms, adaptable to different scheduling and
synchronizations mechanisms for various operating system
implementations. We improved significantly the average
case behavior of this implementation with the adaptation of
the optimistic interrupt protection scheme to the integrated
model and provide a schedulabilty analysis that showed its
feasibility in a real-time context. We implemented the
various emulation modes presented in this paper for the
integrated model as part of an experimental micro-kernel for
embedded and real-time applications. Using this
implementation we collected experimental evidences that
showed its predictable behavior as well as its low overhead.
This new implementation is well suited for real-time systems
where average case behavior is an important factor.

8. References
[1] Luca Abeni. �Coping with interrupt execution time in RT

kernels: A non-intrusive approach�. IEEE Real-Time Systems
Symposium, Work in Progress, 2001

[2] Theodore P. Baker, �Protected Records, Time Management
and Distribution�, ACM ADA Letters X(9), pp. 17-28.

[3] Intel, �8259A Programmable Interrupt Controller�, Intel , 1988
[4] T. Facchinetti, G. Buttazzo, M. Marinoni, G. Guidi, �Non-

preemptive interrupt scheduling for safe reuse of legacy drivers
in real-time systems.� 17th Euromicro Conference on Real-
Time Systems, (ECRTS 2005) 6-8 July 2005

[5] A. C. Heursch; D. Grambow; D. Roedel and H. Rzehak:
�Time-critical tasks in Linux 2.6 - Concepts to increase the
preemptability of the Linux kernel;� Linux Automation
Konferenz, University of Hannover, Germany, March 2004.

[6] Kevin Jeffay, Donald L. Stone, �Accounting for Interrupt
Handling Cost in Dynamic Priority Task Systems�,
Proceedings of the IEEE Real-Time Systems Symposium,
Raleigh-Durham, NC, December 1993. pp. 212-221.

[7] L. E. Leyva-del-Foyo, P. Mejia-Alvarez, D. de Niz,
"Predictable Interrupt Management for Real Time Kernels over
conventional PC Hardware", "Proceedings of IEEE Real-Time
and Embedded Technology and Applications Symposium"
(RTAS06), San Jose, Cal., April 4 - 7, 2006.

[8] Jeffrey C. Mogul , K. K. Ramakrishnan, �Eliminating receive
livelock in an interrupt-driven kernel�, ACM Transactions on
Computer Systems (TOCS), v.15 n.3, p.217-252, Aug. 1997.

[9] John Regehr , Usit Duongsaa, �Preventing interrupt overload�,
ACM SIGPLAN Notices, v.40 n.7, July 2005

[10] John Regehr, Alastair Reid, Kirk Webb, �Eliminating stack
overflow by abstract interpretation�, In Proc. 3rd International
Conference on Embedded Software, pp. 306�322, Oct., 2003

[11] John A. Stankovic, �Misconceptions About Real-Time
Computing.� IEEE Computer, 21 (19), pp 10-19, Oct. 1988.

[12] D. Stodolsky, J. B. Chen, B. N. Bershad, �Fast Interrupt
Priority Management in Operating System Kernels� USENIX
Symp. Micro-Kernels and others Kernel Architectures�, 1993.

[13] Bart Van Beneden, �Executive Summary of the Evaluation
Report of Windows CE 3.0 from Microsoft Corporation�,
Dedicated Systems Magazine, 2001 Q3, 2001.

[14] Ian Sommerville, �Software Engineering�, 6th Edition,
Addison-Wesley 2001.

[15] D. B. Stewart and G. Arora, �A Tool for Analyzing and Fine
Tuning the Real-Time Properties of an Embedded System�,
IEEE Trans. on Software Engineering, Vol. 29, No. 4, 2003.

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

