
Predictable Interrupt Scheduling with Low Overhead for Real-Time Kernels  
 

aLuis E. Leyva-del-Foyo, bPedro Mejia-Alvarez, cDionisio de Niz 
aDpto. Computación, Universidad de Oriente, 90500, Santiago de Cuba, Cuba 

bDepartamento de Computación, CINVESTAV-IPN, Av. I.P.N. 2508, México, D.F., 07300  
cDESI, ITESO, Periférico Sur 8585, Tlaquepaque, Jal. México,  

E-mail: luisleyva@acm.org, pmejia@cs.cinvestav.mx, dionisio@iteso.mx 
 
 

Abstract 

In this paper we analyze the traditional model of interrupt 
management and its inability to incorporate the reliability 
and temporal predictability demanded by real-time systems. 
As a result of this analysis, we propose a model that 
integrates interrupts and tasks handling. We introduce a 
novel implementation of this model that uses an adaptation 
of the optimistic interrupt protection technique [12] for 
achieving predictability and low overhead. The detailed 
design of a flexible and portable kernel interrupt subsystem 
for this integrated optimistic model is presented. We make a 
schedulability analysis to evaluate the optimistic integrated 
model and perform experiments to verify its deterministic 
behavior and its overhead 

1. Introduction 
Most embedded systems use the interrupt mechanisms to 

provide an interface with different peripheral devices. These 
devices communicate the system with its external 
environment. Many of these embedded systems perform 
control activities demanding strict timing restrictions and 
hence predictability [11]. As a result, the interrupt 
mechanism needs to meet this predictability. 

The scheme used for interrupts management in general 
purpose operating systems is designed to provide a fast 
response to external events disregarding temporal 
requirements of the interrupted tasks. Although this scheme 
is adequate in systems with high processing demands, as 
those found in database and networking operating systems, it 
constitutes one of the main causes of temporal 
unpredictability. Some drawbacks of this model are: 
(1) There is a mismatch between some of the assumptions of 

the scheduling analysis and the runtime behavior which, 
among other things, includes assuming negligible 
interrupt execution time. This mismatch has been the 
focus of study in [6][15] where an analysis is introduced 
to take into account the effect of interrupt activity.  

(2) Timing requirements are jeopardized due to temporal 
input/output overload. In [9] and [1] different approaches 
to cope with this interrupt overload are proposed.  

(3) There is an excessive memory consumption due to the 
stack usage in the Interrupt Service Routine (ISR). An 
approach to cope with this problem is proposed in [10].  

(4) There is a lack of preemption control over sections of the 
interrupt handlers. An approach to schedule non-
preemptive interrupt handlers is presented in [4].  

Although these research works provide solutions to some 
aspects of the problem, they deal with different 
manifestations of the same underlying problem: the lack of 
predictability of a mechanism not designed for real-time 
systems. On the other hand, these solutions miss another 
important issue: the use of interrupts in the traditional model 
is inherently error-prone (due to different task-to-task and 
interrupt-to-task synchronization schemes) [14] which can 
easily lead to unreliable systems. An example of this 
synchronization problem is when a medium-priority ISR that 
blocks low-priority interrupts is interrupted by a high-
priority ISR. If the latter blocks all interrupts at the 
beginning and unblocks them at the end it will leave the 
medium-priority ISR exposed to low-priority interrupts for 
which it is not prepared. Concerning temporal predictability 
the most common example is the livelock induced by the 
reception of an infinite stream of network packets that causes 
all processing time (or an important portion) to be spent on 
the ISR as discussed in [8]. 

In order to cope with these drawbacks, in [7] a completely 
integrated mechanism for interrupt and task management 
was introduced. This mechanism allows a direct application 
of the real-time scheduling and concurrency theory while 
achieving a predictable and dependable behavior without 
sacrificing the advantages of the asynchronous handling of 
external events. This scheme allows us to avoid the explicit 
disabling of interrupts avoiding, in turn, the synchronization 
problem between ISRs mentioned earlier. In addition, 
because it blocks interrupts with lower priority than the 
current task, it also avoids livelocks and unpredictable 
temporal disruptions.  

However, the implementation proposed in [7] has an 
important overhead that causes a utilization loss, an interrupt 
latency higher than the one that can be achieved with the 
traditional interrupt mechanism, and a worse average-case 
performance. In practical systems, where both hard and soft 
real-time tasks are included, average performance is as 
important as the worst-case response.  

In this context, the contributions of this work are: 
•  The introduction of an efficient implementation of the  

integrated model for the management of interrupts and 
tasks proposed in [7]. 

•  The introduction of an approach for the optimistic 
interrupt masking presented in [12] that is adequate for its 
use in real-time systems and its schedulabilty analysis. 

•  A detailed design of an interrupt management subsystem 
based on the integrated model. This subsystem can be 
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customized to a wide range of embedded applications 
with different cost and real-time requirements. 
This work is organized as follows: Section 2 briefly 

presents the integrated interrupt and task model proposed in 
[7] highlighting its overhead. In Section 3, the optimistic 
interrupt masking, as introduced in [12], is presented. This is 
followed by our adaptation to a real-time systems context. 
Section 4 discusses the design alternatives of the integrated 
model using virtual masking and the algorithms for its 
implementation. In Section 5 an analysis of the overhead of 
this implementation is presented. The experimental results to 
highlight the advantages of this implementation are 
presented in Section 6. Finally, Section 7 presents our 
conclusions.  

2. The Integrated Interrupt and Task 
Management Model 

In this section we introduce the integrated interrupt and 
task management model as well as its analysis and 
implementation over traditional interrupts hardware. 

2.1. Notation Used in this Paper 
Throughout this paper we will use the following notation: 
 

δI Total CPU time for the code to enter and leave the 
ISR. This includes the time to save and restore the 
state of the CPU, send an end-of-interrupt signal to 
the hardware interrupt controller, and other kernel 
requirements. 

δM Time needed to change, by software, the hardware 
interrupt priority level (in the hardware interrupt 
controller). 

δP The context-switch time without changing the 
hardware interrupt priority level. 

cx Worst-case execution time (without kernel or system 
overhead) of an asynchronous activity tx (task or 
ISR). 

Tx Period or minimum inter-arrival time of the 
asynchronous activity tx (task or ISR). 

Cx Worst-case execution time (including any execution 
time for kernel or system overhead) of the 
asynchronous activity tx (task or ISR): For an ISR Cx 
= cx + δI. For a Task Cx = cx + 2δP. 

px Priority of task tx. 
ti  Hard real-time task with period (or minimum inter-

arrival time) Ti,  execution time Ci and priority pi. 
P(i) Activity set (ISRs or tasks) with priority higher than 

the priority  pi of the task ti. 
U(i) Task set with priority lower than the priority pi of the 

task ti. 
S(i) ISR set tk

S with no hard real-time requirement that 
has minimum inter-arrival times Tk

S smaller than 
those of task ti and computation time Ck

S. 
L(i) ISR set tk

L with hard real-time requirement that has 
minimum inter-arrival times Tk

L greater than those of 
task ti and computation time Ck

L. 

H(i) IRQ handler set tj
H with hard real-time requirement 

that has minimum inter-arrival times Tj
H lower than 

those of task ti and computation time Cj
L. 
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Figure 1 � Traditional Interrupt Handling Model 

2.2. Motivation of the Integrated Model 
According to the real-time scheduling theory, a task ti is 

schedulable if the following condition holds: 
iUU ≥lub     (1) 

where Ulub is the least upper utilization bound, which is  
i(21/i-1) for a static rate-monotonic priority assignment, or 1 
if a dynamic priority assignment scheme is used (e.g., 
Earliest Deadline First). It is assumed that Ui is the CPU 
utilization due to task ti, plus the utilization from the 
interference of higher priority tasks. This can be computed as 
follows: 

∑
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As shown in Figure 1, Equation 2 does not take into 
account the disturbances from interrupts. This Figure shows 
the temporal behavior of a group of asynchronous activities 
(ISRs and Tasks) in a real-time operating system that uses 
the traditional model of interrupts management (i.e., 
Windows CE 3.0+ [13], Real Time Linux [5], etc.) In this 
model all ISRs hold a priority above the task priorities, 
therefore H(i) ∈  P(i), S(i) ∈  P(i), L(i) ∈  P(i). As a result, 
the ISRs associated to S(i) and L(i) introduce a disturbance 
in the execution of task ti. This disturbance is manifested as a 
decrease of the least upper utilization bound Uloss : 

iloss UUU ≥−lub          (3) 
In the traditional model, Uloss = UiS, where UiS can be 

obtained as follows [7]: 
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In order to minimize UiS, the code of the ISRs (Ck
S, Ck

L) 
must be maintained to a minimum. Therefore, in the 
traditional model, the interrupt handling is executed in two 
phases (see Figure 1): in the first phase, an ISR will perform 
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the processing necessary to avoid data losses and to activate 
an interrupt service task (IST).  Once activated, this task will 
execute, as other tasks, under the control of the scheduler, 
assigning a priority to the task (according to the requirements 
of the real-time application). The actual response to the 
interrupt occurs in the second phase as part of this IST. 

Although this approach minimizes the disturbance 
produced by the ISRs, it faces two important drawbacks: 

The remainder disturbance (given by Equation 4) is not 
negligible: the time needed to service an ISR is dominated by 
the input/output operations. Yet with this scheme the ISR has 
to do at least two port operations: one for servicing the 
device that issues the interrupt request and another for 
acknowledging the hardware interrupt controller.  

It does not solve the predictability problem. The 
predictability problem originates from the inability to predict 
the frequency of the interrupts from all devices in the system. 
Too many interrupts occurring during a short time interval 
make the system unpredictable and may cause deadline 
misses.  

In order to remove these drawbacks (and many other 
related to the synchronization between ISRs and Tasks) an 
integrated model for task and interrupt management was 
introduced in [7].  

2.3. The Integrated Model 
The integrated interrupt and task model unifies two 

important aspects of the interrupt and task management: 
(1) The scheduling and priority space: all activities in the 

system (ISRs and Tasks) share a unified and flexible 
space of dynamic priorities and are scheduled 
cooperatively by the kernel and the interrupt hardware. 

(2) The synchronization mechanism: all IRQs are handled 
by a Low Level Interrupt Handler (LLIH) at the lowest 
level of the kernel, which converts them into 
synchronization events using the abstractions of 
communication and synchronization among tasks (i.e., 
semaphores, mailboxes, etc). 

With this model we have Software Activated Tasks (SAT) 
and Hardware Activated Tasks (HAT)1. HATs are used to 
handle interrupts instead of the traditional ISRs. Both kinds 
of tasks are the same type of asynchronous activities and 
allow the following: S(i) ∈  U(i), L(i) ∈  U(i). As U(i) ∪  P(i) 
= Ø, the disturbance associated to S(i) and L(i) is completely 
avoided and UiS  = 0. 

2.4. Low Level Interrupt Management 
The implementation of this model lies on two software 

components: the Kernel Interrupt Management Component 
(KRNLINT) which unifies the synchronization mechanism 
and the Interrupt Hardware Abstraction Layer (INTHAL) 
which unifies the priority space. The UML diagram in Figure 
2 shows the relationships between these two components. 
                                                   
1 Although in [7]  the term IST was used, here we prefer to use the term 

HAT to emphasize the difference against the ISTs present in other 
systems (Windows CE 3+) which do not integrate the priority space 
for IRQs and tasks 

The iKRNLINT interface allows the communication 
between the interrupt management subsystems and the rest of 
the kernel. This interface is implemented by the KRNLINT 
using the interface iINTHAL provided by the INTHAL. 

 

+setInterruptPriority)() : void
+getInterruptPriority() : Byte
+addSync()() : int
+deleteSync()() : int

«interface»
iKRN LINT

+IRQHandler(irq:BYTE)() : void
+panic(irq:BYTE)() : void

«im plem entation class»
KRNLINT

+enableIrq() : int
+disableirq() : int
+setIrqPriority() : void
+setIrqLevel() : void

«interface»
iINTH AL

INTHAL interface

KR NLIN T Interface
It associates Syncronization
object Abstraction to IRQs

Figure 2 � INTHAL component Interfaces 

2.4.1. Interrupt Hardware Abstraction Layer. 
When the system is started, all IRQs are in an ignored 

state.  An IRQ changes to a captured state when the kernel 
requests attention to the IRQ explicitly by invoking an 
enableIrq() service. A captured IRQ can be in an enabled or 
disabled state. It is enabled when their IRQ level is above the 
current IRQ level. The activation of the captured and 
enabled IRQs produces the invocation of the IRQHandler() 
kernel routine. An IRQ is disabled when its level is below or 
equal to the current IRQ level (in this case IRQHandler() is 
not invoked).  

Once an IRQ is captured, its priority can be modified at 
any moment using the setIrqPriority(irq, priority) service. 
The current system interrupt level can be set at any moment 
using the setIrqLevel(priority) service. All IRQs with a 
priority below the system interrupt level are disabled. After 
an IRQ has been captured and each time it is triggered, if its 
priority is greater than the current system interrupt level then 
control is transferred to the IRQHandler(irq) service 
(passing the corresponding IRQ as a parameter).  

2.5. Original Emulation  
Computer systems using Intel family processors and 

compliant with the industry standard, use standard interrupt 
hardware composed by two Programmable Interrupts 
Controllers (PIC) 8259A chips (or equivalent inside the 
motherboard chipset) connected in cascade. This 
configuration provides 16 IRQ lines (IRQ0�IRQ15) ordered 
by priorities in the following way: IRQ0 (highest priority), 
IRQ1, IRQ8, IRQ9,�, IRQ15, IRQ3 ,�, IRQ7 (lowest 
priority). This hardware (and the modern advanced PIC 
included in the most recent PCs) does not provide the 
necessary flexibility to implement the integrated interrupt 
and task priority space. To address this problem in the 
emulation presented in [7], the INTHAL provides a Virtual 
Custom Programmable Interrupt Controller (VCPIC) which  
manipulates the Interrupt Service Register (ISR) and the 
Interrupt Mask Register (IMR) of the two PIC 8259A [3]. 
This emulation is performed in two stages: 
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(1) Cancellation of the PICs automatic priority handling: 
assuring that the ISR registers of both 8259A be set to 
allow all IRQ enabled explicitly by the IMRs. This is 
possible by capturing all ISRs and: 
•  EOI Mode: sending the end of interrupt command 

(EOI) to the 8259A controller. 
•  AEOI Mode: using the 8259A automatic end of 

interrupt operation mode. 
(2) Software Priority Management: Once each IRQ occurs, 

it must set explicitly the IMR registers of each 8259A 
with a mask to disable all IRQs with smaller or equal 
priority (included the current IRQ) and to enable the 
others. 

2.6. Overhead of this Implementation 
To implement the integrated model, the kernel must call 

the service setIRQLevel() (which yields a worst-case 
execution time of δM), as part of any context switch to inform 
the VCPIC about the current priority level. This service must 
calculate the IMR for the current interrupt level and set it 
executing an expensive port operation. This introduces an 
important overhead in the context switch time, causing a 
decrease in the least upper utilization bound. This decrease 
Uloss = Ui

PI* can be expressed by the following equation [7]: 

 ∑∑
∈−∈

−+++=
)())()((

* 22 22
iHj j
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Modern processors use deep pipeline and superscalar 
execution. In these processors, any modification to the 
interrupt mask typically requires a pipeline flush which 
limits the capacity of simultaneous execution, limiting the 
performance severely.  Also, most of the processors only 
incorporate part of the interruption masking logic in the chip 
and the rest is implemented by a hardware controller outside 
the processor package requiring a potentially expensive off-
chip access. 

In this context we identify two fundamental problems: (1) 
the increase in speed and complexity of the processors 
implies that any modification to the current interrupt priority 
level is relatively more expensive, causing an important 
contribution of δM in the above equation (for example, using 
a Pentium 4 3GHz the setIRQLevel() service has a worst 
case execution time of 1.04292 µs [7]); (2) the decrease in 
the utilization bound does not depend only on the HATs 
(H(i) set) but also on all the tasks in the P(i) set. This 
dependence affects the scalability of the model considerably. 

3. The Virtual Interrupt Masking 
In this section, we introduce a novel approach for 

interrupt handling named Optimistic Interrupt Masking and 
then we present its adaptations for real-time systems. 

3.1. Optimistic Interrupt Masking 
Kernels of general purpose operating systems must often 

disable interrupts to avoid preemptions while certain code 
sections that modify critical data structures are being 
executed. When the execution of this critical code finishes, 

the kernel must enable the interrupts again. With the aim of 
speeding up this entry/leave protocol to the critical sections 
in these systems, a technique called optimistic interrupt 
protection was introduced in [12]. 

The idea of optimistic interrupt protection consists of the 
following steps: (1) When entering to a critical section inside 
the kernel the protocol sets a software interrupt mask to 
indicate what interrupts must be masked.  The hardware 
interrupt mask is not changed. (2) A prologue code section is 
located at the entry of all interrupt handlers. This prologue 
code checks the software interrupt mask to verify if the 
issued interrupt is logically masked, and if so the execution 
of the remainder of the ISR is deferred to a later moment. (3) 
When leaving the critical section the protocol checks if there 
are any pending interrupts. If this is the case, the control is 
transferred to the corresponding interrupt handler before 
resuming the �normal� computation. 

In order to simplify the code, optimistic masking 
recommends the following: In the event of a logically 
masked interrupt, besides remembering the interrupt request 
and before returning the control the interrupt prologue should 
update the hardware mask as specified in the software 
interrupt mask. In this case, after the deferred interrupts are 
handled as part of the leaving protocol of the critical section, 
the hardware interrupt mask must also be restored to its 
original level. 

3.2. Adapting to Real-Time Systems 
The performance penalty analyzed in section 2.6 can be 

diminished greatly if the optimistic interrupt handling 
approach is adapted to our integrated model. With this 
technique, when the system interrupt level is raised from a 
level A to a level B, the IRQs with priority levels between A 
and B are not  really disabled so that these undesired IRQs 
can occur. If any of these IRQs occur, then the IRQ is really 
masked to avoid future occurrences.  

Unlike the original idea of optimistic protection, in this 
case, the masking of undesired IRQs after their occurrence is 
not optional (with the purpose of simplifying the 
implementation logic) but rather becomes obligatory in order 
to guarantee the temporal predictability. In this case, the 
interrupt request is recorded so that it can be issued after the 
priority level is low enough. This avoids the interrupt 
masking overhead, because most of the times the interrupt 
request does not occur when the system is executing high 
priority tasks. Furthermore, when the system priority is 
decreased, it is necessary to verify whether an IRQ that has 
been masked could occur at the new level, and if this is the 
case, modify the mask of those IRQs that should be enabled.  

4. Implementing The Integrated Model with 
Virtual Masking 

This section presents the detailed design of the interrupt 
subsystem for a real-time kernel that is compliant with the 
integrated interrupt and task model. This subsystem can be 
configured in different emulation modes to satisfy the 
different trade-offs between cost and temporal predictability. 
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We introduce an analysis of the implementation alternatives 
for the virtual masking mode and discuss its implementation 
algorithms. Our implementation was made in a custom real-
time kernel that runs on a PC running in real mode. 

4.1. INTHAL Status Data 
In order to maintain the state of the VCPIC, it is 

necessary to maintain a group of internal variables that are 
described next. 

The following arrays, with one element for each of the 16 
IRQs in the system, are maintained: 
•  IRQ_Priority: An array of 16 elements of a type 

compatible with the type of the system priorities (byte or 
word) that holds the priority of each IRQ in the system.  

•  IRQ_Mask: An array of words (16 bits). Each word 
keeps one mask to be set in the IMR registers of both 
8259s when the corresponding IRQ occurs. This word 
unmasks the IRQ of greater priority than the 
corresponding IRQ and masks all remaining IRQs 
(including the corresponding IRQ).  
In addition the following variables are maintained: 

•  Virtual_Mask_Mode: Flag that signals the masking 
mode in operation: virtual (TRUE) or physical (FALSE). 

•  IRQ_Level: Byte or word (according to the system) that 
keeps the current (unified) system priority level. 

•  Logical_Mask: Interrupt mask (word value) that 
corresponds to the current system priority (IRQ_Level). 

•  Physical_Mask: Interrupt mask (word value) set in the 
IMR registers of both 8259s. In the physical masking 
mode, this mask will always be equal to Logical_Mask, 
however, in virtual masking mode it may be different to 
Logical_Mask. 

4.2. General Emulation Logic and 
Implementation Alternatives 

In the virtual masking mode, the occurrence of undesired 
interrupts is possible. Any undesired interrupt I with priority 
Pi  must fulfill the condition Pi ≤ IRQ_Level. If this happens, 
this IRQ is physically masked in the IMR register of the 
corresponding 8259 (the Physical_Mask is updated to 
reflect this fact), so that the occurrence of a second undesired 
interrupt is avoided. Also, the occurrence of this IRQ must 
be recorded. In this case the current interrupt level (value of 
IRQ_Level) is not modified.  

4.2.1. Mechanism for masking an undesired IRQ 
To guarantee temporal predictability in the virtual mask 

mode the masking of the undesired IRQ I inside of the LLIH 
(section 3.2) is required. There are three possible ways to 
carry out this masking, all of them guaranteeing a maximum 
bound in the priority inversion due to the disturbance of 
these undesired IRQs: 

Masking only the undesired IRQ I that took place: This 
masking involves computing and setting a mask that disables 
the specific IRQ (without modifying the others).  

Masking all IRQs with priorities below or equal to Pi: this 
option has two advantages: (1) it is easy to implement, 

because  it is only needed to set the mask located in 
IRQ_Mask[I] (pre-calculated by setIrqPriority()); (2) 
when setIrqLevel() is called to rise the priority level, it does 
not have to calculate the mask corresponding to the new 
priority level (it must be done only if it is called to decrease 
the priority level). Since setIrqLevel() must be executed at 
each context switch, advantage (2) implies a smaller context 
switch overhead. However, this option has the drawback of 
allowing the occurrence of other undesired IRQs (all those x 
that fulfill the condition IRQ_Level < Px < Pi). This not only 
would cause the masking of other IRQs, but also would 
produce a larger worst-case disturbance due to undesired 
interrupts.  

Masking all IRQs with priorities below or equal to 
IRQ_Level: this option is equivalent to set the physical IRQ 
level (physical mask) equal to the system (logical) priority 
level (logical mask). With this option, the service 
setIrqLevel() must compute the interrupt mask that 
corresponds to each level. This must be done even if the 
invocation raises or diminishes the current system priority 
level. The drawback here is a higher context switch 
overhead. However, it guarantees that once an undesired 
interrupt occurs, any other one will not occur when the 
system priority level is higher or equal to the current level 
(the first undesired IRQ masks all the others). This provides 
the best possible worst-case in the disturbance due to 
undesired interrupts.  

4.2.2. Mechanism for recording an undesired IRQ 
After an undesired interrupt occurred and it is masked, it 

must be recorded to allow its occurrence only when the 
system priority goes below the priority of this interrupt. 
Here, the integrated model of interrupt management allows 
two options:  

a). VCPIC (INTHAL) recording. This option is 
equivalent to the original idea of the interrupt prologue in the 
optimistic interrupt masking. In order to achieve this it is 
necessary to keep an occurrence flag for each possible IRQ 
(called continuation in [12]) to record the occurrence of the 
undesired interrupts. When the system interrupt level goes 
down, the interrupt occurrence is simulated executing 
IRQHandler(irq) in the service setIrqLevel() of the 
INTHAL. This option has the advantage of making the 
kernel independent of the masking modes in the INTHAL. 

It is worth noting that this option is the only one available 
when a traditional interrupt management scheme is used. 
Also, note that it causes an increase in the execution time of 
setIrqLevel() δM. This increase does not cause any problem 
in traditional interrupt management systems neither in 
general purpose operating systems (for which the optimistic 
masking was designed). This is because setIrqLevel() is not 
executed at every context switching (as in the integrated 
model), but as part of the entry/leave protocol of the kernel�s 
critical sections. In fact, this service is less expensive than 
handling the interrupt level directly. 

In the context of the integrated scheme of interrupt and 
task management and for real-time operating systems, the 
previous arguments are not valid. This is due to a complete 
change in the scheme and the design objectives of the kernel: 
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1. Now setIrqLevel() is not called as part of the entry/leave 
protocol to the kernel critical sections, but as part of each 
context switch. In fact, the context switch itself 
constitutes a critical section, hence it is not possible to 
simulate an interrupt within setIrqLevel(). It must be 
noted that, using the proposed integrated model 
eliminates the need to disable the interrupts inside the 
kernel. The critical sections inside the kernel are protected 
simply by disabling the preemption (which is modeled 
using the immediate priority ceiling protocol [1]).  

2. The efficiency of the integrated scheme and the 
schedulability that can be achieved, is very sensitive to 
the worst-case execution time of the setIrqLevel() service 
δM. Hence, any small increase in δM is an important 
disadvantage. 

 
b). Kernel (KRNLINT) recording. A solution to the 

difficulties of using the optimistic masking with the 
integrated model can be found in the model itself. Since this 
model integrates the communication and synchronization 
mechanism between interrupt handlers and tasks, then the 
VCPIC does not need to hide the occurrence of an undesired 
interrupt from the kernel. Therefore, it is feasible now to 
notify this event to the kernel for its recording. However, it 
must be noted that the VCPIC does not need to notify the 
kernel if an interrupt is desired or not. The kernel itself has 
enough information to differentiate desired from undesired 
interrupts (using the system priority level).  

The fact is that, when an interrupt occurs 
(IRQHandler(irq) is called) the kernel signals the 
synchronization objects associated to that IRQ and calls the 
scheduler. Due to the restriction that only signal-recording 
objects (semaphores, mailbox, etc) can be associated to IRQs 
the recording of an undesired interrupt is achieved in a 
transparent form. In this case, a desired interrupt would 
cause the preemption of the current task to execute the HAT 
that waits for the IRQ (because it has higher priority), while 
an undesired interrupt would set ready the associated HAT 
without preempting the current task (because its HAT has 
lower priority). The HAT is automatically scheduled when 
the system priority level goes down. 

4.3. Algorithms for the Main VCPIC Services 
The implementation of the VCPIC is carried out by two 

INTHAL components: the priority management services and 
the LLIH for the captured IRQs.  

4.3.1. Priority management services 
These services achieve the goal of having IRQs with 

dynamic priorities within the same priority space of the 
kernel scheduler. The interface services provided are 
setIrqPriority() and setIrqLevel() and the auxiliary services 
provided are set8259IMR() and setIRQMask(). 

The auxiliary service set8259IMR(...) must be invoked 
whenever it is necessary to set the mask in the interrupt 
hardware. It allows keeping the current value of the mask 
registers in the Physical_Mask variable so that, whenever 
the new mask matches the mask already set, the expensive 

input/output operations are avoided. The algorithm for this 
service is shown in Figure 3. First, it verifies if the physical 
mask is different from the new mask. If this is true, it sets the 
masks in both 8259 IMR registers and updates the values of 
Logical_Mask and Physical_Mask. 

The setIRQMask(�) service provides support for virtual 
masking. As shown in Figure 3, its behavior is related to the 
masking mode stored in the state variable 
Virtual_Mask_Mode: 
•  Physical masking: this service only calls the 

set8259IMR() service to set the mask in both 8259s. 
•  Virtual masking: this service sets the mask only if it 

causes an IRQ enable (unmasking). When the new mask 
causes an IRQ disabling (masking) then only the value of 
the logical mask (variable Logical_Mask) is updated. 
When operating in physical masking mode, the value of 

Logical_Mask is always equal to the value of the IMR 
registers of both 8259s. On the other hand, in virtual masking 
mode, the value of Logical_Mask may be equal or different 
to Physical_Mask (and the IMR registers). However, this 
mode must always fulfill the condition that the bits in 1 in 
the Physical_Mask must be a subset of the bits in 1 of the 
Logical_Mask. In other words, the following condition must 
always be true: 

    ( NOT Logical_Mask  AND Physical_Mask ) = 0 
 

set8259IMR (mask) { 
  if ( mask ≠ Fisical_Mask )  { 
     Logical_Mask ! mask 
     Physical_Mask ! mask 
     IMR registers of both 8259 ! mask 
  } 
 
setIRQMask (mask) { 
  if ( VirtualMaskMode =  TRUE)  { 
     if ( Physical_Mask AND (  NOT mask ) ) 
       set8259IMR(mask) 
     else 
       Logical_Mask = mask 
  } 
  else { 
    set8259IMR (mask) 
  }  
} 

Figure 3 � Auxiliary Services Set8259IMR and setIRQMask 
 

 

Service setIrqPriority (irq, priority). This service 
allows the setting of the priority level of an IRQ. Its function 
is to establish a correspondence between the priorities 
assigned to each IRQ (within the system priority space) with 
the value of the mask to be set in the interrupt hardware 
(IMR registers of both 8259). 

Figure 4 shows setIrqPriority() algorithm. This 
algorithm modifies the IRQ_Priority and IRQ_Mask arrays 
(see subsection 4.1). At each invocation, the entry in 
IRQ_Priority that corresponds with the IRQ being changed 
is updated. Next, it obtains the mask associated to each IRQ 
from the new priority configuration. These masks are stored 
in the IRQ_Mask array. In addition, if this IRQ goes from 
enabled to disabled or vice versa, then setIRQMask() is 
called to update the  interrupt mask. 

Service setIrqLevel(priority). This service sets the 
current system interrupt level and maintains the IRQ_Level 
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variable. As shown in Figure 5,  it uses the IRQ_Priority 
and IRQ_Mask arrays to determine the mask to be set for 
the new priority level. This mask is the one that disables all 
IRQs with a priority level less than or equal to the 
IRQ_Level. After this mask has been computed, if this 
implies the masking or the unmasking of some IRQ then it is 
set according to the masking mode (physical or virtual); with 
the help of setIRQMask(). 
 
setIrqPriority (irq, priority) { 
  /* Compute all masks for the priority setting*/ 
  IRQ_Priority[irq] ! priority 
 
  - Obtain IRQ masks in IRQ_Masks[] array  
 
  /*  Update de current 8259 mask */ 
  irqMaskBit ! (1 << irq  /* 1 in IRQ position*/ 
  if ( priority ≤ irqLevel ) { /* mask IRQ */ 
    setIRQMask( Phyisical_Mask  OR  irqMaskBit ) 
  } 
  else { /* IRQ activation*/ 
   setIRQMask(Physical_Mask AND NOT irqMaskBit) 
  } 
} 

Figure 4 � Service setIrqPriority 
 
setIrqLevel (priority) { 
  /* Get the new interrupt mask */ 
    - obtain the mask which corresponds to the 
      actual priorities configuration 
      (IRQ_Priority[]  and IRQ_Mask[] arrays)  
       and the priority parameter 
  /* Set the mask in accordance to the  
     masking  mode */ 
  setIRQMask( mask ); 
} 

Figure 5 � Service setIrqLevel 

4.3.2. INTHAL Low Level Interrupt Handler (LLIH) 
The INTHAL has a LLIH for each possible ISR state 

(captured or ignored). The control is transferred to these 
handlers whenever an IRQ with the associated state takes 
place. The handler gets the requested IRQ as an argument. 
The CAPTURED_ENTRY algorithm (which is the LLIH 
associated to the captured interrupts), is shown in Figure 6. 
Its main responsibilities are: (1) to cancel the PICs traditional 
priority scheme, (2) to enforce the unified priority space and 
(3) to transfer the control to the kernel interrupt handler 
(IRQHandler()). 
 
CAPTURED_ENTRY(irq) { 
  - Save CPU registers 
  if ( Virtual_Mask_Mode = TRUE ) { 
    if (IRQ_Priority[irq] ≤ irqLevel) { 
      Set8259IMR (Logical_Mask) 
    } else {  
      Logical_Mask ! IRQ_Mask[irq]  
      IRQ_Level ! IRQ_Priority[irq] 
    }           
  } else { 
    Set8259IMR(IRQ_Mask[irq]) 
    IRQ_Level ! IRQ_Priority[irq]  
  }   
  sendEOI  
  IRQHAndler(irq) /* Enter to the kernel */ 
  - Restore used CPU registers 
} 

Figure 6 � LLIH for captured IRQs 

When operating in the physical masking mode, if an 
interrupt I with priority Pi, occurs, it is because the condition 
Pi > IRQ_Level is satisfied. In this case, all IRQs with 
priority less than or equal to IRQ_Level are masked and the 
system priority level is raised, to set it equal to Pi. Finally, 
the kernel handler (IRQHandler()) is called. 

When operating in the virtual masking mode, in spite of 
the current system priority level IRQ_Level, the occurrence 
of any interrupt is possible. In this case, two situations may 
occur: 
•  An interrupt I with priority Pi > IRQ_Level, took place 

(desired interrupt). In this case, the same operations that 
took place in the physical masking mode must be carried 
out, with the exception of the IRQ masking.  

•  An interrupt I with priority Pi ≤ IRQ_Level took place 
(undesired interrupt). In this case, to avoid the occurrence 
of a second undesired interrupt, the IMR register of both 
8259s must be set using the mask which correspond to the 
priority level active when the interrupt took place (in 
addition, the physical mask is updated). Finally, the 
IRQHandler() is invoked to record its occurrence (even 
though the interrupt is undesired, see subsection 4.2.2). 
Note that in this case, the current interrupt level 
(IRQ_Level) is not modified. 

5. Analysis with Virtual Masking 
When virtual masking is used, the masking of an IRQ 

may occur only if this IRQ really takes place (in undesired 
form), whereas the unmasking only takes place, if as part of 
a context switch, which exits some activity, it is needed to 
enable this IRQ again. 

For the activities in the P(i) set, the worst-case situation 
occurs when all the IRQs in the H(i) subset occur in an 
undesired form while the activities in P(i) of greater priority 
than the corresponding IRQ are being executed. In this case, 
each of them would imply a first writing of the mask from its 
handler and a second writing when the preempted (in an 
undesirable way) activity in P(i), ends. However, since this 
writing takes place only when the IRQs occur, it should not 
be associated to each context switch in P(i). Instead, it is 
enough to associate two mask writings (2δM) to each possible 
activation of the activities in H(i).  

However, now it is also necessary to take into account the 
disturbance associated to the potential execution of a small 
prologue dedicated to attend one of the IRQs associated to 
any of the activities in the S(i) and L(i) sets (not the handling 
activity itself). In fact, this prologue is the one who sets the 
real mask, so it can be executed only once. Also, in this case 
only one masking must be taken into account, because the 
context switch of any activity in P(i) never produces the 
unmasking of any of the IRQs associated to activities in S(i) 
or L(i).  

Consequently, now Uloss (equation 4) can be expressed as 
follows: 
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Where γ is the execution time of the prologue associated 
to the undesired IRQs, which is needed to record their 
occurrence. Hence, the decrease in the utilization Uloss = Ui

PI* 
due to the overhead of the integrated model with virtual 
masking is: 

∑
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Note that, different from the traditional scheme, which 
uses a minimal ISR and delegate the service at task level 
(subsection 2 and Figure 1), this virtual masking scheme is 
temporally predictable. It introduces a priority inversion due 
to a small disturbance caused by the execution of a prologue 
of an undesired interrupt (given by γ + δM). However, as 
showed in equation (6), this priority inversion is bounded. 
This scheme guarantees a predictable and efficient interrupts 
management with a very small utilization loss. Also, note 
that now Ui

PI* in Equation 6 depends only on the HATs in 
the H(i) set and not on the SAT (as occurs in Equation 5), 
making the system more scalable. 

6. Experimental Results 
Two types of experiments were conducted. The first type 

allows us to verify experimentally the deterministic behavior 
of the implementation of a single priority space with and 
without virtual masking. The second type was developed to 
compare the overhead of this new implementation against the 
overhead of the implementation using physical masking. All 
experiments were executed using an Intel Pentium 4 PC 
running at 2.8GHz with 1GB of memory and 1MB of L2 
cache memory. All timing measurements were made using 
the Time Stamp Counter register of the Pentium processor.  

6.1. Behavior Characterization 
In the first type of experiments we used a task set 

composed of the following: 
•  t1S is an IRQ handler (without hard real-time 

requirements) that attends the serial port (receiving 100 
bytes per second) with a minimum inter-arrival time T1

S 
of 10 ms and a worst-case execution time C1

S of 5 ms 
(utilization U1

S = 0.5). 
•  t2 is a periodic hard real-time task with a period T2 of 

50ms, a worst-case execution time C2 of 20ms (with a 
utilization U2 = 0.4), and a deadline of 30ms. 
A task set like this can be found in digital control systems 

where t2 executes the control loop, while t1 attends the 
communications with a remote system (e.g., for reporting or 
configuration).  

Two experiments were executed assigning the periodic 
task t2 a priority greater than the priority of the HAT t1

S. Note 
that, for this particular task set, this priority configuration is 
the only one that guarantees the temporal requirements of the 
periodic task. Also, this configuration is only possible with 
the integrated interrupt and task model. In both experiments, 
the traces for the start and end of both tasks were logged, and 
as well as, a trace for each time that the INTHAL LLIH is 
invoked passing as a parameter the IRQ associated to the 
serial port (and to the HAT t1

S). 

In te g ra te  P r i o r i ty  S p a c e  w i t h  P h y s i c a l  M a s k i n g  
( IR Q  P r i o r i ty   <  P e r i o d i c  T a s k  P r i o r i t y )

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0

u s

L L IH

IR Q 4
( H A T )

T a s k
 ( t 2 )

Id l e

Figure 7 - Execution Trace � Physical Masking Mode 
 

Integrate Priority Space with Virtual Masking 
(IRQ Priority  < Periodic Task Priority)

0 50000 100000 150000

us

LLIH

IRQ4
(HAT)

Task
 (t2)

Idle

Figure 8 - Execution Trace � Virtual Masking Mode 
 
In the first experiment we use the emulation of the 

VCPIC with the physical masking mode as proposed in [7]. 
Figure 7 depicts the execution trace of this experiment. It is 
worth noting that: (1) the IRQ can not preempt the periodic 
task t2, (there is not LLIH trace) hence, once it is actived (at 
0 µs, 50000 µs, 10000 µs and 150000 µs) it runs without 
disturbance. Without this disturbance, task t2 can finish 
properly before its deadline in all instances, as shown in the 
figure (at 30000 µs, 80000 µs and 13000 µs); (2) for each 
period of t2 only 4 IRQs are accepted and handled (instead of 
5 that should be accepted). During the 20 ms of execution of 
t2 two IRQs are issued by the serial port, but they are not 
attended because they have lower priority than task t2. 
However, the hardware �remembers� one of them causing 
the back-to-back execution of the HAT at 20000 µs, 70000 
µs, and 12000 µs. 

It is worth to make some comments about the losing of 
some interrupt request signals observed in Figure 7 and that 
it is caused by this priority configuration. The first comment 
is that at this point we have an unavoidable trade off: In this 
task set, the system cannot guarantee the processing of all 
interrupts and also guarantee the meeting of the deadline of 
the periodic hard real- time task. Indeed, this is the reason of 
this priority configuration: to guarantee the temporal 
requirements of those software activated tasks which have 
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hard real-time requirements, in spite of the overload caused 
by those hardware activated non real-time tasks. The second 
comment is that by the usage of a real-time analysis we 
certainly can guarantee that interrupts are never missed when 
all interrupt sources behave as expected and, at the same 
time, do not affect the timing requirements of the hard real-
time tasks.  

In the second experiment we used the emulation of the 
VCPIC with virtual masking mode. Figure 8 depicts its 
execution trace. In this case it is worth mentioning that the 
HAT associated to the IRQ cannot preempt periodic task t2, 
hence, similar to the previous experiment, task t2 can finish 
before its deadline in all instances (as shown in the Figure at 
30000 µs, 80000 µs and 13000 µs). However, in this case 
there is a difference with respect to the execution of the 
physical masking mode. Now the IRQ really preempt the 
execution of t2. This is shown in the Figure by the LLIH 
traces (depicted by diamonds), which occur a little later of 0 
µs, 50000 µs, 100000µs and 150000 µs. Note that, here the 
corresponding HAT is not executed and that, this undesired 
interrupts are not serviced at those instants of time, but 
instead they are recorded (by the synchronization object) 
until the end of the periodic task (at 20000µs, 70000µs and 
120000µs). This is illustrated by the activations of the 
corresponding HAT (where the corresponding LLIH traces 
are not executed). In this case it is important to note that, 
only one undesired interrupt by activation of t2 is possible. 
Again, for each period of t2 only 4 IRQs are accepted and 
handled (instead of the 5 IRQs that were issued by the serial 
port). On each execution of t2 one IRQ is ignored. This 
restriction guarantees a small bound in the disturbance due to 
undesired interrupts (as denoted by equation 6). 

6.2. Overhead Measurement 
In this section, we analyze the implementation overhead 

of the integrated interrupt and task model. In the integrated 
model, the interrupt latency includes the time to setup the 
priority in the interrupt controller, the time to signal to the 
interrupt synchronization object (i.e. semaphore) and the 
context switch time from the interrupted task to the HAT 
(this timings are not included in the traditional model). 
Therefore the interrupt latency (of the HAT) is the main 
overhead indicator.  

In our measurements, we used a task with an endless loop 
that logged a trace with an identification code and a time 
stamp. Also we used a HAT associated to the IRQ, logging a 
trace with another identification code and the current time 
stamp. The values were collected for the four combinations 
of the two emulation modes (Physical or Virtual Masking) 
and the two EOI modes (Explicit or Automatic). Figure 9 
plots 1000 latency samples2.  

In all modes the behavior of the interrupt latency is 
practically stable around the average latency: 4.869 µs (for 
EOI with physical masking), 4.158 µs (for AEOI with 
physical masking), 3.469 µs (for EOI with virtual masking) 

                                                   
2 We believe the spikes in the plots are due to speculative 

execution and/or cache misses. 

and (2.716 µs for AEOI with virtual masking). This is a very 
important factor for real-time systems. Another observation 
is that the average values for the virtual masking modes are a 
72.9% and a 67% of the corresponding values for the 
physical masking. This represents a significant reduction in 
the overhead of this implementation compared with the 
implementation proposed in [7]. The two virtual masking 
modes yield better results than the two physical masking 
modes. The automatic EOI mode with virtual masking shows 
the best performance with a very low result for the worst-
case interrupt latency of 3.06 µs. 

It is interesting to analyze how the results for the interrupt 
latency for each emulation mode are related with the number 
of writing operations to the input/output port for that mode. 
This relation is shown in Table 1, where it is easy to identify 
that the number of port access is the dominant factor for the 
kernel interrupt latency. 
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Figure 9 - Execution Trace � Kernel Interrupt Latency 
 
 

Table 1. Interrupt latency figures and port operations    
Emu. Mode I/0 Write Interrupt Latency (µs) 
 EOI  Mask EOI IMR #   Min Ave Max 
Explí-

cit 
Phy-
sical 1 21 3 4.781 

µs 
4.869 

µs 
5.318 

µs 
Auto-
matic 

Phy-
sical 0 21 2 4.097 

µs 
4.158 

µs 
4.564 

µs 
Explí- 

Cit 
Vir-
tual 1 02 1 3.340 

µs 
3.469 

µs 
3.877 

µs 
Auto-
matic 

Vir-
tual 0 02 0 2.672 

µs 
2.716 

µs 
3.060 

µs 
1. It assumes that it has been necessary to set the IMR in both 8259. 

Really, often it is only necessary to establish a single IMR. 
However, this measurement was done with an implementation that 
always sets the IMR in both 8259 (worst case). 

2. A desired IRQ is assumed. In case of an undesired one, the LLIH 
writes both masks. However, this is not included into the interrupt 
latency because the ISR is not invoked. 
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6.3. Evaluation of the Experimental Results 
As final comments of our experiments, we will compare 

the overhead of the port access between the integrated and 
the traditional model. 
1. In the case of the traditional scheme, the interrupt latency 

is not affected by the overhead of any port access. 
Nevertheless, before leaving the ISR, it is incurred in this 
overhead due to the need to issue an EOI command. 
Consequently, the port access overhead is indeed 
reflected in the disturbance (or interference) causing a 
decrease in the utilization bound. 

2. In the case of the integrated model using the automatic 
EOI mode, the port operations are included in the 
interrupt latency (due to the need of setting the IMR). 
Nevertheless, the EOI writing is eliminated completely. 
Consequently, since the port writing is the dominant 
factor in the execution time, we expect that the overhead 
introduced by our scheme to be of the same order as the 
traditional interrupt management scheme. 

3. If the automatic EOI mode is used in combination with 
the virtual masking then (for desired interrupts) there are 
no port writings (neither at the entry, nor at the exit of the 
HAT). Consequently, due to the need to use explicit EOI 
in the traditional interrupt management, we expect that 
the overhead introduced by the integrated model indeed 
be lower than that of the traditional model.  
 
In summary, as demonstrated by equation 6 and the 

experimental results, the implementation of the integrated 
model using the AEOI and virtual masking emulation mode 
allows (in modern architectures) an interrupt management 
scheme completely predictable and without overhead. Also, 
the decrease on the complexity of this integrated design 
favors the development of reliable systems. Consequently, in 
real-time system kernels, where the timely response to events 
and the reliability are determining factors, no justification 
exists to maintain both activities (ISRs and tasks) as 
separated abstractions. Therefore, our proposed unified 
design is well adapted for real-time systems. 

7. Conclusions 
The details in the implementation of the interrupts 

handling have a dramatic impact in the design and use of the 
synchronization mechanisms in real-time and non-real-time 
operating systems. As a result of the separation of ISRs and 
tasks, severe restrictions appear on the services of the system 
that can be invoked within the ISRs. This causes the problem 
of an increase in the complexity of the design and 
implementation, which decreases the reliability of resulting 
software. In addition, the real-time scheduling theory 
considers only one priority space which conflicts with the 
actual model implemented in real-time operating systems 
that has one space for interrupts and another for tasks. The 
use of these two spaces of independent priorities severely 
affects the determinism and utilization level in the 
scheduling of tasks with real-time requirements.  

This work eliminates the overhead of the integrated 
interrupt and task priority space when implemented as in [7]. 

We introduced a detailed design of a low level interrupt 
handling component for an operating system based on the 
integrated model. This component is portable to various 
hardware platforms, adaptable to different scheduling and 
synchronizations mechanisms for various operating system 
implementations. We improved significantly the average 
case behavior of this implementation with the adaptation of 
the optimistic interrupt protection scheme to the integrated 
model and provide a schedulabilty analysis that showed its 
feasibility in a real-time context. We implemented the 
various emulation modes presented in this paper for the 
integrated model as part of an experimental micro-kernel for 
embedded and real-time applications. Using this 
implementation we collected experimental evidences that 
showed its predictable behavior as well as its low overhead. 
This new implementation is well suited for real-time systems 
where average case behavior is an important factor. 
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