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Abstract
In some real-time applications, it is desirable to trade off pre-
cision for timeliness. For such systems, considered typically
under the Imprecise Computation model, a function assigns
reward to the application depending on the amount of com-
putation allotted to it. Also, many such applications run on
battery-powered devices where the energy consumption is of
utmost importance. We address in this paper the problem of
energy minimization for Imprecise-Computation systems that
have reward and time constraints. We propose a Quasi-Static
(QS) approach that exploits, with low on-line overhead, the
dynamic slack that arises from variations in the actual num-
ber of execution cycles: first, at design-time, a set of solutions
are computed and stored (off-line phase); second, the selec-
tion among the precomputed assignments is left for run-time,
based on actual values of time and reward (on-line phase).

1 Introduction
Power and energy consumption have become quite impor-
tant design considerations. Dynamic Voltage Scaling (DVS)
techniques [9] are a well-known approach for reducing the
energy consumption in real-time systems. By lowering the
supply voltage quadratic savings in energy consumption can
be achieved while performance is degraded in approximately
linear fashion. At the same time, for certain real-time ap-
plications approximate but timely results are acceptable, for
example, fuzzy images in time are often preferable to perfect
images too late. Imprecise Computation (IC) techniques [5]
have been used for studying such systems. Tasks are com-
posed of mandatory and optional parts, both of which must
be finished by the deadline, although the optional part can
be left incomplete at the expense of the quality of results (a
function assigns reward depending on the amount of compu-
tation allotted to the optional part).

On the one hand, DVS techniques, which allow the
trade-off between energy consumption and performance, have
mainly been applied to hard real-time systems (no reward as-
pect considered). On the other hand, IC approaches, which
make it possible to trade off precision for timeliness, have
until now disregarded the energy aspects. Rusu et al. [10]
proposed an approach in which reward, energy, and dead-
lines are considered in the same framework. The problem is
to maximize the total reward without exceeding the energy
budget or the deadlines. This approach solves statically the
optimization problem and consequently considers only worst
cases. A similar problem was discussed by Cortés et al. [4]
but, as opposed to [10], the dynamic slack, caused by tasks
completing earlier than in the worst case, is exploited by us-
ing a QS approach.

In this paper we also deal with real-time systems for which
it is possible to trade off precision for timeliness as well as en-
ergy consumption for performance. The problem addressed
in this paper (somehow a mirror problem to the one in [4]) is
to minimize the energy consumption subject to a minimum
total-reward constraint and deadlines. We aim at finding the
voltage levels at which each task runs and its number of op-

tional cycles such that the objective function is optimized
and the constraints satisfied.

A static solution implies finding one Voltage/Optional-
cycles (V/O) assignment; it is pessimistic because actual ex-
ecution times are typically far off from worst-case values.
A dynamic solution implies recomputing, every time a task
completes, a V/O assignment; although it can exploit the
dynamic slack, the on-line overhead is too high to make the
dynamic solution applicable in practice. We propose a quasi-
static approach composed of two steps: first, at design time,
we compute a set of V/O assignments (off-line phase); sec-
ond, at run time, one of the precomputed V/O assignments
is selected based on actual values of time and accumulated
reward (on-line phase).

To our knowledge this is the first paper that considers the
problem of energy minimization in the frame of IC systems.
A chief merit of our approach is its ability to effectively ex-
ploit the dynamic slack at very low on-line overhead.

2 Preliminaries
2.1 Task and Architectural Models
The system is captured by a directed acyclic graph G =
(T,E) where the nodes T = {T1, T2, . . . , Tn} correspond to
the computational tasks and the edges E indicate the data
dependencies between tasks. For the sake of convenience
in the notation, we assume that tasks are named according
to a particular execution order (as explained later in this
Subsection) that respects the data dependencies. That is,
task Ti+1 executes immediately after Ti, 1 ≤ i < n.

Each task Ti is composed of a mandatory part and an
optional part, characterized in terms of the number of CPU
cycles Mi and Oi respectively. The actual number of manda-
tory cycles Mi of a task Ti at a certain activation of the sys-
tem is unknown beforehand but lies in the interval bounded
by the best-case number of cycles Mbc

i and the worst-case
number of cycles Mwc

i , that is, Mbc
i ≤ Mi ≤ Mwc

i . The ex-
pected number of mandatory cycles of a task Ti is denoted
Me

i . The optional part of a task executes immediately af-
ter its corresponding mandatory part completes. For each
task Ti, there is a deadline di by which both mandatory and
optional parts of Ti must be completed.

For each task Ti, there is a reward function Ri(Oi) that
takes as argument the number of optional cycles Oi assigned
to Ti; we assume that Ri(0) = 0. We consider non-decreasing
concave1 reward functions as they capture the particular-
ities of most real-life applications [10]. Also, as detailed
in Section 4, the concavity of reward functions is exploited
for obtaining solutions to particular optimization problems
in polynomial time. We assume also that there is a value
Omax

i , for each Ti, after which no extra reward is achieved,
that is, Ri(Oi) = Rmax

i if Oi ≥ Omax
i . The total reward is

the sum of individual reward contributions and is denoted
R =

P
Ti∈T Ri(Oi). The reward produced up to the comple-

tion of task Ti is denoted RP i (RP i =
Pi

j=1 Rj(Oj)). We

1A function f(x) is concave iff f ′′(x) ≤ 0, that is, the second deriva-
tive is negative.



consider a reward constraint, denoted Rmin, that gives the
lower bound of the total reward that must be produced.

We consider that tasks are non-preemptable and have
equal release time (ri = 0, 1 ≤ i ≤ n). All tasks are mapped
onto a single processor and executed in a fixed order, de-
termined off-line, that respects the data dependencies and
according to an EDF (Earliest Deadline First) policy. For
non-preemptable tasks with equal release time and running
on a single processor, EDF gives the optimal execution order
[3]2. Ti denotes the i-th task in this sequence.

The target processor supports voltage scaling and we as-
sume that the voltage levels can be varied in a continuous way
in the interval [V min, V max]. If only a discrete set of voltages
are supported by the processor, our approach can be adapted
by using well-known techniques for determining the discrete
voltage levels that replace the calculated continuous one [9].

In our QS approach we compute a number of V/O
(Voltage/Optional-cycles) assignments. The set of precom-
puted V/O assignments is stored in a dedicated memory as
lookup tables, one table LUTi for each task Ti. The maxi-
mum number of V/O assignments that can be stored in mem-
ory is fixed by the designer and is denoted Nmax.

2.2 Energy and Delay Models

The power consumption in CMOS circuits is the sum of dy-
namic, static (leakage), and short-circuit power. The short-
circuit component is negligible. The dynamic power is at
the moment the dominating component. However the leak-
age power is becoming an important factor in the overall
power dissipation. For the sake of simplicity and clarity in
the presentation of our ideas, we consider only the dynamic
energy consumption. Nonetheless, the leakage energy and
Adaptive Body Biasing (ABB) techniques [1] can easily be
incorporated into the formulation without changing our gen-
eral approach. The amount of dynamic energy consumed by
task Ti is given by the following expression [6]:

Ei = CiV
2

i (Mi + Oi) (1)
where Ci is the effective switched capacitance, Vi is the sup-
ply voltage, and Mi + Oi is the total number of cycles exe-
cuted by the task. The energy overhead caused by switching
from Vi to Vj is as follows [6]:

E∆V
i,j = Cr(Vi − Vj)

2 (2)
where Cr is the capacitance of the power rail. We also con-
sider, for the QS solution, the energy overhead Esel

i originated
from the need to look up and select one of the precomputed
V/O assignments. The way we store the precomputed as-
signments makes the lookup and selection process take O(1)
time. Therefore Esel

i is a constant value. Also, this value is
the same for all tasks (Esel

i = Esel , for 1 ≤ i ≤ n). For con-
sistency reasons we keep the index i in the notation of the
selection overhead Esel

i . The energy overhead caused by on-
line operations is denoted Edyn

i . In a QS solution the on-line

overhead is just the selection overhead (Edyn
i = Esel

i ) [4].
The execution time of a task Ti executing Mi + Oi cycles

at supply voltage Vi is [6]:

τi = k
Vi

(Vi − Vth)α
(Mi + Oi) (3)

where k is a constant dependent on the process technology, α
is the saturation velocity index (also technology dependent,
typically 1.4 ≤ α ≤ 2), and Vth is the threshold voltage. The

2By optimal in this context we mean the task execution order that,
among all feasible orders, admits the V/O assignment for which the
lowest total energy can be achieved. We have demonstrated in [3] that
an EDF execution order is the one that least constraints the space of
V/O solutions and henceforth optimal in the above sense.

time overhead, when switching from Vi to Vj , is given by the
following expression [1]:

δ∆V
i,j = p|Vi − Vj | (4)

where p is a constant. The time overhead for looking up and
selecting one V/O assignment in the QS approach is denoted
δsel

i and, as explained above, is constant and is the same value
for all tasks.

The starting and completion times of a task Ti are denoted
si and ti respectively, with si + δi + τi = ti where δi captures
the total time overheads. δi = δ∆V

i−1,i + δdyn
i where δdyn

i is
the on-line overhead. Note that in a QS solution this on-
line overhead is just the lookup and selection time, that is,
δdyn

i = δsel
i .

3 Motivational Example
Before going into the precise formulation and the details of
the solution, we consider in this section the example shown
in Fig. 1. We assume non-decreasing reward functions of the
form Ri(Oi) = KiOi, Oi ≤ Omax

i as well as a reward con-
straint Rmin = 8. As explained in Subsection 2.1, tasks run
according to the schedule T1T2T3, fixed off-line in conformity
to an EDF policy. We consider a processor that permits con-
tinuous voltage scaling in the range 0.6-1.8 V. For the sake of
clarity, in this example we assume that transition overheads
are zero.
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i Me
i Mwc

i Ci [nF] di [µs] Ki Rmax
i

T1 30000 60000 80000 0.6 200 0.00012 3.60
T2 20000 40000 50000 1.0 300 0.00021 5.25
T3 10000 50000 90000 0.8 550 0.00014 5.60

Fig. 1. Motivational example

The optimal static V/O assignment for this example is
given by Table 1. The assignment gives, for each task Ti, the
voltage Vi at which Ti must run and the number of optional
cycles Oi that it must execute in order to minimize the energy
consumption, while guaranteeing that deadlines are met and
the reward constraint is satisfied.

Task Vi [V] Oi

T1 1.744 14
T2 1.488 23864
T3 1.471 21342

Table 1. Optimal static V/O assignment

The V/O assignment given by Table 1 is optimal in the
static sense. It is the best possible that can be obtained off-
line without knowing the actual number of cycles executed by
each task. However, the actual number of cycles, which are
not known in advance, are typically far off from the worst-
case values used to compute such a static assignment. This
point is illustrated by the following situation. The first task
starts executing at V1 = 1.744 V, as required by the static
assignment. Assume that T1 executes M1 = 40000 (instead
of Mwc

1 = 80000) mandatory cycles and then its assigned
O1 = 14 optional cycles. At this point, knowing that T1 has



completed at t1 = τ1 = 68.54 µs and that the reward pro-
duced is RP1 = R1 = 0.00168, a new V/O assignment can
accordingly be computed for the remaining tasks aiming at
obtaining the minimum total energy for the new conditions.
We consider, for the moment, the ideal case in which such
an on-line computation takes zero time and energy. Observe
that, for computing the new assignments, the worst case for
tasks not yet completed has to be assumed as their actual
number of executed cycles is not known in advance. The
new assignment gives V2 = 1.257 V and O2 = 24993. Then
T2 runs at V2 = 1.257 V and let us assume that it executes
M2 = 30000 (instead of Mwc

2 = 50000) mandatory cycles and
then its newly assigned O2 = 24993 optional cycles. At this
point, the completion time is t2 = τ1 + τ2 = 230.3 µs and the
reward so far produced is RP2 = R1+R2 = 5.25021. Again, a
new assignment can be computed taking into account the in-
formation about completion time and produced reward. This
new assignment gives V3 = 1.264 V and O3 = 19644.

For such a situation, in which M1 = 40000, M2 = 30000,
and M3 = 80000, the V/O assignment computed dynami-
cally (considering δdyn = 0) is summarized in Table 1(a).
According to this assignment and considering M1 = 40000,
M2 = 30000, M3 = 80000, the total energy (assuming also

Edyn = 0) is Edynideal

= 287.27 µJ. In reality, however, the on-
line time and memory overheads caused by computing new
assignments are not negligible. When considering, for exam-
ple, the overhead δdyn = 40 µs the V/O assignment computed
dynamically is evidently different, as given by Table 1(b).
This assignment makes the total energy consumed (assum-
ing that the on-line computation of V/O assignments takes

Edyn = 35 µJ) be Edynreal

= 405.92 µJ. The values of δdyn

and Edyn are in practice several orders of magnitude higher
than the ones used in this hypothetical example. For in-
stance, for a system with 50 tasks, computing one such V/O
assignment using a commercial solver takes a few seconds.
Even on-line heuristics, which produce approximate results,
have long execution times. This means that a dynamic V/O
scheduler might produce solutions that are actually inferior
to the static one (in terms of total energy consumed) or, even
worse, a dynamic V/O scheduler might not be able to fulfill
the given time and reward constraints.

(a) δdyn = 0

Task Vi [V] Oi

T1 1.744 14
T2 1.257 24993
T3 1.264 19644

(b) δdyn = 40 µs

Task Vi [V] Oi

T1 1.744 14
T2 1.363 24998
T3 1.420 19634

Table 2. Dynamic V/O assignments (for M1 = 40000, M2 =
30000, M3 = 80000)

Observe that for the situation of number of mandatory
cycles considered above (M1 = 40000, M2 = 30000, M3 =
80000), the total energy consumed when using the static as-
signment of Table 1 is Est = 367.72 µJ while the ideal dy-

namic assignment of Table 1(a) gives Edynideal

= 287.27 µJ,
that is, energy savings of 22%. This shows that important
energy savings might be achieved by exploiting the dynamic
slack. At the same time, the dynamic assignment of Ta-
ble 1(b), which takes into account the on-line overheads, gives

a total energy Edynreal

= 405.92 µJ, or 10% more than the
static assignment; this inferior result is caused by the time

and energy on-line overheads. The above figures illustrate
that the dynamic slack can efficiently be exploited only if
methods with low on-line overheads are used. In our QS
approach we compute at design-time a number of V/O as-
signments, which are selected at run-time by the so-called
QS V/O scheduler (at very low overhead).

We can define, for instance, a QS set of assignments for
the example discussed in this subsection, as given by Table 3.
Although this set was obtained by using the particular solu-
tion we propose in Section 5 (in which the number of optional
cycles is “frozen” as explained later), it illustrates well the
essence of the QS approach. These assignments were com-
puted considering the selection overheads δsel = 0.3 µs and
Esel = 0.3 µJ. At run-time, upon completion of each task, Vi

and Oi are selected from the precomputed set according to
the given condition.

Task Condition Vi [V] Oi

T1 — 1.744 14
T2 if t1 ≤ 84 µs 1.285 23864

else if t1 ≤ 110 µs 1.361 23864
else 1.488 23864

T3 if t2 ≤ 180 µs 1.176 21342
else if t2 ≤ 250 µs 1.321 21342

else 1.471 21342

Table 3. Precomputed set of V/O assignments

For the situation M1 = 40000, M2 = 30000, M3 = 80000
and the set given by Table 3, the QS V/O scheduler would
do as follows. Task T1 is run at V1 = 1.744 V and is al-
lotted O1 = 14 optional cycles. Since, when completing T1,
t1 = τ1 = 68.54 ≤ 84 µs, V2 = 1.285/O2 = 23864 is selected
by the QS V/O scheduler. Task T2 runs under this assign-
ment so that, when it finishes, t2 = τ1 + δsel

2 + τ2 = 220.83
µs. Then V3 = 1.321/O3 = 21342 is selected and task T3

is executed accordingly. Table 4 summarizes the selected
assignment. The energy consumed, when using this V/O as-

signment is Eqs = 304.04 µJ (compare to Edynideal

= 287.27

µJ, Edynreal

= 405.92 µJ, and Est = 367.72 µJ). Two im-
portant facts can be noted from the example: first, the QS
solution qs outperforms clearly the dynamic one dynreal be-
cause of the large overheads of the latter; second, the QS
solution qs is not far from the ideal case of a dynamic V/O
scheduler dyn ideal with zero overheads.

Task Vi [V] Oi

T1 1.744 14
T2 1.285 23864
T3 1.321 21342

Table 4. QS V/O assignment (for M1 = 40000, M2 = 30000,
M3 = 80000) selected from the set of Table 3

4 Problem Formulation
In this paper—under the framework of the Imprecise Com-
putation model—we discuss the problem of minimizing the
energy consumption considering that there is a minimum to-
tal reward that must be delivered by the system as well as
time constraints in the form of deadlines that must be met.

In what follows we present the precise formulation of re-
lated problems as well as the particular problem addressed
in this paper. Recall that the task execution order is prede-
termined, with Ti being the i-th task in this sequence.



Static V/O Assignment: Find, for each task Ti, 1 ≤ i ≤ n,
the voltage Vi and the number of optional cycles Oi that

minimize
nX

i=1

�
Cr(Vi−1 − Vi)

2| {z }
E∆V

i−1,i

+ CiV
2
i (M

e
i + Oi)| {z }

Ee
i

�
(5)

subject to V
min ≤ Vi ≤ V

max
(6)

si+1 =ti =si +p|Vi−1−Vi|| {z }
δ∆V
i−1,i

+ k
Vi

(Vi−Vth )α
(M

wc
i +Oi)| {z }

τwc
i

≤di (7)

nX
i=1

Ri(Oi) ≥ R
min

(8)

The above formulation can be explained as follows. The
objective function to be minimized is the total energy, which
is the sum of the voltage-switching energies E∆V

i−1,i and the
energy Ee

i consumed by each task (Eq. (5)). The voltage Vi

for each task Ti must be in the range [V min, V max] (Eq. (6)).
The completion time ti is the sum of the start time si, the
voltage-switching time δ∆V

i−1,i, and the execution τi, and tasks
must complete before their deadlines di (Eq. (7)); note that
the worst-case number of mandatory cycles has to be as-
sumed in order to guarantee the deadlines. The total reward
has to be at least Rmin (Eq. (8)).

When solving the above problem, for tractability reasons,
we consider Oi as a continuous variable and then round the
result down. By this, without generating the optimal solu-
tion, we obtain a solution that is very near to the optimal
one because one clock cycle is a very fine-grained unit (tasks
execute typically hundreds of thousands of clock cycles) [3].
It can also be noted that in the above problem the objective
as well as the constraint functions are convex3. Therefore we
have a convex non-linear programming (NLP) formulation
[11] and hence the problem can be solved using polynomial-
time methods [8].

Dynamic V/O Scheduler: The following is the problem
that a dynamic V/O scheduler must solve every time a task
Tc completes. It is considered that tasks T1, . . . , Tc have al-
ready completed (the reward produced up to the completion
of Tc is RPc and the completion time of Tc is tc).
Find Vi and Oi, for c + 1 ≤ i ≤ n, that

minimize
nX

i=c+1

�
Edyn

i + E∆V
i−1,i + CiV

2
i (M

e
i + Oi)| {z }

Ee
i

�
(9)

subject to V
min ≤ Vi ≤ V

max
(10)

si+1 =ti =si+δ
dyn
i +δ

∆V
i−1,i+k

Vi

(Vi−Vth )α
(M

wc
i +Oi)| {z }

τwc
i

≤di

(11)

nX
i=c+1

Ri(Oi) ≥
�
R

min − RPc
�

(12)

where δdyn
i and Edyn

i are the time and energy overhead of
computing dynamically Vi and Oi for task Ti.

The problem solved by the above dynamic V/O sched-
uler corresponds to an instance of the static V/O assignment
problem (for c + 1 ≤ i ≤ n and taking into account tc and

RPc), but considering δdyn
i and Edyn

i . However, a speculative
version of the dynamic V/O scheduler can be formulated as
follows. Such a dynamic speculative V/O scheduler produces
better results than its non-speculative counterpart, as shown
by the experimental results of Section 6.

3Observe that the function abs cannot be used directly in mathe-
matical programming because it is not differentiable in 0. However,
there exist techniques for obtaining equivalent formulations [1].

Dynamic Speculative V/O Scheduler: The following is
the problem that a dynamic speculative V/O scheduler must
solve every time a task Tc completes. It is considered that
tasks T1, . . . , Tc have already completed (the reward pro-
duced up to the completion of Tc is RPc and the completion
time of Tc is tc).
Find Vi and Oi, for c + 1 ≤ i ≤ n, that

minimize
nX

i=c+1

�
Edyn

i + E∆V
i−1,i + CiV

2
i (M

e
i + Oi)| {z }

Ee
i

�
(13)

subject to V
min ≤ Vi ≤ V

max
(14)

si+1 =ti = si+δ
dyn
i +δ

∆V
i−1,i+k

Vi

(Vi−Vth )α
(M

e
i +Oi)| {z }

τe
i

≤di (15)

nX
i=c+1

Ri(Oi) ≥
�
R

min − RPc
�

(16)

s
′
i+1 = t

′
i = s

′
i + δ

dyn
i + δ

∆V
i−1,i + τ

′
i ≤ di (17)

τ
′
i =

8>>><>>>:
k

Vi

(Vi − Vth )α
(Mwc

i + Oi) if i = c + 1

k
V max

(V max − Vth )α
(Mwc

i + Oi) if i > c + 1

(18)

where δdyn
i and Edyn

i are, respectively, the time and energy
overhead of computing dynamically Vi and Oi for task Ti.

Eqs. (13)-(16) are basically the same as Eqs. (9)-(12) ex-
cept that the expected number of mandatory cycles Me

i is
used instead of the worst-case number of mandatory cycles
Mwc

i in the constraint corresponding to the deadlines (see
Eqs. (11) and (15)). The constraint given by Eq. (15) does
not guarantee by itself the satisfaction of deadlines because
if the actual number of mandatory cycles is larger than Me

i ,
deadline violations might arise. Therefore an additional con-
straint, as given by Eqs. (17) and (18), is introduced. It
expresses that: the next task Tc+1, running at Vc+1, must
meet its deadline (Tc+1 will run at the computed Vc+1); the
other tasks Ti, c + 1 < i ≤ n, running at V max, must also
meet the deadlines (the other tasks Ti might run at a voltage
different from the value Vi computed in the current iteration,
because solutions obtained upon completion of future tasks
might produce different values). Guaranteeing the deadlines
in this way is possible because new assignments are similarly
recomputed every time a task finishes.

The dynamic speculative V/O scheduler presented above
solves the V/O assignment problem speculating that tasks
will execute their expected number of mandatory cycles but
leaving enough room for increasing the voltage so that future
tasks, if needed, run faster and thus meet the deadlines. We
consider that the energy Eideal consumed by a system, when
the V/O assignments are computed by such a dynamic specu-

lative V/O scheduler in the ideal case δdyn
i = 0 and Edyn

i = 0,
is the lower bound on the total energy that can practically
be achieved without knowing in advance how many manda-
tory cycles tasks will execute and without accepting risks
regarding deadline of reward violations.

Although the dynamic V/O assignment problem can be
solved in polynomial-time, the time and energy for solving it
are in practice very large and therefore unacceptable at run-
time for practical applications. In our approach we prepare
off-line a number of V/O assignments, one of which is to be
selected by the QS V/O scheduler.

Upon finishing a task Tc, the QS V/O scheduler checks
the completion time tc and the reward RPc produced up
to completion of Tc, and looks up an assignment in LUTc.
From the lookup table LUTc the QS V/O scheduler gets the
point (t′c,RP ′c), which is the closest to (tc,RPc) such that



tc ≤ t′c and RPc ≥ RP ′c, and selects V ′/O′ corresponding to
(t′c,RP ′c). The goal is to make the system consume as little
energy as possible, when using the assignments selected by
the QS V/O scheduler. The problem we discuss in the rest
of the paper is:

Set of V/O Assignments: Find a set of N assignments
such that: N ≤ Nmax; the V/O assignment selected by the
QS V/O scheduler guarantees the deadlines (si+δsel

i +δ∆V
i−1,i+

τi = ti ≤ di) and the reward constraint (
Pn

i=1 Ri(Oi) ≥
Rmin), and so that the total energy Eqs is minimal.

As discussed in Section 5, for a task Ti, potentially there
exist infinitely many possible values for ti and RP i. There-
fore, in order to approach the theoretical limit Eideal , it would
be needed to compute an infinite number of V/O assign-
ments, one for each (ti,RP i). The problem is thus how to
select at most Nmax points in this infinite space such that
the energy consumed, when using the respective V/O as-
signments, is as close as possible to Eideal .

5 Computing the Set of V/O Assignments
For each task Ti, there is a time-reward space of possible
values of completion time ti and reward RP i produced up to
completion of Ti, as depicted in Fig. 2. Each point in this
space defines a V/O assignment for the next task Ti+1: if
Ti finished at ta and the produced reward was RPa, the as-
signment for the next task would be Vi+1 = V a/Oi+1 = Oa

(that is, Ti+1 would run at V a and execute Oa optional cy-
cles). The values V a and Oa are those that an ideal dynamic
speculative V/O scheduler would give in the case ti = ta,
RP i = RPa (recall that we aim at matching Eideal which is
the energy consumed when the V/O assignments produced
by such an ideal dynamic speculative V/O scheduler are
used). Different points (ti,RP i) define different V/O assign-
ments as shown in Fig. 2. Note also that for a given value ti

there might be different valid values of RP i, and this is due
to the fact that different previous V/O assignments can lead
to the same ti but still different RP i.

b
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+1iV V
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=
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Fig. 2. Time-reward space

In order to select Ni points in the ti-RP i space and ac-
cordingly compute the set of Ni assignments, it is first needed
to determine the boundaries of this space (for each task Ti).
Ni is the number of assignments to be stored in the lookup
table LUTi, after distributing the maximum number Nmax

of assignments among tasks. The boundaries of the ti-RP i

space can be obtained by computing the extreme values of ti

(earliest and latest completion times) and of RP i (minimum
and maximum reward produced up to task Ti), considering
V min, V max, Mbc

j , Mwc
j , and Omax

j , 1 ≤ j ≤ i. The maxi-

mum produced reward is RPmax
i =

Pi
j=1 Rj(O

max
j ) and the

minimum reward is simply RPmin
i =

Pi
j=1 Rj(0) = 0. The

maximum completion time tmax
i occurs when each task Tj ex-

ecutes Mwc
j +Omax

j cycles at V min, while tmin
i happens when

each task Tj executes Mbc
j cycles at V max. The intervals

[tmin
i , tmax

i ] and [0,RPmax
i ] bound the time-reward space as

shown in Fig. 3.

RP
max

RP

i

i

t
min

i t
max

i

ti

Fig. 3. Boundaries of the time-reward space

A generic characterization of the time-reward space is not
possible because reward functions vary from task to task as
well as from system to system: we cannot derive a general
expression that relates the reward Ri with the execution time
τi and hence a characterization of the ti-RP i space is not
possible.

One alternative for selecting points in the time-reward
space would be to consider a mesh-like configuration, in
which the space is divided in rectangular areas and each
area is covered by one point (the lower-right corner covers
the rectangle) as depicted in Fig. 4. The drawback of this
approach is twofold: first, the boundaries in Fig. 3 define a
time-reward space that include points that cannot happen,
for example, the point (tmin

i ,RPmax
i ) is not feasible because

tmin
i occurs when no optional cycles are executed whereas

RPmax
i requires all tasks Tj executing Omax

j optional cycles;
second, the number of required points for covering the space
is a quadratic function of the granularity of the mesh, which
means that too many points might be necessary for achieving
an acceptable granularity.

i

max
RPi

max
t

iRP

t
min

i

t

i

Fig. 4. Points in a mesh configuration

We have opted for a solution where we “freeze” the as-
signed optional cycles, that is, for each task Ti we fix Oi to
a value Oi computed off-line. Thus, in the solution proposed
in this paper, for any activation of the system, Ti will invari-
ably execute Oi optional cycles. In this way, we transform
the original problem into a classical voltage-scaling problem
with deadlines since the only variables now are Vi. This
means that we reduce the bidimensional time-reward space
into a one-dimension space (time is now the only dimension).
This approach gives very good results as shown by the ex-
perimental evaluation presented in Section 6.

By freezing the optional cycles Oi, although the space of
solutions is constrained, good results can be achieved because
the only variable that affects the reward dimension is Oi

and, for this problem, the reward is a constraint. Thus, if
the optional cycles are frozen in such a way that the reward
constraint is satisfied, there is still enough room for exploiting
the dynamic slack caused by tasks executing less mandatory



cycles than in the worst case: there is no gain by running
more optional cycles and accordingly producing more reward
than required by the reward constraint.

The way we obtain the fixed values Oi is the following.
We consider the instance of the problem—as formulated by
Eqs. (13)-(18)—that the dynamic speculative V/O scheduler
solves at the very beginning, before any task is executed (c =
0). The solution gives particular values of Vi and Oi, 1 ≤ i ≤
n. For each task, the number of optional cycles given by this
solution is taken as the fixed value Oi in our approach.

Once the number of optional cycles has been fixed to Oi,
the only variables are Vi and the problem becomes that of
voltage scaling for energy minimization with time constraints.
For the sake of completeness, we include below its formula-
tion. The reward constraint disappears from the formulation
because, by fixing the optional cycles as explained above, it
is guaranteed that the total reward will be at least Rmin.

Dynamic Voltage Scheduler: The following is the prob-
lem that a dynamic voltage scheduler must solve every time
a task Tc completes. It is considered that tasks T1, . . . , Tc

have already completed (the completion time of Tc is tc).
Find Vi, for c + 1 ≤ i ≤ n, that

minimize
nX

i=c+1

�
Edyn

i + E∆V
i−1,i + CiV

2
i (M

e
i + Oi)| {z }

Ee
i

�
(19)

subject to V
min ≤ Vi ≤ V

max
(20)

si+1 =ti = si+δ
dyn
i +δ

∆V
i−1,i+k

Vi

(Vi−Vth )α
(M

e
i +Oi)| {z }

τe
i

≤di (21)

s
′
i+1 = t

′
i = s

′
i + δ

dyn
i + δ

∆V
i−1,i + τ

′
i ≤ di (22)

τ
′
i =

8>>><>>>:
k

Vi

(Vi − Vth )α
(Mwc

i + Oi) if i = c + 1

k
V max

(V max − Vth )α
(Mwc

i + Oi) if i > c + 1

(23)

where δdyn
i and Edyn

i are the time and energy overhead of
computing dynamically Vi for task Ti.

In our QS approach, once the number of assigned optional
cycles has been “frozen” to Oi, we take Ni points tj

i along the

interval [t
min
i , t

max
i ]; the earliest completion time t

min
i occurs

when each of the previous tasks Tj (inclusive Ti) execute
their minimum number of cycles Mbc

j and Oj optional cycles
at maximum voltage V max, while t

max
i occurs when each task

Tj executes Mwc
j + Oj cycles at V min. Then we compute

and store the respective voltage settings V j
i+1 that minimize

the total energy when Ti completes at tj
i , according to the

formulation given by Eqs. (19)-(23). It should be noted that
for the computation of the voltage V j

i+1, the time and energy

overheads δdyn
i = δsel

i and Edyn
i = Esel

i (needed for selecting
voltages at run-time) are taken into account.

Each one of the points, together with its corresponding
assignment, covers a region as indicated in Fig. 5. The QS
scheduler selects one of the stored assignments based on the
actual completion time. If, for example, task Ti completes
at t′, ta < t′ ≤ tb, the QS V/O scheduler will select the pre-
computed assignment V b/O. Note that we have included in
Fig. 5 the optional cycles O for the sake of making clearer
the nature of our approach. However, in practice, there is
no need to store the number of optional cycles in the lookup
tables LUTi since, once these are “frozen”, task Ti will in-
variably execute Oi optional cycles.

The pseudocode corresponding to the computations per-
formed off-line for obtaining the set of assignments is given
by Algorithm 1. First, the maximum number Nmax of as-

Condition Vi+1 Oi+1

if ti ≤ ta V a O
else if ti ≤ tb V b O
else if ti ≤ tc V c O

else V d O
ti

min max

it

iRP = Σk=1

i
Rk kO(    )

RPi

tic
t

a
t

b
t

b

Fig. 5. Illustration of a lookup table

signments that are to be stored is distributed among tasks
(line 1). A straightforward approach is to distribute them
uniformly among the different tasks, so that each lookup ta-
ble contains the same number of assignments. However, it is
more efficient to distribute the assignments according to the

size of the interval [t
min
i , t

max
i ], in such a way that the lookup

tables of tasks with larger intervals get more points.
Then we compute the solution of the problem formulated

by Eqs. (13)-(18) for c = 0 and we “freeze” the number of
optional cycles according to this solution (line 2). Since the
assignment V1 is invariably the same (task T1 runs always at
the same voltage level), this is the only one stored for the
first task (line 3). The value V1 is taken from the solution
obtained in line 2.

For every task Ti, 1 ≤ i ≤ n − 1, we compute the inter-

val [t
min
i , t

max
i ] (line 5): t

min
i is the sum of execution times

τmin
k —given by Eq. (3) with V max, Mbc

k , and Ok—and time
overheads δk; t

max
i is the sum of execution times τmax

k —given
by Eq. (3) with V min, Mwc

k , and Ok—and time overheads δk.

We take then Ni equally-spaced points tj
i along [t

min
i , t

max
i ]

(line 7) and, for each such point, we compute the respective
assignment V j

i+1 (we solve the dynamic voltage scaling prob-
lem as formulated by Eqs. (19)-(23) assuming that the com-
pletion time of Ti is tj

i ) and store it accordingly in the j-th
position in the lookup table LUTi (line 8).

input: The maximum number Nmax of assignments
output: The set of assignments

1: distribute Nmax among tasks (Ti gets Ni points)
2: solve instance c = 0 of the problem given by Eqs. (13)-

(18); take the solution and make Oi := Oi, 1 ≤ i ≤ n

3: store V1 in LUT1[1]
4: for i ← 1, 2, . . . , n− 1 do

5: t
min
i :=

Pi
k=1

�
τmin
k + δk

�
; t

max
i :=

Pi
k=1

�
τmax
k +

δk

�
6: for j ← 1, 2, . . . , Ni do

7: tji := [(Ni − j)t
min
i + j t

max
i ]/Ni

8: compute V j
i+1 for tji and store it in LUTi[j]

9: end for
10: end for

Algorithm 1: Off-line phase

The set of assignments, prepared off-line, is used on-line
by the QS scheduler as outlined by Algorithm 2. This algo-
rithm is called every time a task completes: upon finishing
task Ti, the lookup table LUTi is consulted. The index j of
the table entry is calculated very easily (line 1). Computing
directly the index j, instead of searching through the table
LUTi, is possible because the points tj

i stored in LUTi are
equally-spaced. The voltage setting stored in LUTi[j] is re-
trieved (line 2) and finally the voltage at which task Ti+1

must run as well as the number of optional cycles it must ex-
ecute is returned as a V/O assignment (line 3). Notice that
Algorithm 2 has a time complexity O(1), which means that



the on-line operation performed by the QS scheduler takes
constant time and energy. More importantly, due to the sim-
plicity of the algorithm, this lookup and selection process is
several orders of magnitude cheaper than the on-line compu-
tation by the dynamic speculative V/O scheduler.

input: Actual completion time ti of Ti and lookup table
LUTi as well as fixed optional cycles Oi+1

output: The assignment Vi+1/Oi+1 for the next task Ti+1

1: j := dNi(ti − t
min
i )/(t

max
i − t

min
i )e

2: Vi+1 := assignment stored in LUTi[j]; Oi+1 := Oi+1

3: return Vi+1/Oi+1

Algorithm 2: On-line phase

In summary, in our QS solution to the problem of min-
imizing energy subject to time and reward constraints, we
first fix off-line the number of optional cycles assigned to
each task, by taking the values Oi as given by the solution to
the problem formulated by Eqs. (13)-(18) (instance c = 0).
Thus the original problem is reduced to QS voltage scaling
for energy minimization. The voltage-scaling problem in a
QS framework had previously been discussed by Andrei et
al. [2]. In the one-dimension space of possible completion
times, we select points and compute the corresponding volt-
age assignments as discussed above. For each task, a number
of voltage settings are stored in its respective lookup table.
Note that these tables contain only voltage values as the
number of optional cycles has already been fixed off-line.

At run-time, the voltage values are simply obtained by
consulting the respective lookup table each time a task com-
pletes (recall that the voltage setting read from the table
depends on the completion time); this voltage value together
with the number of optional cycles fixed off-line make up the
V/O assignment for the next task.

6 Experimental Evaluation
The approach proposed in this paper has been evaluated
through a large a large number of experiments using numer-
ous synthetic benchmarks. Such synthetic examples corre-
spond to randomly generated task graphs that contain be-
tween 10 and 100 tasks. Every point in the plots of the
experimental evaluation presented in this Section (Figs. 6
through 9) corresponds to the average of the results of 75 syn-
thetic task graphs, resulting overall in more than 2500 per-
formed experiments. We adopted the technology-dependent
parameters from [6], which correspond to a processor in a
0.18 µm CMOS fabrication process. The reward functions
we used along the experiments are of the form Ri(Oi) =
αiOi + βi

√
Oi + γi

3
√

Oi, with coefficients αi, βi, and γi cho-
sen randomly.

The first set of experiments validates the claim that the
dynamic speculative V/O scheduler (which solves the prob-
lem formulated by Eqs. (13)-(18)) outperforms the non-
speculative one (which solves the problem formulated by
Eqs. (9)-(12)). Fig. 6 shows the average energy savings (rel-
ative to a static V/O assignment) as a function of the dead-
line slack (the relative difference between the deadline and
the completion time when worst-case number of mandatory
cycles are executed at the maximum voltage such that the
reward constraint is guaranteed). The highest savings can
be obtained for systems with small deadline slack: the larger
the deadline slack is, the lower the voltages given by a static

assignment can be (tasks can run slower), and therefore the
difference in energy consumed by a static and a dynamic
solution is smaller. The experiments whose results are pre-
sented in Fig. 6 were performed considering the ideal case of
zero time and energy on-line overheads and show clearly that
a dynamic speculative V/O scheduler performs better (that
is, produces higher energy savings) than its non-speculative
counterpart.
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Fig. 6. Comparison of the speculative and non-speculative
dynamic V/O schedulers

In a second set of experiments we evaluated the QS ap-
proach proposed in this paper, in terms of the energy savings
achieved by it with respect to the optimal static solution. In
this set of experiments we did take into consideration the
time and energy overheads needed for selecting the voltage
settings among the precomputed ones. In these experiments
we consider that the time and energy overheads needed for
selecting the assignments by the QS scheduler are δsel = 450
ns and Esel = 400 nJ. These are realistic values as select-
ing a precomputed assignment takes only tens of cycles and
the access time and energy consumption (per access) of, for
example, a low-power Static RAM are around 70 ns and 20
nJ respectively [7]. Fig. 7(a) shows the energy savings by
our QS approach for three cases: 2, 5, and 50 points (as-
signments stored in the lookup tables) per task. More points
per task produce naturally higher energy savings but even
with a couple of points per task, as shown by the plot, very
significant energy savings can be achieved (close to 20% for
systems with tight deadlines).

Fig. 7(b) also shows the energy savings achieved by the QS
approach, but this time as a function of the ratio between the
worst-case number of cycles Mwc and the best-case number
of cycles Mbc. In these experiments we have considered sys-
tems with a deadline slack of 10%. As the ratio Mwc/Mbc

increases, the dynamic slack becomes larger and therefore
there is more room for exploiting it in order to reduce the
total energy consumed by the system.

In a third set of experiments we evaluated the quality
of the solution given by the QS approach presented in this
section with respect to the theoretical limit that could be
achieved without knowing in advance the actual number
of execution cycles (the energy consumed when a dynamic
speculative V/O scheduler is used, in the ideal case of zero

overheads—δdyn
i = 0 and Edyn

i = 0). In order to make a fair
comparison, in this set of experiments, we considered also
zero overheads for the QS approach (δsel

i = 0 and Esel
i = 0).

Fig. 8 shows the deviation dev = (Eqs − Eideal)/Eideal as a
function of the number of precomputed voltages (points per
task), where Eideal is the total energy consumed for the case
of an ideal dynamic speculative V/O scheduler and Eqs is the
total energy consumed for the case of a QS scheduler that
selects voltages from lookup tables prepared as explained in
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Fig. 7. Comparison of the QS and static solutions

Section 5. In this set of experiments we have considered sys-
tems with deadline slack of 20%. It must be noted that Eqs

corresponds to the proposed QS approach in which we fix the
number of optional cycles and the precomputed assignments
are only voltage settings, whereas Eideal corresponds to the
dynamic V/O scheduler that recomputes both voltage and
number of optional cycles every time a task completes. Even
so, with relatively few points per task it is possible to get
very close to the theoretical limit, for instance, for 20 points
per task the average deviation is just 0.4%.
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Finally, in a fourth set of experiments we took into consid-
eration realistic values for the on-line overheads δdyn

i and Edyn
i

(needed for recomputing at run-time voltage values and num-
ber of optional cycles) of the dynamic speculative V/O sched-
uler as well as the on-line overheads δsel

i and Esel
i (needed for

looking up the tables and selecting one of the precomputed
assignments) of the QS scheduler. The overhead values used
in these experiments were taken from [10], where heuristic
methods were used for solving a similar problem. Fig. 9
shows the average energy savings by the dynamic and QS
approaches (taking as baseline the energy consumed when
using a static approach). It shows that in practice the dy-
namic approach makes the energy consumption higher than
in the static solution (negative savings), a fact that is due
to the high overheads incurred by computing on-line assign-
ments by the dynamic V/O scheduler. Also because of the
high overheads, when the system has tight deadlines, the dy-

namic approach cannot even guarantee the time constraints.
On the contrary, the QS approach succeeds in exploiting the
dynamic slack and thus reducing the energy consumption be-
cause of its low on-line overheads.
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7 Conclusions
We have addressed the problem of minimizing the energy con-
sumption for real-time systems with both reward and time
constraints in the frame of Imprecise Computation systems.
To the best of our knowledge this is the first approach pre-
sented for this particular problem.

The proposed approach has as chief merit the ability to ef-
fectively exploit the dynamic slack, caused by tasks executing
less clock cycles than in the worst case. Such a QS approach
succeeds in exploiting the dynamic slack, yet incurring a very
low on-line overhead, because the complex time- and energy-
consuming parts of the computations are performed off-line,
at design-time, leaving for run-time only simple lookup and
selection operations.

The evaluation of our solution has been performed using
a large number of synthetic benchmarks. These have shown
that significant reductions in the energy consumption can be
achieved with our technique, for instance, energy savings of
around 20% for systems with tight deadlines.
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[4] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Assignment
of Voltages and Optional Cycles for Maximizing Rewards in
Real-Time Systems with Energy Constraints. In Proc. DAC,
pp. 889–894, 2005.

[5] J. W. S. Liu, W.-K. Shih, K.-J. Lin, and R. Bettati. Imprecise
Computations. Proc. IEEE, 82(1):83–94, Jan. 1994.

[6] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Com-
bined Dynamic Voltage Scaling and Adaptive Body Biasing
for Low Power Microprocessors under Dynamic Workloads.
In Proc. ICCAD, pp. 721–725, 2002.

[7] NEC Memories. http://www.necel.com/memory/index e.html.
[8] Y. Nesterov and A. Nemirovski. Interior-Point Polynomial

Algorithms in Convex Programming. SIAM, Philadelphia,
PA, 1994.

[9] T. Okuma, H. Yasuura, and T. Ishihara. Software Energy
Reduction Techniques for Variable-Voltage Processors. IEEE
Design & Test of Computers, 18(2):31–41, Mar. 2001.

[10] C. Rusu, R. Melhem, and D. Mossé. Maximizing Rewards
for Real-Time Applications with Energy Constraints. ACM
Trans. on Embedded Computing Systems, 2(4):537–559, Nov.
2003.

[11] S. A. Vavasis. Nonlinear Optimization: Complexity Issues.
Oxford University Press, New York, NY, 1991.


