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Abstract 
 

Code optimization of the offset assignment 
generated in embedded systems allows for power and 
space efficient systems. We propose a new heuristic 
that uses edge classification to commutatively 
transformation and optimize the assignment. We 
introduce concept of breakable and unbreakable edges, 
which assists in selecting edges for path cover and 
edges for commutative transformation.  
 
1. Introduction 
 

Embedded processors (e.g., fixed-point digital 
signal processors, micro-controllers) are found 
increasingly in audio, video and communications 
equipment, cars, etc. thanks to the falling cost of 
processors [11]. These processors have limited code 
and data storage. Therefore, making efficient use of 
available memory is very important. On these 
processors, the program resides in the on-chip ROM; 
therefore, the size of the code directly impacts the 
required silicon area and hence the cost. Current 
compiler technology for these processors typically 
targets code speed and not code size [1, 11]; the 
generated code is inefficient as far code size is 
concerned. An unfortunate consequence of this is that 
programmers are forced to hand optimize their 
programs. Compiler optimizations specifically aimed 
at improving code size will therefore have a significant 
impact on programmer productivity [8-10]. 

DSP processors such as the Texas Instruments 
TMS3205 and embedded micro-controllers provide 
addressing modes with auto-increment and auto-
decrement. This feature allows address arithmetic 
instructions to be part of other instructions. Thus, it 
eliminates the need for explicit address arithmetic 
instructions wherever possible, leading to decreased 
code size. The memory access pattern and the 
placement of variables have a significant impact on 
code size. The auto-increment and auto-decrement 
modes can be better utilized if the placement of 
variables is performed after code selection. This 
delayed placement of variables is referred to as offset 
assignment. 

This paper considers the simple offset assignment 
(SOA) problem where the processor has one address 
register. A solution to the problem assigns optimal 
frame-relative offsets to variables of a procedure, 
assuming that the target machine has a single indexing 
register with only the indirect, auto-increment and 
auto-decrement addressing modes. The problem is 
modeled as follows. A basic block is represented by an 
access sequence, which is a sequence of variables 
written out in the order in which they are accessed in 
the high level code. This sequence is in turn further 
condensed into a graph called the access graph whose 
nodes represent variables and with weighted undirected 
edges. The weight of an edge (a, b) is the number of 
times variables a and b are adjacent in the access 
sequence. The SOA problem is equivalent to a graph 
covering problem, called the Maximum Weight Path 
Cover (MWPC) problem. A solution to the MWPC 
problem gives a solution to the SOA problem. This 
paper presents a technique that modifies the access 
pattern using algebraic properties of operators such as 
commutativity. The goal is to reduce the number of 
edges of non-zero weight in the access graph. Rao and 
Pande [12] have proposed some optimizations for the 
access sequence based on the laws of operator 
commutativity and associativity. Their algorithm is 
exponential. Here, we present an efficient polynomial 
time heuristic. 

The rest of this paper is organized as follows. 
Section 2 introduces the commutative transformation 
and Section 3 provides a motivating example. Section 
4 introduces the classification of edges in the access 
graph into breakable and unbreakable edges, which is a 
key idea in this paper. Section 5 presents our heuristic 
and Section 6 presents a detailed example. 
Experimental results demonstrating the efficacy of our 
approach are presented in Section 7. Related work is 
discussed in Section 8 and Section 9 concludes with a 
summary and discussion of ongoing and planned work. 
 
2. Commutative transformation 
 

Two operands x and y are said to be commutative 
under an operator α if they satisfy x α y = y α x 

Some instructions have commutable operations, 
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while others do not. An instruction ADD(a, b) is 
equivalent to “ = a + b”. In this operation, a and b are 
commutable since a + b = b + a. Similarly MUL(a, b), 
which is the same as “ = a * b”, is commutable since a 
* b = b * a.  

Some instructions such as SUB(a, b) and DIV(a, b) 
are not commutable. SUB(a, b)  is equal to “ = a – b” 
and a - b ≠  b – a, unless a = b; DIV(a,b) is equal to “= 
a / b” and a / b ≠  b / a unless a = b. 

From the definition of a commutative operation, 
some instructions might appear to be commutative, but 
commutative operations in such instructions is not 
allowed due to the implementation of the operation. 
For example MPYA(a, b, c) is equal to t = MPY(a, b), 
followed by ADD(t, c) where t is an internal variable 
and the result of MUL(a, b) is stored temporarily in 
this variable. This operation may be represented as “(a 
* b) + c”. This operation implies that (a * b) + c = c + 
(a * b). Algebraically, this assertion is true. But, while 
computing the values, the ADD operation cannot be 
completed before the MUL operation is complete. 
However MUL(a,b) within MPYA is still commutable. 
Such operations are implemented in a MAC. 

 
f1 s1 l1 f2 s2 l2 f3 s3 
l3 

l1 ← f1 + s1 
l2 ← f2 + s2 
l3 ← f3 + s3 

 

(a) (b) 
 
f1 s1 l1 s2 f2 l2 f3 s3 
l3 

 

 
l1 ← f1 + s1 
l2 ← s2 + f2 
l3 ← f3 + s3 

(c) (d) 
(1) w(s2,l2)— 
(2) w(11,f2)— 
(3) w(11,s2)++ 
(4) w(f2,l2)++ 

 
(e) 

 
Figure 1. Commutative Transformation Concepts 

 
Operation such as SUB(a, b)  may be considered 

equal to ADD(-b,a) ≡ ADD(SIG(b),a). Such an 
operation makes ADD non atomic, and the nature of 
the operation also makes ADD non-commutative as 
SIG has to be completed before addition is performed. 
Similarly DIV(a,b) ≡  MUL(INV(b),a) makes MUL 
non-commutative. This operation is not atomic, and 
MUL is dependent on the result of the INV operation. 

We note that commutativity is limited to atomic 
operations such as ADD and MUL that do not depend 
on internal results. In all the examples and 

experiments, we considered one or two operands only; 
but the results may be extended to any commutative 
transformation. 

Consider the access sequence shown in Figure 1(a) 
and its basic block in Figure 1(b). Consider a valid 
commutative transformation of the second statement in 
Figure 1(b). This transformation results in a new set of 
statements in Figure 1(d). The statement l2 ← f2 + 
s2 is transformed into l2 ← s2 + f2 . This changes 
the access sequence from ‘f1 s1 l1 f2 s2 l2 f3 
s3 l3’ to ‘f1 s1 l1 s2 f2 l2 f3 s3 l3’.  The 
commutative transformation in statement 2 may be 
represented as change in the weights of edges 
<s2,l2>,<l1,f2>,<l1,s2>, and <f2,l2>. This 
change is represented in Figure 1(e) as increment and 
decrement of weights for the corresponding edges. 

In some instances, the weight of an edge may go 
from 1 to 0, which implies that the edge being 
considered will not exist in the new access graph. 
Similarly the weight of an edge may change from 0 to 
1, which implies creation of a new edge in the access 
graph. We exploit this feature in our heuristic to 
improve the cost of the assignment. 

 
3. Motivating example 
 

Consider the basic block in Figure 2. 
 
e ← d 
a ← f + e 
f ← d 
a ← d + e 
d ← e + b 
f ← b 
f ← c + a 
e ← d 

 
Figure 2. Basic Block for Example 

 
The corresponding access graph for this basic block 

is shown in Figure 3. This basic block results in a cost 
of 8 using Hong’s heuristic [6] with “b f d e a c” 
as its layout. Edges not part of the layout need 
additional instructions, which is the cost of the layout. 
For this example we consider a different assignment 
with a cost of 10, the layout for which is “c a f d 
e b”. Edges involved in the layout are shown in bold. 
We have primarily chosen edges <d,f> and <d,e> 
while ignoring the edge <a,e> all of which have a 
weight 3. All three of the transitions between a and e 
may be transformed using commutative 
transformations. a ← f + e may be transformed to 
a ← e+ f. This reduces the weight of edge <a,e>. 
A similar transformation may be made to the statement 
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a ← d + e. This transformation will further reduce 
the weight of edge <a,e>. In addition a 
transformation of the statement d ← e + b to d ← 
b + e can reduce the weight of the edge <a,e> to 0.  
We only perform two of these transformations that 
affect the edge <a,e>. The resulting basic block and 
its access graph are shown in the Figure 4 and Figure 
5, respectively. 

 

 
 

Figure 3. Access Graph for Basic Block in Figure 2 
 
This example suggests that a mechanism for 

classifying edges of the access graph may be beneficial 
in commutatively transforming the graph and therefore 
the offset assignment associated with it. 
 

e ← d 
a ← e + f 
f ← d 
a ← d + e 
d ← b + e 
f ← b 
f ← c + a 
e ← d 
 

Figure 4. Basic Block for Access Graph in Figure 3 
 
4. Classification of edges 

 
We identify the edges that can be transformed and 

edges that cannot be transformed. Edges that can be 
commutatively transformed are defined as “breakable” 
edges, while edges that cannot be commutatively 
transformed are defined as “unbreakable”. 

 

 
 

Figure 5. Access Graph for Basic Block in Figure 4 
 

Statement “C ← A + B” generates an access 
sequence ABC. The statement may also be 
commutatively transformed as “C ← B + A”, which 
generates an access sequence BAC. Edge AB still exists 
in the transformed access sequence as BA. This edge is 
“unbreakable”. While edge BC can be eliminated in the 
second access sequence, such edges are “breakable”. 

The following cases define other “breakable” (BR) 
and “unbreakable” (UB) edges. If both operands in the 
following statement are same, the edge between the lhs 
(left hand side) of the current statement and node in the 
rhs (right hand side) of the next statement is 
“unbreakable”. If the two operands are different, the 
edge is breakable. 

S1: C ← 
S2 Z ← X + X 

The edge <C,X> is “unbreakable” and edge <Z,X> is 
“unbreakable” in the above code segment. 

S1: C ← 
S2: Z ← X + Y 

The edge <C,X> is classified as “breakable”, as is the 
edge <Z,Y>. The newly added edges after 
commutative transformation are <C,Y> and <Z,X>. 

S1: C ← 
S2: Z ← X 

The edges <C,X> and <Z,X> are “unbreakable”. 
S1: C ← 
S2: C ← A + B 
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The edges <C,A> and <C,B> are “unbreakable”. It 
may be argued that this situation is a case for dead-
code elimination, where statement S1 may be deleted. 
Statements in this form are not a complete 
representation of a task of the embedded system. Since 
the program code is executed in real-time, it is possible 
to have a synchronous effect due a change in the value 
set at an address, i.e., values set in C have an effect on 
the operation of the device. 

We group each edge into groups of breakable and 
unbreakable edges. When we choose the edges, our 
heuristic gives preference to unbreakable edges over 
breakable edges. 

 
5. Heuristic xformSOA 

 
We propose a heuristic that uses classification of the 

edges in an access graph to derive an empirically 
optimal offset assignment. The principal idea of this 
heuristic is presented in the Figure 6.  We find an 
initial assignment that gives a cost C to compare the 
effects of the transformation on the initial layout of the 
access graph (G). In practice, we used a standard SOA 
heuristic to compare the final result of all of the 
transformations. 

This heuristic iterates (line 2) until there are no 
further transformations that reduce the cost of the 
previous iterations (line 5). After each set of 
transformations that affect the access graph, we find 
the cost of the new assignment C’ (line 4). If C’ is less 
than or equal to C, the cost estimated in the earlier 
iteration, the transformed graph G’ becomes the new 
access graph G (line 6).  

 
0: flag ← 1 
1: C ← measure( layout(G)) 
2: while ( flag == 1 ) { 
3:  G’ ← xform(G) 
4:  C’ ← measure( layout(G’ ) 
5:  if (C’ ≤ C) { 
6:   G ← G’ 
7:   flag ← 1 } 
8:  else 
9:   flag ← 0 } 
10: optimalSOA(G) 

 
Figure 6. xformSOA Heuristic 

 
This heuristic has two procedures: xform and 

measure. Procedure measure, shown in Figure 7, finds 
an offset assignment for a graph using the 
classification of edges such as breakable and 
unbreakable. An edge whose weight is 3 might have 
any combination of breakable and unbreakable edges 

(3BR+0UB, 2BR+1UB, 1BR+2UB, and 0BR+3UB, 
where BR is a breakable edge and UB is unbreakable 
edge). Procedure xform, Figure 8, transforms a given 
access graph (G) and its basic block to obtain a 
different access sequence. 

 
measure(G, B) { 
// G is access graph, B is the basic block defining G 
    BRsort ← sorted list of breakable edges (B) 
    UBsort ← sorted list of unbreakable edges(B) 
// this is essentially SOA with UB 
    P ← MWPC with UBsort  
//add additional edges to path cover 
    add edges from BRsort not yet covered 
    C ← wt of uncovered edges // cost of uncovered 
edges 
    return(C) 
} 

 
Figure 7. Procedure Measure for xformSOA 

Heuristic 
 
Procedure measure classifies edges in G into two 

categories – breakable and unbreakable. In steps 2 and 
3 of the procedure, a sorted list of breakable edges 
(BRsort) and another of unbreakable edges (UBsort) 
are created. If two edges have the same weight in 
UBsort, then the edge with higher total edge weight is 
given higher priority. If two edges in BRsort have the 
same edge weight, then the current implementation 
gives higher priority to the edge with the larger weight. 
Other such tie-break possibilities can also be 
considered; this is a subject of future investigation. 

From the sorted list of unbreakable edges (UBsort), 
a Maximum Weight Path Cover (MWPC) is generated. 
The process of generating this path is akin to the 
generation of offset assignment in other heuristics. 
Edges from BRsort are then considered for addition to 
the path. Any edges that are not part of the path are 
now considered to contribute to the cost of the offset 
assignment (C).  C is the return value of this procedure. 

After the path cover is obtained, edges may be left in 
BRsort, that can be transformed. These edges are then 
transformed and a measure of comparison for each of 
these transformations is computed as shown in step 5 
in Figure 8. A transformation is accepted only if ∆eff is 
non-negative. (Transformations may also be limited to 
∆eff, as a variation) 

A measure of this transformed access graph (G’’) is 
obtain using procedure measure(G’’). If this cost is 
lower than the cost computed in the earlier iteration, 
the cycle of procedure xform and procedure measure 
are repeated. Once xformSOA stops improving the cost 
of the access graph, the cost of the access graph is 
computed using any benchmark heuristics, labeled 
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optimalSOA, which obtain assignments using only the 
edge weights and not their classifications. 

 
0: xform(G) { 
1: G’ ← G 
2:   for each edge e that is uncovered { 
3:     for each breakable instance j of edge e { 
4:       G’’ ← xform of edge instance (G’) 
5:       ∆eff ← ( 
6:         # of covered / self edges whose weight ↑ 
7:         + # of uncovered edges whose weight ↓ 
8:         - # of uncovered edges whose weight ↑ ) 
9:         if ∆eff ≥ 0 
10:           G’ ← G’’}}} 

Figure 8. Procedure xform for xformSOA Heusristic 
 
 

6. Detailed example 
 
Consider the following basic block used in Atri et al. 

[2-4]. This basic block shown in Figure 9 yields the 
access graph shown in the Figure 10. The edges of this 
access sequence are classified into breakable and 
unbreakable edges as shown in the Figure 11. The 
basic block is converted into access sequence ‘a b c 
d e f b a a e f d c b a f’ by xformSOA 
heuristic. 

 
c ← a + b 
f ← d + e 
a ← b + a 
d ← e + f 
b ← c 
f ← a 
 

Figure 9. Basic Block from Atri et al. [2-4] 
 

In procedure measure for the SOA, the edges are 
first computed as shown in Figure 11(a). These edges 
are classified into UBsort (unbreakable) and BRsort 
(breakable) edges. For example, there are two instances 
of edge <c,d>, one between statements “c ← a + b” 
and “f ← d + e” and second between statements “d ← 
e + f” and “b ← c”. The first edge can be eliminated by 
commuting the statement “f ← d + e” into “f ← e + d”. 
However, the second edge cannot be commuted. Hence 
edge <c,d>, whose weight is two, is classified both in 
breakable edges and unbreakable edges. i.e., edge 
<c,d> cannot be completely eliminated. It can at most 
be reduced to an edge of weight 1. 

Using the classification, measure derives an 
assignment as highlighted in the access graph shown in 
Figure 12. The xform procedure then commutes edges 
in BRsort that do not negatively affect the cost of the 

assignment. From the graph, edges <a,e>, <d,f>, 
<a,f>, and <b,f> are the edges not included in the 
cover. It is desirable that these edges be commuted so 
that the cost of edges not covered by the MWPC is 
reduced, if not fully eliminated. Of the four edges, 
<a,e>, <d,f>, and <b,f> are classified as breakable 
edges. Breaking the edge <a, e> requires commuting 
“d ← e + f” to “d ← f + e” resulting in the elimination 
of edge <d, f>. The result of this transaction is 
w<a,e>--, w<d,f>--, w<a,f>++, and w<d,e>++. 
The net result is the elimination of two breakable edges 
not part of the path cover (<a,e> and <d,f>), and 
increase in the weight of an edge that is not part of the 
path cover (<a,f>) and one that is part of the path 
cover (<d,e>). This commutative transformation 
affects the net weight by “-1”. The edge <b,f> may 
also be broken by transforming “a ← b + a” into “a ← 
a + b”. This transformation does not affect the cost but 
changes the access graph. After the first iteration of 
transformations, the basic block with transformations 
that amount to “-1” is shown in the Figure 13. 
 

 
 

Figure 10. Access Graph for the Basic Block in 
Figure 9 

 
The access graph and measure is computed for the 

new basic block.  The access graph after the 
transformations is shown in Figure 14.  

It is evident from the access graph that the cost of 
the new assignment is 2. It is possible to further reduce 
the cost if <d,e> is breakable and its transformation 
only decreases the cost. This assignment is feasible 
only by reversing earlier transformation of “d ← e + f” 
to “d ← f + e”.  We stop the transformations here with 
an optimal cost of two. This access sequence is then 
presented to a benchmark SOA. The SOA algorithm 
used in our heuristic is Hong et al.’s SOA algorithm. 
The cost returned for this assignment is also 2. We 
consider these transformations empirically optimal. 
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Edge weights 

 
b-f: 1 
a-b: 3 
d-e: 1 
a-e: 1 
a-f: 1 
c-d: 2 
b-c: 2 
e-f: 2 
d-f: 1 
 
 

(a) 

Unbreakable 
Edges 

 
a-b: 3 
c-d: 1 
b-c: 1 
e-f: 1 
d-e: 1 
a-f: 1 
 
 
 
 

(b) 

Breakable 
edges 

 
c-d: 1 
e-f: 1 
b-c: 1 
b-f: 1 
d-f: 1 
a-e: 1 
 
 
 
 

(c) 
 

Figure 11. Edge Classification for the Basic Block in 
Figure 9 

 
 

 
 

Figure 12. Measure of Access Graph in Figure 10 
 

 
c = a + b 
f = d + e 
a = a + b 
d = f + e 
b = c 
f = a 

 
Figure 13. Basic block after transformations 

 
The other basic block (Figure 15) in the motivating 

example also commutes to an optimal solution in three 
stages as shown in the Figure 17.  The final 
transformation resulting from the xformSOA heuristic, 
shown in Figure 16, yields an optimal cost of 2. 

 
 

Figure 14. Access Graph for Basic Block in Figure 
13 

 
c = a + b 
f = d + e 
c = d + a 
a = a + d 
d = a 
b = f 

 
Figure 15. Basic block from Atri’s Motivating 

Example 
 

c = b + a 
f = e + d 
a = d + a 
c = d + a 
d = a 
b = f 

 
Figure 16. Transformed Basic Block of Figure 15 
 

7. Experimental results 
The xformSOA heuristic was tested with random 

sequences of varying lengths |S| and number of 
variables |V|. It is assumed that 80 % of the statements 
are of the form x ← y + z (two operands in the rhs), 
and 20 % of the statements are of the form x ← y (one 
operand in rhs). Each test was repeated 1000 times 
before generalizing the result. The results of these tests 
are tabulated in Table 1. 

The benefit is compared in an SOA heuristic not part 
of xformSOA. We use Hong’s SOA heuristic to check 
initial and final costs. We observe that at least 60 % of 
the time there could be benefits in commutatively 
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transforming statements. In some instances the benefits 
were observed in more than 90% of access sequences. 
The change in cost is as high as 12 with some access 
sequences 

 
Table 1. Results of an Implementation of 

xformSOA 

|S| |V| % 
affected 

Max. 
Change 

25 6 63.8 5 
50 9 81.2 10 
50 20 88.9 10 
100 20 88.2 12 
100 60 78.4 7 
100 80 76.6 6 
1000 300 90.4 10 

 
Table 2. Effect of transformations on some 

benchmarks 
Code Cost before Cost after 

GauHer 15 15 
GauLeg 21 19 
qGauss 9 6 

chenDCT 95 87 
chenDCT1 95 89 
chenIDCT 124 124 
chenIDCT1 124 116 

leeDCT 92 88 
leeDCT1 92 89 
leeIDCT 121 116 
leeIDCT1 121 115 
Complex 

Multiplication 
6 3 

 
All random sequences were assumed to be 

commutative. The benchmark programs were allowed 
to commute instances of type x – y as (-y) + x. The 
benchmarks were also tested while restricting such 
commutation. With this heuristic, a restricted 
transformation designates some edges earlier 
considered as breakable as unbreakable, which alters 
the selection of edges for commutative transformation. 
In some instances restricting transformation resulted in 
lower costs. 

This implementation was tested on motivating 
examples used in other research. The xformSOA 
heuristic produced the optimal value. In addition the 
heuristic was also tested on some benchmark 
algorithms shown in Table 2. Commutative 
transformations demonstrate benefits in most cases. 
Complex Multiplication lists largest possible benefit. 

                                                
1 SUB was not allowed to commute 

 
(a) 

 
(b) 

 
(c) 

 
Figure 17. Transformation of Basic Block from 

Figure 16 
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8. Related work 
 
Offset assignment problem has addressed by 

addressed by many heuristics including Hong [6] and 
Leupers [11]. These heuristics attempt to provide an 
optimal solution to a given access sequence.  Further, 
some heuristics attempt to modify a given assignment 
or initial access sequence to obtain a better assignment 

Atri et al. [2-4], have shown two different ways of 
solving the offset assignment problem. They present a 
heuristic that incrementally checks for the best possible 
location for edges that are not part of the path cover. 
The edges that are not part of the assignment are sorted 
in the descending order of their weight. Each of these 
edges is found an appropriate location in the 
assignment. This heuristic has been found to be quite 
effective in Leupers’ comparison of SOA heuristics 
[7]. This approach may be used in conjunction with 
any heuristic. 

Atri et al., Rao and Pande [12] approach the SOA 
problem by first performing commutative 
transformation. Atri et al. look for edges of weight one 
that may be commutatively transformed to reduce the 
number of edges in access graph. They propose metrics 
that quantify each transformation. Transformations that 
have benefits are considered, while transformations 
that increase the cost of an assignment are ignored. 
Rao and Pande find all possible legal combinations of 
a basic block and its transformations. SOA is 
performed on each of these transformations. This 
approach is exhaustive. 

 
9. Conclusion 
 

Optimal offset assignment is desired in embedded 
systems for the code to function efficiently. In this 
paper we propose a heuristic that uses knowledge of 
basic block, not just access sequence, and performs 
commutative transformations to generate a more 
efficient code. The heuristic uses knowledge of degree 
of nodes, average weight, and average edges that may 
or may not be transformed to determine path cover. We 
introduce a host of tie-breakers that assist in offset 
assignment. 

The problem of finding an optimal solution is NP-
complete. The heuristic was attempted on some 
randomly generated sequences. The heuristic needs to 
be applied to a larger set of examples to obtain reliable 
statistics. Also, further inspection of test cases might 
reveal other tie-breakers that could provide a more 
efficient solution. 

Adaptation of this heuristic to use Modify Register 
and for the case of multiple address registers (GOA) is 
being explored at this time. 
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