
Topology Aware Task Allocation and Scheduling for Real-Time
Data Fusion applications in Networked Embedded Sensor Systems

Baokang Zhao1,2,Meng Wang1, Zili Shao1∗

Jiannong Cao1, Keith C.C. Chan1

1 Department of Computing
Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong, China
{csbzhao,csmewang,cszlshao,

csjcao,cskcchan}@comp.polyu.edu.hk

Jinshu Su2

2 School of Computer Science
National University of Defense Technology

Changsha, Hunan, P.R. of China
sjs@nudt.edu.cn

Abstract

In networked embedded sensor systems, data fusion is
a viable solution to significantly reduce energy consump-
tion while achieving real-time guarantee. Emerging data
fusion applications demand efficient task allocation and
scheduling techniques. However, existing approaches can
not be effectively applied concerning both network topol-
ogy and wireless communications. In this paper, we for-
mally model TATAS, the Topology-Aware Task Allocation
and Scheduling problem for real-time data fusion applica-
tions, and show it is NP-complete. We also propose an effi-
cient three-phase heuristic to solve the TATAS problem. We
implement our technique and conduct experiments based
on a simulation environment. Experimental results show
that, as compared with traditional approaches, our tech-
nique can achieve significant energy saving and effectively
meet the real-time requirements as well.

1 Introduction

Energy-efficiency is the paramount concern for net-
worked embedded sensor systems. In these systems, many
emerging applications have real-time requirements, espe-
cially for critical applications such as battlefield surveil-
lance, home health care, and so on. Data fusion, that re-
duces the amount of data volume of sensor nodes, is widely
used to improve the energy efficiency while achieving the
real-time guarantee for applications in networked embed-
ded sensor systems. Data fusion applications are usually
partitioned into small tasks in order to be executed in a dis-
tributed manner. To process these tasks, the task allocation
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and scheduling, that assigns tasks to different sensor nodes
and determines their execution order and communications,
is the most critical part. Therefore, it becomes an important
problem to develop efficient task allocation and scheduling
technique to minimize energy consumption for applications
with data fusion in networked embedded sensor systems.

Existing approaches focus on task allocation and
scheduling for traditional computer systems; however, they
cannot be effectively applied to networked embedded sen-
sor systems concerning both network topology and wireless
communications. Since topology is one of the most impor-
tant issues in networked embedded sensor systems, in this
paper, we focus on developing a topology-aware task allo-
cation and scheduling scheme for data fusion applications.

For traditional high performance computing and internet
based grid computing systems, many topology-aware task
allocation and scheduling techniques have been developed.
In the communication models of these systems, the pro-
cessing units are fully connected via wired networks[6, 16],
or some special topology such as chains[12], trees[5], 2D-
mesh, 3D-Torus[1],etc. However, in networked embedded
sensor systems, irregular network topology is highly af-
fected by the wireless channel. Thus, the existing task al-
location and scheduling techniques for traditional computer
systems cannot be directly applied to the networked embed-
ded sensor systems.

For single-hop wireless sensor networks, the task alloca-
tion and scheduling problem has been addressed and inves-
tigated in [7, 14, 15, 13, 10]. In [7], Heemin et al. presented
a simulated annealing framework for energy-efficient task
allocation and migration in sensor networks. The Energy-
balanced Task Allocation(EbTA) algorithm is introduced by
Yang et al. in [14]. They developed an Integer Linear
Programming (ILP) formulation for this problem, and pro-
posed a three-phase heuristic. In [15], the EcoMapS algo-

The 14th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/08 $25.00 © 2008 IEEE

DOI 10.1109/RTCSA.2008.30

293



rithm is proposed for mapping and scheduling tasks jointly
in single-hop clustered WSN. In [10], Yuan et al. presented
RT-Maps, which can conserve energy with a real-time dead-
line guarantee. The above techniques concentrate on infor-
mation processing in one hop range. In realistic networked
embedded sensor systems, nodes are usually randomly de-
ployed in a wide area, and they have to work in multi-hop
environments. Therefore, in this paper, we focus on devel-
oping effective techniques for multi-hop environment.

Recently, research efforts have been put to multi-hop en-
vironments. In [9], Yuan et al. proposed a multi-hop in-
network processing algorithm. However, the most impor-
tant issues, including network topology, are not covered in
this solution. Without considering the topology, this work
cannot be effectively used to solve the task allocation and
scheduling problem as the physical locations of different
sensor nodes have great impact on the task allocation and
scheduling process.

In this paper, we focus on developing the topology-aware
energy efficient task allocation and scheduling technique
for networked embedded sensor systems. To the best of
our knowledge, our work is the first one to deal with the
task allocation and scheduling problem in multi-hop sensor
systems considering the underlying network topology. Our
main contributions are summarized as follows:

• We study and address the Topology-Aware Task Allo-
cation and Scheduling problem (TATAS) for data fu-
sion applications in networked embedded sensor sys-
tems, which is vital for reducing the system-level en-
ergy consumption and achieving the real-time guaran-
tee. Different from existing approaches, we explore
the location of sensor node and the underlying topol-
ogy issues under multi-hop environments, and propose
a system-level model incorporated with the application
model, network model, and energy model.

• We propose a three-phase approach to solve the
TATAS problem. In this approach, the different phases
of task allocation and scheduling algorithm are per-
formed sequentially, and the DVS technique is used
to further improve the energy efficiency.

• We have implemented this work in a simulation en-
vironment, and compared it with existing approaches.
The experimental results show that our technique can
significantly reduce energy consumption, meet real-
time requirements, and improve the system lifetime.

The rest of this paper is organized as follows. In sec-
tion 2, we give the motivational example. In section 3, we
formally define the TATAS problem. The proposed algo-
rithm is presented and discussed in section 4. The exper-
imental results and analysis are provided in section 5, and
the conclusion is given in section 6.

2 Motivational Example

In this section, we motivate the TATAS problem by show-
ing a real life scenario for data fusion. To demonstrate the
impact of topology issues, we consider a surveillance appli-
cation with real-time requirements.
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Figure 1. (A) Network Topology. (B)DAG

As shown in Fig. 1(A), a networked embedded sensor
system is deployed outdoors. It consists of 11 heteroge-
neous sensor nodes, and each node is labeled with an inte-
ger as indicated in the middle of the node. The edge con-
necting pairwise nodes indicates that they can communicate
directly. This connected graph builds a network topology.

A real-time object surveillance application, as repre-
sented as a Directed Acyclic Graph(DAG) in Fig. 1(B), is
planed to be executed on this system. In this application,
the DAG consists of five computation tasks. It starts with
sensing events (T1, T2, T3), and performs object classifica-
tion algorithms (T4, T5). Since the sensing phenomenon is
always be sensed by specific sensors, the staring sensing
tasks are initially assigned to those nodes. In this case, tasks
T1, T2 and T3 are initially assigned to nodes 1, 2, 3, respec-
tively.

In this application, the data communication activity be-
tween computation task Ti and Tj is denoted as Eij, and
it is shown as a edge between Ti and Tj in Fig. 1(B). A
communication activity is also regarded as a communica-
tion task. We denote the number of transmission packets on
each communication task as communication load, and it is
marked as a number in the edge. For instance, the commu-
nication load of E1,4 is 2.

In this scenario, the task allocation problem is to as-
sign computation tasks (T4, T5) to sensor nodes, and the
task scheduling problem is to determine their execution
sequence. As mentioned in the previous section, there
are many literatures focus on topology free approaches for
these two problems. Here, we will demonstrate existing ap-
proaches have poor performance without considering net-
work topology.
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We first consider the task allocation problem. In existing
approaches [15, 9, 14], they attempt task allocation with all
sensor nodes in the network. These attempts are inefficient,
and they can be improved if considering the underlying net-
work topology. We take task allocation of T4 as an exam-
ple. Since task T1 and T2 is assigned to node 1 and 2, sensor
nodes located far away from 1 and 2, such as 3, 9, 11, can
be excluded from the feasible mapping set of Task T4.
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Figure 2. results of comm scheduling

Task allocation phase always follows with task schedul-
ing phase. We will show that the network topology is also
very critical in task scheduling. Suppose T4 and T5 are
assigned to node 4 and 5 in task allocation phase, and we
aim at scheduling all the communication tasks. Existing ap-
proaches only consider the collision for neighboring com-
munications. For example, since node 5 is in the commu-
nication range of node 2, E2,4 and E3,5 are regarded as a
collision, and can not be executed simultaneously. How-
ever, in multi-hop environment, they can be scheduled to
execute simultaneously. We show their difference in Fig. 2.
In this figure, rows represent time slots for packet transmis-
sion, rectangles denote time occupation for communication
tasks. Fig. 2.(A) shows the scheduling result of traditional
scheduling approaches [9]. Since E1,4,E2,4 and E3,5 are re-
garded as collisions, they are scheduled to be executed in
a sequential order. However, when the underlying network
topology is considered, we can obtain an optimal schedul-
ing as shown in Fig. 2.(B). In this example, with considering
the network topology, the schedule length can be improved
with 37.5% through exploiting potential packet level paral-
lelism.

3 Problem Statement

Motivated by the above example, we model TATAS, the
Topology Aware Task Allocation and Scheduling problem
for energy efficient real-time data fusion applications. In
this section, we first introduce some system assumptions,
and then formally define the related models including ap-
plication model, network model and energy model. After
that, the problem statement of TATAS is given.

• System Assumptions

We assume the following system assumptions:

1. Real-time data fusion applications are executed in a
networked embedded sensor system, which consists
of heterogeneous nodes. These nodes form a logical
multi-hop computational environment.

2. All wireless modules are single channel, and conforms
the collision free model[13]. TDMA protocols are pre-
ferred to avoid link collisions.

3. The network topology information is available.

• Application Model

A real-time data fusion application is modeled as a DAG
TG = (VT , ET , VET , vw, ew, TC, μ). VT denotes the com-
putational tasks, and vw represents tasks’ computational
overhead. ET consists of communication tasks, and ew

represents their overhead. In data fusion applications, en-
try tasks are always executed on specified entry nodes, and
these tasks are denoted as VET . TC is the timing constraint
for the application, and μ represents the data fusion ratio.
The data fusion ratio is introduced to the denote the average
fusion factor, which represents the magnitude of accumula-
tive sum of outgoing packets relative to those of incoming.

• Network Model

The network topology is modeled as a connected graph
NG = (VG, EG, cc, dw). VG is the set of sensor nodes,
EG is the set of communication edges. cc is the maximum
computation load of each node, and dw denotes the com-
munication distance between two neighborhood nodes.

• Energy Model

We adopt the same energy consumption model as [11].

Pcpu = αCL ∗ V2 ∗ f + Ileak ∗ f (1)

PTX(d) = Eelec + εampd∂ (2)

PRX = Eelec (3)

In the CPU power model, α, CL and Ileak are processor
dependent parameters, while V and f denote the working
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voltage and frequency, respectively. The transmitting and
receiving power of the wireless module are shown in equa-
tion 2 and 3. Eelec and εamp are electronic parameters, d

is the transmitting distance, and 2 ≤ ∂ ≤ 4.

• Task Allocation and scheduling

The goal of task allocation is to assign tasks to sensor nodes.
Let m represents the mapping function of a allocation, that
is, task Ti is assigned to node m(Ti). After the allocation,
the communication edge is mapped to the routing path be-
tween nodes. Suppose E

(m)
comp(Ti) denotes the energy con-

sumption of task Ti, E
(m)
comm(eij) denotes the energy con-

sumption of communication edge eij, and L(m) is the finish
time of application. The task scheduling problem is to de-
termine executing sequences of these computation and com-
munication tasks.

• Problem Definition

Given DAG and network topology, the objective of
TATAS is :
Minimize:

E
(m)
total =

∑
ti∈VT

E(m)
comp(ti) +

∑
ei,j∈ET

E(m)
comm(ei,j) (4)

Subject to:
L(m) ≤ TC (5)

We have proved the NP-completeness of TATAS through
a polynomial reduction from subgraph isomorphism prob-
lem [8].

4 The Proposed Scheme

Since the TATAS problem is NP-complete, we propose an
efficient three-phase heuristic to solve it. In this section, we
first give an overview of this scheme, and then focus on the
topology aware task allocation and scheduling algorithms.

4.1 System Overview

As shown in Fig. 3, our proposed scheme consists
of three phases: initialization phase, task allocation and
scheduling phase and DVS phase.

In the initialization phase, we first sort the task set in
a topological order. This topological ordering of the task
set ensures that, the precedence constraints between tasks
maintains when we perform task allocation. The voltage
levels for all computation tasks are set to the highest one,
and other global information is initialized in this phase.

In the task allocation and scheduling phase, task allo-
cation and scheduling process runs iteratively to obtain a
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Initlization

Computation Task 
Assignment

Scheduling

Communication 
Task Assignment

Evaluation

Construct Feasible 
Mapping Set

Select Next 
Unmapped Task

Assign Task 

Figure 3. Overview of the proposed solution

feasible mapping for all tasks. Since all computation tasks
have been ordered in a topological order, the algorithm ex-
ecutes by performing partial mapping of tasks in this order.
When the next unmapped computation task is selected, the
algorithm builds its candidate node set considering the net-
work topology, tries to assign current unmapped task to one
unused node in the candidate set, and maps related commu-
nication tasks to routing paths. Thereafter, the communica-
tion scheduling algorithm executes to maximize the parallel
packet delivery. When all candidate mappings are obtained,
we evaluate these mappings, and choose the best one as the
final result. This process continues until all task allocation
and scheduling are done.

After the task allocation and scheduling phase, DVS
techniques are applied to further reduce energy consump-
tion of computation tasks. Since DVS techniques have been
widely studied in existing literatures, in our current imple-
mentation, we adopt a DVS technique similar to [14]. Due
to space limitation, we leave details in [8].

In general, this scheme provides a extendable open plat-
form. Existing topology-unrelated techniques, such as DVS
and DMS [13], can be easily integrated into this platform.
In the following subsections, we concentrate on topology-
aware issues, including task allocation algorithm and com-
munication scheduling mechanism.

4.2 Task allocation algorithm

Given an unmapped task, task allocation algorithm deter-
mines its node mapping. Recall that in existing approaches,
the candidate set consists of all sensor nodes in the network.
For each node in this candidate set, evaluating algorithms
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should be executed for evaluating the mappings. This pro-
cess is very costly, and which makes existing approaches
very time-consuming. Thus, it is critical to reduce the can-
didate node set. We solve this problem through exploiting
topology information.

Since all tasks have been ordered in the topological or-
der, it is deterministic that all precedent tasks of the next
pending unmapped task t have been allocated. We denote
the precedent node set of task t as PS(t). In TATAS, both en-
ergy consumption and packet delivery latency are relevant
to PS(t). Therefore, we want to reduce the size of candidate
node set through quantifying the impact of the precedence
node set. Inspired by the mechanical models in physics, we
propose a novel potential field model.

In the potential field model, the impact of a precedence
node Si ∈ P(t) on target node t is estimated as:

PNI(Si, t) = D(Si) ∗ d(Si, t) (6)

Where D(Si) is the data volume to be transferred from
Si to t, and d(Si, t) denotes the distance of the path from
Si to t. We introduce Universal Attractive Force(UAF), a
fitness function for constructing the candidate set. The UAF
on node t is:

UAF(t) =
∑

Si∈PS(t)

PNI(Si, T) (7)

In our algorithm, all sensor nodes are evaluated with
UAF. And after that, a random variable in [0.3-0.6] is gen-
erated to determine the proportion of nodes to be included
in the candidate set. This algorithm greatly reduce the size
of candidate set, and in our experiments, it achieves more
than 50% improvement in executing time comparing with
traditional approaches.

4.3 Communication Scheduling

During the task allocation and scheduling phase, for data
fusion applications, packets scheduling is required to trans-
mit packets from some designated sensor nodes to one tar-
get node, and this many-to-one communication pattern be-
longs to convergecast. The convergecast problem has at-
tracted a lot of research efforts recently [3, 4]. However, all
these literatures aim at collecting sensed identical amount
of data from all nodes in the network, while in TATAS,
we should transmit heterogeneous amount of data on par-
tial sensor nodes to one target node, it is more complicated.
We denote this particular problem as the HPCS problem. To
our best, this is the first attempt in generating scheduling for
this problem.

Since the HPCS problems highly depend on different
network topologies, we propose several algorithms with
them. We first start with a simple linear topology, and then

consider multi-line case and tree topologies. In these algo-
rithms, a scheduling is generated by exploiting both intra-
line parallelism and inter-line parallelism.

4.3.1 An efficient algorithm for Simple Linear Path

We first consider a simple case when the network topology
is a simple linear path. This happens when all paths from
source nodes PS(t) to the target node t form a linear topol-
ogy, and the target node t is on one end of the path.

We start from studying the interference model for wire-
less communication. In single channel wireless environ-
ment, each node has its interference range, data transmis-
sions within this range may conflict with others. As shown
in Fig. 4(A), when V3 transmits to V4, V2 hears this trans-
mission, and it will cause the transmission from V1 to V2

fails. Fortunately, we can still schedule multiple transmis-
sions simultaneously. Data transmissions which are two
hops away, such as (V1,V2) and (V4,V5), can transmit in
the same time. We exploit this kind of parallelism as intra-
line parallelism. This kind of parallelism, also called in-
line pipelining, is available when the hop count between
two concurrent data transmissions is bigger than 3.

TX

IDLERX

Interference
Range

V1 V2 V3 V4 V5

(A) (B)

Figure 4. Interf model and State Trans Map

In order to exploit in-line parallelism, we propose an al-
gorithm named HPCS Line. Similar with [3], we assume
that each sensor node has an exclusive state in each time
slot. The potential states include TX, RX and IDLE. Node
is able to transmit data in TX state, receive data in RX state,
and do nothing in IDLE. In each time slot, sensor nodes in
the line transit their state to another in the next time slot as
shown in Fig. 4(B).

In the beginning, each node is assigned to an initial state
based on its hop count from the target node. Assume the
hop count of node i is h(i), the initial status of node i is :

status(i) =

⎧⎪⎨
⎪⎩

RX, h(i) mod 3 = 0

TX, h(i) mod 3 = 1

IDLE, h(i) mod 3 = 2

(8)

To illustrate the running of our algorithm, an example
is demonstrated in Fig. 5. There are five sensor nodes in a
linear network, and the status of each node is signed on top.
The node marked with “t” in the right side is the destination
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node. In each time slot, the remain packet of each node
is depicted in the center of itself, and the arrow between
nearby nodes indicates the packet transmission in current
time slot.

Input: A line network L with N hops, where V [N] is the
source node with maximum hop counts, and V [0] is
the target node.

Output: a scheduling for line convergecast.
init system variables;1

if line length of L ≥ 3 then2

assign V [N] with state TX;3

for I from N-1 to 1 do4

assign V [I] with prev state(V [I + 1]);5

end6

end7

while not all data collected do8

/* epilog phase, no potential parallelism */9

if current line length of L < 4 then10

transmit packets from the node with biggest hop11

count to its neighbor node, until no data left in this
node;

end12

if CurrentTimeSlots ≤ lineLen − 2 then13

/* in prolog phase, try to TX greedy */14

foreach node V [K] do15

if N have data and no collision then16

transmit data of N;17

end18

end19

else20

/* enter the kernel phase of pipelining*/21

foreach node V [K] in L do22

if V [K]śtate is TX and have data then23

send data forward;24

end25

end26

end27

foreach node V [K] in L do28

transit the state of V [K] to next state;29

end30

update the lineLen value of line L;31

TotalTimeSlots++;32

end33

Algorithm 1: The HPCS Line algorithm

As shown in Algorithm.1, our proposed algorithm
HPCS Line initializes the system variables and the status
of each node in L in steps 1-7. Thereafter, the algorithm
runs in three phases: the prolog phase, the kernel phase and
the epilog phase. In the prolog phase (step 14-19), since
the intermediate nodes may have data to transfer, we try to
let them transmitting data according to their position in the
line. For instance, in time slot 0 to time slot 2, when node
4 transmits data, node 1 can transmit data without collision,
so it transmits data forward. In the kernel phase (step 21-
26), the pipelining has been established, so only the nodes

with data and in TX state can transmit. This kind of in-line
pipelining is shown in time slot 3. Where the line length
is smaller than 4, no parallelism can be exploited, the al-
gorithm will enter the epilog phase (step 9-12), just trans-
mitting packets as step 11 from time slot 4 to time slot 7.
During all phases above, the status of all the node in the
line and the line length information are updated from step
28 to 32. Since this is the maximum available parallelism
in the line, we obtain an optimal solution.
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1 0 1 0 1

1 0 0 1 1

T R I T R

T R I TI

T R IIR

T RIR T

0 1 0 0 2

T R I TI
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T RI IR

1

2

3

4

7

prolog

4 3 2 1 t

epilog

kernel

Figure 5. An Intra-Line scheduling example

4.3.2 An efficient algorithm for Multi-Line Case

We now consider a more complicated case when paths from
source nodes to the target node are disjointed with each
other. We call this case as a Multi-Line Case. In this
case, packet transmissions among different paths are inde-
pendent, Inter-Line Parallelism is achievable among these
paths, and it brings potential packet delivery inside each line
to be in parallel when the communications among multiple
lines are independent with each other.

For multi-line case, an algorithm named HPCS MLINE
is proposed to exploit both intra and inter-line parallelism,
and shown in algorithm 2. An example is given in Fig. 6.
HPCS MLINE starts with an initial phase from step (1-7).
In these steps, step (2) is the most critical to perform Inter-
Line Parallelism. This parallelism relies on the arbitration
of the target node. Since multiple paths may transmit data
packets to the target node, we should define priorities on
these paths. Clearly, the priority of one path highly depends
on its length (determining possible intra-line parallelism)
and the total duration of all its packets. Formally, assume
the hop count of path P is h(P), each node u on the path
P has packets d(u), and the priority of path P is p(P), we
have p(Pi) > p(Pj) when h(Pi) > 3 and h(Pj) < 4, or∑h(Pi)

k=1 d(k) ∗ k ≥ ∑h(Pj)
k=1 d(k) ∗ k.
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Input: A multi-line network N = (L, t) with M lines, where
L[I] denotes the Ith line, t is the target node. Each
node V [I][J] in L[I] has data and state info.

Output: a scheduling for multi-line convergecast.
init variables including TotalTimeSlots and lineLen;1

Sort the lines using line compare rules;2

foreach line L[I] in the network do3

if current line length of L ≥ 4 then4

assign V[I][J] with state TX as in single line;5

end6

end7

while not all data collected do8

/* target node act as an arbiter to select an line */9

foreach line L[I] in the pre-determined order do
if first node V [L][0] of line L has data then10

if (length of L[I] > 3) && (status of V [L][0]11

== TX ) then
selectLine = current line;12

else13

if the length of L[I] ≤ 3 then14

selectLine = current line;15

end16

end17

end18

if any line is selected then19

break;20

end21

end22

/* intra-line parallelism */23

foreach line L[I] in the network do24

if current line is selected && L[I] ≤ 3 then25

continue;26

end27

call HPCS-Line;28

Update all node status and the line length info;29

end30

TotalTimeSlots++;31

end32

Algorithm 2: The HPCS MLine algorithm

From step 8 to 32, the algorithm starts scheduling. In
each time slot, the algorithm will run in two-phases: arbi-
trating phase and inter-line parallelism phase. In the arbi-
trating phase, the target node T selects one path in the pre-
determined order. Once a line is selected, it transmits one
packet to the target node T. For example, in time slot 1, L1
have data to transfer, and its first node V [1][0] is in the status
of TX, thus it is granted to transmit data. In the inter-line
parallelism phase, each line schedules its packet transmis-
sion as in HPCS-Line. There is one exception in step 25.
If hop count of the selected line is smaller than 4, it will be
idle for no intra-line parallelism.
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Figure 6. the Inter-Line schedule example
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Figure 7. the subtree and critical path

4.3.3 An effective algorithm for Tree

We now consider a more general case when some paths
overlap with others, the network topology becomes a tree,
and HPCS TREE, an algorithm shown in Fig. 3, is proposed
based on HPCS MLINE.

Its basic idea is exploiting both the inter-line parallelism
and intra-line parallelism. As indicated in Fig.7, to fully
utilize algorithms in HPCS MLINE, the algorithm first build
the target node T’s one hop subtree, then inter-line paral-
lelism can be achieved among subtrees. In step (1-5), it
divides all the paths from the source node set to target node
t into several groups according to the one-hop subtree. In
steps (7-12), the algorithm will try to find a critical path in
each subtree, and adopt the comparison rules in previous
multi-line case directly. The critical path acts as a base line,
and the nodes’ status are initialized. From steps (14-22),
in each one hop subtree, the packets in the critical path are
forwarded according to the single line forwarding rule, and
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other paths in the same subtree can also transmit data using
the HPCS line up to the cross point between current path
and the critical path if no collsion. The algorithm runs until
all packets has been collected to the target node.

Input: A network G = (T, S, t), where T is a tree, S is the
precedent node set, which includes all non-leaf nodes
of T , and t is the target node(root of T )

Output: a scheduling for tree convergecast.
/* first find all the one-hop-sub tree of T */1

Construct the direct sub node set S, which includes all sub2

nodes of t.;
foreach node s in S do3

classify all the paths from s to t according to its direct4

subnode of t;
end5

/* find the critical path for each subtree */6

foreach node s in S do7

find the critical path for subtree ST (s);8

if this critical path is with hop count > 3 then9

init its status;10

end11

end12

/* do critical path first scheduling */13

while not all data collected do14

foreach sub-tree ST (s) do15

schedule the critical path with HPCS line;16

foreach other path inside ST (s) do17

if no collision with critical path then18

transmit it greedy using HPCS MLINE;19

end20

end21

end22

end23

Algorithm 3: The HPCS TREE algorithm

5 Experimental Results and Analysis

In order to evaluate the performance of our proposed ap-
proach, we build a simulation environment, and conduct ex-
tensive simulations in this simulation environment. In this
section, we first introduce our simulation environment, and
show our experiments results and perform detailed analysis.

5.1 The Simulation Environment and
Simulation Parameters

We build a simulation environment as shown in Fig. 8.
The major modules of the simulation environment includes:
DAG customizer, Network Topology generator, and TATAS
module. The DAG customizer is based on the TGFF[2]
DAG tool. We modified the TGFF tool to generate DAG
for data fusion applications. In our experiments, we set
the number of entry tasks to be 8, the maximum in de-
gree and out degree to be 3 and 5, respectively. The com-

DAG specification

NTG

Network 
parameters

DAG Network
Mapping

Constaints

TATAS approaches

results

TGFF
DAG 

Generator

Figure 8. the simulation environment

putation workload and communication throughput are ran-
domly chosen within the range of (100Kcps, 600Kcps)
and (500bits, 1000bits), and the battery capacity of a sen-
sor node is set to 1000Amh. Network Topology Genera-
tor(NTG) is used to generate random network topologies. In
NTG, the network is assumed to be deployed in a 1km*1km
area, and the sink node is placed in the center of the area.
The parameters of wireless module of sensor nodes are con-
figured with bandwidth setting to 250 kbps, and the com-
munication range is 100 meters. The energy consumption
adopts the parameters of μAMPS [11].

5.2 Results and Analysis

We compare our algorithm with DCA[11]. DCA is a typ-
ical approach for traditional task allocation and scheduling.
It executes entry tasks on corresponding sensor nodes, and
finishes other tasks on the sink node. We extend DCA with
multi-hop support by constructing routing paths from entry
sensor nodes to the sink node. In the following part, We
denote TATAS-3H as our proposed 3-phase heuristic, and
DCA-MH as the Multi-Hop extension version of DCA.

The goals of our experiments are (1) to compare the
performance of our proposed TATAS-3H approach against
DCA-MH approach; and (2) to evaluate the impact of sev-
eral critical system parameters, including the timing con-
straint, the number of tasks, the network scale, and the fu-
sion ratio. Our evaluation metrics mainly concentrate on
the energy consumption, schedule length and the network
lifetime. The network lifetime is defined as the time after
the first node runs out its battery. Several experiments are
conducted on our simulation environment. All simulation
results presented here correspond to the average of 1000
times of random DAG, network topology combinations. For
clarify, we group the results into two categories: the impact
of the number of tasks and the impact of network scale.
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Figure 9. impact of the number of tasks

5.2.1 Impact of the number of tasks

We first study energy consumption with the impact of num-
ber of tasks. Experiments are conducted with 60 nodes, 0.9
fusion ratio, 20 to 40 tasks with the increment step of 10,
and the timing constraint varying from 20 to 50 with the
increment step of 5. From the results shown in Fig. 9(A),
the system energy consumption of both approaches increase
with the number of tasks. When the timing constraint is
small, our TATAS-3H has higher energy consumption than
DCA-MH. However, with the increase of timing constraint,
the energy consumption of our TATAS-3H decrease rapidly
than that of DCA-MH. The reason is that our communi-
cation scheduling algorithms can greatly reduce the time
for packet delivery, and more opportunities can thus be ex-
ploited by DVS techniques.

The schedule length with different number of tasks is
shown in Fig. 9(B). In these experiments, the range of tim-
ing constraints has been changed to vary from 20ms to 80ms
in increments of 10. From the results, we observe that the
schedule length of both approaches increase with the num-
ber of tasks. Both approaches starts to produce valid sched-
ules with the increment of timing constraint due to the ef-
ficiency of DVS techniques. When the timing constraint is
larger than 30ms, we see our TATAS-3H is better than DCA-
MH. This efficiency come from our proposed communica-
tion algorithms. We also noticed that the schedule length
of TATAS-3H decreases when timing constraint is small.
This is because our proposed scheduling algorithms seeks
to reduce the schedule length for fulfilling realtime require-
ments.

To compare the network lifetime improvements of
TATAS-3H against DCA-MH, we also conduct several ex-
periments with 60 nodes, 15 to 45 tasks with the incre-
ment step of 5, the timing constraint TC = 35ms, and fusion
ratios varying from 0.6 to 0.9 with the increment step of
0.1. As shown in Fig. 9(C), TATAS-3H achieved significant
lifetime improvements comparing with DCA-MH. The rea-
son is that our proposed DCA-MH algorithm allocates tasks
among a lot of computing sensors, yet DCA-MH process

all high level tasks in the cluster head node. The lifetime
improvements of TATAS-3H increase dramatically with the
increments of number of tasks, it indicates the efficiency of
our task allocation and scheduling algorithms. Furthermore,
the system lifetime is highly improved with the decrease of
data fusion ratio. This result shows that the improvements
of data fusion can greatly enhance the system lifetime.

5.2.2 Impact of the network scale

We first evaluate the system energy consumption with dif-
ferent network scale. We conduct experiments with 20
tasks, 0.6 fusion ratio, 20 to 40 nodes varying with the in-
crement step of 10, and the timing constraint varying from
20 to 50 with the increment step of 5. As shown in the
Fig. 10 (A), both approaches can reduce system energy con-
sumption with the increment of timing constraint. When
timing constraint is small, comparing with TATAS-3H, the
energy consumption of DCA-MH grow slowly with the in-
crement of number of nodes. The reason is that the average
hop count increase with number of nodes. Since DCA-MH
transfer raw data directly, its energy consumption is insensi-
tive with hop count, while TATAS-3H allocates the tasks to
multiple nodes. However, when timing constraint is bigger
than 40ms, our TATAS-3H is able to preserve more energy
with the increment of number of nodes by exploiting more
parallelism through communication scheduling.

Results of schedule length with different network scale
is shown in Fig. 10(B). We use the same parameters as the
above experiments. It can be observed that DCA-MH is not
sensitive with network scale, and TATAS-3H is better than
DCA-MH. When timing constraint is small, the schedule
length of TATAS-3H increase with the increment of num-
ber of nodes. However, when the timing constraint changes
from 20ms to 30ms, it is better for large network scale. The
reason is that the communication scheduling algorithm can
take the advantage of large number of nodes to reduce the
schedule length.

The improvement in network lifetime is obtained with
configurations of 0.6 to 0.9 data fusion ratio, 20 tasks, 20
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Figure 10. impact of the network scale

to 50 nodes with the increment step of 5, and the timing
constraint varying from 20 to 50 with the increment step
of 5. As shown in Fig. 10 (C), when number of nodes is
small, network lifetime is enhanced with the increments of
number of nodes. The reason is that TATAS-3H can allocate
tasks with more nodes, which improve the network lifetime
by better load blance. However, we can observe that this
increment slows down after the number of nodes exceeds
40. The reason is that the allocation of tasks have reached
the threshold, and the network lifetime cannot be improved
with the increasing network scale.

6 Conclusions

In this paper, we formulated TATAS, the topology-aware
task allocation and scheduling problem for energy efficient
data fusion applications in wireless sensor networks. We
also proposed a three-phase heuristic to solve the TATAS
problem. Comparing with previous work, our algorithm can
utilize the network topology information effectively. We
implemented and simulated our proposed algorithms, and
compared the results with existing approaches. Experimen-
tal results show that our approach can achieve significant
energy efficiency and improve the system lifetime.
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