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Abstract—Mobile Patient Monitoring System (MPMS) is po-
sitioned to provide high quality healthcare services in the near
future. The gap between its application demands and resource
supplies, however, still remains and may hinder this process.
Dynamic context-aware adaptation mechanisms are required in
order to meet the stringent requirements on such mission critical
applications. The fundamental model underlying an MPMS
includes a set of biosignal data processing tasks distributed across
a set of networked devices. In our earlier work, we designed
and validated a task distribution framework to support dynamic
system reconfiguration of MPMS by means of task redistribution.
This paper focuses on its decision-making component that can
calculate the optimal task assignment by taking into account
the reconfiguration costs. This paper has three major contribu-
tions. Firstly, we study a context-aware scenario and derive the
design requirements for a task assignment algorithm in MPMS.
Secondly, using a graph-based system model, we proposed an A*-
based task assignment algorithm that minimizes the system end-
to-end delay while guaranteeing required system battery lifetime
and availability. We introduce a set of node expansion rules and
a pre-processing procedure to calculate the heuristic function
(h(n)). Thirdly, we evaluate the algorithm performance with
experiments and compare this A*-based algorithm with other
heuristic approaches, e.g. greedy and bounded A*.

Index Terms—context-aware; task assignment algorithm; mo-
bile patient monitoring system; battery lifetime; availability; end-
to-end delay; A* algorithm; dynamic reconfiguration

I. INTRODUCTION

Recently, Mobile Patient Monitoring System (MPMS) is
receiving more attention due to its potential to tackle the
resource challenges posed by the aging society, to improve
the quality of diagnosis and treatment and to reduce the
costs of healthcare service delivery ([1], [2]). An MPMS can
capture biomedical and context information from a patient
while he/she pursues normal daily life activities. The system
processes the data and forwards the result to a decision
point (e.g. a doctor in a healthcare center, supported by a
clinical decision support system). Thus in case the system
detects a medical emergency, the decision point can plan
the appropriate response, e.g. sending an ambulance to the
patient. We refer the underlying computation and communi-
cation resource of MPMS as an m-health platform. On top of
this platform, various telemonitoring applications can operate
continuously (24/7). Examples of telemonitoring applications
include safety-critical applications such as trauma care, de-
tection of life threatening ventricular arrhythmias, detection
of foetal distress and premature labour ([1]) and detection of

epileptic seizures ([3]). An epilepsy detection application and
an example of m-health platform are depicted in Figure 1.

Fig. 1. Biosignal processing tasks in an epileptic seizure detection ([3])
running on top of an m-health platform. Due to the requirements of sensory
data collection and final decision-making by a doctor, all the source tasks
have to be associated with the sensor devices and the sink task has to be
associated with the sink device (end-terminal in this case).

Similar to other applications operating in a mobile envi-
ronment, an MPMS could be (deeply) affected by context
changes and scarcity of m-health platform’s resource, e.g.
network bandwidth, battery power and computational power
of handhelds. For example, a drop in network bandwidth due
to patient’s mobility can result in transmitted bio-signal loss
or excessive delay. When this mismatch between application
demand and resource supply exceeds a certain tolerated level,
the entire MPMS may fail in responding accurately and timely
to an emergency situation ([4]). Thus, the success of an MPMS
relies heavily on whether the system can adapt itself and
provide adequate and continuous bio-signal processing and
transmission services despite context variations.

One possible adaptation approach is to exploit the dis-
tributed processing paradigm of MPMS and adjust the as-
signment of tasks across available devices at run-time. Our
simulation results show that this dynamic approach can signif-
icantly improve system performance compared to the current
static setting. For example the system battery lifetime can
be potentially increased by more than 200% compared to
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a static setting ([5]). In our earlier work ([6]), we have
proposed a task distribution framework to support dynamic
reconfiguration of MPMS by means of task redistribution. This
framework consists of a Coordinator and a set of Facilitators
(Figure 2). A Facilitator reports the presence/absence of the
device and receives control commands on task management
from the Coordinator. The Coordinator runs a task assignment
algorithm that can identify the best task assignment based
on the required telemonitoring application and the current
device network’s context information, e.g. available devices
and their connectivity, device’s CPU load, device’s remaining
battery energy, etc. Once a significant change occurs in the
required telemonitoring application or in the device network’s
context, the Coordinator is triggered to compute, under the
new situation, the optimal task assignment together with a few
near-optimal assignments as candidates. These candidate as-
signments are further ranked subject to both their performance
enhancements and their reconfiguration cost. If the identified
best assignment is different from the current one deployed in
the system, the Coordinator constructs a reconfiguration plan
and controls the Facilitators to deploy the new task assignment
by means of task redistribution.

Fig. 2. Task distribution framework

Task assignment algorithms targeting at some special
topologies of MPMS were studied earlier ([7], [8]). In this
paper we focus on the more general form, task DAG (Di-
rected Acyclic Graph) to resource DAG assignment problem.
Normally, the numbers of tasks and devices in MPMS are
less than ten. Thus, it is computationally feasible to find the
optimal solution by exact algorithms. A* search approach is
selected as the base of our algorithm, since it is admissible
and generates a smaller search tree than any other admissible
search algorithm with the same heuristic ([9]).

The rest of the paper is organized as follows. In Section
II some related work is discussed. Section III studies the
requirement of task assignment algorithm based on a dynamic
task redistribution scenario in an MPMS. Section IV presents a
graph-based system model and formulates the task assignment
problem in MPMS. Section V explains the algorithm. Section
VI examines the effectiveness and the efficiency of this algo-
rithm in a set of experiments and Section VII concludes our

paper.

II. RELATED WORK

Task assignment (also referred as allocation, mapping or
partitioning) is a well-known NP-hard problem in the gen-
eral form. A good survey describing the basic concepts and
models of task assignment problem can be found in ([10]).
This problem has been studied intensively within various
application areas. For example, it is an essential problem in
the field of grid computing ([11]), System-on-Chip design
([12]), distributed databases ([13]) and wireless sensor network
([14], [15]). Except for some of our earlier work, we did not
find other research work which addresses the task assignment
problem in MPMS. Here, we compare our work with other
research in somewhat related fields.

In case of smaller problem size, it is computationally
feasible to find the optimal task assignment by exact algo-
rithms. Shen and Tsai ([16]) are the first researchers to apply
A* algorithm in the task assignment problem in distributed
systems. In their paper, a task assignment is defined as a weak
homomorphism between a task graph and process graph, i.e.
two adjacent tasks are required to be assigned to either the
same processor or two adjacent processors. The objective of
their algorithm is to minimize the largest total computation
and communication costs at a processor. In ([17]), authors
proposed an ordering method to create a better task search
order that can reduce the number of A* search tree nodes
and thus increase the algorithm speed. In ([18]), authors
proposed two techniques to further enhance the A* algorithm
performance. The first technique is to generate a random
task assignment and use the corresponding cost as a pruning
criterion to reduce the size of search tree. The second tech-
nique is to divide the search tree and speed up the algorithm
by parallel processing. While all these existing work on A*
algorithm use an abstract communication and computation cost
as the performance measure, we are interested in multiple
performance measures that are more relevant to the user and
network context in MPMS.

Furthermore, the heterogenous m-health platform in MPMS
exhibits three special properties that require specific attentions.
Firstly, it is modeled as an arbitrary network and has a random
topology. Secondly, the network connections are asymmetric
thus channel directions have to be modeled. Thirdly, data
streams can be relayed by devices. These aspects have been
addressed in the past individually, however not together.

• Task assignment problem in arbitrary processor networks
was studied in ([15]). A heuristic algorithm was proposed
that can assign tasks to the most suitable processor by
taking into account the network topology. However, as
our experiments show, this kind of greedy algorithms
suffer from the risk of finding no suitable task assignment
in MPMS.

• The channel directions in processor network were mod-
eled explicitly in ([12], [19]). The objectives of their
studied task assignment algorithms are to minimize total
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system energy consumption. A Branch-and-Bound algo-
rithm is proposed in ([12]) and a greedy algorithm is
proposed in ([19]).

• In ([20], [21]), authors considered the possibility of relay-
ing data streams by devices. However, the performance
estimation of a task assignment does not include the
extra resource consumption at a relaying device caused
by relayed data stream.

Thus, another uniqueness of the task assignment problem in
MPMS is that all these three special features are required to be
taken into account. In this paper, we use a new graph model,
propose specific assignment constraints and node expansion
rules to tackle these challenges.

III. SCENARIO AND REQUIREMENTS

In this section we present a scenario of MPMS referred
in the remainder of this paper: a context-aware dynamic
reconfigurable epileptic seizure detection application. Based
on this scenario, we derive a set of design requirements for
the task assignment algorithm in MPMS.

A. Dynamic Reconfigurable Epilepsy Detection Scenario

John is an epileptic patient who had been seizure-free for
several years. He wears an MPMS (Figure 1) which monitors
his health state and can give him a few seconds’ advance
warning of an upcoming seizure by real-time processing of
ECG and activity data from his body worn sensors. When
John is at home, a broadband network is available to transfer
his raw ECG and activity data to the remote monitoring center,
eg. the back-end server. In this case, all tasks in the detection
algorithm are deployed on the back-end server and the doctor
can be warned if a seizure is likely to occur. John feels safe
because he knows he can get immediate help if he has a
seizure.

One afternoon, John is out jogging, following his usual
route through the forest. Since there is no broadband network
available in the forest, John’s biosignals cannot be transmit-
ted due to insufficient network bandwidth. In this case, the
task assignment algorithm decides that some processing tasks
should be activated at his PDA and his biosignals are processed
locally. During his run, the signal processing algorithm detects
a possible imminent epileptic seizure. John is immediately
warned by his PDA, and stops running. At the same time, an
alarm and John’s GPS position are sent to the healthcare center
via a narrow band connection, e.g. GPRS or GSM. Depending
on the circumstances, a medical team or an informal caregiver
can be dispatched to the exact location where John is to render
emergency assistance.

B. Requirement Analysis

A mismatch between task demands and resource supplies is
the initial cause for system adaptation ([22]). Thus the basic
requirement of a task assignment algorithm is that resulted
task assignments should be mismatch-free. Furthermore, an
MPMS may incorporate additional performance requirements
due to the mission-critical nature. Some of these are assurance

requirements, e.g. “the end-to-end delay should be smaller
than 2 seconds”; some are optimization requirements, e.g. “the
system battery lifetime should be maximized”; some are the
combinations of previous two, e.g. “the system battery lifetime
should be maximized while its end-to-end delay should be
smaller than 2 seconds”. The task assignment algorithm under
study should be able to take these user preferences into
account and produce satisfactory assignments. In this paper,
we consider the following three performance measures that
are critical to the success of MPMS.
• “End-to-end delay”: defined as the elapsed time between

an MPMS receives a unit of patient’s biosignal informa-
tion and sends the processed result of this corresponding
data unit to the decision point. This parameter indicates
how quickly the biosignal and processed result can be
delivered by the system.

• “System battery lifetime”: defined as the minimum bat-
tery lifetime of all the battery powered devices in the
system. An MPMS incorporates a number of battery
powered devices, e.g. front sensors and patient’s PDA.
If the remaining battery energy of a device is lower than
a certain level, it cannot support the assigned tasks any
more. This parameter indicates the maximum operating
time of an MPMS.

• “Availability level”: considered here to be steady state
availability as defined in ([23]), that is the application
mean uptime divided by the sum of the mean uptime and
mean downtime. Failures may potentially occur during
either data processing or communication.

IV. TASK ASSIGNMENT PROBLEM IN MPMS

The aim of the task assignment algorithm under study is to
identify several candidate task assignments that can support
the required telemonitoring application and provide improved
performance. Firstly, we present some graph-based definitions
to model MPMS. Secondly, we propose a computational model
to estimate the performance of an MPMS given a particular
task assignment. Thirdly, we formulate the task assignment
problem in MPMS.

A. Definitions

We define a telemonitoring application as a partial order of
biosignal streaming tasks. In our model we distinguish two
types of streaming tasks: stream processing tasks and stream
transmission tasks. Processing tasks typically perform some
operation on the biosignal stream such as filtering, transcoding,
or higher level m-health application-specific data processing
operations. Each processing task consumes one or more data
streams and produces one or more data streams. Transmission
tasks are the glue between processing tasks and have two
functions: firstly they allow us to easily characterize properties
of the data stream (for instance the data rate of the stream);
and secondly, as we will see later, transmission tasks can be
mapped onto a communication path that represents stream
relaying by devices. Such a path may be a stream pipe within
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a device, or it may be a networked path between different
devices.

A telemonitoring application consisting of distributed tasks
can be defined as a tuple of (P, T, At, LP , LT ), where P
is a set of stream processing tasks {p1, p2, ...}, T is a set
of transmission tasks {t1, t2, ...}, At is a set of precedence
relations between tasks, such that At ⊆ P × T ∪ T × P ,
LP is a set of labels over each processing task, LT is a set
of labels over each transmission task. LP and LT indicate
the resource demand of processing tasks and transmission
tasks respectively, a detailed overview is given in Table I.
The structure {P, T, At} is a DAG termed as task DAG. An
example of a task DAG is presented in Figure 3.

Fig. 3. Model of task assignment in an m-health system. Due to the fixed
associations, “p1” has to be assigned to “d1”, “p5” has to be assigned to
“d5” and “p8” has to be assigned to “d3”.

Similarly, an m-health platform is defined as a tuple of
(D, C,Ar, LD, LC), where D is a set of device resources
{d1, d2, ...}, C is a set of (communication) channel resources
{c1, c2, ...}, Ar is a set of precedence relations between
resources, such that Ar ⊆ D × C ∪ C × D, LD is a set
of labels over each device resource, LC is a set of labels
over each channel resource. LD and LC model the resource
supply of devices and channels respectively, further details are
given in Table I. The structure {D, C,Ar} is a DAG termed
as resource DAG, an example of such a graph is shown in
Figure 3.

We assume that device resources in an MPMS can relay
biosignal data streams, therefore a transmission task may be
assigned to a directed communication path. A communication
path is a directed path in the resource DAG starting at di and
ending at dj . In general, there exist multiple paths connecting
di to dj . When i = j, it is a special communication path
within device di and can be denoted the same as the device.
We define CP as the set of all communication paths in a
resource DAG.

Based on the two graph models, a task assignment (Φ)
is a mapping function of tasks onto resources such that

Notation Belongs
to

Meaning

nP
pi

LP the number of operations per time unit at processing
task pi

rrpi LP the required resource of processing task pi, e.g.
minimum required CPU, minimum required memory,
etc

deP
pi,dj

LP the processing delay of processing task pi to process
one data frame at device dj

avpi,dj
LP the availability of running processing task pi at

device dj

nT
ti

LT the number of transmitted data units per time unit of
transmission task ti

deT
ti,dj

LT the transmission delay of transmission task ti to
transfer one data frame at device dj

deT
ti,cj

LT the transmission delay of transmission task ti to
transfer one data frame at channel cj

avti,cj LT the availability of performing transmission task ti at
channel cj

avti,dj
LT the availability of performing transmission task ti at

device dj

eTO
di

LD the total available battery energy at device di
1

eHK
di

LD the energy consumption rate of the “housekeeping”
activities at device di, e.g. CPU, display, powering
network interface cards, etc

eop
di

LD the energy consumption of one operation at device
di

rsdi
LD the available resource supply at device di , e.g. CPU

type, available memory, etc
bwci LC the available bandwidth at channel ci

loci LC the current load information (influenced by other
users in the same channel) at channel ci

eS
ci

LC the energy consumption of sending one data unit
through channel ci

eR
ci

LC the energy consumption of receiving one data unit
through channel ci

TABLE I
NOTATIONS FOR LABELING

each processing task is mapped to one device and each
transmission task is mapped to a communication path (Φ :
P

⋃
T→D

⋃
CP ).

B. Performance Estimation for A Given Task Assignment

In this section, we present the computational model to
estimate system performance, i.e. end-to-end delay, system
battery lifetime and availability, given a particular assignment.

1) End-to-End Delay: In a task DAG, we define task path
as a directed path connecting two tasks. The entire set of
task paths is denoted as TP . Every task path, tpi, is an
ordered sequence of processing tasks and transmission tasks,
and the mth task can be denoted as tpi(m). Upon different
task assignment Φ, tpi exhibits a different end-to-end delay,
i.e. the summation of processing delay and transmission delay
along the path:

Ωde(tpi) =
∑

tpi(m)∈P

deP
tpi(m),Φ(tpi(m)) +

∑

tpi(m)∈T

deT
tpi(m),Φ(tpi(m)) (1)

where deP
pi,dj

is defined as the processing delay for processing
task pi to process one frame of biosignal data at device
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Notation Meaning
P a set of processing tasks
T a set of transmission tasks
D a set of device resources
C a set of (communication) channel resources
TP a set of task paths {tpi} in the task DAG
CP a set of communication paths {cpi} in the resource DAG
At a set of precedence relations between tasks
Ar a set of precedence relations between resources
Ωde the measure of end-to-end delay
Ωav the measure of availability
Ωli the measure of battery lifetime
minΩav the minimal required system availability
minΩli the minimal required system battery lifetime
nrc the number of required candidate task assignments
deT

ti,cpj
the transmission delay of transmission task ti to transfer one
data frame through communication path cpj

eP
di

the energy consumption rate of data processing at device di

eS
di

the energy consumption rate of sending data stream at device
di

eR
di

the energy consumption rate of receiving data stream at device
di

TABLE II
LIST OF SYMBOLS (EXCLUDE LABELING SYMBOLS)

dj , deT
ti,cpj

is defined as the transmission delay of transmis-
sion task ti to transfer one frame of biosignal data over a
communication path cpj . deT

ti,cpj
can be computed based on

the transmission delay occurred at device dj , deT
ti,dj

, and
at channel cj as deT

ti,cj
. deP

pi,dj
, deT

ti,dj
and deT

ti,cj
can be

estimated from the profiling information, e.g. nP
pi

, nT
ti

, bwci

and loci
based on the knowledge from real measurements, e.g.

in [24].
The end-to-end delay of a given assignment Φ, Ωde(Φ), is

then defined as the maximum of all task paths’ end-to-end
delays:

Ωde(Φ) = max({Ωde(tpi)|tpi ∈ TP}) (2)

2) Battery Lifetime: Based on the power consumption
model of a mobile device [25], we estimate the battery life
time for a specific device di, Ωli(di), as:

Ωli(di) =
eTO
di

eHK
di

+ eP
di

+ eR
di

+ eS
di

(3)

Where eTO
di

is the total available battery energy at device di,
eHK
di

is energy consumption rate of device’s “housekeeping”
activities, e.g. powering CPU, display and network interface
cards; eP

di
is the energy consumption rate by local data

processing; eR
di

is the energy consumption rate for receiving
data stream; eS

di
is the energy consumption rate for sending

data stream. Given a particular task assignment Φ, the latter
three parameters can be calculated as:

eP
di

= eop
di

∑

{pj |Φ(pj)=di}
nP

pj
(4)

eS
di

=
∑

(di,cj)∈Ar

(eS
cj

∑

cj∈Φ(tk)

nT
tk

) (5)

eR
di

=
∑

(cj ,di)∈Ar

(eR
cj

∑

cj∈Φ(tk)

nT
tk

) (6)

Once the battery lifetime of all devices are estimated, the
minimum of all device’s battery lifetime determines the overall
system lifetime for a given assignment:

Ωli(Φ) = min({Ωli(di)|di ∈ D}) (7)

3) Availability: Since we assume only AND semantics in
task DAG, the availability of the application depends on all
the included tasks: The application performs successfully only
when all tasks perform successfully. Therefore, the application
availability level for a given assignment Φ, Ωav(Φ), can be
computed as:

Ωav(Φ) =
∏

pi∈P

avpi,Φ(pi)

∏

ti∈T,α∈Φ(ti)

avti,α (8)

C. Problem Formulation

In many MPMS, it is always desirable to minimize the
system end-to-end delay while guarantees a certain system
battery lifetime and system availability. Thus, we treat the end-
to-end delay as the objective function for our task assignment
algorithm and the other two measures as assignment con-
straints. We formulate the task assignment problem in MPMS
as follows:
• Given: (1) a telemonitoring application

(P, T, At, LP , LT ); (2) an m-health platform
(D, C,Ar, LD, LC); (3) Three performance evaluation
function Ωde, Ωli and Ωav.

• Goal: To find a number of candidate task assignments
{Φcan

m |m = 1, 2, nrc} among all possible task assign-
ments such that the value of Ωde(Φcan

m ) are minimized.
• Subject to: four assignment constraints namely type

constraint, local constraint, assurance constraint and
reachability constraint.

The type constraint specifies that each processing task
must be mapped to one and only one device resource and
each transmission task must be mapped to one and only one
communication path, hence:

∀pi ∈ P : Φcan
m (pi) ∈ D,∀ti ∈ T : Φcan

m (ti) ∈ CP (9)

The local constraint indicates that the resulted assignments
should be mismatch-free as motivated earlier. It comprises two
parts:
• For every processing task pi in P , its host device must

be able to provide the task’s required resources. That is,
assuming we have a Boolean function satisfy(rr, rs) to
evaluate whether a required resource, rr, can be satisfied
by a resource supply, rs, we must guarantee:

∀pi ∈ P : satisfy(rrpi , rsΦcan
m (pi)) = true (10)

• For each channel resource, the total assigned transmission
tasks must not exceed its offered bandwidth:

∀ci ∈ C :
∑

ci∈Φcan
m (ti)

nT
ti

< bwci (11)
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For an MPMS, we denote the minimum required system
lifetime as minΩli and the minimum required system avail-
ability as minΩav. The assurance constraint for selecting
candidate task assignments is defined as:

Ωav(Φcan
m ) > minΩav,Ωli(Φcan

m ) > minΩli (12)

The reachability constraint specifies that for each process-
ing task pi assigned to a device resource Φcan

m (pi), its prede-
cessor transmission task must be assigned to a communication
path ending at Φcan

m (pi), and its successor transmission task
must be assigned to a communication path starting at Φcan

m (pi).

V. TASK ASSIGNMENT ALGORITHM

A. Algorithm Overview

The A* algorithm is a best-first search algorithm that finds
the optimal solution with the lowest cost by constructing and
traversing a search tree. In this search tree, the root node
represents a null solution, an intermediate node represents a
partial solution and a leaf (goal) node represents a complete
solution to the problem. Each node, n, has an associated cost
function f(n) which is a sum of two functions g(n) and h(n):
g(n) is the actual cost of the partial solution represented by
n and h(n) is a lower-bound estimation of the additional cost
from n to the leaf node. The A* algorithm expands a node
by generating all of its child nodes and calculating the value
of f for each of them. All newly generated child nodes are
sorted by the value of f and stored in a sorted list OPEN .
The A* algorithm thus finds the optimal solution by always
removing the node in the OPEN list with a minimal f(n)
and expanding the search tree from this node.

In the search tree of our proposed A*-based algorithm, every
intermediate node represents a partial-assignment and every
leaf node represents a full-assignment. When an intermediate
node (or root node) is expanded to its child nodes, a new
task is selected according to a pre-defined task order (c.f.
Section V-B). Then based on a set of expansion rules (c.f.
Section V-C), this task is assigned to a set of proper resources,
e.g. devices or communication paths, to generate new partial-
assignments. Based on the proposed computational models,
g(n) and h(n) can be calculated for a particular partial-
assignment n (c.f. Section V-D). The pseudo code of this
algorithm is illustrated in Algorithm 1.

B. Task Search Order

The efficiency of A*-based algorithm closely relates to the
size of generated search tree. If we can order tasks such that,
at shallow tree levels, less number of nodes are expanded and
the cost difference between the expanded nodes are larger,
then a smaller search tree could be generated by the A*
algorithm. Earlier work ([17], [18]) has shown that assigning
a task with a larger bearing on f(n) first can result a smaller
search tree. In our problem model, it is the reachability
constraint that plays a more dominant role. Thus, we propose
to order the tasks following the reachability of task DAG.
Our ordering strategy is very similar to a topological sort of
DAG. The only difference is that if a transmission task (α) is

Algorithm 1 Pseudo code of A*-based task assignment algo-
rithm

1: input the number of required candidate assignments as nrc
2: input the minimal required availability minΩav and the

minimal required system battery lifetime minΩli

3: determine a task search order: order
4: initialize a sorted list OPEN to contain the visited partial-

assignments
5: initialize a sorted list candidates to contain the found

candidate full-assignments
6: create a partial-assignment root, f(root) ⇐ 0,

root.toBeAssignedTask ⇐ order.first
7: add root into OPEN
8: while true do
9: if OPEN is empty then

10: return candidates
11: end if
12: remove a partial-assignment n with lowest f(n) from

OPEN
13: if n is a full-assignment then
14: add n into candidates
15: if candidates.size() = nrc then
16: return candidates
17: end if
18: end if
19: index ⇐ order.getIndex(n.toBeAssignedTask)
20: expand from n to a set of child partial-assignments

{cni}
21: for all partial-assignments in {cni} do
22: if Ωli(cni)≥minΩli ∧ Ωav(cni)≥minΩav then
23: f(cni) ⇐ g(cni) + h(cni)
24: cni.toBeAssignedTask ⇐ order.get(index+1)
25: add cni into OPEN
26: end if
27: end for
28: end while

visited, then its direct successor (processing) task (β) should
be visited next immediately. This is even the case when not
all direct predecessor (transmission) tasks of β are visited.
For example, a task order generated following this “semi-
topological” approach is illustrated in Figure 4.

Fig. 4. A “semi-topological” task order for an example task DAG. Different
from a topological sort, p4 comes before t6 and p7 comes before t8

C. Expansion Rules

Due to the reachability constraint, a number of nodes in
the search tree will represent invalid assignments. In order
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to perform an effective and yet efficient search for optimal
assignment, it is ideal to only generate the branches that lead
to at least one valid full assignment. Thus, we define the
following rules for the algorithm to assign the to-be-assigned
task i to avoid as many un-necessary branches as possible. To
better illustrate these rules, a search tree (partial view) for the
problem setting in Figure 3 is presented in Figure 5.

Fig. 5. Search tree for the problem setting shown in Figure 3 with a depth-
first task visit order. For clarity, each node is only labeled with the assignment
of latest visited task.

(1) When i is a processing task, there are two possibilities:

• If i is a source processing task, then it is assigned to
all possible devices subject to its local constraint, e.g.
“p1 → d1”.

• If i is NOT a source processing task, then one of the direct
predecessor (transmission) tasks of i must be assigned
already to a communication path, denoted as cpx. This is
because of the “semi-topological” task ordering approach.
In this case, the search tree should be expanded by
assigning i to the ending device of cpx, e.g. “p3 → d2”.

(2) When i is a transmission task, we also distinguish between
two cases. The direct predecessor (processing) task of i must
have been assigned to a device already due to the “semi-
topological” task search order and we term this device as dα.

• When i’s direct successor (processing) task is not as-
signed, there will be some freedom to assign i: we need
to find all directed communication paths starting with dα

and assign i to each of these paths, e.g. “t3→d2” and
“t3 → d2, c2, d5”.

• If i’s direct successor (processing) task is already as-
signed to a device vertex (dβ), i has to be assigned to a
directed communication path connecting device dα with
device dβ , e.g. “t8 → d4, c5, d5”. If it is not possible to
find such a path, then the current sub-assignment is not
valid and this branch of the search tree has to be pruned.

D. g(n) and h(n)

In our A* based algorithm, g(n) gives the exact end-to-end
delay for a partial-assignment. Thus, we have g(n) = Ωde(n).
h(n) should indicate the lower-bound estimation of the addi-
tional delay caused by all un-assigned tasks. We assume for a
partial-assignment n, g(n) is determined by a task path α, i.e.
Ωde(n) = Ωde(α), and the last task in α as y. Now, we can
define h(n) as the minimal aggregated delay contributed by
y’s successor tasks. This minimal aggregated delay is denoted
as mindetask

y and calculated as:

mindetask
y = max{

|tpy
j
|∑

m=1

( min
tpy

j
(m)∈P

(deP
tpy

j
(m),∗)

+ min
tpy

j
(m)∈T

(deT
tpy

j
(m),∗))

|tpy
j ∈ TP y, j = 1, 2, ...|TP y|} (13)

where TP y is the set of task paths {tpy
j} in the task DAG

which connect a direct successor task of y with a sink
(processing) task, “*” denotes any device or channel resource.

We propose a labeling procedure to calculate mindetask
y for

each task y in a task DAG. This is a pre-processing procedure
that is executed before the task assignment algorithm. The
labeling starts from sink tasks and propagates reversely along
the orientation in the task DAG. All the sink tasks are labeled
with “0”.
• For a processing task y, we calculate its mindetask

y as
follows:

mindetask
y = max

(y,x)∈At

{mindetask
x + min{deT

x,∗}} (14)

where x denotes any direct successor transmission task
of y, “*” denotes any device or channel resource.

• For a transmission task y, we calculate its mindetask
y as

follows:

mindetask
y = mindetask

x + min{deP
x,∗} (15)

where x denotes the direct successor processing task of
y, “*” denotes any device resource.

This labeling procedure visits every task exactly once. For
each task, we examine its processing or transmission delay
at most once per device or channel resource. Thus, the time
complexity of this labeling procedure is (|P |+|T |)(|D|+|C|).

VI. EXPERIMENTS

To evaluate the effectiveness and efficiency of our proposed
task assignment algorithm, we implemented a test environ-
ment in Java. It contains two modules. The first module
is a task/resource DAGs generator. It reads in the sizes of
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task/resource DAGs and the range of profiling information
and generates a random problem setting, i.e. the topologies
and labeling parameters of task/resource DAGs. We set a fixed
association (capturing the local constraints) for every source
(sink) processing task to a randomly selected source (sink)
device. At this moment, the number of source vertexes in the
DAGs can be adjusted and the number of sink vertexes is a
constant one. Thus, each problem setting can be represented as
(|P |, |T |, |D|, |C|, |SP |, |SD|), where six parameters indicate
the number of processing tasks, transmission tasks, devices,
channels, source processing tasks and source devices respec-
tively. The second module implements the proposed A*-based
algorithm and reports a number of candidate task assignments
with their estimated performance, i.e. end-to-end delay, battery
lifetime and availability.

In this section, we reported a set of simulation results
from this test environment. All tests are performed on a PC
running Windows XP with Intel Core(TM)2 CPU 2.4GHz
and 2G RAM. All simulation results presented here are
averaged over 50 runs with a user-defined problem set-
ting ((|P |, |T |, |D|, |C|, |SP |, |SD|)) and randomly generated
topology and profiling information. All the measured algo-
rithm completion time are in the time unit of milliseconds.

A. Effectiveness on Minimizing End-to-End Delay

We first conducted an effectiveness test to understand better
what is the added-value of enforcing an optimal task assign-
ment in MPMS. Six different problem settings are included
and the simulation results are presented in Table III. In each
setting’s test, we ran the A*-based algorithm to compute the
optimal task assignment with a minimal delay (Ωde

opt). As a
comparison, we also computed the average end-to-end delay
(Ωde

ave) of all possible task assignments. The improvement on
end-to-end delay by enforcing an optimal task assignment
is defined as

Ωde
ave−Ωde

opt

Ωde
ave

. The results show that the average
improvement we can expect for an optimal task assignment is
between 25% and 30%.

Setting Delay
(opti-
mal)

std (op-
timal)

delay
(aver-
age)

std (av-
erage)

Impro-
vement

(7,9,6,8,3,2) 336.86 66.45 484.32 51.98 30%
(7,9,6,8,4,3) 302.88 49.08 379.99 47.14 20%
(8,10,6,8,3,2) 368.74 53.48 503.44 57.55 26%
(8,10,6,8,4,3) 313.02 46.03 399.05 51.57 21%
(9,11,6,8,3,2) 398.52 60.45 531.16 62.40 25%
(9,11,6,8,4,3) 367.12 58.37 449.56 51.55 18%

TABLE III
THE DIFFERENCE ON END-TO-END DELAY BETWEEN OPTIMAL

ASSIGNMENT AND RANDOM ASSIGNMENTS

B. Impact of Number of Candidate Assignments (nrc)

We tested the algorithm performance on computing can-
didate task assignments ({Φcan

m |m = 1, 2, nrc}) in different
required number (nrc). The testing value of nrc ranges from 1
to 5. In each nrc test, we measured the number of assignment

nodes visited by the A*-based algorithm and the algorithm
completion time. The simulation results for two problem
settings are reported in Table IV and Table V. We made the
following two observations:
• The number of visited assignment nodes (search tree size)

and the completion time are spread over a large range.
The reason is that some generated task and resource
DAGs only have a limited number of possible assign-
ments while some of them have many more possibilities.
Besides the number of vertexes and edges, the topology
of those DAGs also has a large impact on the number of
possible task assignments (which is closely related to the
search tree size).

• Between searching for one best assignment (the optimal
one) and searching for five best assignments, the differ-
ence regarding tree size and completion time is not so
significant. Thus, this is a very promising algorithm for
computing a set of candidate task assignments, as was
our intention in the design of this algorithm.

nrc ]Nodes (mean) ]Nodes (std) Time (mean) Time (std)
1 3756.95 1607.35 129.65 73.23
2 3779.60 1579.38 120.40 55.56
3 3966.85 1515.96 126.45 53.06
4 3968.65 1515.90 120.25 46.53
5 4074.20 1571.89 120.60 52.70

TABLE IV
EXPERIMENTS ON DIFFERENT nrc ON SETTING OF (9,11,6,8,3,2)

nrc ]Nodes (mean) ]Nodes (std) Time (mean) Time (std)
1 8793.80 5736.82 421.05 474.66
2 8975.05 5812.00 400.80 457.99
3 8994.80 5815.38 404.65 451.59
4 9052.60 5833.04 403.25 440.15
5 9334.35 6026.83 431.90 451.05

TABLE V
EXPERIMENTS ON DIFFERENT nrc ON SETTING OF (10,12,6,8,3,2)

C. Bounded A*

Although A* based algorithm is very effective on finding
the optimal task assignment, it still suffers the worst-case
exponential complexity. In order to provide a reasonable
solution in a bounded running time, it has been suggested
to limit the size of the OPEN list [26]: when the number of
expanded nodes exceeds this allowed maximum number, some
still expandable nodes with larger costs will be forgotten by
the algorithm, i.e. removed from the OPEN list. This bounded
A* algorithm is more ”greedy” because it only traverses into a
number of branches with lower costs. Four different size limits
for OPEN list, i.e. |P | ∗ |D|, 0.8 ∗ |P | ∗ |D|, 0.5 ∗ |P | ∗ |D|
and 0.2 ∗ |P | ∗ |D|, are tested against running an original A*-
based algorithm (unbounded). For each different size limit,
we examined so-called quality of assignment (QoA) that is
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defined as:

QoA =
mean{Ωde(Φcan

m found by bounded A*)}
mean{Ωde(Φcan

m found by original A*)} (16)

Thus, a value of QoA closer to ”1” indicates that the
candidate task assignment’s end-to-end delay is closer to the
optimal one. We experimented this bounded A* algorithm in
three problem settings. The results averaged over 50 runs
are reported in Table VI, Table VII and Table VIII. It is
observed that with a reasonable tight bound, e.g. 0.8∗|P |∗|D|,
the candidate assignments found by bounded A* are still
satisfactory since they are on average worse than the optimal
assignment only within a 5% range. However, one additional
drawback of the bounded A* algorithm is that it does not
always produce a sufficient number of candidate assignments.
The reason lies in its “greedy” nature, since some branches
with valid full assignments are removed from the (bounded)
OPEN list.

Max
size of
OPEN

]Nodes
(mean)

]Nodes
(std)

Time
(mean)

Time
(std)

]Found QoA

unbounded 2440.85 1196.85 77.55 44.20 5.00 1
|P |∗|D| 1102.70 309.08 24.15 17.98 5.00 1.04
0.8 ∗
|P |∗|D|

966.20 279.18 21.05 7.50 5.00 1.04

0.5 ∗
|P |∗|D|

564.90 175.61 14.10 4.84 5.00 1.07

0.2 ∗
|P |∗|D|

270.45 52.13 3.15 6.47 4.95 1.17

TABLE VI
EXPERIMENTS ON BOUNDED A* ON SETTING OF (8,10,6,8,3,2)

Max
size of
OPEN

]Nodes
(mean)

]Nodes
(std)

Time
(mean)

Time
(std)

]Found QoA

unbounded 2296.55 1671.26 88.30 77.62 5.00 1.00
|P |∗|D| 1076.70 570.93 25.85 16.25 5.00 1.05
0.8 ∗
|P |∗|D|

934.70 470.40 19.30 8.57 5.00 1.05

0.5 ∗
|P |∗|D|

611.80 242.55 15.00 10.74 5.00 1.05

0.2 ∗
|P |∗|D|

284.20 111.48 7.75 7.96 4.95 1.09

TABLE VII
EXPERIMENTS ON BOUNDED A* ON SETTING OF (8,10,6,8,4,3)

D. Advantage over Greedy Algorithms

Since the task assignment problem in the general form
is a NP-hard problem, different heuristic algorithms have
been proposed ([15], [19]). These algorithms compute one
sub-optimal task assignment by greedily assigning a task to
a device with a minimal assignment cost. We implemented
an algorithm called “Pure Greedy” based on this heuristic
approach and tested its performance against our A*-based
algorithm. We conducted the experiments of finding one (sub-
)optimal task assignment in two problem settings as shown in

Max
size of
OPEN

]Nodes
(mean)

]Nodes
(std)

Time
(mean)

Time
(std)

]Found QoA

unbounded 3577.80 3709.58 157.80 236.93 5.00 1.00
|P |∗|D| 1675.15 906.77 31.95 19.24 5.00 1.02
0.8 ∗
|P |∗|D|

1527.60 802.96 28.25 10.90 5.00 1.03

0.5 ∗
|P |∗|D|

975.05 519.21 18.65 11.96 5.00 1.04

0.2 ∗
|P |∗|D|

395.85 162.44 9.45 7.92 5.00 1.10

TABLE VIII
EXPERIMENTS ON BOUNDED A* ON SETTING OF (9,11,6,8,4,3)

Table IX and Table X. We examined two measures. The first
is “success ratio” that is the possibility of finding one (sub-
)optimal assignment successfully. The second is “quality of
the best assignment” (QoB) that is defined as:

QoB =
Ωde((sub-)optimal assignment found)

Ωde(optimal assignment)
(17)

From the experiment results, we see that the “Pure Greedy”
algorithm performs worse in both settings. In about 40 out
of 50 runs, it can not find a possible task assignment. The
reason is that this heuristic algorithm is very shortsighted and
does not work well in our formulated task assignment problem
in MPMS. It often runs into an invalid assignment that either
violates a local constraint, e.g. exceeds the available bandwidth
on a particular channel, or violates a reachability constraint,
e.g. two connected tasks are not assigned to two connected
resources. This experiment result indicates that in order to
find a set of candidate task assignments for MPMS, a search
tree has to be designed carefully with special attention on task
search order and node expansion rules.

Max
size of
OPEN

]Nodes
(mean)

]Nodes
(std)

Time
(mean)

Time
(std)

Success
ratio

QoB

unbounded 7192.15 13816.39 559.45 1614.08 100% 1
|P |∗|D| 1122.25 837.13 23.35 23.60 100% 1.02
0.8 ∗
|P |∗|D|

966.65 652.91 20.25 11.39 100% 1.02

0.5 ∗
|P |∗|D|

712.45 433.29 14.75 9.48 100% 1.02

0.2 ∗
|P |∗|D|

381.65 192.07 4.70 7.37 100% 1.05

Pure
Greedy

9.60 4.81 3.95 7.02 16% 1.14

TABLE IX
COMPARISON THE BOUNDED A* WITH PURE GREEDY ALGORITHM ON

SETTING OF (10,12,6,8,4,3)

VII. CONCLUSION

Similar to other applications operating in a mobile envi-
ronment, an MPMS could be (deeply) affected by context
changes and scarcity of m-health platform’s resource, e.g.
network bandwidth, battery power and computational power
of handhelds. Dynamic context-aware adaptation mechanisms
are required in order to meet the stringent requirements on
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Max
size of
OPEN

]Nodes
(mean)

]Nodes
(std)

Time
(mean)

Time
(std)

Success
ratio

QoB

unbounded 3151.60 3347.59 120.30 168.25 100% 1
|P |∗|D| 1127.90 801.76 25.05 17.90 100% 1.02
0.8 ∗
|P |∗|D|

912.05 540.47 17.85 11.55 100% 1.02

0.5 ∗
|P |∗|D|

602.10 370.99 12.60 9.62 100% 1.03

0.2 ∗
|P |∗|D|

324.60 196.67 8.65 8.03 100% 1.07

Pure
Greedy

10.65 4.03 3.80 8.42 22% 1.17

TABLE X
COMPARISON THE BOUNDED A* WITH PURE GREEDY ALGORITHM ON

SETTING OF (9,11,6,8,4,3)

such mission critical applications. The core of the adaptation
mechanism is a decision-making component that can calcu-
late/select the optimal task assignment to be enforced by taking
into account the reconfiguration costs. This paper first studied
the performance requirements of MPMS using the example
of a novel epilepsy detection scenario. We identified three
key performance measures that are critical to the success
of system, i.e. end-to-end delay, system battery lifetime and
availability level. Secondly, using a graph-based system model,
we proposed an A*-based task assignment algorithm that
minimizes the system end-to-end delay while guaranteeing
required performance on the other two aspects. In particular,
we propose a set of node expansion rules and a pre-processing
procedure to calculate the heuristic function (h(n)). Thirdly,
we evaluate the algorithm performance with experiments and
provide recommendations for further improvements, e.g. the
use of bounded A* algorithm.

Our future work consists of the following two aspects: (1)
to incorporate reconfiguration cost in the search of optimal
task assignment; (2) to integrate and test the proposed task
algorithm in real-life applications in MPMS.
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