
MIT Open Access Articles

Optimal Scheduling of Urgent Preemptive Tasks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Andrei, S. et al. “Optimal Scheduling of Urgent Preemptive Tasks.” Embedded and 
Real-Time Computing Systems and Applications (RTCSA), 2010 IEEE 16th International 
Conference On. 2010. 377-386. © Copyright 2010 IEEE

As Published: http://dx.doi.org/10.1109/RTCSA.2010.20

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/62857

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62857


Optimal Scheduling of
Urgent Preemptive Tasks
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Abstract—Tasks’ scheduling has always been a central
problem in the embedded real-time systems community. As in
general the scheduling problem is NP-hard, researchers have
been looking for efficient heuristics to solve the scheduling
problem in polynomial time. One of the most important
scheduling strategies is the Earliest Deadline First (EDF).
It is known that EDF is optimal for uniprocessor platforms
for many cases, such as: non-preemptive synchronous tasks
(i.e., all tasks have the same starting time and cannot be
interrupted), and preemptive asynchronous tasks (i.e., the
tasks may be interrupted and may have arbitrary starting
time). However, Mok showed that EDF is not optimal in
multiprocessor platforms. In fact, for the multiprocessor
platforms, the scheduling problem is NP-complete in most
of the cases where the corresponding scheduling problem can
be solved by a polynomial-time algorithm for uniprocessor
platforms. Coffman and Graham identified a class of tasks for
which the scheduling problem can be solved by a polynomial-
time algorithm, that is, two-processor platform, no resources,
arbitrary partial order relations, and every task is non-
preemptive and has a unit computation time.

Our paper introduces a new non-trivial and practical
subclass of tasks, called urgent tasks. Briefly, a task is urgent if
it is executed right after it is ready or it can only wait one unit
time after it is ready. Practical examples of embedded real-
time systems dealing with urgent tasks are all modern building
alarm systems, as these include urgent tasks such as ‘checking
for intruders’, ‘sending a warning signal to the security office’,
‘informing the building’s owner about a potential intrusion’,
and so on. By using propositional logic, we prove a new result
in schedulability theory, namely that the scheduling problem
for asynchronous and preemptive urgent tasks can be solved
in polynomial time.

Keywords-optimal scheduling; urgent task; polynomial-time
algorithm
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I. INTRODUCTION

Scheduling has a significant impact of our daily life,
starting from logistics planning, workflow systems, space
mission planning, entertainment, medical systems, and so
on. Tasks’ scheduling has always been a central problem in
the embedded real-time systems community. As in general
the scheduling problem is NP-hard, researchers have been
looking for efficient heuristics to solve the scheduling
problem in polynomial time. There exist many models to
define a task. In this paper, we consider that a task is
characterized by three parameters: s is called the starting
time (also known as the release time), c is called the
computation time (also known as the worst-case execution
time), and d is called the deadline. For simplicity, we
consider the tasks to be single-instance, hence there is
no need to consider the tasks’ period. Thus, the notions
of task, task instance and job are equivalent and can be
interchangeable used. In fact, the results and examples from
this paper can be easily extended to periodic or sporadic
tasks. Without loss of generality, we assume that s, c, and
d, are non-negative integers, although a task may have
rational values for some parameters when needed. Using
these notations, a task T is denoted as a triplet (s, c, d), and
it means that T can be executed after time s completing
a total of c time units by the deadline d. Given a task
set T = {T1, ..., Tk}, then T is called schedulable by
a scheduling algorithm SA if SA ensures that the timing
constraints of all tasks in T are met. Algorithm SA is called
optimal if whenever SA cannot find a schedule, then no
other scheduling algorithm can [8].

Stankovic, Spuri, Di Natale, and Butazzo investigated
the boundary between polynomial and NP-hard scheduling
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problems [29]. There are only few subclasses of the general
scheduling problem that have polynomial-time complexity
optimal algorithms. Dertouzos showed that the Earliest
Deadline First (EDF) algorithm has polynomial complexity
and can solve the uniprocessor preemptive scheduling
problem [10]. Mok discovered another optimal algorithm
with polynomial complexity for the same subclass, that
is, the Least Laxity First (LLF) algorithm [24]. Another
polynomial algorithm was found by Lawler in 1983 for
non-preemptive unit computation time tasks with arbitrary
start time [18]. However, according to Graham, Lawler,
Lenstra and Kan, when dealing with non-preemptive and
non-unit computation time tasks, the scheduling problem
becomes NP-hard.

Despite the fact that EDF is an optimal method for
uniprocessor platform, EDF is not optimal for multipro-
cessor platforms. Mok showed that for multiprocessor
platforms, the scheduling problem is NP-complete in
most of the cases where the corresponding scheduling
problem can be solved by a polynomial-time algorithm
for the uniprocessor platforms [24]. Coffman and Graham
identified a class of tasks for which the scheduling problem
can be solved by a polynomial-time algorithm, that is, two-
processor platform, no resources, arbitrary partial order
relations, and every task is non-preemptive and has a unit
computation time [9].

Anderson and Srinivasan discovered the Pfair scheduling
technique where each task is broken into quantum-length
subtasks, each of which must execute within a “window”
of time slots [1]. ERfair is a variant of Pfair scheduling
in which subtasks within the same job are allowed to
execute before the Pfair window. The authors proved that
the Pfair and ERfair are optimal scheduling techniques
for intra-sporadic tasks on uniprocessor and two-processor
platforms. More recently, Srinivasan and Anderson [28]
showed that a simplified variant of the Pfair, called PD2,
is also optimal for scheduling “rate-based” tasks whose
processing steps may be highly jittered. One of the dif-
ferences between their techniques and ours is that their
technique is a rate-based scheduling technique and our
technique is based on a conversion to a special subset
of propositional formulas. For simplicity in expressing
the scheduling algorithm and corresponding proofs, our
technique performs for each task an internal conversion to
unit computation time sub-tasks. However, this conversion
does not require any tight synchronization as in Anderson
and Srinivasan’s work [1] and is transparent to the method
itself. In fact, we break tasks only in theory since we glue
the corresponding sub-tasks back to contiguous entities
whenever possible during the final execution assignment
(details in Section II).

Our paper introduces a new non-trivial and practical
subclass of asynchronous tasks, for which the scheduling

problem can be solved in polynomial time. Briefly, given a
task T = (s, c, d), we say that T is urgent if s + c ≤ d ≤
s+c+1. Practical examples of embedded real-time systems
dealing with urgent tasks are all modern building alarm
systems, as these include urgent tasks such as ‘checking
for intruders’, ‘sending a warning signal to the security
office’, ‘informing the building’s owner about a potential
intrusion’, and so on. Let us consider the following two
task sets as running examples in our paper.

Example 1.1: By abstracting the previous alarm system,
we can consider the preemptive task set T1 = {T1, T2,

T3}, where T1 = (0, 1, 1), T2 = (0, 1, 2), T3 = (0,

3, 3.5). Clearly, T1 contains only urgent tasks. In fact,
the task set T1 is an adaptation of an example used by
Mok to demonstrate the non-optimality of EDF scheduling
for the multiprocessor platforms [24]. We consider a two-
processor platform rather than a uniprocessor one as the
above task set is not feasible if only one processor is used
for scheduling. Obviously, T1 is not EDF-schedulable on a
two-processor platform because T1 will be assigned to the
first processor, T2 will be assigned to the second processor,
hence T3 will miss its deadline. However, we show in
Section III that our method will find actually that these
urgent tasks can be executed as follows: first T1 and then
T2 on the first processor, and at the same time T3 on the
second processor.

Example 1.2: Let us consider a second example taken
from [6], that is, T2 = {T1, T2, T3} a preemptive task set
given T1 = (0, 2, 3), T2 = (0, 2, 3), and T3 = (0, 2, 3).
Carpenter et al. [6] showed that T2 is schedulable only
using a fully dynamic and unrestricted migration schedul-
ing algorithm. All the other combinations of priority and
migration degrees fail to find a schedule for T2 on a two-
processor platform [6]. Like T1 from Example 1.1, task
set T2 is not EDF-schedulable [6]. On the contrary, our
technique will identify T2 as an urgent task set and find
the following schedule: T1 for time interval [0, 2) by the
first processor, T2 for time interval [0, 1) by the second
processor and [2, 3) by the first processor, and T3 for
interval [1, 3) by the second processor.

To handle increasing task workload in embedded real-
time systems ranging from automotive control to avionics,
dual-core platforms are very popular, according to Steven-
son and Hill [30] and Kim et al. [16]. This motivates the
need for developing an efficient schedulability test and
scheduling algorithm for a two-processor system. As in
the alarm system, in a number of automotive applications
described by Kopetz et al. [17], Leteinturier [20], Brodt [5]
and avionics described by Ras and Cheng [25], Rice and
Cheng [26], and Locke et al. [23], there are periodic task
sets with long periods, short deadlines, and computation
times close to the corresponding relative deadlines. These
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are exactly the task characteristics we have captured in our
model for which we provide a polynomial-time schedula-
bility test and scheduler. There have been studies in the
scheduling of periodic tasks with short deadlines and long
periods for uniprocessor systems such as the one described
by Audsley [3], but few on multiprocessors. This paper
will tackle the tasks’ scheduling on two-processor/dual-
core systems.

The structure of this paper: Section II presents the
definition and notations needed for the scheduling problem,
and a conversion result of a urgent task set to an equivalent
unit computation time urgent task set. Section III describes
an efficient 2SAT encoding for urgent preemptive tasks
using Algorithm A and its refined form, Algorithm B.
Section IV presents a necessary condition for scheduling
urgent tasks. The last two sections present related work and
conclusions.

II. THE SCHEDULING PROBLEM

There exists a few different, but similar, formulations for
the scheduling problem. Although these formulations are in
general equivalent, they might highlight some dimensions
more than other dimensions. In this sense, our paper con-
siders the two-processor platform, independent preemptive
tasks, and no shared resources or overload.

For the sake of the presentation, we list some of the
useful notations for the schedulability theory. A time in-
terval is a set of time stamps with the property that any
time stamp that lies between two time stamps in the set is
also included in the set. For example, [s, e) denotes a time
interval that is left-closed and right-open. We say that task
T executes in the time interval [s, e)(r) if T is ready to
execute by processor r at time s and finishes its execution
before time e, giving the possibility of next task to start
its execution by processor r at time e. The set with no
elements is called the empty set and is denoted by ∅. We
say that [s, e)(r1) ∩ [s′, e′)(r2) = ∅ if and only if either
r1 �= r2 or [s, e) ∩ [s′, e′) = ∅ in the mathematical sense
(i.e., [s, e) ∩ [s′, e′) = {x | x ∈ [s, e) and x ∈ [s′, e′)}).
From now on, r1 and r2 denote the two processors we are
using. For a finite set V , we denote by |V | the number of
elements of V.

Here is a formal definition of the scheduling problem
on a two-processor environment where each task has its
own deadline. We consider in this paper a tast set denoted
as T given by {T1, ..., Tk}, where each task Ti is given
by (si, ci, di). According to [29], if each task has a
deadline, the scheduling problem for the multiprocessor
environment is exacerbated. This is actually one of the key
points why the scheduling problem for multiprocessor is
difficult. Definition 2.1 defines the execution assignment
for the time interval [0, D), where D = max{di | Ti ∈ T }.
We refer to D as the maximum deadline. The execution

assignment is in fact similar to the notion of schedule
defined by Srinivasan and Anderson [28]. The schedule
there is represented as a predicate, whereas the execution
assignment is expressed as a union of intervals.

Definition 2.1: Let us consider T = {T1, ..., Tk} a task
set, where each task Ti is given by (si, ci, di). We say
that the task set T is schedulable by processors r1 and r2

if and only if there exists an execution assignment (also
known as schedule) denoted by EA : T → [0, D), where
in general [s, e)(r) ∈ EA(T ) means the task T executes
by processor r in time interval from time s to time e, and
satisfies the following two properties:

1) ∀ i ∈ {1, ..., k}, we have EA(Ti) = [s
(1)
i , e

(1)
i )(ri,1)∪

... ∪[s
(ni)
i , e

(ni)
i )(ri,ni

), where ri,1, ..., ri,ni
are processors

r1 or r2, s1
i < e1

i ≤ ... ≤ s
(ni)
i < e

(ni)
i ,

ni∑

j=1

(e
(j)
i − s

(j)
i ) =

ci, si ≤ s
(1)
i and e

(ni)
i ≤ di;

2) ∀ i ∈ {1, ..., k}, ∀ j ∈ {1, ..., k}, i �= j, we have
EA(Ti) ∩ EA(Tj) = ∅.

Similar to the approach from [8], the scheduling prob-
lem presented in Definition 2.1 assumes that the tasks’
constraints are known in advance, such as deadlines, com-
putation times, and start times. This framework is called
static scheduling [29]. Static scheduling is in contrast
with dynamic scheduling, where the constraints may not
be known in advance (e.g., start time). In fact, Mok
showed that the scheduling problem for real-time sys-
tems with shared resources and no knowledge about the
future start times of the tasks is undecidable [24]. It is
important in practice to reduce task waiting time and
context-switching time, especially when power dissipation
is considered [19], [27]. However, for simiplicity Definition
2.1 assumes also that there is no context-switching time.
Given [s

(ui)
i , e

(ui)
i )(ri) ∈ EA(Ti) and [s

(uj)
j , e

(uj)
j )(rj) ∈

EA(Tj), where ri and rj are processors, such that e
(ui)
i =

s
(uj)
j , then we say that task Tj is executed immediately

after Ti. The superscript above means the block index,
namely a task with an execution time of ci may be
decomposed into different and distinct ni blocks executed
in intervals [s

(1)
i , e

(1)
i )(ri,1), ..., [s

(ni)
i , e

(ni)
i )(ri,ni

).
Given two tasks Ti and Tj , we recall that Ti → Tj is a

precedence constraint between Ti and Tj if task Tj must
wait for task Ti to finish its execution in order to get started.

Using the notation of Definition 2.1, we say that tasks
Ti are preemptive if ni ≥ 1 (the case ni = 1 corre-
sponds to non-preemptive tasks). Another special case is
when the tasks have unit computation time. According
to Definition 2.1, task Ti has unit computation time if
ci = 1. A unit computation time is usually considered
non-preemptive. Lawler proved that the scheduling prob-
lem for non-preemptive unit computation time tasks with
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arbitrary start time can be solved by a polynomial time
complexity algorithm [18]. However, according to Graham,
Lawler, Lenstra and Kan, the scheduling problem with non-
preemptive and non-unit computation time tasks becomes
NP-hard [14]. Next we recall the meaning of the urgent
task set defined briefly in the Introduction.

Definition 2.2: Let us consider a task T = (s, c, d). We
say that task T is urgent if and only if s+c ≤ d ≤ s+c+1.

A task set containing only urgent tasks is called an urgent
task set.

As shown in Examples 1.1 and 1.2 of the Introduction,
the task sets T1 and T2 are urgent task sets. In addition,
it is easy to check that T1 and T2 are not schedulable on
a uniprocessor platform. Section III presents a scheduling
algorithm able to generate a feasible schedule for T1 and
T2 on a two-processor platform.

The next result shows the conversion of a preemptive
urgent task set to a unit computation time urgent task set.

Theorem 2.1: Let T = {T1, ..., Tk} be a preemptive
urgent task set, where k ≥ 1, and each Ti is denoted as
(si, ci, di). Let T ′ = {T

(1)
1 , ..., T

(c1)
1 , ..., T

(1)
k , ..., T

(ck)
k }

be a task set such that T
(l)
i = (si + l − 1, 1, di − ci + l)

and T
(1)
i → T

(2)
i , ..., T

(ci)−1
i → T

(ci)
i are the precedence

constraints, for all i ∈ {1, ..., k}, and l ∈ {1, ..., ci}.

Then T is schedulable if and only if T ′ is schedulable.

Proof (=⇒) Let us suppose that T is schedulable.
According to Definition 2.1, there exists EA, an execution
assignment for T , that satisfies conditions 1) and 2). We
shall show that any arbitrary time interval that belongs
to EA leads to some unit time intervals that belong
to the execution assignment for T ′. Let us consider an
arbitrary time interval [s

(li)
i , e

(li)
i )(ri,li

) ∈ EA(Ti), where

l ∈ {1, ..., ni}. We show that there exist e
(li)
i − s

(li)
i

unit computation tasks in T ′ that get executed in the time
intervals [s

(li)
i , s

(li)
i + 1)(ri,li

), ..., [e
(li)
i − 1, e

(li)
i )(ri,li

).
According to the unit computation tasks of T ′, this is
equivalent with the following two conditions:

(a) si + li − 1 ≤ s
(li)
i

(b) s
(li)
i ≤ di − ci + li − 1

If conditions (a) and (b) hold, the unit computation tasks

T
(li)
i , T

(li)+1
i , ..., T

(li)+e
(li)

i
−s

(li)

i
−1

i , will execute the above
unit intervals by processor (ri,li ). In other words:

EA(T
(li)
i ) = [s

(li)
i , s

(li)
i + 1)(ri,li

);
. . .

EA(T
(li)+e

(li)

i
−s

(li)

i
−1

i ) = [e
(li)
i − 1, e

(li)
i )(ri,li

).

Hence, the precedence constraints T
(1)
i → T

(2)
i , ...,

T
(ci)−1
i → T

(ci)
i hold.

To prove (a), we consider condition 1) from Definition 2.1,
that is, si ≤ s1

i < e1
i ≤ ... ≤ s

(li)
i < ... ≤ s

(ni)
i < e

(ni)
i .

Since e
(j)
i ≥ s

(j)
i + 1, for any j ∈ {1, ..., li}, it follows

that s
(li)
i ≥ s

(li)−1
i + 1 ≥ ... ≥ s1

i + li − 1 ≥ si + li − 1.
Therefore si + li − 1 ≤ s

(li)
i .

To prove (b), we use again condition 1). We get s
(li)
i <

e
(li)
i ≤ e

(li)+1
i + 1 ≤ ... ≤ e

(li)+(ni)−(li)
i + ni − li ≤

di + ni − li.
Condition 2) from Definition 2.1 holds for T ′ based on

condition 2) for T . Since EA is an execution assignment
schedulable for T ′ that satisfies conditions 1) and 2), it
follows that T ′ is a schedulable task set.

(⇐=) Let us suppose that T ′ is schedulable. That means
there exists EA, an execution assignment for T ′ that
satisfies conditions 1) and 2) from Definition 2.1:

1) ∀ i ∈ {1, ..., k}, ∃ s
(1)
i , ..., s

(c1)
i , ..., s

(ck)
i , such that

si ≤ s
(1)
i < ... < s

(c1)
i < ... < s

(ck)
i < di and EA(T

(j)
i ) =

[s
(j)
i , s

(j)
i + 1)(ri,j), ∀ j ∈ {1, ..., ci};

2) ∀ i ∈ {1, ..., k}, ∀ i′ ∈ {1, ..., ci}, ∀ j ∈ {1, ..., k}, ∀

j′ ∈ {1, ..., cj}, i �= j, we have EA(T
(i′)
i )∩EA(T

(j′)
j ) =

∅.
Since any arbitrary task Ti, where i ∈ {1, ..., k}, of T is

preemptive, the execution assignment EA(Ti) can be easily
defined using EA(T

(j)
i ), where j ∈ {1, ..., ci}. As such,

EA(Ti) = [s
(1)
i , s

(1)
i +1)(ri,1)∪ ... ∪[s

(ci)
i , s

(ci)
i +1)(ri,ci

),

for all i ∈ {1, ..., ci}. This is ensured by the precedence
constraints: T

(1)
i → T

(2)
i , ..., T

(ci)−1
i → T

(ci)
i . Without

loss of generality, we take ni = ci in Definition 2.1 by
identifying each execution interval as a unit computation
time interval. Obviously, EA(Ti) satisfies condition 1)

from Definition 2.1 because
ni∑

j=1

(e
(j)
i − s

(j)
i ) =

ni∑

j=1

1 =

ni = ci.

The second condition from Definition 2.1, EA(Ti) ∩
EA(Tj) = ∅, for all i ∈ {1, ..., k}, j ∈ {1, ..., k}, i �= j,

holds due to the mutual exclusion of the unit computation
tasks.

Therefore, it follows that T is a schedulable task set.

Considering the notations from Theorem 2.1, we can
formally define a conversion mapping ϕ : T → [T ′]

given by ϕ(Ti) = [T
(1)
i , ..., T

(ci)
i ], for all i ∈ {1,

..., k}. Note that [T ′] means the set of all arrays with
elements of T ′, The conversion mapping expresses also the
precedence constraints between subtasks: T

(1)
i → T

(2)
i , ...,

T
(ci)−1
i → T

(ci)
i .

The next two examples illustrate the conversion mapping
of an urgent task set to a unit computation task set as
described in Theorem 2.1.

Example 2.1: Let T1 = {T1, T2, T3} be the preemptive
urgent task set defined in Example 1.1. By Theorem 2.1,
T1 is converted to the unit computation task set T ′

1 = {T ′

1,

T ′

2, T ′

3, T ′

4, T ′

5}, where T ′

1 = (0, 1, 1), T ′

2 = (0, 1, 2),
T ′

3 = (0, 1, 1.5), T ′

4 = (1, 1, 2.5), and T ′

5 = (2, 1, 3.5). The
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conversion mapping is given by ϕ(T1) = [T ′

1], ϕ(T2) =
[T ′

2], and ϕ(T3) = [T ′

3, T ′

4, T ′

5]. According to Theorem
2.1, T1 is schedulable if and only if T ′

1 is schedulable.

Example 2.2: Let T2 = {T1, T2, T3} be the preemptive
urgent task set defined in Example 1.2. By Theorem 2.1,
T2 is converted to the unit computation task set T ′

2 = {T ′

1,

T ′

2, T ′

3, T ′

4, T ′

5, T ′

6}, where T ′

1 = (0, 1, 2), T ′

2 = (1, 1, 3),
T ′

3 = (0, 1, 2), T ′

4 = (1, 1, 3), T ′

5 = (0, 1, 2), and T ′

6 =
(1, 1, 3). The conversion mapping is given by ϕ(T1) = [T ′

1,

T ′

2], ϕ(T2) = [T ′

3, T ′

4], and ϕ(T3) = [T ′

5, T ′

6]. According
to Theorem 2.1, T2 is schedulable if and only if T ′

2 is
schedulable.

We shall use in next section the conversion mapping and
its inverse. The inverse of ϕ is denoted as ϕ(−1) : [T ′] → T
and is given by ϕ(−1) = Ti. For instance, the inverse of
conversion mapping for the task set from Example 2.2 is
given by: ϕ(−1)(T ′

1) = T1, ϕ(−1)(T ′

2) = T1, ϕ(−1)(T ′

3) =
T2, ϕ(−1)(T ′

4) = T2, ϕ(−1)(T ′

5) = T3, and ϕ(−1)(T ′

6) =
T3.

III. A 2SAT ENCODING FOR URGENT PREEMPTIVE

TASKS

The first part of this section defines the notion of
over-schedulable schedulability and shows that an over-
schedulable task set is schedulable, too. Then, this section
describes Algorithm A, and its refined version, Algorithm
B, that has as input a task set T of k unit computa-
tion time urgent tasks and provides as output a 2SAT
encoding (explained next paragraph) F such that T is
over-schedulable if and only if F is satisfiable. Since the
2SAT satisfiability problem was proved by Aspvall, Plass,
and Tarjan in 1979 to be solvable by a polynomial time
complexity algorithm [2], it follows that the problem of
scheduling unit computation time urgent tasks, and, by
Theorem 2.1, the problem of scheduling urgent tasks can
be solved by a polynomial time complexity algorithm.

The next part focuses on the SAT encoding associated
with the task set. Let LP be the propositional logic over
the finite set of atomic formulæ (variables) V = {A1,

..., An}. A literal L is an atomic formula A (positive
literal) or its negation ¬A (negative literal).Any function
S : V → {false,true} is an assignment that can be
uniquely extended in LP to a propositional formula F .
The binary vector (y1, ..., yn) is a truth assignment for F

over V = {A1, ..., An} if and only if S(F ) = true
such that S(Ai) = yi, ∀ i ∈ {1, ..., n}. A formula
F is called satisfiable if and only if there exists an
assignment S for which S(F ) = true; otherwise F

is called unsatisfiable. Any finite disjunction of literals
is a clause. Any propositional formula F ∈ LP having
l clauses can be translated into the conjunctive normal
form (CNF): F = (L1,1∨ ... ∨L1,n1)∧ ... ∧(Ll,1∨ ...

∨Ll,nl
), where the Li,j’s are literals. We can denote the

above F using the set representation F = {{L1,1, ...,

L1,n1}, ..., {Ll,1, ..., Ll,nl
}}, or simply F = {C1, ...,

Cl}, where Ci = {Li,1, ..., Li,ni
}. For instance, formula

F = (A ∨ ¬B ∨ ¬C) ∧ (¬A ∨ B ∨ ¬C) is represented
in set notation as F = {{A,¬B,¬C}, {¬A, B,¬C}}.
A clause C with no literals is called the empty clause,
and it is denoted as . If a propositional formula contains
the empty clause, the entire formula is unsatisfiable (or
contradictory). A clause C with (at most) two literals is
called a 2CNF clause. A formula containing only 2CNF
clauses is called 2CNF formula. The SAT problem (‘Does
a CNF propositional formula have a truth assignment?’) is
called the 2SAT problem if the input is a 2CNF formula.

Aspvall, Plass and Tarjan proved in 1979 [2] that the
2SAT problem has a solution if and only if there is no
strongly connected component of the implication graph that
contains both some variable and its negation. Since strongly
connected components may be found in linear time by an
algorithm based on depth first search, the same linear time
bound applies as well to the 2SAT problem.

We describe below Algorithm A that takes as input a
task set and provides in the output a propositional formula
that is satisfiable if and only if the task set is schedulable.

Algorithm A

The input: T ′ = {T ′

1, ..., T ′

k} an urgent task set, where
each T ′

i is given by (si, 1, di) and, si and di are non-
negative integers;
The output: F a 2SAT propositional formula such that F

is satisfiable if and only if T ′ is schedulable on a two-
processor platform.
The method:
1. F = ∅;
2. add propositional clauses to F specifying that each
task cannot start earlier than the starting time for both
processors;
3. add propositional clauses to F specifying that each task
cannot execute after its deadline;
4. add propositional clauses to F specifying the mutual
exclusion constraints, that is, a processor can execute at
most one job at a time;
5. add propositional clauses to F specifying that if job Ti

is executed by processor 1, then it cannot be executed at
the same time by processor 2.

6. add propositional clauses to F specifying that if two
unit time jobs do not correspond to the same initial task,
then they can be permuted (because they are not subject to
precedence constraints);
7. add propositional clauses to F specifying that if two time
unit jobs correspond to the same initial task, then they have
to follow the sequence/order on which they appear (e.g.,
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the second unit time job cannot execute before the first unit
time job).

We refine Algorithm A into Algorithm B by providing
more implementation details about constructing a propo-
sitional formula able to provide a feasible schedule for
the given urgent task set. Subsequently, we provide a
correctness and time complexity result for Algorithm B.

Algorithm B

The input: T ′ = {T ′

1, ..., T ′

k} an urgent task set, where each T ′

i

is given by (si, 1, di) and, si and di are non-negative integers;
ϕ : T → T ′ the conversion mapping;
The output: F a 2SAT propositional formula such that F is
satisfiable if and only if T ′ is schedulable on a two-processor
platform.
The method:
1. C(F ) = ∅;
2. V (F ) = {e

(1)
i,j , e

(2)
i,j | i ∈ {1, ..., k}, j ∈ {0, ..., D − 1}};

3. for (i = 1; i <= k; i++) {
4. for (j = 0; j < si; j++)
5. C(F ) = C(F ) ∪ {{¬e

(1)
i,j }} ∪ {{¬e

(2)
i,j }};

6. for (j = di + 1; j < D; j++)
7. C(F ) = C(F ) ∪ {{¬e

(1)
i,j }} ∪ {{¬e

(2)
i,j }};

8. for (m = i + 1; m <= k; m++) {
9. maxT = max{si, sm};
10. minT = min{di, dm};
11. for (j = maxT; j < minT; j++)
12. C(F ) = C(F ) ∪ {{¬e

(1)
i,j ,¬e

(1)
m,j}} ∪

{{¬e
(2)
i,j ,¬e

(2)
m,j}};

}
}

13. for (l = 0; l < D; l++)
14. if (there exists T ′

i == (l, 1, l + 1) orelse T ′

i ==
(l, 1, l + 2)) then {
15. if (there exists no j �= i, such that T ′

j == (l, 1, l + 1)
orelse T ′

j == (l, 1, l + 2)) then
16. C(F ) = C(F ) ∪ {{e(1)

i,l , e
(2)
i,l }} ∪{{¬e

(1)
i,l ,¬e

(2)
i,l }} ;

17. else { // let T ′

j = (l, 1, l+1) orelse T ′

j = (l, 1, l+
2), j �= i
18. if (∃T ′

j such that ϕ−1(T ′

i ) �= ϕ−1(T ′

j)) then
19. C(F ) = C(F )∪ {{e(1)

i,l , e
(1)
j,l }}∪ {{e(1)

i,l , e
(2)
i,l }}∪

{{e(1)
j,l , e

(2)
j,l }}∪ {{e(2)

i,l , e
(2)
j,l }};

20. else
21. if T ′

j == (l, 1, l + 2) then {
22. C(F ) = C(F ) ∪ {{e(1)

i,l , e
(2)
i,l }}

∪{{¬e
(1)
i,l ,¬e

(2)
i,l }} ;

23. replace T ′

j by (l + 1, 1, l + 2);
}

24. else C(F ) = ; // F is unsatisfiable as T ′

j =
(l, 1, l + 1))
25. if (there exist more tasks (l, 1, l + 1) other than T ′

i

and T ′

j) then
26. C(F ) = ; // F is unsatisfiable
27. replace all tasks (l, 1, l + 2) other than T ′

i and T ′

j by
(l + 1, 1, l + 2);

}
}

28. return F with V (F ) and C(F ) computed above;

The operator orelse from Algorithm B has the follow-
ing meaning: Cond1 orelse Cond2 will evaluate first

condition Cond1. If this is true, then Cond2 will not be
evaluated. On the other hand, if Cond1 is false, then Cond2

will be evaluated and the value of Cond1 orelse Cond2

will be false if and only if both Cond1 and Cond2 are
false.

The next result proves the correctness and complexity of
Algorithm B. Note that functions max() and min() from
Algorithm B have the traditional meaning: min(a, b) = a

if a < b, and b otherwise; and max(a, b) = a if a > b,
and b otherwise.

Theorem 3.1: Let us consider T ′ an urgent task set and
ϕ : T → T ′ the conversion mapping as input for Algorithm
A. Let F be the output by Algorithm B. Then T ′ is
schedulable on a two-processor platform if and only if F

is satisfiable. Moreover, F has polynomial size of T ′ and
Algorithm B has a polynomial-time complexity.

Proof We start with the complexity part, as it is easier
to check. Obviously, |V (F )| = 2 · k · D. The number of
clauses depends on each task’s starting time and deadline.
An upper bound for |C(F )| added at statements from lines
3 to 12 is 2 ·k ·D +2 ·k ·D + k · (k− 1). To find an upper
bound for |C(F )| added at statements from lines 13 to 27,
we suppose that at each iteration of the for statement from
line 13, we add 4 clauses as in the statement from line 19.
Therefore, an upper bound for |C(F )| added from lines 13
to 27 is 4 ·D. By summarizing these numbers, we get the
total upper bound of 4 ·D · (k + 1)+ k · (k − 1). Hence F

has a polynomial size of T ′.

In order to estimate the time complexity of Algorithm
B, we recall that the Aspvall, Plass and Tarjan algorithm
[2] for solving a 2CNF formula needs a time complexity of
n · (n+m), where n is the number of variables and m the
number of clauses of the propositional formula. Combining
with the above results, it follows that Algorithm B has a
time complexity of 2 · k ·D · [4 ·D · (k + 1) + k · (k − 1)].

For the correctness part, we shall prove that for any i ∈
{1, ..., k}, we have: e

(r)
i,j = true if and only if task T ′

i is
executed by processor r at time interval [j, j + 1), where
j ∈ {0, ..., D − 1} and r ∈ {1, 2}.

The statements from lines 4 and 5 consider each previous
sub-interval by adding the unit clauses {¬e

(1)
i,j } and {¬e

(2)
i,j }

for all time units before their start time. This is equivalent
to: task T ′

i cannot execute in the sub-interval [0, si).
Similarly, the statements from lines 6 and 7 each and every
subsequent sub-interval by adding the unit clauses {¬e

(1)
i,j }

and {¬e
(2)
i,j } for all time units after their deadline time. This

is equivalent to: task T ′

i cannot execute in the sub-interval
[di, D).

The statements from lines 8 to 12 correspond to mutual
exclusion between tasks T ′

i and T ′

m executed by a proces-
sor, that is, one processor can execute either T ′

i or T ′

m at
the same time. This is equivalent to adding to formula F
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all the clauses {¬e
(1)
i,j ,¬e

(1)
m,j} and {¬e

(2)
i,j ,¬e

(2)
m,j} for all

j ∈ {max{si, sm}, min{di, dm}}.
The statements from lines 14 to 16 correspond to the

case when there is only one task T ′

i asking for a processor
available at time interval [l, l + 1). Since this can be done
by either processor r1 or r2, the corresponding clauses
added to C(F ) are {{e

(1)
i,l , e

(2)
i,l }}, and {{¬e

(1)
i,l ,¬e

(2)
i,l }}.

The last clause means that if T ′

i executes on processor r1,
then it cannot execute on processor r2, and vice versa. The
statements from lines 17 and 19 correspond to the case
when there are two tasks T ′

i and T ′

j which do not belong
to the same initial task (that is, ϕ−1(T ′

i ) �= ϕ−1(T ′

j))
asking for a processor for the time interval [l, l + 1). This
correspond to (e

(1)
i,l ∧e

(2)
j,l ) ∨ (e

(1)
j,l ∧e

(2)
i,l ), hence equivalent

to the conjunctive normal form clauses {{e
(1)
i,l , e

(1)
j,l }},

{{e
(1)
i,l , e

(2)
i,l }}, {{e

(1)
j,l , e

(2)
j,l }}, {{e

(2)
i,l , e

(2)
j,l }}.

The statements from lines 20 to 24 deal with the case
when ϕ−1(T ′

i ) = ϕ−1(T ′

j), namely T ′

i and T ′

j are subtasks
of the same task. If T ′

j is specified as (l, 1, l + 1), then the
schedule cannot be done so the formula F is unsatisfiable.
If T ′

j is specified as (l, 1, l + 2), then this is changed
to (l + 1, 1, l + 2). The task T ′

i is scheduled for either
[l.l + 1)(r1) or [l.l + 1)(r2). Hence C(F ) will contain the

corresponding clauses {{e(1)
i,l , e

(2)
i,l }}, and {{¬e

(1)
i,l ,¬e

(2)
i,l }}.

The statement from line 22 corresponds to the case when
condition ϕ(−1)(T ′

i ) �= ϕ(−1)(T ′

j) does not hold. It means
T ′

i and T ′

j are subtasks of the same original task, that is,
ϕ(−1)(T ′

i ). As such, it is also clear that since T ′

j was not
scheduled for [l, l + 1), then the precedence constraints
T ′

i → T ′

j was correctly implemented.
The statements from lines 25 and 26 cover the case when

there is no processor available for the time interval [l, l+1)
since both processors r1 and r2 are taken. The statement
from line 26 corresponds to the case when both processors
are taken for the time interval [l, l +1) hence its execution
is shifted from [l, l + 1) to [l + 1, l + 2) - this will be
processed at the next iteration of the for statement from
line 13.

It is clear from lines 5 to 12 of Algorithm B that
whenever e

(r)
i,j = false, then task T ′

i is not executed by
processor r at time interval [j, j + 1). Lines 16 and 22
ensure that if e

(r)
i,l = true then task T ′

i executes at time

interval [l, l + 1)(r). Line 19 ensures that if e
(r)
i,l =true

and e
(3−r)
j,l =true, then T ′

i executes in [l, l+1)(r) and T ′

j

executes in [l, l + 1)(3−r).

Line 28 returns the output of Algorithm B, hence the
theorem is completely proved.

Next, we show now the application of Algorithm B for
our running task sets.

Example 3.1: We continue now the task set from Ex-
ample 2.1. We recall that T ′

1 = {T1, T2, T3, T4, T5}.

Without loss of generality, we truncate the deadlines to the
integer value by considering the ceiling of the deadline.
Therefore, T1 = (0, 1, 1), T2 = (0, 1, 2), T3 = (0, 1, 1),
T4 = (1, 1, 2), and T5 = (2, 1, 3). By running Algorithm B
on a two-processor platform, we get the formula F given by
the following clauses: {¬e

(1)
1,1}, {¬e

(1)
1,2}, {¬e

(1)
1,3}, {¬e

(2)
1,1},

{¬e
(2)
1,2}, {¬e

(2)
1,3}, {¬e

(1)
2,2}, {¬e

(1)
2,3}, {¬e

(2)
2,2}, {¬e

(2)
2,3},

{¬e
(1)
3,1}, {¬e

(1)
3,2}, {¬e

(1)
3,3}, {¬e

(2)
3,1}, {¬e

(2)
3,2}, {¬e

(2)
3,3},

{¬e
(1)
4,0}, {¬e

(1)
4,2}, {¬e

(1)
4,3}, {¬e

(2)
4,0}, {¬e

(2)
4,2}, {¬e

(2)
4,3},

{¬e
(1)
5,0}, {¬e

(1)
5,1}, {¬e

(1)
5,3}, {¬e

(2)
5,0}, {¬e

(2)
5,1}, {¬e

(2)
5,3},

The mutual exclusion clauses are the following:
{¬e

(1)
1,0,¬e

(1)
2,0}, {¬e

(2)
1,0,¬e

(2)
2,0}, {¬e

(1)
1,0,¬e

(1)
3,0},

{¬e
(2)
1,0,¬e

(2)
3,0}, {¬e

(1)
2,0,¬e

(1)
3,0}, {¬e

(2)
2,0,¬e

(2)
3,0}.

The clauses generated at steps 13 to 26 of Algorithm B
are the following:
{e

(1)
1,0, e

(1)
3,0}, {e

(1)
1,0, e

(2)
1,0}, {e

(1)
3,0, e

(2)
3,0}, {e

(2)
1,0, e

(2)
3,0},

{e
(1)
2,1, e

(1)
4,1}, {e

(1)
2,1, e

(2)
2,1}, {e

(1)
4,1, e

(2)
4,1}, {e

(2)
2,1, e

(2)
4,1},

{e
(1)
5,2, e

(2)
5,2},

A truth assignment for F is: S(e
(1)
1,0) = true, S(e

(1)
2,1) =

true, S(e
(2)
3,0) = true, S(e

(2)
4,1) = true, and S(e

(1)
5,2) =

true. This truth assignment corresponds to the following
schedulable schedule for T ′

1 :
EA(T ′

1) = {[0, 1)(1)}, EA(T ′

2) = {[1, 2)(1)},
EA(T ′

3) = {[0, 1)(2)}, EA(T ′

4) = {[1, 2)(2)}, EA(T ′

5) =
{[2, 3)(1)}.
Coming back to the original task set T , we get EA(T1) =
{[0, 1)(1)}, EA(T2) = {[1, 2)(1)}, EA(T3) = {[0, 2)(2),
[2, 3)(1)}.

Example 3.2: We continue now the task set from Exam-
ple 2.2. We recall that T ′

2 = {T1, T2, T3, T4, T5, T6}. By
running Algorithm A on a two-processor platform, we get
the formula F given by the following clauses: {¬e

(1)
1,2},

{¬e
(2)
1,2}, {¬e

(1)
2,0}, {¬e

(2)
2,0}, {¬e

(1)
3,2}, {¬e

(2)
3,2}, {¬e

(1)
4,0},

{¬e
(2)
4,0}, {¬e

(1)
5,2}, {¬e

(2)
5,2}, {¬e

(1)
6,0}, {¬e

(2)
6,0}.

Here there are some mutual exclusion clauses:
{¬e

(1)
1,0,¬e

(1)
3,0}, {¬e

(2)
1,0,¬e

(2)
3,0}, {¬e

(1)
1,0,¬e

(1)
5,0},

{¬e
(2)
1,0,¬e

(2)
5,0}, {¬e

(1)
3,0,¬e

(1)
5,0}, {¬e

(2)
3,0,¬e

(2)
5,0},

{¬e
(1)
1,1,¬e

(1)
2,1}, {¬e

(2)
1,1,¬e

(2)
2,1}, and so on. The rest

of the clauses are omitted because they are similar
combinations with the above ones.

The clauses generated at steps 13 to 26 of Algorithm B
are the following:
{e

(1)
1,0, e

(1)
3,0}, {e

(1)
1,0, e

(2)
1,0}, {e

(1)
3,0, e

(2)
3,0}, {e

(2)
1,0, e

(2)
3,0},

{e
(1)
2,1, e

(1)
5,1}, {e

(1)
2,1, e

(2)
2,1}, {e

(1)
5,1, e

(2)
5,1}, {e

(2)
2,1, e

(2)
5,1},

{e
(1)
4,1, e

(1)
6,1}, {e

(1)
4,1, e

(2)
4,1}, {e

(1)
6,1, e

(2)
6,1}, {e

(2)
4,1, e

(2)
6,1}.

A truth assignment for F is: S(e
(1)
1,0) = true, S(e

(1)
2,1) =

true, S(e
(2)
3,0) = true, S(e

(1)
4,2) = true, S(e

(2)
5,1) =

true, and S(e
(2)
6,2) = true. This truth assignment cor-

responds to the following schedulable schedule for T ′

2 :
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EA(T ′

1) = {[0, 1)(1)}, EA(T ′

2) = {[1, 2)(1)},
EA(T ′

3) = {[0, 1)(2)}, EA(T ′

4) = {[2, 3)(1)}, EA(T ′

5) =
{[1, 2)(2)}, and EA(T ′

6) = {[2, 3)(2)}.
Coming back to the original task set T2, we get EA(T1) =
{[0, 2)(1)}, EA(T2) = {[0, 1)(2), [2, 3)(1)}, EA(T3) =
{[1, 3)(2)}.

As an immediate implication of Theorem 3.1, Algorithm
B is optimal. In other words, if F provided as output by
Algorithm B is unsatisfiable, then both task sets T and T ′

are not schedulable. In fact, Algorithm B schedules the task
set T ′ in a similar way as Least Laxity First strategy. The
resulted formula F can actually provide more than just one
schedule. In addition, Algorithm B has a polynomial-time
complexity on a multiprocessor platform.

IV. NECESSARY CONDITIONS FOR SCHEDULING

URGENT TASKS

This section is devoted to identifying large subclasses of
urgent tasks that are not schedulable. The tasks that lead to
non-schedulability are called jammed tasks. We prove that
if a task set contains jammed tasks, then the task set cannot
be schedulable. We describe some necessary conditions for
tasks’ scheduling on a two-processor platform. The next
subsection presents some necessary conditions for tasks’
scheduling on a uniprocessor platform. We saw in Section
III that Algorithm B was able to check in a polynomial
time complexity whether a task set is schedulable or not.
However, the worst case has a time complexity of 2 · k ·
D · [4 · D · (k + 1) + k · (k − 1)], where k is the number
of tasks and D is their maximum deadline. The conditions
we present this section can be checked in linear time and
space complexity.

Definition 4.1: Let us consider a two-processor plat-
form. We say that a task set T is jammed if (at least)
one of the following conditions hold:

a) there exist at least five urgent tasks in T with the
same start time;

b) there exist at least four urgent tasks in T with start
time s and at least three other urgent tasks of T with start
time s + 1;

c) there exist at least three urgent tasks in T with start
time s and at least four other urgent tasks of T with start
time s + 1.

The following result represents a necessary condition
for feasibility of urgent tasks. Theorem 4.1 is useful for
schedulability analysis of urgent task sets.

Theorem 4.1: A jammed urgent task set is not schedu-
lable on a two-processor platform.

Proof Let us consider T a jammed urgent task set.
According to Definition 4.1, it means we have one of the
following conditions fulfilled:

a) there exist at least T1, T2,, T3, T4, and T5 ∈ T such
that their start times equal s;

b) there exist T1, T2, T3, T4 ∈ T with start time s and
T5, T6, T7 ∈ T with start time s + 1;

c) there exist T1, T2, T3 ∈ T with start time s and T4,
T5, T6, T7 ∈ T with start time s + 1.

We need to prove that all the above conditions lead to
unschedulable schedules. The computation time of each
task is at least 1.
a) Without loss of generality, let us assume that T1 executes
in the time interval [s, s+1)(r1), T2 in [s+1, s+2)(r1), T3

in [s, s+1)(r2), and T4 in [s+1, s+2)(r2). Task T5 cannot
be executed later than s+2 because it is an urgent task. At
the same time, T3 cannot be executed in either [s, s + 1)
or [s + 1, s + 2) as these two time intervals are taken by
processors r1 and r2. Hence T5 will miss its deadline.
b) Without loss of generality, let us assume that T1 executes
in [s, s+1)(r1), T2 in [s+1, s+2)(r1), T3 in [s, s+1)(r2),
T4 in [s + 1, s + 2)(r2), T5 in [s + 2, s + 3)(r1), and T6 in
[s + 2, s + 3)(r2). Task T7 cannot be executed later than
s + 3 because it is an urgent task with start time s + 1.
However, T7 cannot be executed earlier than s + 3. Hence
T7 will miss its deadline.

c) Case c) is similar to case b).
In conclusion, T is not schedulable as it contains

jammed tasks.

In order to test whether a given urgent task set T is
schedulable, we check first the applicability of Theorem
4.1 for jammed tasks. Obviously, this can be done in linear
time and space complexity. In the affirmative case, we
conclude that T is not schedulable. Otherwise, Algorithm
B can be applied as an alternative to check whether the
corresponding propositional formula is satisfiable.

A. Scheduling conditions for the uniprocessor platform

This subsection presents some necessary conditions for
tasks’ scheduling on a uniprocessor platform. These con-
ditions look much simpler than the corresponding condi-
tions for tasks’ scheduling on a two-processor platform.
Likewise the scheduling conditions for the two-processor
platform, and the corresponding scheduling conditions for
the uniprocessor platform can be done in linear time and
space complexity.

Definition 4.2: Let us consider a uniprocessor platform.
We say that a task set T is uni-jammed if (at least) one
of the following conditions hold:

a) there exist at least three urgent tasks in T with the
same start time;

b) there exist two urgent tasks in T with start time s and
at least two other urgent tasks of T with start time s + 1.
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The following result represents a necessary condition
for feasibility of urgent tasks. Theorem 4.2 is useful for
schedulability analysis of urgent task sets.

Theorem 4.2: An uni-jammed urgent task set is not
schedulable on a uniprocessor platform.

Proof Let us consider T a uni-jammed urgent task set.
According to Definition 4.2, it means we have one of the
following conditions fulfilled:

a) there exist at least T1, T2, and T3 ∈ T such that their
start times equal s;

b) there exist T1, T2 ∈ T with start time s and T3, T4

∈ T with start time s + 1.

We need to prove that both conditions lead to unschedu-
lable schedules. The computation time of each task is, of
course, at least 1.
a) Without loss of generality, let us assume that T1 executes
in the time interval [s, s+1) and T2 in [s+1, s+2). Task
T3 cannot be executed later than s + 2 because it is an
urgent task. At the same time, T3 cannot be executed in
either [s, s + 1) or [s + 1, s + 2) as the processor executes
T1 and T2, respectively. Hence T3 will miss its deadline.
b) Without loss of generality, let us assume that T1 executes
in [s, s + 1), T2 in [s + 1, s + 2), and T3 in [s + 2, s + 3).
Task T4 cannot be executed later than s + 3 because it is
an urgent task with start time s + 1. However, T4 cannot
be executed in any of the previous time intervals, namely
[s, s + 1), [s + 1, s + 2) or [s + 2, s + 3). Hence T4 will
miss its deadline.

In conclusion, T is not schedulable as it contains uni-
jammed tasks.

V. RELATED AND FUTURE WORK

Liu and Layland found a polynomial-time schedulability
analysis test that ensures the Earliest Dealine First (EDF)
optimality for synchronous tasks (i.e., all tasks have the
same start time), and with relative deadlines equal to
their respective periods [22]. However, Leung and Merrill
proved that deciding if an asynchronous periodic task set,
when deadlines are less or equal than the periods, is
schedulable on one processor is NP-hard [21].

There exist several polynomial-time algorithms for two-
processor scheduling [12], [31], [32], but all these restrict
tasks to have unit execution times (UET). Garey and
Johnson [12] presented a test for determining whether
there exists a schedule on two identical processors for this
type of tasks with start times and deadlines, and provided
an O(n3) scheduling algorithm if such a schedule exists.
The considered tasks are single-instance and hence not
periodic. Vazirani [31] proposed a fast parallel (R-NC)
algorithm for this problem. Wu and Jaffar [32] studied non-
preemptive two-processor scheduling, again for UET tasks
but with arbitrary precedence constraints, release times,

and deadlines. They proposed an O(n4) algorithm based
on the key consistency notion known as successor-tree-
consistency for solving the problem. Only single-instance
tasks are considered. In contrast, our proposed polynomial-
time schedulability test and algorithm works for urgent
tasks with arbitrary execution times.

Moreover, Baruah, Rosier, and Howell proved in 1990
that the problem of deciding whether an asynchronous
periodic task set, when deadlines are less than the periods,
is schedulable on one processor is NP-hard in the strong
sense [4]. This even more negative result precludes the
existence of pseudo-polynomial time algorithms for the
solution of this feasibility decision problem, unless P
= NP .

This result was extended in 1995 by Howell and Venka-
trao who showed that the decision problem of determining
whether a periodic task system is schedulable for all start
times with respect to the class of algorithms using inserted
idle times is NP-Hard in the strong sense, even when the
deadlines are equal to the periods [15].

An interesting concept in scheduling theory motivated by
parallel computing systems is to consider multiprocessor
tasks which require more than one processor at the same
time [11]. A generalization of the classsical uniprocessor
and two-processor unit computation time tasks was ad-
dressed in [13]. Giaro and Kubale showed that, given a
fixed set of either 1-element (it requires a single dedicated
processor) or 2-element (it requires two dedicated pro-
cesors simultaneously), the scheduling problem of sparse
instances of tasks with arbitrary start times and deadlines
can be solved in polynomial time. We intend to consider
this kind of scheduling framework and check whether the
scheduling problem of urgent task sets can still be solved
in polynomial time.

Chen and Hsueh [7] presented a model, called T − Ler

plane, to describe the behavior of tasks and processors. By
allowing task migration, the authors described two optimal
on-line algorithms based on T−Ler plane to schedule real-
time tasks with dynamic-priority assignment on uniform
multiprocessors. Our work presented an optimal scheduling
algorithm only for two-processor platforms, but we do not
restrict the processors to be uniform.

Carpenter et al. presented in [6] nine combinations of
priority and migration degrees taxonomy for scheduling
algorithms. The task’s priority can be (i) static, (ii) dy-
namic but fixed within a job, or (iii) fully dynamic. The
task’s degree migration can be (i) no migration (i.e., task
partitioning), (ii) migration allowed, but only at the bound-
ary (i.e., dynamic partitioning at the job level), and (iii)
unrestricted migration (i.e., jobs are allowed to migrate).
Example 1.2 describes the task set T2 taken from [6] to
illustrate the power of a fully dynamic and unrestricted
migration scheduling algorithm. On the other hand, all the
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other eight combinations of priority and migration degree
fail to find a schedule for T2 on a two-processor platform
[6]. However, according to [6], this class of fully dynamic
and unrestricted migration scheduling algorithm has a
major drawback. The runtime overhead of the scheduling
algorithms for this class may be unacceptably too high
for some applications, in terms of runtime complexity,
preemption frequency, and migration frequency. According
to [6], migration is an important criteria in the design
of multiprocessor real-time systems because it affects the
true cost in terms of the final system produced. We plan
as future work to investigate finding the best scheduling
algorithm with minimum (or at least as minimum as
possible) number of preemptions and migrations.

VI. CONCLUSION

We identified and formally defined a non-trivial class
of task sets, called urgent tasks, for which the scheduling
problem can be solved in polynomial time. We presented
an efficient algorithm for finding the schedule via an
efficient 2SAT encoding. We identified a necessary efficient
condition useful for schedulability analysis of urgent tasks.
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