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Abstract—Since multi-core processors have become a primary
trend in processor development, new scheduling algorithms are
needed to minimize power consumption while achieving the
desired timeliness guarantees for multi-core (and many-core)
real-time embedded systems. Although various power/energy-
efficient scheduling algorithms have recently been proposed, ex-
isting studies may have degraded run-time performance in terms
of power/energy efficiency and real-time guarantees when applied
to real-time embedded systems with uncertain execution times.
In this paper, we propose a novel online solution that integrates
core-level feedback control with processor-level optimization to
minimize both the dynamic and leakage power consumption of
a multi-core real-time embedded system. Our solution monitors
the utilization of each CPU core in the system and dynamically
responds to unpredictable execution time variations by conduct-
ing per-core voltage and frequency scaling. We then perform
task consolidation on a longer timescale and shut down unused
cores for maximized power savings. Both empirical results on a
hardware multi-core testbed with well-known benchmarks and
simulation results in many-core systems show that our solution
provides the desired real-time guarantees while achieving more
power savings than three state-of-the-art algorithms.

I. INTRODUCTION

Multi-core processors have become a primary trend in the
current processor development due to well-known techno-
logical barriers such as the “Power Wall” and “Instruction-
level Parallelism Wall”. As a result, future high-performance
real-time embedded systems are anticipated to be equipped
with multi-core processors, or even many-core processors (i.e.,
processors with tens or hundreds of cores). However, power
consumption still remains the major constraint for the further
throughput improvement of multi-core processors. For exam-
ple, the peak power consumption of a multi-core processor
often needs to be capped as high power consumption may
result in high die temperatures that can affect the reliability
and performance of the processor [28]. The power problem
is also exacerbated by the rapidly increasing level of core
integration in the multi-core processor design. Therefore, new
scheduling algorithms must be developed to minimize power
consumption while achieving the desired timeliness guarantees
for multi-core (and many-core) real-time embedded systems.

Although various power/energy-efficient scheduling algo-
rithms have recently been proposed for multi-core real-time
embedded systems (e.g., [25]), existing studies focus on open-
loop solutions such as static speed scheduling and offline
DVFS (dynamic voltage and frequency scaling) configura-
tions. For example, many existing speed scheduling algorithms
optimize energy/power based on worst-case execution times
(WCETs) and thus, may fail the optimization goal at runtime

as the actual execution times can be much smaller than the
WCETs. Recent projects propose scheduling algorithms with
the assumption that execution times follow certain probability
distributions (e.g., [10]). While those open-loop solutions can
work effectively for traditional real-time embedded systems
deployed in closed execution environments, they may incur
degraded performance in terms of power/energy efficiency
and real-time guarantees when applied to real-time embedded
systems that execute in open and unpredictable environments
in which workloads (e.g., WCETs) are unknown and may
vary significantly at runtime. Therefore, in order to achieve
runtime power optimization and real-time guarantees, novel
online strategies must be designed to dynamically respond to
execution time variations for multi-core real-time embedded
systems running in unpredictable environments.

Recently, feedback control techniques have been demon-
strated to be a valid tool in providing timeliness guarantees
for real-time embedded systems by adapting to workload
variations based on dynamic feedback. In particular, feedback-
based CPU utilization control [20] has been shown to be an
effective way of providing real-time guarantees for soft real-
time systems. The goal of utilization control is to enforce
appropriate schedulable utilization bounds on all CPU cores in
a real-time embedded system, despite significant uncertainties
in system workloads. As a result, utilization control can
guarantee all the real-time deadlines of the system without
accurate knowledge of the workload, such as task execution
times. However, existing utilization control algorithms are not
designed to provide online power minimization for multi-core
real-time systems. A recent study [27] proposes a power-
aware utilization control approach that adopts DVFS to achieve
utilization control and power efficiency. While this solution
can effectively reduce dynamic power consumption, it cannot
minimize static (leakage) power consumption because it does
not minimize the number of active CPU cores in response
to workload variations. As chip feature sizes continue to
shrink, it becomes increasingly important to minimize leakage
power since leakage power consumption is becoming a major
contributor to the total power consumption of a multi-core
processor [16].

To minimize the number of active CPU cores, it is neces-
sary to migrate tasks among the cores for consolidation. In
traditional multiprocessor real-time systems, tasks are often
assigned to processors in a static way, at design time, due
to the large overheads of online task migrations. A key
advantage of the shared L2 caches in many multi-core real-



time systems is that the overhead of migrating a task among
cores is less than 40 microseconds, which is sufficiently
small in many real systems [3][30]. This feature allows multi-
core real-time systems to be more power-efficient since the
leakage power consumption can be minimized by dynamic
task consolidation. Although task migrations in multi-core
processors may cause L1 cache misses, the typical penalty
of an L1 cache miss is only 10-30 CPU cycles. In contrast, in
traditional multiprocessor real-time systems, task migrations
can be expensive by having frequent L2 cache misses, whose
penalty is approximately 100-300 CPU cycles [3].

In this paper, we propose a novel online solution that
integrates feedback control with optimization strategies to
minimize (both dynamic and leakage) power consumption
and guarantee timeliness for multi-core real-time embedded
systems. Our solution monitors the utilization of each CPU
core in the system and dynamically responds to execution time
variations by conducting per-core DVFS and task consolida-
tion among the cores in a multi-core processor. In our solution,
each CPU core has a utilization controller that throttles the
DVFS level of the core so that its utilization stays slightly
below the schedulable bound for minimized dynamic power
with real-time guarantees. To minimize leakage power, we
dynamically consolidate real-time tasks onto a few of the
most power-efficient cores on a longer timescale by utilizing
the small overhead of migrating tasks among different cores
within a multi-core processor. The migration is subject to the
schedulable utilization bounds of the active cores. We then
shut down unused CPU cores for minimized leakage power.

The main contributions of this paper are three-fold:

• We propose a control theoretic solution for timeliness
guarantees that minimizes both dynamic and leakage
power consumption. Compared with traditional open-loop
solutions, our solution can achieve better power efficiency
and real-time performance when task execution times
vary significantly at runtime in unpredictable environ-
ments.

• We design a two-level power optimization architecture
that analytically integrates core-level utilization control
with processor-level task consolidation to eliminate the
complexity of one-level hybrid model-predictive control.
The task consolidation problem is formulated as a bin-
packing problem and several solutions are comparatively
studied.

• While the majority existing work relies solely on simu-
lations for evaluation, we present empirical results on a
hardware multi-core testbed to demonstrate the efficacy
of our integrated solution with the Mibench benchmarks
[15]. Extensive simulation results also show that our
solution can achieve more power savings than state-of-
the-art algorithms in many-core systems.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the integrated
system architecture. Section IV introduces the core-level uti-
lization control loop while Section V discusses the processor-

level online task consolidation strategy. Section VI introduces
the implementation of the integrated solution. Section VII
presents our empirical results on our testbed and simulation
results. Finally, Section VIII summarizes the paper.

II. RELATED WORK

Several projects have addressed the scheduling problems
for multi-core real-time embedded systems. Anderson et al.
proposed a cache-aware scheduling technique to avoid cache
thrashing for real-time tasks on multi-core platforms [3]. Guan
et al. presented test conditions for non-preemptive EDF and
fixed priority scheduling [14]. However, these studies do not
migrate tasks for power optimization. Sarkar et al. studied
the impact of task migrations on the WCETs of real-time
tasks [24]. Their work focused on WCET analysis instead
of real-time scheduling. In addition, they assume non-shared
L2 caches which can incur a much higher task migration
overhead. Chattopadhyay et al. studied the WCET analysis for
a unified cache multi-core processors [7]. All of these studies
do not address the power optimization problem in multi-core
real-time systems. In contrast, we attempt to minimize the
power consumption of multi-core real-time systems in addition
to providing real-time guarantees.

Power management is an important problem for real-time
embedded systems. Multiple projects have studied real-time
scheduling with power management for uniprocessor systems
(e.g., [18]). Aydin et al. considered the energy-aware par-
titioning of real-time tasks for multiprocessor systems [5].
However, the power models of [5] did not consider leakage
power consumption. Chen et al. extended the power models
adopted in [5] and proposed a real-time scheduling method
that minimizes both dynamic and leakage energy consumption
[9]. However, these studies focus on multi-processor real-
time systems where task migration can be expensive due to
state maintenance. Seo et al. studied energy efficient multi-
core real-time scheduling [25]. Their assumption is that all
cores must run at the same frequency (chip-wide DVFS).
In contrast, we utilize the availability of per-core DVFS for
further power savings. As a result, the problem formulation is
significantly different. All the aforementioned studies assume
that task execution times are known a priori. While these
studies can optimize the system power consumption when
execution times do not change dynamically, the optimality
is not guaranteed under execution time variations. Although
much work on feedback control scheduling exists, to the best
of our knowledge, our work is the first one which integrates
the utilization control with DPM. Recently, [12] proposed to
dynamically partition shared last-level caches of multi-core
processors to control the utilization while reduce the power
consumption. [12] is complementary to this work and can
be integrated to further reduce the power consumption while
guarantee real-time.

III. SYSTEM ARCHITECTURE

In this section, we present our system architecture. As
shown in Figure 1, our system architecture features a task
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Fig. 1. System architecture
consolidation manager for the entire multi-core processor and
a utilization control loop for each core in the processor.

First, for every core, a utilization controller exists that
controls the CPU utilization of the core by scaling the core fre-
quency. The controller is a Single-Input-Single-Output (SISO)
controller since the change of core frequency only affects the
utilization of the core. This control loop works as follows: (1)
the utilization monitor on each core sends the utilization of
the core to the local controller; (2) the controller computes a
new CPU frequency and sends it to the frequency modulator
on the core; and (3) the frequency modulator then changes the
core frequency using DVFS.

Second, the processor-level task consolidation manager dy-
namically allocates tasks among the cores for task consolida-
tion. It works as follows: (1) the task consolidation manager
monitors all the tasks {Ti|1 ≤ i ≤ m} and measures their CPU
utilizations at run-time; (2) the task consolidation manager
computes an optimized new task allocation for the cores and
sends the task migration requests to the operating system. The
OS then redistributes the following releases (i.e., jobs) of the
periodic tasks to the cores to enforce the migration of the
periodic tasks; and (3) the OS changes the affinity of the tasks
to the cores accordingly. The overhead of migrating a task
among cores is less than 40 μs which is sufficiently small
in the majority of practical real-time systems. The detailed
overhead measurement results can be found in [30].

In a real system, similar to the power management unit
implemented in POWER7 [29], our control architecture can be
implemented in service processor firmware to interact with the
main processor and OS. Our solution can also be implemented
in the OS as a periodic task with the highest priority. It
is important to note that without effective integration, the
processor-level task consolidation manager and the core-level
utilization control loops may conflict with each other. The task
consolidation manager may cause the core-level utilization
control loop to be unstable, as it will change the system
models used by the utilization controllers. As a result, the
utilization control loops need to be configured with the proper
controller parameters, according to task migration. One of
our main contributions is to solve the design challenges
when integrating processor-level task migration and core-level
utilization control. We discuss the details of the integration in
Section V-C.

IV. CORE-LEVEL UTILIZATION CONTROL

In this section, we model, design, and analyze the core-level
utilization control loop.

A. Task Model

To maximize the throughput of a multi-core system, an
application assigned to run on multi-core processors typically
consists of multiple tasks running in parallel; thus, we adopt a
commonly used independent periodic task model (e.g., in [3]).
A system is comprised of m periodic tasks {Ti|1 ≤ i ≤ m}
executing on n cores {Ci|1 ≤ i ≤ n} in a multi-core proces-
sor. Task Ti can be migrated among different cores. A core
may host one or more tasks. Each task Ti has a soft deadline
that is equal to its period. ri is the inverse of the period of
task Ti. A well-known approach for meeting the deadlines
on a core is to ensure its CPU utilization remains below its
schedulable utilization bound (e.g., Liu and Layland bound
for RMS scheduling)[19]. Note that our task model can be
extended to support aperiodic tasks by using the corresponding
schedulable utilization bound. For example, a utilization bound
has been derived for systems with aperiodic tasks in [2]. Task
rate adaptation can also be used for utilization control in some
real-time systems [20]. We focus on DVFS and task migration
for a more general solution since the rates of many real-time
tasks cannot be adapted.

Our task model has two important properties. First, while
each task Ti has an estimated execution time ci available
at design time, a real-time task’s actual execution time may
differ from its estimation and vary at run-time due to two
reasons: core frequency scaling by the DVFS and workload
uncertainties. Modeling such uncertainties is important to sys-
tems operating in unpredictable environments. The estimated
execution time can be an approximate estimation and is not
necessarily the WCET. Second, the core frequency of each
core Ci can be dynamically adjusted on a per-core basis
within a range [Fmin, Fmax]. This assumption is based on the
fact that more energy savings can be achieved with per-core
DVFS when compared to conventional chip-wide DVFS [17]
and many today’s microprocessors already support per-core
DVFS (e.g., AMD Independent Dynamic Core Technology).
Note that our solution does not rely on WCET estimation,
which is a key advantage of our solution, because WCETs
are often unavailable or mis estimated in real-time embedded
systems running in open execution environments. In contrast,
a fundamental limitation of open-loop power optimization
solutions is that they may fail the optimization goal at runtime
when the actual execution times are significantly different from
the WCETs used in the optimization. The frequency ranges
are assumed to be continuous because a continuous value
can be approximated by a series of discrete frequency levels
supported by a processor, as we explain in Section VI.

B. System Modeling

We first introduce the following notation. Ts, the control
period, is selected such that multiple jobs of each task may be
released during a control period. The utilization control loop
is invoked every Ts seconds. ui(k) is the utilization of core
Ci in the kth control period, i.e., the fraction of time that C i

is not idle during the time interval [(k− 1)Ts, kTs). Bi is the
desired utilization set point (i.e., schedulable bound) on C i.



Si(k) is the set of tasks located on core Ci in the kth control
period. fi(k) is the normalized CPU frequency (i.e., a value
relative to the highest level Fmax) of core Ci in the kth control
period.

Following a control-theoretic methodology, we establish a
dynamic model that characterizes the relationship between the
controlled variable ui(k) and the manipulated variables Si(k)
and fi(k). As observed in [23], since the frequencies of real
microprocessors can be scaled only within limited ranges, the
execution times of computation-intensive tasks on core C i

can be approximately estimated to be proportional to C i’s
relative core frequency1. Therefore, when core Ci runs at
fi(k), the estimated execution time of task Ti on Ci in the
kth control period can be modeled as c i/fi(k). The estimated
CPU utilization of core Ci can be modeled as

bi(k) =

∑
Tj∈Si(k)

cjrj

fi(k)
(1)

We then define the estimated utilization change of Ci,
Δbi(k), as

Δbi(k) =

∑
Tj∈Si(k+1)

cjrj

fi(k + 1)
−

∑
Tj∈Si(k)

cjrj

fi(k)
. (2)

Note Δbi(k) is based on the estimated execution time cj . Since
the actual execution times may differ from their estimation due
to workload variations, we model the actual utilization of C i

as the following difference equation

ui(k + 1) = ui(k) + giΔbi(k) (3)

where the utilization gain gi represents the ratio between the
change to the actual utilization and its estimation Δbi(k). For
example, gi = 2 means that the actual change to utilization
is twice the estimated change. Also note that the exact value
of gi is unknown at design time due to the unpredictability of
the tasks’ execution times.

The system models (2) and (3) show the actual utiliza-
tion determined by both the frequency and task allocation.
Since Si(k) contains a discrete number of tasks, the sys-
tem model introduces a significant challenge, which usually
requires hybrid model-predictive control [21]. In a model-
predictive controller, the control problem is translated to a
constrained least-squares problem [20]. The hybrid model-
predictive control problem is translated to a mixed integer
non-linear programming problem (MINLP) and all existing
MINLP solvers are not polynomial algorithms.

To address this challenge, we adopt an integrated opti-
mization and control approach. First, we determine the task
allocation based on an optimization strategy introduced in
Section V. The goal is to minimize the power consumption
of the multi-core system. Second, a feedback controller is

1In general, the execution times of tasks which have intensive memory
access and I/O operations may include frequency-independent parts that do not
scale proportionally with the core frequency [4]. We plan to model frequency-
independent parts in our future work.

designed for each core to achieve the desired utilization. Based
on our control architecture, the core-level utilization control
loop can be designed separately from the task migration
optimization strategy. As a result, model (3) can be simplified
by having Si(k) in (2) as a constant Si. This avoids designing
a controller based on (2) to handle discrete changes of the task
allocation. As a result, model (3) becomes

ui(k + 1) = ui(k) + giΔdi(k)
∑

Tj∈Si

cjrj (4)

where Δdi(k) = 1/fi(k + 1) − 1/fi(k). The model cannot
be directly used to design the controller because the system
gain gi is used to model the uncertainties in task execution
times and is unknown at design time. Therefore, we design the
controller based on an approximate system model of (4) with
gi = 1. In a real system where the task execution times differ
from their estimations, the actual value of g i may not equal
1. As a result, the closed-loop system may behave differently.
However, we show that a system controlled by a controller
designed with gi = 1 can remain stable when the variation of
gi is within a certain range. This range is established using
a stability analysis of the closed-loop system by considering
model variations.
C. Controller Design and Analysis

Because of our novel control architecture, the model (3) is
simplified as the model (4), and we can borrow the controller
design in [27]. The Z-transform of the P controller [27] is

C(z) =
1∑

Tj∈Si
cjrj

. (5)

The transfer function of the closed-loop system controlled by
controller (5) is

G(z) = z−1. (6)

It is easy to prove that the controlled system is stable and has
zero steady state errors when gi = 1. When the designed P
controller is used on a system with gi �= 1, the system will
remain stable when 0 < gi < 2, which means that the actual
utilization change cannot be twice the estimated utilization
change. We have also proven that the system can achieve zero
steady state error when the system is stable.

V. PROCESSOR-LEVEL TASK CONSOLIDATION

In this section, we first formulate the problem of power
optimization with uncertain execution times. Second, we show
that the problem is an NP-complete problem and investigate
four heuristics. Finally, we analyze the coordination between
the processor-level task consolidation and core-level utilization
control.
A. Problem Formulation

In addition to notation defined in Section IV-B, we introduce
more notation. Top is the time interval between two consecu-
tive optimization invocations. The value of Top can be selected
based on the trade-off between the system response speed
to workload variations and the overhead of task migration
in the system. Top is normally longer than Ts such that the



core-level utilization control loops can settle down within two
consecutive invocations of the task consolidation algorithm.

In multi-core systems, the processor power consumption
P (k) is commonly modeled [22] as follows

P (k) = Ps +

n∑
i=1

xi(k)[P
i
ind + P i

d(k)] (7)

where Ps denotes the static power of all power consuming
components(except the cores). This is approximately a con-
stant and can only be removed by powering off the entire
processor. xi represents the state of core Ci. If a core is
active, xi = 1; otherwise, xi = 0 and Ci is turned off.
The frequency-dependent active power for the core is defined
as P i

d(k)=αifi(k)
βi , where both αi and βi are system-

dependent parameters. P i
ind is the static power of Core i and

does not depend on the supply voltage and frequency.
Given a utilization set-point vector, B = [B1 . . . Bn]

T

and frequency constraints [Fmin, Fmax] for each core Ci,
the optimization goal at the kth point (time kTop) is to
dynamically choose a task allocation {Si(k)|1 ≤ i ≤ n} and
core frequencies {fi(k)|1 ≤ i ≤ n} to minimize the processor
power consumption P (k)

min

n∑
i=1

xi(k)[P
i
ind + αifi(k)

βi ] (8)

where xi(k) is defined as a function of Si(k)

xi(k) =

{
0, Si(k) = φ
1, Si(k) �= φ

(9)

subject to the following constraint∑
Tj∈Si(k)

Uj ≤ Bi (10)

where Uj is the average CPU utilization of task Tj which can
be obtained from the operating system.

Constraint (10) ensures that the aggregate utilization of all
the tasks on core Ci is smaller than the schedulable utilization
bounds [19]. As a result, all the tasks on each core can meet
their real-time deadlines. fi(k) in (8) can also be computed
as a function of Si(k) based on the following equation

fi(k) =

∑
Tj∈Si(k)

Uj

Bi
. (11)

Note that fi(k) ≤ 1 is enforced by constraint (10). If
fi(k) ≤ Fmin, we set fi(k) = Fmin and the real-time
guarantees will not be violated because the core frequency
is higher than required.

Therefore, the design goal of the task consolidation algo-
rithm is to determine a task allocation Si(k) that can minimize
power consumption P (k). Task consolidation and idle core
shutdown can lead to more power savings than when simply
using DVFS to lower core frequencies because as feature
sizes decrease below 65 nm, the leakage power consumption
becomes a major contributor to the total power consumption
of a processor [16][26]. For example, in 23nm processors, the

leakage power consumption accounts for approximately 80%
of the total power consumption. For multi-core and many-
core systems, the leakage power of idle cores can constitute a
significant portion of the total power. The experiments on our
hardware testbed (as shown in Figure 2) also demonstrate that
the task consolidation and idle core shutdown result in more
power savings than a DVFS-only solution.

Clearly, the optimization problem formulated in (8) for dy-
namic task consolidation can be transformed to a bin packing
problem [19] as it needs to pack all tasks to the cores based
on their CPU utilizations and the capacity of a core shrinks
when the number of its tasks increases. In the following, we
discuss solutions to the formulated bin-packing problem.
B. Heuristics

Since the bin-packing problem is known to be NP-complete
and so an optimal solution is not suitable to be used online
in multi-core and many-core systems with many tasks, most
existing work focuses on heuristics. Several suboptimal heuris-
tics with different complexities have been proposed. In this
work, we evaluate and compare several heuristics in terms of
both overhead and solution quality. Note that for real-time
embedded systems, run-time overhead is often a more serious
concern than solution quality. High run-time overheads may
impact the schedulibility of real-time tasks and cause deadline
misses.

We test First-Fit, Best-Fit, and an advanced bin packing
heuristic rt-MBS based on MBS (Minimum Bin Slack) [11].
To further reduce the overhead of First-Fit, we design iFF
(Incremental First-Fit). In this section, we will compare the
overheads of all heuristics theoretically. In Section VII-B, we
evaluate four different heuristics presented in Section V-B in
terms of both overhead and solution quality using realistic
workloads.

First-Fit places each task, in succession, into the first core
into which it fits. Best-Fit places each task, in succession,
into the most nearly full core in which it fits. Incremental
First-Fit has two arrays to hold the task allocation in the
last control period and task allocation in the current control
period, respectively. Incremental First-Fit also employ First-
Fit to assign each task into a core in every control period.
However, in contrast to that First-Fit assign every task into
a core by calling a system call, Incremental First-Fit store
the assignment of every task into a core in an array instead
of calling the system call immediately, then compare the new
task allocation with the task allocation in the last control period
and only call the system call for the task with changed core
affinity. The key observation of iFF is that the order in which
tasks are packed into a core is irrelevant. What is important is
the total number of core and the total utilizations of each core
are the same as First-Fit. The system call overhead is up to 40
microseconds [30]. For every task, First-Fit needs to call the
system call once. For a large of number tasks, the overhead
may be big. Incremental First-Fit eliminates those unnecessary
system calls and provide the same solution quality as First-Fit.

MBS is bin-focused. In each step, MBS attempts to find a
set of tasks (packing) that makes the core as full as possible.



Algorithm 1 rt-MBS
q: an index of tasks not assigned to cores
n: the number of tasks not assigned to cores
A: the current assignment
Minimum-Bin-Slack ( q )
begin

1: for all index i from q to n do
2: Get ith tasks not assigned to cores;
3: if ith tasks can be assigned to the core under A then
4: Add ith tasks into A;
5: Minimum-Bin-Slack(i+ 1);
6: Remove ith tasks from A;
7: if No free space exists under the current optimal

assignment then
8: Exit;
9: end if

10: end if
11: if A is better than the current optimal assignment then
12: Set A the current optimal assignment;
13: end if
14: end for
end

Building a packing for each core is implemented recursively.
The detailed algorithm of applying MBS to processor-level
task consolidation is shown in Algorithm 1. The algorithm is
invoked repeatedly until all tasks are assigned. The procedure
is invoked with q = 1 while the current assignment and
current optimal assignment are initialized to be null sets. Note
that the allocation in each step is subject to the utilization
constraint (10), which is enforced by line 3 of Algorithm 1.
The utilization constraint is checked in each step when a task
is allocated to a core to guarantee the real-time executions of
tasks.

We now analyze the complexity of the four heuristics. First-
Fit and Best-Fit are among the simplest heuristics. MBS, in
the worst case, has the same complexity as an exhaustive
search. The complexity of Incremental First-Fit, First-Fit,
Best-Fit, and MBS is O(mlogm), O(mlogm), O(mlogm),
and O(mu+1), respectively; where m is the total number of
tasks in the system and u is the maximum number of tasks that
can be placed in one core. The overhead of Incremental First-
Fit is smaller than that of First-Fit because of fewer system
calls. The improved time complexity is archived by using two
more arrays with space complexity of O(m).

C. Integration of Optimization and Feedback Control

We now analyze the integration needed for the core-level
utilization control loops to work with task consolidation.

Specifically, we need to ensure that the stability of the core-
level utilization control is not affected when the processor-
level task consolidation reallocates the tasks to each core.
Equation (5) reveals that the controller parameter is determined
by the task set on the core. We now analyze the stability of the
core-level utilization control when the controller parameter is

incorrectly configured. First we define γ to be

γ =

∑
Tj∈Xi

cjrj

∑
Tj∈Si

cjrj
(12)

where
∑

Tj∈Si

cjrj is the utilization controller parameter and X i

is the task allocation determined by the processor-level task
consolidation. The transfer function of the closed-loop system
controlled by the controller (6) becomes:

G(z) =
γ

z − (1− γ)
. (13)

From (13), if |1− γ| is less than 1, the system will be stable
since the pole is inside the unit circle in the Z-plane.

The processor-level task consolidation manager will check
task migrations against the derived stability criteria. If the
system would become unstable after the migration, the task
migration will be prohibited.

VI. SYSTEM IMPLEMENTATION

We first introduce the physical testbed used in our experi-
ments. Next we introduce our simulation environment.

A. Physical Testbed

Our testbed is an Intel Xeon X5365 Quad Core processor
with an 8MB on-die L2 cache and 1,333 MHz Front Side Bus.
The processor supports four DVFS levels: 3GHz, 2.67GHz,
2.33GHz, and 2GHz. According to Intel, the processor has
Core 0 and Core 1 fabricated on one die and Core 2 and
Core 3 on a separate die. We must change the DVFS levels
of the 2 cores on each die in order to have a real impact
on the processor power consumption. Therefore, we use this
processor to emulate a dual-core processor that supports a per-
core DVFS. The operating system is a Fedora Core 7 with a
Linux kernel 2.6.23 and a real-time-preempt kernel patch.

The default Linux kernel may migrate real-time tasks by
itself, which can cause deadline misses as the core utilizations
are not guaranteed by the kernel during migration. To disable
task migration from the Linux kernel, we use a standard
system call SCHED SETAFFINITY [6], which is a portable
approach across different platforms. The overhead of the
system call for task migration among cores is less than 40
μs which is acceptable in many real-time embedded systems.
The detailed overhead results are in [30].

We adopt the Mibench benchmarks [15] designed for em-
bedded systems as our tasks. Our experiments run a medium-
sized workload comprised of 10 tasks to run the Mibench
benchmarks. Both cores initially have five periodic tasks with
a total utilization of 0.31. The task parameters such as periods
are configured according to a real real-time application [1].
The tasks on each core are scheduled by the RMS algorithm
[19]. Note that our solution can also be used with other
scheduling approaches, such as EDF, as long as the corre-
sponding schedulable utilization bound is adopted. We use
RMS as an example in this paper because RMS usually has
a smaller runtime overhead in real systems. The deadline of



each task Ti equals its period, 1/ri. The utilization set point
of every core is set to its RMS schedulable utilization bound
[19], i.e., Bi = m(21/m− 1), where m is the number of tasks
on Ci. Since the number of tasks may change according to the
processor-level task consolidation, the set point can be set to
0.69 which is the limit of Bi = m(21/m − 1) when m → ∞.
All tasks meet their deadlines if the desired utilization on every
core is enforced.

We now introduce the implementation details of each com-
ponent in our system architecture.

Utilization Monitor: The utilization monitor uses the
/proc/stat file in Linux to estimate the core utilization in
each sampling period. The /proc/stat file records the number
of jiffies (usually 1ms - 10ms in Linux) when a core is in
user mode, user mode with low priority (nice), system mode,
and when used by the idle task, since the system starts. The
utilization of each task can be calculated based on the number
of jiffies consumed by the task process in each control period.

Core-level Utilization Controller: The controller is imple-
mented as a single-thread process with the highest priority
running on each core. With a control period of 30 second, the
controller periodically reads the core utilization, executes the
control algorithm presented in Section IV-C to compute the
desired core frequency, and sends the new frequency to the
frequency modulator on the core.

Frequency Modulator: We use Intel’s Enhanced SpeedStep
Technology to enforce the new CPU frequency. To the change
core frequency, one needs to install the cpufreq package
and then use the root privilege to write the new frequency
level into the system file. A routine periodically checks this
file and resets the core frequency accordingly. The average
overhead (i.e., transition latency) to change the frequency in
Intel processors is approximately 100μs.

Power Monitor: To measure the power consumption of the
processor, an Agilent 34410A digital multimeter (DMM) is
used with a Fluke i410 current probe to measure the current
running through the 12V power lines that power the processor.
The probe is clamped to the 12V lines and produces a voltage
signal proportional to the current running through the lines
with a coefficient of 1mv/A. The resultant voltage signal is
then measured with the multi-meter. The accuracy of the probe
is 1.5% of reading + 0.5A.
B. Simulation Environment

Our simulation environment is composed of an event-driven
simulator implemented in 3,546 lines of C++ code. The
simulator implements a multi-core real-time system with our
control architecture, utilization monitor, frequency modulator,
and task consolidation manager.

The synthetic real-time applications are randomly generated
with each task set containing 80-640 tasks, where their initial
execution times are randomly generated following a uniform
distribution. The task period of each task is also randomly
generated within a range.

In our simulations, we consider processors with 16, 32, 64,
128, and 256 cores. The power model parameters used in
our simulations are based on the power models of many-core

processors used in [16][8]. For the parameters in the power
model (8), we set αi = 1, βi = 3 and a normalized frequency
is used with Fmax = 1. The normalized maximum frequency-
dependent active power on each core is P i

d = 1. Moreover,
the static power is configured as Ps = 0.01 normalized with
respect to P i

d. According to [16], as feature sizes shrink
below 0.1 micron, P i

ind can become comparable to P i
d in

the near future. Thus, the normalized frequency-independent
active power for one core is configured to be P i

ind = 1. The
power model is implemented using numerical methods.

VII. EVALUATION

In this section, we first compare four heuristics in Section
V-B, then present our empirical results conducted on the
hardware multi-core testbed. To stress test our solution, we
finally describe our simulation results in many-core systems.
A. Baselines

We use three baselines for comparison in this paper. Dy-
namic core scaling is a state-of-the-art algorithm [25], which
adjusts both the core frequencies and number of active cores of
a multi-core system to reduce the dynamic and leakage power
consumption by task migration. The fundamental difference
between Dynamic core scaling and the proposed solution is
that the Dynamic core scaling makes a task migration decision
based on the WCET of the task to be migrated. For systems op-
erating in unpredictable environments, to guarantee the timeli-
ness, the WCETs have to be conservative. The actual execution
time of the task to be migrated is usually much smaller than the
overestimated WCET. In contrast, the proposed solution makes
a task migration decision based on the average CPU utilization,
which can be easily monitored at runtime in a lightweight way.
In addition, Dynamic core scaling uses a chip-wide DVFS
while the proposed solution uses a per-core DVFS, which is
already supported by many microprocessors. We demonstrate
in Section VII-D that the proposed solution outperforms
Dynamic core scaling significantly in terms of power savings.
The second baseline, DVFS-Only, is the frequency scaling loop
proposed in [27]. It relies only on DVFS to throttle the core
frequency to manage the power consumption of a core, subject
to the utilization constraints without turning off any cores.
DVFS-Only has a similar utilization controller design with the
proposed solution, but does not perform task consolidation.
No-Power-Management is a classical open-loop scheduling
solution that partitions the tasks in a static way [19] and the
frequencies of all cores in a multi-core system are fixed to
the maximum frequency level. While No-Power-Management
can initially guarantee the timeliness, it may fail when task
execution times change at runtime and waste energy when the
system is underutilized.

B. Comparison of Different Heuristics

A scalability requirement for a multi-core or many-core
power optimization heuristic is low run-time overhead. In this
experiment, We evaluate four different heuristics presented in
Section V-B in terms of both overhead and performance by
simulations. Different workloads including 16 to 256 tasks are
randomly generated to stress test all heuristics. To estimate the
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Fig. 2. Typical runs of three solutions (Proposed, DVFS-Only, and No-Power-Management) on the hardware testbed. The solutions are activated at the 100th
control period and handle a 20% execution time reduction at the 200th control period.

0.1
1

10
100

1000
10000

100000

16 32 64 128 256
Number of Cores

O
ve

rh
ea

d 
(M

ic
ro

se
c)

(lo
ga

rit
hm

ic
 s

ca
le

)

iFFD FFD BFD MBS

(a) The overhead of four optimization
heuristics

0

50

100

150

200

16 32 64 128 256
Number of Cores

N
om

al
iz

ed
 P

ow
er iFFD FFD BFD MBS

(b) Power consumptions using four
optimization heuristics

Fig. 3. Comparison among the three heuristics

overhead of the heuristics, we measure the execution time of
each heuristic on a 2.5-GHz Intel Core 2 Duo PC with 2-GByte
RAM. To obtain high-resolution measurement, we use Win-
dows API QueryPerformanceCounter. We collect the average
of multiple runs. As shown in Figure 3(a), the overhead of
incremental First-Fit is smallest, while the overhead of MBS
is significantly higher than the others. Figure 3(b) shows that
under realistic workloads, the processor power consumption
under all heuristics is very close. According to the simulations,
we adopt incremental First-Fit for online power reduction in
the following experiments because of its low overhead.

C. Empirical Results on Hardware Testbed

In this experiment, we first disable the proposed solution
from the 1st to the 100th control period. As shown in Figure
2(a), the initial utilizations of Core 1 and Core 2 are both 0.31.
Core utilizations are lower than the RMS bound, resulting
in an undesired underutilized system. We then enable the
proposed solution at the 100th control period. As shown in
Figure 2(a), all tasks on Core 2 are migrated to Core 1. Core
2 becomes idle and is then turned off. As shown in Figure
2(d), the power consumption of the CPU is consequently
reduced by approximately 19%. As shown in Figure 2(a),
at the 200th control period, the execution time of all the
tasks is suddenly decreased by 20%, resulting in a sharp drop
of the utilization of Core 1. This decrease is implemented
by reducing the number of loop iterations in the Mibench
benchmarks. The proposed solution responds to the utilization
drop by dynamically decreasing the core frequency of the
core. Since the settling time of the utilization controller is
just several control periods, the utilization converges quickly
to the RMS bound again. As shown in Figure 2(d), the power

consumption of the CPU is further reduced by approximately
11%. The experiment demonstrates the effectiveness of the
proposed solution with uncertain task execution times.

We then examine the power efficiency of two baselines:
DVFS-Only and No-Power-Management. To make a fair com-
parison, we adopt the same workload and scenario used for
the proposed solution. For DVFS-Only, Figure 2(b) shows
that at the 100 control period the utilization of all the cores
increases because DVFS-Only throttles the frequencies of both
cores to the lowest levels. As a result, Figure 2(e) shows the
processor power drops at the 100th control period. However,
the power consumption is still much higher than that of
the proposed solution. The reason is that DVFS-Only cannot
consolidate tasks to reduce the leakage power consumption
of the processor. At the 200th control period, even though
the execution times of all the tasks are decreased by 20%,
DVFS-Only can only achieve very slightly further power
savings because both the cores are already at their lowest
frequencies. This experiment demonstrates the necessity of
task consolidation. For No-Power-Management, as shown in
Figure 2(c), at the 200th control period, the execution times of
all tasks are decreased by 20%. Since No-Power-Management
does not decrease the core frequencies in response to the lower
workload, Figure 2(f) shows that the processor power is only
slightly reduced and is much higher than that of the proposed
solution. Since all the three solutions do not violate the RMS
schedulable utilization bounds in their entire runs, no deadline
miss is observed in this experiment for any of the solutions.
D. Simulation Results

In this section, we first compare the proposed solution with
Dynamic core scaling on a quad-core system. We then test the
effectiveness of the proposed solution in many-core systems.
We have also performed the evaluation of the proposed solu-
tion in heterogeneous multi-core systems. The results are not
presented due to space limitations but can be found in [13].

1) Comparison with Dynamic Core Scaling: In this section,
we compare the power efficiency of the proposed solution
and Dynamic core scaling in unpredictable environments. The
WCETs of tasks often have to be conservative in unpredictable
environments as the actual execution time may vary across in
a wide range at runtime. The majority of the time, the actual
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Fig. 4. Comparison between the proposed solution and Dynamic core scaling.

execution times can be much smaller than the pessimistic
WCETs. The inverse execution-time factor (ietf) denotes the
ratio of the estimated execution time to the actual execution
time of a periodic task. The greater the ietf is, the more
conservative the estimated execution time of a task. For
Dynamic core scaling, the ietf can be determined by the
predictability of the environment.

In the first experiment, we randomly generate a small scale
task set including 5 tasks in a quad-core system. The ietf of the
tasks is 1.5. Figure 4(a) shows that all tasks are consolidated
onto two cores (Cores 1 and 2) under the proposed solution.
In contrast, Figure 4(b) shows all tasks are consolidated onto
three cores (Cores 1 to 3). The reason is that Dynamic core
scaling relies on WCETs to decide whether or not it migrates
a task. Because of the overestimated WCETs (i.e., ietf=1.5),
Dynamic core scaling may prevent task migrations. Dynamic
core scaling cannot make task migration decisions based on
actual execution times. Otherwise, schedulable bounds may
be violated after migrations and deadline misses occur. In
contrast, the proposed solution relies on the feedback of the
average task CPU utilizations and so tasks can be consolidated
onto fewer cores. Note that when the actual execution time of
a task approaches the WCET, the proposed solution can still
guarantee the timeliness by dynamically enforcing the schedu-
lable utilization bounds. Figure 4(b) also shows that only Core
1 reaches the utilization bound under Dynamic core scaling
due to its assumption of chip-wide DVFS. If the workload is
not perfectly balanced, which is common in a real system,
chip-wide DVFS cannot allow all cores to reach the RMS
bound at the same time, resulting in undesired underutilized
systems and unnecessarily more power consumption. In this
experiment, after the activation at 150s, the normalized power
consumption of the proposed solution is reduced from 8.01
to 3.106, while that of Dynamic core scaling is reduced from
8.01 to 3.587. Dynamic core scaling consumes about 15.5%
more power than the proposed solution. The reason is that
the proposed solution can consolidate tasks to reduce leakage
power and utilize per-core DVFS to save more dynamic power.

We then compare the normalized power consumption of
the proposed solution and Dynamic core scaling when the
ietf varies from 1 to 1.8. Figure 4(c) shows when the ietf
is 1, which means the the actual execution times are equal to
the WCETs, the normalized power consumption of Dynamic
core scaling is approximately the same as that of the proposed
solution. The slight difference is because Dynamic core scaling
does not utilize per-core DVFS. When the ietf increases from

1 to 1.2, the normalized power consumption of Dynamic core
scaling increases to approximately 15.5% more than that of
the proposed solution. The reason is that when the ietf is 1,
both the solutions consolidate tasks onto two cores. When the
task WCETs increase to 1.2 times of the actual execution
times (i.e., ietf=1.2), Dynamic core scaling uses three core
while the proposed solution still uses only two. When the
ietf increases from 1.2 to 1.6, the difference between the
two solutions only changes marginally because Dynamic core
scaling still utilizes three cores in this case. However, when
the ietf further increases to 1.8, Dynamic core scaling begins
to use all four cores. As a result, it consumes 39.6% more
power than the proposed solution. Since both the proposed
solution and Dynamic core scaling can enforce the CPU
utilization dynamically on each core, the two solutions both
achieve a zero deadline miss ratio in all runs. This experiment
demonstrates that the proposed solution significantly improves
the power efficiency of real-time systems in unpredictable
environments.

2) Many-Core Systems: In this set of experiments, we
evaluate the proposed solution in four many-core systems with
16, 32, 64, and 128 cores. The workload of each many-core
system is randomly generated using the tool introduced in
Section VI-B.

We first test the real-time performance under execution time
uncertainty between the proposed solution and No-Power-
Management, which is an open-loop solution and cannot
adapt to runtime execution time variations. The utilization
set points for all the cores is 0.69 (i.e., the RMS bound).
In the middle of each run, the execution times of all the
tasks on C1 are increased by 100%. As shown in Figure 5(a),
the proposed solution effectively controls the CPU utilization
of C1 back to the set point and so, on average, has a zero
steady state error with a maximal deviation less than 0.01.
In contrast, the average utilization of C1 scheduled by No-
Power-Management is much higher than the set point due
to the significant execution time increase at runtime. Figure
5(b) plots the deadline miss ratios of the two solutions. The
deadline miss ratio is calculated as the total misses of all the
tasks divided by the total number of released jobs. As shown in
Figure 5(b), the deadline miss ratio of the proposed solution is
much lower than that of No-Power-Management. The reason
is that the utilization of C1 under the proposed solution is
controlled below the schedulable bound the majority of the
time, except during the short time interval that the controller
takes to control the utilization back to the set point after
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the execution time increase. The temporary violation of the
utilization bound results in some deadline misses. Since No-
Power-Management is an open-loop solution and cannot adapt
to run-time execution time variations, thus the utilization
bound is violated significantly due to the execution times
increases.

We then conduct another set of experiments to compare the
proposed solution with No-Power-Management and DVFS-
Only in terms of power consumption, without significant
execution time variations tested in the first set of experiments.
The proposed solution and DVFS-Only are activated at the
beginning of each run. Figure 5(c) plots the normalized power
consumption of the three solutions. The proposed solution has
approximately 69% and 45% more power savings than No-
Power-Management and DVFS-Only, respectively, when the
number of cores is 128. The experiments demonstrate that
the proposed solution can lead to significantly more power
savings than No-Power-Management and DVFS-Only, while
no deadline misses occur for all the three solutions.

VIII. CONCLUSIONS

Existing power/energy-efficient scheduling algorithms focus
heavily on open-loop optimization solutions. As a result,
they may have degraded run-time performance in terms of
power/energy efficiency and real-time guarantees when they
are applied to real-time embedded systems with uncertain
execution times. In this paper, we have presented a novel
online solution that integrates core-level feedback control with
a processor-level optimization strategy to minimize both the
dynamic and leakage power consumption of a multi-core real-
time embedded system. Our solution monitors the utilization
of each CPU core in the system and dynamically responds to
unpredictable execution time variations by conducting per-core
DVFS. Our solution then takes advantage of the small over-
head of task migration in multi-core processors with shared
L2 caches to perform task consolidation on a longer timescale
and shuts down unused cores for maximized power savings.
Both empirical results on a hardware multi-core testbed with
the Mibench benchmarks and simulation results in many-core
systems show that our solution provides the desired real-time
guarantees while achieving more power savings than state-of-
the-art algorithms. REFERENCES
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