
Towards a Compositional Multi-Modal Framework

for Adaptive Cyber-Physical Systems
Linh T.X. Phan Insup Lee

University of Pennsylvania

{linhphan,lee}@cis.upenn.edu

Abstract—Among the key characteristics of cyber-physical
systems are the ability to adapt to changes during operation,
the multidimensional complexity of multi-functionality and the
underlying heterogeneous distributed architecture, as well as
resource use efficiency. In this paper, we propose a compositional
multi-modal approach to modeling, analyzing, and designing such
systems. We introduce a general framework for modeling and
compositional analysis of multi-mode systems on a distributed
architecture that facilitates adaptivity, efficient use of resources,
and incremental integration. We present some preliminary re-
sults, and we describe some of the remaining challenges and
future directions.

I. INTRODUCTION

An essential yet challenging characteristic of cyber-physical

systems is their ability to respond and adapt quickly to changes

during operation, such as hardware/software defects, resource

changes, and non-continual feature usage. For example, an

unmanned aircraft avionics system must adapt its configuration

to collisions or aircraft system failures in order to allow

continued safe operation, and an adaptive cruise control system

must adapt its operating speed according to the current road

condition in order to avoid an accident. Such adaptive behav-

iors can naturally be captured using a multi-mode modeling

formalism. In this formalism, the system operates in multiple

modes, which correspond to system configurations or modes of

operation. Each mode can be characterized by a unique set of

tasks, resource configurations, and scheduling policies. Mode

switches, or mode changes, reflect changes in the system or

in the environment, which can be time-triggered (e.g., by a

periodic timer interrupt) or event-triggered (e.g., by a detected

collision). For instance, an adaptive cruise control (ACC)

system in a car can be modeled as a multi-mode system that

consists of two modes (among others): (i) the Speed Control

mode, in which the ACC system sets the car’s speed to a

predefined speed value, and (ii) the Time Gap Control mode,

in which the ACC system dynamically adjusts the car’s speed

to maintain a minimum clearance distance between the car and

other leading vehicles. The system switches between these two

modes depending on whether there are slower-moving vehicles

in front of the car [21].

However, applications of multi-mode extend beyond a mod-

eling and design technique for adaptivity. Recent advances

in microprocessor technology have allowed embedded sys-

tems manufacturers to pack more functionality into a single

chip, thereby reducing device cost. A modern smartphone

is now capable of running a host of applications, such as

GPS localization, video decoding, voice processing, and email

and web access. Inherently, such a system is required to

operate in multiple modes; in each mode, a subset of tasks

of these applications is executed, and mode switches may

be caused by events such as an incoming phone call or an

activation of the GPS algorithm. Although it is possible to

model such a system using the traditional unimodal approach,

the unimodal abstraction of the above multi-modal behavior

does not only result in significant pessimism and resource

over-dimensioning but may potentially lead to invalid analysis

results [18]. Multi-mode modeling and analysis techniques

provide a tighter abstraction of the system, thus improving

resource use efficiency.

In fact, multi-modal behavior manifests itself across all

layers of cyber-physical systems, ranging from individual tasks

(e.g., control tasks in switched systems), to applications (e.g.,

an adaptive cruise control), processing nodes (e.g., a dynamic

voltage scaling (DVS) server), and entire heterogeneous archi-

tectures (e.g., a fault-tolerant system where each mode consists

of a set of active nodes and a network configuration). This

characteristic makes multi-mode an attractive approach for

modeling, analyzing, and designing cyber-physical systems –

one that not only reduces the abstraction overheads incurred

by the conventional unimodal approach but is also necessary

to achieve adaptability and resource use efficiency.

In this paper, we propose a compositional multi-modal

framework for adaptive cyber-physical systems that combines

the above benefits of a multi-mode approach with the ben-

efits of a compositional analysis, such as a lower analytical

complexity. In this framework, a system is modeled as sev-

eral multi-mode components, and its compositional analysis

is done by means of multi-mode interfaces and interface

composition. Such a framework inherently requires a new set

of models and theories, and inevitably introduces a host of

new challenges. We present preliminary solutions for some of

these challenges, and we highlight various open issues and

promising future directions.

II. RELATED WORK

At the task level, several task models and schedulability tech-

niques have been developed to support variable computation

times or execution periods, which is a type of mode change

(e.g., [3], [5], [6], [11], [19]). At the system level, multi-

modal operation is usually modeled by an automaton, whose

states represent operating modes of the system [10], [14], [18],

[24], [26]. Multi-mode techniques have also been explored

at the architecture level, where a mode corresponds to a

configuration. Each mode is a set of active resources, a local

schedule on each resource, and a network configuration [16].

A multi-mode approach has also been used to achieve efficient

use of resources; for instance, dynamic resource allocation

techniques, such as adaptive servers [1], [2], [8], [9], have been

developed for this purpose. Similarly, energy-efficient task

allocation techniques that consider mode execution patterns

have been proposed (e.g., [12], [13], [23]).

The analysis techniques in the above work have two main

themes: (i) given a multi-mode model, compute performance-

related metrics such as end-to-end delay, maximum buffer

requirement, or schedulability [18]; and (ii) compute suitable

parameters for all tasks, so that the system is schedulable [24].

None of them addresses the compositional analysis of multi-

mode systems, however. Recently, we have developed a com-

positional analysis technique for multi-mode systems that are

executed on a single resource [20]. The framework proposed

here extends this technique to a distributed setting.

Another major line of multi-mode research in the real-

time systems domain is to design mode change protocols.

During a mode transition, the system may need to process

both pending tasks of the current mode and incoming tasks

of the new mode. This co-execution could lead to a temporal

overload that causes some tasks to miss their deadlines. A

mode change protocol specifies how tasks are executed during

a mode transition to avoid overloading the new mode, thereby

guaranteeing schedulability during the transition. Different

protocols have been developed (see e.g., [4], [14], [15],

[17], [25]–[28]) and classified in [22]. Their sole objective

is to ensure schedulability; hence, they must be significantly

extended to be applicable in our setting. In our prior work, we

have developed a mode change protocol model that generalizes

these existing protocols, as well as an associated technique

for checking whether a protocol is feasible for a multi-mode

system [21]. The framework proposed in this paper uses these

mode change protocol models and analysis techniques as a

basic building block.

III. A COMPOSITIONAL MULTI-MODAL FRAMEWORK

In this section, we describe a general framework for the

compositional analysis of multi-mode systems. The setting we

consider consists of a set of multi-mode applications executing

on a distributed heterogeneous platform as described below.

A. System Description

Each application consists of a finite set of disjoint modes,

where each mode is characterized by a finite set of tasks that

process input streams and produce output streams. Each task

has an input buffer that stores its input stream and an output

buffer that stores its output stream. Mode switches may be

triggered by a timing constraint, an external event from the

environment, and/or a condition on the state of the buffers.

Each application is associated with a mode change requirement

that gives the constraints on the behavior of the task execution

during a mode switch. These applications are mapped onto an

architectural platform according to a given task mapping.

The platform consists of an interconnected set of distributed

heterogeneous resources, where each resource is either a

processing element (e.g., an ECU) or a shared communication

network (e.g., a CAN bus). To achieve timing separation,

each resource schedules the mapped (tasks of the) applications

in a hierarchical manner, forming a tree of components as

illustrated in Fig. 2. In this figure, each leaf component Ci,j
contains the subset of tasks of the application i that are mapped

on the resource j. Each intermediate component represents

a composition of the child components. Each component

in the tree has a local scheduling policy under which its

subcomponents (tasks) are scheduled.

We have two objectives in this setting: (1) to analyze the

performance-related metrics (e.g., schedulability, end-to-end

delay, buffer requirements) of the applications, and (2) to

dimension the resource requirements for the platform to meet

a given set of performance-related constraints. To achieve

efficiency and to support open systems, the methods we

aim to develop should preserve compositionality and enable

incremental analysis.

B. Multi-Mode Modeling and Compositional Analysis

Fig. 1 shows the basic blocks in the component modeling

stage. As shown in the figure, we first model each application

Appi as a multi-mode automaton MMAi and the mode-change

requirements as a mode change protocol Pi. The Model Ex-

traction block takes as inputs a multi-mode automaton MMAi

and the task mapping, and it extracts for each resource j a sub-

automaton A
j
i . The sub-automaton A

j
i is made of the modes

of MMAi that contain only the tasks that are mapped onto the

resource j.

multi-mode application Appi

Multi-mode automaton MMAi

mode change constraints of Appi

Mode change protocol Pi

task mapping Model Extraction

. . . 〈Ai , Pi 〉
N〈Ai , Pi 〉

1 〈Ai , Pi 〉
2

on resource 1 on resource 2 on resource N

leaf components

Fig. 1. Modeling multi-mode components.

The extracted sub-automatons A
j
1

to Aj
mj

of the applications

that are scheduled on each resource j, together with the

respective mode change protocols P1 to Pmj
, constitute the

leaf components in the scheduling hierarchy of the resource j.

The complete system model is a composition of components

C1, C2, . . . , CN representing the N resources communicating

via shared buffers, where each component Cj is again a

hierarchical composition of the components C1,j =
〈

A
j
1
, P1

〉

,

C2,j =
〈

A
j
2
, P2

〉

, . . . , and Cmj,j =
〈

Aj
mj

, Pmj

〉

. Fig. 2 gives

an example of a component Cj , corresponding to resource j,

FP

Resource j

EDF

〈A1 , P1 〉
j

〈A2 , P2 〉
j

FP

〈A3 , P3 〉
j

〈A4 , P4 〉
j

Component Cj

C1, j C2, j C3, j C4, j

C12, j C34, j

Fig. 2. An example component of a resource j.

that is composed of four multi-mode applications scheduled

hierarchically.

The compositional analysis of the obtained system model

is done by means of component abstractions (interfaces) and

interface composition. As described above, a component in

our setting can be a multi-mode automaton of an application’s

tasks mapped on a resource and its associated change protocol

(e.g., C1,j), a hierarchical composition of different multi-mode

components that share the same resource (e.g., Cj), or a

composition of multiple such hierarchical components (e.g.,

composition of C1 and C2). We distinguish two types of com-

position: (i) hierarchical composition, which is a composition

of different components sharing the same resource under a

scheduling policy (e.g., composition of C1,j and C2,j under

EDF scheduling in Fig. 2); and (ii) I/O composition, which

is a composition of different components communicating via

shared buffers (e.g., composition of two connected components

Cj and Ck, where the output streams from Cj are the input

streams to Ck).

An interface of a component encapsulates the total resource

requirement of the component’s tasks and the arrival patterns

of the component’s input and output streams. A composition of

the interfaces of components C and C′ computes a composed

interface from the two interfaces; this composed interface

captures the resource requirements and the arrival functions of

the input and output streams of the composition of C and C′.

There are two types of interface composition that correspond

to the two types of component composition, i.e., hierarchical

composition under a scheduling policy and I/O composition.

We analyze the system component-wise as illustrated in

Fig. 3. At each component Cj , we first abstract each leaf com-

ponent Ci,j of the scheduling hierarchy as an interface INFi,j .

We then hierarchically compose these interfaces bottom-up

until we reach the root of the tree, where we obtain an

interface INFj of the component Cj . The interface INF of

the complete system is then obtained by composing these

computed interfaces INFj using I/O interface composition.

By examining the system interface INF, we can then derive

various performance-related properties of the system with

respect to a priori resource configuration (i.e., the processing

speeds of the processing elements and network communication

INF34, j

〈A1 , P1〉
j

〈A2 , P2 〉
j

abstraction

INF1, j INF2, j

hierarchical composition

abstraction

〈A3 , P3〉
j

〈A4 , P4 〉
j

abstraction

INF3, j INF4, j

hierarchical composition

abstraction

INF12, j

hierarchical composition

INFj

C1, j C2, j
C3, j C4, j

INF1 INFN
.

I/O composition

INF

C1 CN

Cj

Fig. 3. Compositional analysis via interface abstraction and composition.

bandwidths). Likewise, the resource requirements exposed on

the interface of the system also allow us to dimension the

resources required by the applications.

In the next section, we describe the basic blocks of the

modeling and compositional analysis, including models for

multi-mode components, mode change protocols, and multi-

mode interfaces. We then briefly describe a method for inter-

face generation and interface composition that generalizes our

preliminary results in [18], [20] and [21].

IV. MULTI-MODE MODELS AND INTERFACE TECHNIQUES

A. Multi-Mode Component Model

Our multi-mode component model generalizes the multi-

mode component model developed in [20] and [21] to

enable composition with external components in a distributed

architecture. Towards this, we extend the task model in [21]

to include an output buffer and bounds on the output

stream. Unlike in [20] where a fixed mode change semantics

is enforced as part of the semantics of the multi-mode

automaton, in this framework, we separate the semantics of

the multi-mode automaton from the mode change semantics

to allow for any general mode change behavior. Thus, a

multi-mode component is a pair of multi-mode automaton

and an associated mode change protocol.

Tasks and input events. The tasks of the applications process

input event streams and produce output event streams. Each

task has a finite input buffer and a finite output buffer that store

the input and output event stream, respectively. Whenever an

event arrives at the buffer of a task, an instance of the task is

released to process the event. Events in the same buffer are

processed sequentially in the order of their arrivals. Each task

T is characterized by a tuple T =
(

B,B′, E,D, α, α′, π
)

,

where B is the input buffer, B′ the output buffer, E the

worst-case execution demand, D the relative deadline, α the

arrival function of the input stream, α′ the arrival function of

the output stream, and π an additional scheduling parameter.

Examples of the scheduling parameter π include the priority

of a task under a Fixed Priority (FP) scheduling policy or a

slot size under TDMA scheduling policy. An example of a

task and its parameters is shown in Fig. 4.

T

B
input

events

task

output

events

T = (B, B′, E, D, α, α′, π)

input buffer

B′

output buffer

Fig. 4. A task and its parameters.

The arrival function α of an event stream is defined as

in the standard Real-Time Calculus technique [7]. That is,

α = (αu, αl), where αu(∆) and αl(∆) specify the maximum

and minimum number of events that can arrive over any time

interval of length ∆, respectively, for all ∆ ∈ N. The arrival

function α of T captures all the acceptable arrival patterns of

the input events of T , which are also the release patterns of

the instances of T .

Similarly, the output arrival function α′ captures the

bounds on the arrival patterns of the output stream after being

processed by T . Given an input arrival function α, one can

compute the corresponding output arrival function α′ based

on the timing property of T and the resource allocated to T ,

and vice versa [7]. The processing requirement of an event in

the buffer of T is described in the same manner as in [21].

Resource. The availability of a resource (e.g., processing

element or a communication network) is modeled in the

same way as in [20], i.e., by a service function β(∆)
that specifies the minimum number of execution units

(e.g., processor cycles, communication bandwidth) that can

be provided by the resource over any time interval of length ∆.

Multi-mode automata. The behavior of a multi-mode ap-

plication mapped on a resource is modeled by a multi-mode

automaton, which is a finite state machine whose states rep-

resent operating modes and whose transitions represent mode

changes. Each state of the automaton specifies the set of tasks

that are active and the scheduling policy when the system

is executing at the corresponding mode. The guard associated

with a transition specifies a mode change triggering event. The

multi-mode automaton model is the same model used in [20],

except that it also includes not only a set of input buffers B
of the tasks in the automaton but also the set of output buffers

B′.

Fig. 5 shows the multi-mode automaton of an application

consisting of four tasks T1, T2, T
′

2
and T3 that process in-

put events from the buffers B1, B2 and B3, where T1 =
(

B1, B
′

1
, 2, 5, α1, α

′

1
, 1
)

, T2 =
(

B2, B
′

2
, 3, 7, α2, α

′

2
, 2
)

, T ′

2
=

(

B2, B
′

2, 3, 14, α2, α
′

2, 2
)

and T3 =
(

B3, B
′

4, 4, 20, α3, α
′

3, 0
)

.

Here, T ′

2
is a modified task of T2.

As shown in the figure, the system is initially in mode

M1, in which T1 and T2 are active and scheduled under FP,

M2 M3

[5, 35][10, 30]
a

a

bl(B2) ≥ 15 ∧ bl(B3) ≤ 2

bl(B2)≥ 15

M1

[0, 30]

time guard
external event

buffer guard

M1 = 〈{T1 , T2 }, FP 〉

M2 = 〈{T1 , T2 }, FP 〉

M3 = 〈{T1 , T2 , T3}, EDF〉

′

′

[5, 30]

invariant

Fig. 5. A multi-mode automaton.

and in which T1 has a higher priority than T2. When the

system is in M1 and the input buffer B2 contains more than

15 events (denoted by “bl(B2) ≥ 15”), the system will move

to mode M2. In M2, the task T2 is changed into T ′

2, which

has a deadline that is twice that of T2. The unchanged task

T1 and the modified task T ′

2 are again scheduled under FP

with the same priority order. The system will stay in M2 for

at least 10 and at most 30 time units before it moves back

to M1. However, if the signal a arrives during this time, the

system moves to M3, in which the task T3 becomes active

and will be scheduled together with T ′

1
and T2 under EDF.

The rest can be explained accordingly.

Mode change protocol. A mode change protocol describes

the execution behavior of a multi-mode model during

a transition from one mode to another, i.e., from the

instant a transition is enabled until the instant all the new

attributes associated with the destination mode are in effect.

In this paper, the mode change behavior of a multi-mode

application is captured by a mode change protocol model [21].

Multi-mode components. A multi-mode component is a

pair 〈A,P 〉, where A is the multi-mode automaton of the

application and P is its associated mode change protocol. For

example, the multi-mode component C1,j in Fig. 2 is made of

the multi-mode automaton A
j
1

and the mode change protocol

P1. A composition of two multi-mode components 〈A1, P1〉
and 〈A2, P2〉 is a multi-mode component 〈A,P 〉, where (i) A

is the composition of A1 and A2, and (ii) P is the composition

of P1 and P2. A composition of two multi-mode interfaces and

of two mode change protocols can be computed using the same

composition technique as in [20] and in [21], respectively. We

require that P is always feasible for A for any component

〈A,P 〉, i.e., the mode change behavior of A enforced by P

guarantees schedulability and no overflow constraint (which

can be verified using the feasibility analysis technique in [21]).

B. Multi-Mode Interfaces

An interface of a component encapsulates the total resource

requirement of the component’s tasks, as well as the bounds

on the arrival patterns of the component’s input and output

streams. The interface of a multi-mode component C can be

captured by a multi-mode resource interface, which is a finite

state machine in which each state is augmented with (i) a

minimum service function that is demanded by C, (ii) an

arrival function of each input stream to the component, and

(iii) an arrival function of each output stream generated by

the component. In addition, the interface also contains a set of

input buffers and output buffers that are connected to external

components. The different service functions associated with

different states of the interface represent the different resource

requirements of C when it is in different modes (or sets of

modes). Similarly, the input/output arrival functions associated

with each state represent different arrival patterns of the in-

coming/outgoing streams to/from the component. We note that

the multi-mode interfaces proposed here extend the interfaces

proposed in [20] to include information about the input and

output streams, which is needed for composing interfaces of

components that communicate via shared buffers.

Definition 1 (Multi-mode Resource Interface). A resource

interface of a multi-mode component C = 〈A,P 〉 with multi-

mode automaton A and mode change protocol P is a finite

state machine INF(C) = (S, sin,Σ,R, β,B,B′,Arr,Arr′) where

• S is a finite set of states, each of which characterizes the

resource requirement of one or more modes in A.

• sin ∈ S is the initial state.

• Σ is a set of external signals.

• R ⊆ S × Σ × INT × S is a set of transitions. Each

transition tr = (s, a, [L,U], s′) in R represents a change

in the resource requirement of the component (i.e., from

β(s) to β(s′)), which is triggered by a signal a and a

time interval [L,U] during which the transition can be

enabled.

• β is a service mapping, which specifies for each state

s ∈ S a minimum service function β(s) that must be

guaranteed at s for A to be schedulable.

• B is the set of input buffers of A that store input streams

from external components.

• B′ is the set of output buffers of A that store output

streams to external components.

• Arr is the input arrival mapping, which specifies for each

state s ∈ S and each input buffer b ∈ B an arrival

function Arr(s, b) that bounds the arrival patterns of the

incoming stream to b when the system is at s.

• Arr
′

is the output arrival mapping, which specifies for

each state s ∈ S and each output buffer b′ ∈ B′ an arrival

function Arr′(s, b′) that bounds the arrival patterns of the

outgoing stream to b′ when the system is at s.

All transitions in R are instantaneous, and all states in S are

urgent.

C. Interface Generation

A resource interface INF(C) of a multi-mode component

C = 〈A,P 〉 can be computed by first computing the behavioral

automaton of A with respect to protocol P using the technique

in [21] and applying the interface generation for the the be-

havioral automaton as outlined in [20]. The only addition here

is the computation of the input and output arrival mappings.

We note that by following the technique in [20], each state

s of the interface corresponds to a set of modes in C, denoted

by Ms. For any given b ∈ B, let T be the task in C whose

input buffer is b. Then, for all state s of the interface, Arr(s, b)

is the envelope of all input arrival functions of T at the modes

in Ms. That is, Arr(s, b) = (αu
max

, αl
min

), where αu
max

is the

maximum of all upper input arrival functions αu
T,m and αl

min

is the minimum of all lower input arrival functions αl
T,m of

T at mode m for all m ∈ Ms.

Similarly, b′ ∈ B, let T ′ be the task in C whose output

buffer is b′. Then, Arr(s, b′) is the envelope of all output arrival

functions of T ′ at the modes in Ms. The output arrival function

of a task T at a mode in C can be computed from its input

arrival function by exploring the behavioral automaton of A

with respect to P in the same manner as done in [18]. The

output function can be represented symbolically based on the

variable input function, if the input function is unknown.

D. Interface Composition

Let INF1 = (S1, sin1,Σ1,R1, β1,B1,B
′

1
,Arr1,Arr

′

1
) and

INF2 = (S2, sin2,Σ2,R2, β2,B2,B
′

2,Arr2,Arr
′

2) be two multi-

mode interfaces.

The hierarchical composition of INF1 and INF2 that share

the same resource under a scheduling policy SC is the interface

INFSC = (S, sin,Σ,R, β,B,B′,Arr,Arr′) where

• S ⊆ S1 × S2 is the set of reachable states (with respect

to R).

• sin =
(

sin1, sin2
)

is the initial state of INF.

• Σ = Σ1 ∪ Σ2 is the set of service change signals.

• R ⊆ S × Σ × INT × S is the transition relation, which

is defined to be the same as in the interface composition

in [20].

• β is the service function associated with the states in S,

defined by: For all s = (s1, s2) ∈ S,

β(s) =

{

β1(s1) + β2(s2), if SC is EDF

Serv
(

β1(s1), β2(s2)
)

, if SC is FP

where Serv(f, g) = f(∆ − λ) + g(∆ − λ) where λ =
sup

{

ǫ | f(∆− ǫ) = f(∆)
}

.

• B = (B1 ∪ B2)\(B
′

1 ∪ B′

2) is the set of input buffers.

• B′ = (B′

1
∪ B′

2
)\(B1 ∪ B2) is the set of output buffers.

• Arr is the input arrival mapping, where Arr(s, b) =
Arr1(s1, b) if b ∈ B1 and Arr(s, b) = Arr2(s2, b) if b ∈ B2

for all s = (s1, s2) ∈ S.

• Arr′ is the output arrival mapping, where Arr′(s, b′) =
Arr1(s1, b

′) if b′ ∈ B′

1 and Arr(s, b) = Arr2(s2, b
′) if

b′ ∈ B′

2
for all s = (s1, s2) ∈ S.

The I/O composition of INF1 and INF2 that communicate

via shared input/output buffers is the interface INFI/O =
(S, sin,Σ,R, β,B,B′,Arr,Arr′), which is defined the same

as INFSC, except that the service function β is given by

β(s) =
(

β1(s1), β2(s2)
)

for all s = (s1, s2) ∈ S.

Two interfaces INF1 and INF2 are compatible iff for all s =
(s1, s2) ∈ S: (i) for all b ∈ B′

1∩B2, Arr′1(s1, b) |= Arr2(s2, b),
and (ii) for all b ∈ B′

2
∩B1, Arr′

2
(s2, b) |= Arr1(s1, b). We say

that α1 |= α2 iff αu
1
≤ αu

2
and αl

1
≥ αl

2
where α1 = (αu

1
, αl

1
)

and α2 = (αu
2 , α

l
2). We assume that interface compositions

are only defined for compatible interfaces.

V. DISCUSSION

In this paper, we introduce an approach towards a composi-

tional multi-modal framework for modeling, analyzing, and

designing of adaptive cyber-physical systems. Since funda-

mental principles of multi-modality co-exist in control sys-

tems, referred to as switched systems, such a multi-modal

approach can serve as a basis for the co-design of distributed

embedded architectures and adaptive controllers for cyber-

physical systems. We outline the key elements and preliminary

technical results for realizing this compositional multi-modal

framework. In this section, we highlight some of the open

issues and future directions.

A key challenge inherent in any compositional analysis

framework is how to balance the trade-off between interface’s

complexity and interface’s accuracy, which is made more

difficult in the context of multi-mode systems. The multi-mode

interface techniques presented in Section IV allow for the

detection of incompatibilities in communication and resource

use of components in a composite system during interface

composition, thereby reducing abstraction overhead. It can be

observed, however, that the number of states in the interface

composition of sub-interfaces in the worst-case is proportional

to the product of the numbers of states of the sub-interfaces.

As a result, the interface composition’s complexity increases

as the number of modes within components and the number

of components increase. An opportunity here is to explore

existing automata abstraction techniques in abstracting similar

service functions (representing resource requirement) and sim-

ilar states/transitions that exhibit similar timing behaviors to

achieve more succinct interfaces without sacrificing accuracy.

The interface generation described in Section IV-C is based

on the approach in [20], which assumes that all tasks within

a multi-mode automaton are independent. As such, the al-

gorithm needs to be modified to incorporate the possible

data dependencies between different tasks of the multi-mode

automaton that share input/output buffers. One approach is to

first compute the output arrival function of a preceding task

and substitute it as input to a dependent task. A challenge

here is to ensure that the mode-change effect propagated from

one task to another converges after a (small) finite number of

steps.

We note also that the interface generation in [20] assumes

that all input arrival functions of the component’s tasks are

known a priori, which may not hold in a distributed setting. For

example, consider a setting as illustrated in Fig. 3 where the

component Cj represents a communication bus that transmits

output messages from component C1 to component CN . In

this case, the input functions of the messages to Cj are

often not specified but computed based on the generating

component C1. Consequently, the interface composition either

needs to follow the data flow or the composed interface

has to be represented symbolically based on the variable

input functions of the underlying components. In the former

case, interface composition is not associative, which makes

incremental analysis difficult. In the latter case, the interface

inherently becomes complex and a closed-form solution for

the function β associated with each state of the interface is

needed (as an alternative to the current computation using an

iterative procedure [20]).

Lastly, the composition analysis presented in this paper

as well as all existing multi-mode results have been limited

to uniprocessor processing elements and EDF/FP scheduling

policies. It would be interesting yet challenging to extend the

interface theories to multi-core settings and more complex

communication mechanisms such as the FlexRay in automo-

tive architectures.

REFERENCES

[1] L. Abeni and G. Buttazzo. Adaptive bandwidth reservation for multime-
dia computing. In Proc. of the International Conference on Real-Time

Computing Systems and Applications (RTCSA), 1999.
[2] L. Abeni and G. Buttazzo. Hierarchical QoS management for time

sensitive applications. In Proc. of the IEEE Real-Time Technology and

Applications Symposium (RTAS), 2001.
[3] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES:

a tool for schedulability analysis and code generation of real-time
systems. In Proc. of the International Conference on Formal Modeling

and Analysis of Timed Systems, 2003.
[4] D. Bertrand, A.-M. Déplanche, S. Faucou, and O. H. Roux. A

study of the AADL mode change protocol. In Proc. of the IEEE

International Conference on the Engineering of Complex Computer

Systems (ICECCS), 2008.
[5] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive

rate control. In Proc. of the IEEE Real-Time Systems Symposium (RTSS),
1999.

[6] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling
for flexible workload management. IEEE Transactions on Computers,
51(3):289–302, 2002.

[7] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system designs.
In Proc. of the 2003 Design, Automation and Test in Europe Conference

and Exposition (DATE), 2003.
[8] S. Craciunas, C. Kirsch, H. Payer, H. Rock, and A. Sokolova. Pro-

grammable temporal isolation through variable-bandwidth servers. In
Proc. of the IEEE International Symposium on Industrial Embedded

Systems (SIES), 2009.
[9] A. B. de Oliveira, E. Camponogara, and G. Lima. Dynamic recongu-

ration in reservation-based scheduling: An optimization approach. In
Proc. of the IEEE Real-Time Technology and Applications Symposium

(RTAS), 2009.
[10] P. Feiler, B. Lewis, and S. Vestal. The SAE AADL standard: A basis

for model-based architecture-driven embedded systems engineering. In
Workshop on Model-Driven Embedded Systems, 2003.

[11] S. Goddard and X. Liu. A variable rate execution model. In Proc. of the
Euromicro Conference on Real-Time Systems (ECRTS), pages 135–143,
2004.

[12] L. Huang and Q. Xu. Energy-efficient task allocation and scheduling
for multi-mode MPSoCs under lifetime reliability constraint. In Proc. of
the Design, Automation Test in Europe Conference Exhibition (DATE),
2010.

[13] V. Kianzad and S. S. Bhattacharyya. CHARMED: A multi-objective co-
synthesis framework for multi-mode embedded systems. In Proc. of the

15th IEEE International Conference on Application-Specific Systems,

Architectures and Processors (ASAP), 2004.
[14] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific

construct for the development of safe critical systems. Science of

Computer Programming, 46(3):219–254, 2003.
[15] P. Martins and A. Burns. On the meaning of modes in uniprocessor

real-time systems. In SAC, pages 324–325, 2008.
[16] M. Mitzlaff, R. Kapitza, and W. Schröder-Preikschat. Enabling mode

changes in a distributed automotive system. In Proc. of the 1st Workshop

on Critical Automotive applications: Robustness and Safety, 2010.
[17] P. Pedro and A. Burns. Schedulability analysis for mode changes in

flexible real-time systems. In Proc. of the Euromicro Conference on

Real-Time Systems (ECRTS), pages 172–179, 1998.
[18] L. Phan, S. Chakraborty, and I. Lee. Timing analysis of mixed

time/event-triggered multi-mode systems. In Proc. of the IEEE Real-

Time Systems Symposium (RTSS), 2009.
[19] L. Phan, S. Chakraborty, and P. Thiagarajan. A multi-mode real-time

calculus. In Proc. of the IEEE Real-Time Systems Symposium (RTSS),
2008.

[20] L. Phan, I. Lee, and O. Sokolsky. Compositional analysis of multi-mode
systems. In Proc. of the Euromicro Conference on Real-Time Systems

(ECRTS), 2010.
[21] L. Phan, I. Lee, and O. Sokolsky. A formal semantic framework for

multi-mode systems. In Proc. of the IEEE Real-Time Technology and

Applications Symposium (RTAS), 2011.
[22] J. Real and A. Crespo. Mode change protocols for real-time systems: A

survey and a new proposal. Real-Time Systems, 26(2):161–197, 2004.
[23] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Cosynthesis of energy-

efficient multimode embedded systems with consideration of mode-
execution probabilities. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(2):153–169, 2005.

[24] Y. Shin, D. Kim, and K. Choi. Schedulability-driven performance
analysis of multiple mode embedded real-time systems. In Proc. of

the 37th Design Automation Conference (DAC), 2000.
[25] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable mode changes in

real-time systems with fixed priority or EDF scheduling. In Proc. of the

2009 Design, Automation and Test in Europe Conference and Exposition
(DATE), 2009.

[26] J.-P. Talpin, C. Brunette, T. Gautier, and A. Gamatié. Polychronous
mode automata. In Proc. of the International Conference on Embedded

Software (EMSOFT), pages 83–92, 2006.
[27] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority

pre-emptively scheduled systems. In Proc. of the IEEE Real-Time

Systems Symposium, 1992.
[28] M. G. Valls, A. Alonso, and J. A. de la Puente. Mode change protocols

for predictable contract-based resource management in embedded mul-
timedia systems. In Proc. of the International Conference on Embedded

Software and Systems (EMSOFT), 2009.

	Introduction
	Related Work
	A Compositional Multi-modal Framework
	System Description
	Multi-Mode Modeling and Compositional Analysis

	Multi-Mode Models and Interface Techniques
	Multi-Mode Component Model
	Multi-Mode Interfaces
	Interface Generation
	Interface Composition

	Discussion
	References

