

Resource Allocation of Security-Critical Tasks with
Statistically Guaranteed Energy Constraint

Wei Jiang1,3 Ke Jiang2 Yue Ma1

1School of Computer Science and Engineering, University of Electronic Science and Technology of China
2
Department of Computer and Information Science, Linköping University

3
Department of Informatics and Mathematical Modeling, Technical University of Denmark

Email: weijiang@uestc.edu.cn, ke.jiang@liu.se, yue_ma_880131@hotmail.com

ABSTRACT—In this paper, we are interested in resource
allocation for energy constrained and security-critical
embedded systems. Tasks in such systems need to be
successfully executed under certain energy budget and be
robust against serious security threatens. Different to former
energy minimal scheduling problem, we introduce a new
optimization problem for a set of tasks with energy
constraint and multiple security choices. We present a
dynamic programming based approximation algorithm to
minimize the security risk of the system while statistically
guaranteeing energy consumption constraints for given
energy slack ratio. The proposed algorithm is very efficient
in both time and space dimensions, and achieves good
solutions. Extensive simulations demonstrate the superiority
of our algorithm over other approaches.

I. INTRODUCTION

With the trend of being connected by wireless or
wired networks, embedded systems are facing more and
more severe security threatens from network attacks or
vulnerability of themselves. Meanwhile, embedded
systems are popular to be used in safety or reliability
critical areas. All these reasons make the need of
protecting security-sensitive data in embedded systems to
be emerging [1]. Since the snooping, spoofing and
alternating of security-critical data lead to system failure
or crash, resulting in great loss of finance, life and even
disaster to the earth, we take these kinds of systems as
Security-Critical Embedded Systems (SCES), e.g. flight
control systems [2], satellite communication systems,
radar tracking systems. All such systems have strict
security requirements. To make sure the successful
implementation of SCES, a series of security service, i.e.
integrity, confidentiality, authentication, and auditing
service, need to be considered and protected to ensure
security of the systems. With most suitable security
services in place, SCES could be effectively protected
with less system resources.

One major barrier against implementing SCES is the
energy consumption, as security protections usually
demand a significant amount of energy. Moreover, most
of SCES are battery-powered and even under no nursing
state. Quick energy consumption or early exhaustion of
battery may lead to failure of critical task, resulting in
unexpected loss, such as the energy incurred failure of
Mar’s Path Finder, NASA Spatial systems [3]. Hence,
design of energy-efficient SCES is another key problem.
Considering security and energy together has obviously

become of great challenge, and an imperative work.
Resource allocation algorithm is a key approach to

obtain high performance of embedded systems.
Unfortunately, traditional approaches for real-time
embedded applications are trying to assign most proper
CPU resource to tasks with guaranteed timing
requirements [4]. These researches ignore to consider
both security and energy factors together in system-level
design, which cannot be competent for security-critical
embedded applications.

In this paper, we identify one common problem
lying in many SCES, namely how to allocate resource to
ensure security performance without sacrificing the
energy constraints. Concretely, we are going to devise an
allocation algorithm for a set of security-critical tasks
with the purpose of minimizing the total security risk
while satisfying the given energy budget. We propose
specific policies to solve the problem with low time and
space complexity, which is suitable for SCES.

The primary contributions are in three folds. Firstly,
a novel security- and energy-sensitive application for
SCES is presented. Secondly, we formulate the design
optimization problem that minimizes the security risk
under predefined energy budget. Finally, we propose an
approximation algorithm, which provides statistically
guarantee of energy constraint with average error of zero.
And the algorithm has polynomial time and bounded
space complexity.

The remainder of this paper is organized as follows.
Section II describes the relative work. Section III presents
the system model and system problem. Section IV
presents our approximation scheduling mechanism.
Section V demonstrates the simulation results, and
Section VI concludes this paper and future work.

II. RELATED WORK

Energy related problems of embedded systems have
been well studied from different perspectives. Based on
DVS and DPM technology, there are many works on task
scheduling to reduce the energy consumption of
embedded systems like [5, 6]. Some work tried to
estimate the energy consumption of program by the
energy model in instruction level [7], or by macro
modeling method [8]. Recently, energy characteristics of
cryptographic algorithms also gained attention. Reference
[9] measured the energy consumption of several chippers

by measuring apparatus, and then established a
mathematic model to denote the relation between security
and energy cost. Detailed analysis has been done to study
the energy characteristics of various ciphers under real
embedded devices running Linux [10] and μC/OSII [11].

To improve the security protection of
mission-critical systems, security-aware resource
allocation becomes a promising topic. For
security-critical distributed systems, authors of [2]
proposed a heuristic algorithm to assign security services
to real-time tasks under distributed cluster environments.
Based on a job failure model on trust level, ref. [12]
researched on scheduling algorithms for independent jobs
over grid computing environments, and proposed a
space-time genetic strategy. In [13], authors proposed a
task assignment algorithm for heterogeneous distributed
security-critical systems. A communication mechanism
that maximizes the security protection of the internal
communication in distributed real-time systems is
presented in [14]. In [15], they devised a critical-path
based resource allocation mechanism to improve the
security quality of homogeneous parallel applications.
Considering the security problem of embedded system,
authors of [16] proposed a heuristic to maximize the
security quality of periodic real-time tasks. Based on
group-level security service model, ref. [17] designed two
allocating approaches using integer linear programming
technique and depth-first search. However, all the
aforementioned works did not consider the energy factors
of SCES, which is critical to be studied in SCES.

In this paper, we propose a polynomial
approximation scheme which obtains near-optimal
solution for specified slack bound and also statistically
approximates given constraint with zero error. To the best
of our knowledge, this is the first work that defines a
security- and energy-aware resource allocation problem.

III. SYSTEM MODEL AND OPTIMIZATION

PROBLEM

 In this section, we first provide an example to
motivate the need for studying the security- and
energy-aware resource allocation. Then, the model of
tasks and energy consumption will be given. We also
introduce a risk metric to quantify the security protection
strength of each task and finally formulate our
optimization problem.

A. Modeling	of	security	and	energy‐aware	Application	

 In this paper we consider battery-powered embedded
systems, which run security-critical tasks under restricted
energy. An illustrative system is depicted in Fig. 1, which
is an Unmanned Aerial Vehicle (UAV). The UAV is
sending messages to a service center, which is assumed to
have infinite computation resources for the sake of
simplicity. Each task generates a message that is sent over
an unsafe region. In order to make the communication
secure (i.e. to protect the confidentiality and integrity

requirements of the messages), we need to carry out
cryptography, e.g. like RC5, DES and SHA-2 on the tasks
besides their normal executions. Therefore, the energy
consumption of each task consists of two parts from its
normal execution and extra security protection, which
will be discussed in more details in Sec. III(B). However,
the system can only provide limited energy budget for all
tasks. So, how to allocate resources to protect different
messages becomes a clear design trade-off. In another
word, our purpose is to provide best security protection
for the whole system while meeting certain energy
budget.

Fig.1 Motivating application

Given a set of security- and energy-aware tasks
running on SCES, each task Ti is modeled by a tuple
Ti={BEi, Di, Si,

DM
iS , Vi, SRi }. BEi denotes the basic

energy consumption caused by execution of its
non-security part. Di is the data size which needs to be
protected by security service. Si and DM

iS are the chosen
and designated security level of Ti respectively. If DM

iS is
achieved, this task is assumed to be absolutely secure. Vi

is the security impact value of Ti, and represents the
relevant importance of the message generated by the task,
e.g., the task transmitting pictures of enemy’s military
base has a higher security impact than the task
transmitting the current weather condition. SRi is the
security risk of Ti, which means the expected security loss
of the security protection. In this paper we only focus on
security-critical tasks. However, it is easily generalized to
non-security tasks with Di = 0.

B.	 	 Energy	consumption	of	security	tasks	

Implementing additional security service leads to
better security protection, but also results in sacrifice of
other protections. For example, the IDEA encryption on
one task may incur degradation of protecting other tasks.

In general, there are several classes of security
services, e.g. confidentiality and integrity services. For
confidentiality algorithms, there exists a series of
protection algorithms, e.g. DES, 3DES, IDEA, AES,
CAST, RC2, RC4, RC5, Blowfish. It is the same case for
integrity services, e.g. MD2, MD4, MD5, SHA, SHA1,
and HMAC. Authors in [10] have measured energy
consumption characteristics of most security algorithms

in a PDA-based Linux embedded platform. Inspired by
their work, authors of [11] conducted lots of work to
measure energy costs of security services in a real-time
operating system based on ARM9 platform, in which their
obtained results of energy cost will be more significant
for security-critical real-time systems. Table I lists the
obtained results for eight mostly used algorithms
protecting confidentiality. Precisely quantifying the
security strength of security algorithms is still an open
and hard problem. Different metric will result in different
security level assignment and newly developed algorithm
may have higher level while lower overhead like
AES-128 in Table I. So we enumerate the level according
to their reasonable security strengths [2] in this paper, but
we can also replace it with more reasonable data. In next
section, we will introduce a risk-driven metric to quantify
the security quality.

TABLE I. ENERGY COST OF CONFIDENTIALITY ALGORITHMS

Algorithm Key Setup (μ J) Encrypt (μ J/B) Sec. level

RC4 54.54 1.96 1

BLOWFISH 69.36 4.6 2

RC5 54.18 2.8 3

DES 54.28 9.3 4

IDEA 54.56 5.7 5

SKIPJACK 55.88 7.95 6

3DES 54.28 25 7

AES-128 53.97 7.0 8

If task Ti generates Di Bytes data with confidentiality
requirement, then the energy consumption of Ti can be
formulated as Eq. (1). Energy is composed of normal part
(BEi) and security part (En_confidentiality). BEi is
supposed to be given by the task user. ()iKeySetup S is
energy consumption of the key setup procedure.

()iConf S is the mapping function of security level Si to
unit energy consumption of confidential encryption.
Taking Si=3 for example, ()iKeySetup S and ()iConf S
are thus energy consumptions of RC5 algorithm
according to Table I.

_

 () ()
i i

i i i i

En BE En Confidentiality

BE KeySetup S Conf S D

 

   
 (1)

C.	 	 Security	Risk	of	each	task	

To quantify the security quality of tasks, it is
necessary to introduce security risk model. In [15] and
[17], linear security profit model, which is the sum of
weighted security levels, is assumed to evaluate security
quality of security-critical tasks. Obviously, linear model
is impractical to depict the security quality of
security-critical tasks. Ref. [12] proposed a trust level
based job failure model to test the failure probability of
security-critical tasks. Based on the job failure model, we
establish a security risk model. Firstly, the failure
probability of security-critical task Ti with security level

iS is defined as

()1 exp , if <

0, if

DM
i i iS S DM

risk i i
i DM

i i

S S
P

S S

   


 (2)

where i is the security risk coefficient of Ti, which can
be adjusted by the designer based on different risk
scenarios. Eq. (2) demonstrates that if the assigned
security level is greater or equal to the demanded security,
we assume no failure will happen when security attacks
are mounted. Inversely, the task has the probability to fail,
and bigger security demand gap leads to higher
probability.

Since security risk is product of security breach
probability and consequence of security breach [18], we
model the security risk (SR) of Ti as Eq. (3).

()(1 exp), if <

0, if

DM
i i iS S DM

risk i i i
i i i DM

i i

V S S
SR V P

S S

      


 (3)

D	 	 System	problem	description	

In this paper, we consider a task set of N tasks
running in an energy-constrained security-critical
embedded system. System managers give the energy
budget (En-budget) for the execution of these tasks. In
other words, if their execution leads to energy violation,
then it may result in the failure of other components in the
system. In special situations, it demands energy
consumption not exceed (1) _ ,En budget where  is
recognized as energy slack ratio. The system problem is
to assign most suitable security services for tasks with the
minimum security risk, and satisfying the given energy
budget. Thus, Overall Security Risk (OSR) minimizing
problem can be formulated as

1 1 1 1

Min ()
N M N M

risk
ij i ij i ij

i j i j

OSR x SR T x V P
   

     (4)

S.T. 1

1

(1) _

1, {0,1}

N

i
i

M

ij ij
j

En En budget

x x






  

  






where, xij denotes whether task Ti is assigned security
protection on j-th level. Clearly, the optimization problem
is a Multiple Choice Knapsack Problem, which is
NP-hard. It will take high computation overhead to get
optimal solution, thus we try to find low-complexity
assignment algorithm, which can obtain good solution
while satisfying the predefined constraints efficiently.

IV. RANDOM SCALED APPROXIMATION

ALLOCATION POLICY

The overall security risk minimizing problem is
NP-hard, so it needs efficient methods to solve it. In this
paper, we transform the problem to a multiple stage
decision-making procedure, and use Dynamic
Programming to address it.

A	 	 Multi‐stage	decision‐making	procedure	 	

Considering a set of N tasks, the security risk
minimization problem can be taken as an N-stage
decision-making procedure. The decision variable for the
i-th stage is Si, that needs to be assigned. Thus the
purpose can be transformed to find a vector

 1 2, ,..., NS S S S with minimum system security risk
while satisfying the energy budget constraint.

We denote a three-tuple (ik , ik , ikS) to describe
the k-th state in i-th stage. ik and ik are two values in
this state, which present the accumulated energy
consumption and the accumulated security risk for the
first i tasks respectively. ikS is the specific value of
security decision variable Si in this state. The State Set

i for i-th stage is defined as

max max max1 1 1 2 2 2{(, ,),(, ,),..., (, ,)}i i i i i i i ii ii ii
S S S      

where imax is the number of all states for i-th stage.

Given the 1i in (i-1)-th stage, we can obtain the

state set ik by adding energy consumption and

security risk of task i under security level [1,]DM
ik iS S

to all states of 1i ,

1 ((), (),)ik i i ik ik ikEn S SR S S   

1,1 1,1{((), (),),i i ik i ik ikEn S SR S S    

1,2 1,2((), (),), ... }i i ik i ik ikEn l SR S S   
Thus, the state set in i-th stage is

| |

1

iS

i ik
k

  

We set |Si| as the number of available options for
task Ti. Obviously, in the first stage, there are only |S1|
states, and the number of states in i-th stage is the
production of |Si| and the number of states in stage i-1.
The maximal state space is as follows,

1

| |
N

i
i

SS S


 (5)

From Eq. (5), the state space grows exponentially as
the number of tasks and security choices grows. Thus it is
infeasible to get the optimal solution using Dynamic
Programming algorithm for large system designs. So, we
must find efficient methods to reduce the solution space.

Inspired by the approximation algorithm of Knapsack
problem [19], grouping the energy consumption into a
series of discretized integers is a good approach to reduce
the decision states on each stage. Setting  as the group
factor, then the energy consumption of each task can be
divided to an integer by /iEn  . Thus, in each stage, we
just keep the state with minimal security risk when
several states have the same energy integer.
Bigger gives smaller scaled energy integer and smaller
number of states in each decision-making stage.

Table II Matrix of Decision states
0 1 2 … M

T1 1,1 1,1 1,1(, ,)S 
1,2 1,2 1,2(, ,)S  … 1, 1, 1,(, ,)M M MS 

T2 2,1 2,1 2,1(, ,)S  2,2 2,2 2,2(, ,)S  … 2, 2, 2,(, ,)M M MS 

… … … … …

TN-1 1,1 1,1 1,1(, ,)N N NS    1,2 1,2 1,2(, ,)N N NS   
 … 1, 1, 1,(, ,)N M N M N MS   

TN ,1 ,1 ,1(, ,)N N NS  ,2 ,2 ,2(, ,)N N NS 
 … , , ,(, ,)N M N M N MS 

Due to the number of states in each stage can be
maximized to a constant _ /M En budget     , we use a
two-dimension table to demonstrate all states as Table II.

B	 	 Random	Scaled	Policy	

In this paper, we introduce a random scaling
approximation mechanism. For each task Ti, the energy
consumption is scaled by /iEn  . If the obtained result is
not an integer, we randomly scale it to the closest smaller
integer or to the closet bigger integer according to Eq. (6).
The purpose of randomly scaling is to let the average
error equal to zero statistically. This gives better solution
while having the same complexity of down-scaling or
up-scaling methods [6]. We will prove its advantages in
later sections.

1

2 1

, probability of /

, probability of 1

i i
i

i

i

En En
En

En
En



 
 

 


           
     

 (6)

For N tasks, we can obtain that the totally discretized
energy consumption as the following equation.

1

N

i
i

OEn En 



  (7)

And the total error for N tasks is

1 1

()
N N

i i i
i i

OErr Err En En
 

     (8)

Theorem 1. Given the energy slack ratio  and the
energy budget _En budget , the maximum value of
grouping factor  is _ /(1)En budget N    .

Proof. Clearly, Random Scaling (RS) policy has the
total error between Up Scaling (US) and Down Scaling
(DS) policy. For US policy, the real energy consumption
has the negative error to scaled energy, and the overall
error (OErr) is as follows,

1 1

1

1

1

()

 = ()

 ((1))

 ()

N N
US

i i i
i i

N
i

i
i

N
i

i
i

N

i

OErr Err En En

En
En

En
En

N













 







   

     

   

 

 

 







For DS policy, the real energy consumption has the
positive error, and the error can be inferred by the
following equation.

1 1

1

1

1

()

 = ()

 ((1))

 ()

N N
DS

i i i
i i

N
i

i
i

N
i

i
i

N

i

OErr Err En En

En
En

En
En

N













 







   

     

   





 







Thus for RS policy, the total error can be ranged as

follows,

N OErr N    (9)

That is, RS can lead the real energy consumption to at
largest N energy error comparing to the scaling
energy. According to the description of 2-dimensional
decision-making table, the maximum energy value is

_ /En budget    which has the most  error
to _En budget . Thus, the maximum error of the proposed
policy comparing to the given energy budget is (1)N  .
Hence, to guarantee the loosely energy constraint, we
need to satisfy the following inequality.

(1) _N En budget   

Then we obtain,

_

1

En budget

N

 



 (10)

According to inequality (10), we can get the conclusion

of Theorem 1. End of proof.

Theorem 1 shows that we can only take the grouping

factor  within [0, _ /(1)]En budget N   by giving

energy slack ratio  . If  is bigger

than _ /(1)En budget N  , then the energy slack ratio

cannot be guaranteed.

Lemma 1. The accumulated error of N tasks energy

consumption is statistically zero.
Proof. This is because RS rounds the energy to

ceiling or to floor integer according to certain probability.
Tasks can have positive and negative errors, and then
positive errors and negative errors cancel out one another
in the whole task set. Thus the accumulated error is
minimized to zero statistically.

Because the energy value of each task with RS
policy is a random variable, then we can deduce the
expected or mean error of each task. Without loss of
generality, we take Ti as an example, and assume
that iEn is not the integer times of . The expected error
of Ti is inferred as following.

 ()

 + (1)

 ()

i i
i i i

i i i
i

i i i
i

i i i
i

En En
Err En En

En En En
En

En En En
En

En En En
En

   
 


  


  


  

            
           
           

           

1 2e() (-) (-)

(-)

(-)

(-)

 + ()

 0

i i i
i

En En En
En 

  
          



(-)

Then the accumulated error of N tasks is,

1

0
N

i
i

OErr Err


e()= e() (11)

Thus we get the conclusion of Lemma 1.
Lemma 2. The standard deviation of RS

approximating mechanism is bounded by

_

2(1)OErr

N En budget

N

 



 (12)

Proof. According to the definition of variance of
random variable, we can have the variance of energy error
of Tasks Ti as follows,

1

2

(()

 (

 (

 (()

 (

k k
i i i i

k

i
i i

i i
i

i i i
i

i
i

Err Err Err Err

En
En Err

En En
Err

En En En
En

En
En



 


 
 


  



  

      
      

            
 

 2

2

2

2

D() e())

e())

e())

)

2

(1)

 (()

 (()

 (() (

i i

i i i
i

i i i
i

i i i i i i

En En

En En En
En

En En En
En

En En En En En En


 


  


  


     

          
            
            
                       

2

2

2

)

)

)

)

2

2
1 1

)

 (()

 (1

i i i iEn En En En


   
  




            
  

)

)

For 2
1 1(1iErr    D()=) , the derivative of it is

2
1

1

(1 2),

{ 0, when =1/2 }
i

i

Err

Err

 


D'()=

D'()=
 (13)

Then we obtain the maximum variance value of Erri as

 max 2 21 1 1
(1)

2 2 4iErr    D ()= (14)

Thus, the total variance of N tasks is

max max 21

4iOErr N Err ND ()= D ()= (15)

Therefore, the maximal standard variance of N tasks can
be inferred by Theorem 1 and Eq. (15)

max 1 _

2 2(1)OErr

N En budget
OErr N

N

  
  


D () (16)

C	 	 RS‐based	Dynamic	Programming	Algorithm	

Based on RS policy and the 2-dimensional states
presentation, we propose a Dynamic Programming based
security-aware assignment algorithm. The main purpose
of Random Scaling based Dynamic Programming (RSDP)
is to assign most suitable security level to each task with
minimum system security risk. The pseudo-code of the
algorithm is given in Fig. 2. The approximation scheme
works by reducing the number of decision states in each
stage. For initialization, RSDP calculates the grouping
factor  in line 1, and initializes the 2-dimension
decision-making matrix by lines 2-5. From line 5 to line
16, it is the upgrading procedure of decision states for
every decision-making stage. Based on each non-zero risk
state in (i-1)-th stage, RSDP calculate every possible state
for i-th stage (lines 7-14). If the immediately generated
state has lower security risk comparing to prior state in i
-th stage with the same energy cost, RSDP replaces the
old state by the new one with smaller security risk. After
all the decision states in every stage have been renewed,
RSDP selects the state with smallest security risk in the
N-th stage as line 17-18. Security risk of selected state is

Fig. 2 The pseudo code of RSDP

the final solution of the optimization problem. To obtain
the final security level, RSDP goes back from N to 1st
stage to get the vector of security assignments (lines
19-20).

Theorem 2. RSDP is a polynomial time complexity
algorithm with 2() / .iO RSDP N S   And the space
complexity is bounded up to _ /En budget    .

Proof. From Fig. 2, we can deduce the time
complexity of RSDP. It takes O(1) by line 1, and

(_ /)O En budget    by lines 3-4. Based on each state in
(i-1)-th stage, the states upgrading procedure of i-th stage
(lines 7-13) will cost time of iS ; and there exists at
most _ /En budget    states in (i-1)-th stage (line 6).
Thus, for all N stages, the state upgrading procedure will
take (_ /)iO N En budget S    , (seeing lines 5-16). For
lines 17 to 20, it takes O(N) time. Therefore, we obtain
the complexity of RSDP as,

2

() (1) (_ /) ()

 = (_ /)

 = ((1) /)

 = (/)

i

i

i

i

O RSDP O O N En budget S O N

O N En budget S

O N N S

O N S









      
   

 



Therefore, the time complexity of RSDP is polynomial in

the number of tasks N, security choices |Si| and 1/  .

On each stage, we only need to store
_ /En budget    states at most, so it is the upper bound

of memory space for our proposed RSDP algorithm.
Theorem 3. The proposed algorithm is a polynomial

complexity algorithm with guaranteed energy slack ratio
and zero error violation of energy budget statistically.

Proof. The grouping factor of RSDP is set as
_ /(1)En budget N    , seeing Fig. 2. Hence, according

to Theorem 1, we can obtain that RSDP can satisfy the
given energy slack ratio. According to Lemma 1, we can
get to know that the energy error is statistically zero, thus
RSDP can have zero error violation of given energy
budget. According to Theorem 2, we know that RSDP is
polynomial complexity. Therefore, we can have the
conclusion that RSDP is a polynomial complexity
algorithm with guaranteed energy slack ratio, and zero
error violation of ideal energy budget statistically.

V. SIMULATION RESULTS

 In this section, we conduct experiments to verify the
performance of the proposed algorithm. We implement a
simulator using C# programming language to implement
the security assignment procedure. For evaluation
purposes, we compare our RSDP algorithm with three
other methods, named USDP, Greedy and SEAS. The
performance metrics in our experiments are overall
security risk, real energy consumption, and energy error
ratio. Energy error ratio is the ratio of real energy
consumption error and energy budget.

 USDP: It utilizes Up-Scaling approximation scheme
like reference [6], but we focus on risk minimizing

1. Calculate the grouping factor _ /(1)En budget N   

2. Initialize matrix _ /N En budget   


3. For each element in _ /N En budget   


4.
, (, ,) (,0,0)i j i i iz S j  

5. For (1, ,)i i N i   

6. While
1, 1 1 1(, ,) (,0,0)

i j i i iz S j 
     Do

7. For # # #(1, ,)DM
i i i iS S S S   

8. #
1i i iEn   

9. #
1i i iSR   

10. IF # _ /i En budget    

11. Then break;
12. IF # #(|)i i i i    

13. Then # # #(, ,) (, ,)i i i i i iS S   

14. EndFor
15. EndWhile
16. EndFor
17. For j=1 to _ /En budget   

18. Find *
,N jz with minimal security risk

N

19. For N to 1
20. Mark the final decision vector  1 2, ,..., NS S S S

problem not energy minimal problem.
 Greedy: For this scheme, we assign the security

level to tasks in a greedy fashion. It provides the
currently highest security level to tasks step by step
according to their natural order until all available
energy slack is depleted.

 SEAS: It is a Security and Energy Aware Scheme,
which is similar to SASES [16]. SEAS escalates the
security level by comparing risk-energy ratios among
tasks just like the benefit-cost ratio used in SASES.

We conduct four groups of simulations. For all the
tasks, the basic energy consumptions are randomly in
range of 0.1J to 0.2J, the security demands are randomly
assigned between levels 6 and 8 for confidentiality
protection. The impact value of each task is randomly
generated between 1 and 10. In this paper we consider the
energy of security part is nearly the same order of basic
energy cost. Thus, we set the size of sensitive data ranges
from 10KB to 40KB uniformly based on the energy costs
of security services in Table I, For simplification, the
security coefficient  is set to 1 for all tasks.

A	 	 Impacts	of	energy	slack	ratio	on	energy	and	risk	

The goal of this simulation is to evaluate the
performance under different energy slack ratio. We set the
energy budget to 4.5 Joule. The number of tasks is fixed
as 20. Other task parameters are generated randomly
based on the range described formerly. We vary the
energy slack ratio from 0.01 to 0.2 with step increment of
0.01. The simulation results of overall security risk, real
energy consumption and energy error are shown in Fig. 3,
4 and 5 respectively. For security risk in Fig. 3, we get to
know that RSDP has the minimal security risks, while
SEAS incurs maximal security risks under different
energy slack ratio. Specifically speaking, USDP, Greedy
and SEAS obtain increased security risk averagely up to
2.8%, 5.1% and 8.2% of RSDP. From Fig. 4, we can
notice that the real energy consumption of RSDP is
randomly changed around the energy budget value due to
the random scaling policy. For USDP, it is decreasing
with bigger  , which is because that bigger  means
bigger  , and the negative error of USDP is getting
greater. One interesting thing is that all of the three test
metrics of SEAS and Greedy are fixed under different 
due to the fact that  is affecting the searching
procedure in neither of them.

0.00 0.05 0.10 0.15 0.20

88

90

92

94

96

98

100

O
ve

ra
ll

S
e

cu
rit

y
R

is
k

Energy Slack Ratio 

 RSDP USDP
 Greedy SEAS

Fig. 3 Security risk under various slack ratios

0.00 0.05 0.10 0.15 0.20
4.2

4.3

4.4

4.5

4.6

4.7

E
n

e
rg

y
C

o
n

su
m

p
tio

n
 (

J)

Energy Slack Ratio 

 RSDP
 USDP
 Greedy
 SEAS

Fig. 4 Energy consumptions under various slack ratios

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Energy Slack Ratio 

E
ne

rg
y

E
rr

o
r

R
at

io

 RSDP
 USDP

Fig. 5 Energy error ratios under various slack ratios

Fig. 5 illustrates the energy error ratios. RSDP can
guarantee the given energy slack ratio even if it is very
small, e.g. 0.01 and 0.02. Another interesting thing is that
USDP always gets negative error ratio and RSDP can
obtain smaller error ratio when it is negative. For example,
when  is set to be 0.12 and 0.16, the energy error ratio
of RSDP is only 0.033 and 0.034, while USDP is 0.057
and 0.099. This is because RSDP utilizes random scaling
policy which cancels out the positive and negative errors.
As depicted in the figures, RSDP is the best algorithm
among the four that get the lowest risk with little energy
budget error.

B	 	 Impact	of	delta	on	security	risk	and	energy	error	

In the second group of simulation, we are going to
evaluate the impact of grouping factor  on the
performances of the four algorithms. The energy budget
and the number of tasks are also set to 4.5 Joule and 20
respectively. In this part, we don’t deduce  by the
energy slack ratio  , but we directly vary the grouping
factor  from 2000 uJ to 40000 uJ with step increment
of 2000 uJ instead. The results of total security risk, real
energy consumption and energy error are shown in Fig. 6,
7 and 8 respectively. For security risk in Fig. 6, the
overall security risk of RSDP is the lowest among the
four algorithms. RSDP’s security risk is averagely 4.5%
less than USDP. Greedy and SEAS get more risk which is
also fixed in this experiment. We also find that USDP

cannot get the solution when  is 3600 uJ and 3800 uJ.
This means the schedulability of RSDP is more robust
than USDP.

From Fig. 7 and 8, we get the same situations as the
first experimental group. The real energy consumption of
USDP is decreasing with bigger  . This is because that
bigger  results in greater approximation error. The real
energy consumption of RSDP is not changing as great as
USDP either. Fig. 8 illustrates the energy error ratios of
RSDP and USDP. The energy error ratios of Greedy and
SEAMS are fixed as 0.0435 and 0.0063, so we omitted
them in Fig. 8. Clearly, both of RSDP and USDP get
bigger energy error ratios if  increases. RSDP can also
obtain smallest error relatively. For example, when  is
set to 3000 uJ, the energy error ratio of RSDP is only
0.0215, while USDP is 0.0481. Given  =0.05, we can
get the maximal  as 10714 uJ according to Theorem 1.
From Fig. 8, we can see that energy slack ratios are all
within 0.05 when  is from 2000 uJ to 10000 uJ. This
proves the correctness of Theorem 1. Based on the results
above, we can conclude that RSDP is a better algorithm
to get less risk but with smaller energy budget error.

0 5000 10000 15000 20000 25000 30000 35000 40000
80

85

90

95

100

105

O
ve

ra
ll

S
e

cu
ri

ty
 R

is
k

(uJ)

 RSDP
 USDP
 Greedy
 SEAS

Fig. 6 Impact of group factor  on overall security risk

0 5000 10000 15000 20000 25000 30000 35000 40000
4.2

4.3

4.4

4.5

4.6

4.7

4.8

(uJ)

E
ne

rg
y

C
on

su
m

pt
io

n
 (

J)

 RSDP
 USDP
 Greedy
 SEAS

Fig. 7 Impact of group factor on energy consumption	

5000 10000 15000 20000 25000 30000 35000 40000

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

(uJ)

E
n

er
gy

 E
rr

or
 R

at
io

 RSDP
 USDP

Fig. 8 Impact of group factor on energy error ratio

C	 	 Impact	of	energy	budget	on	security	risk	and	energy	

In this group of simulation, we make efforts to verify
the performances under various energy budgets. We set
the energy slack ratio  to 0.04. The energy budget
varies from 3.5 J to 9.2 J with the step increment of 0.3
Joule. The rest simulated parameters are generated as in
the second experiment. Fig. 9, 10 and 11 are numerical
results of these four algorithms under different energy
budget respectively. From Fig. 9, we find some
interesting observations. When the energy budget is small
like 3.5 J and 3.8 J, no algorithm can get the solution for
the task set. This is because the energy budget is too small
to provide the minimal energy consumption when all
tasks select the lowest security levels. On the other hand,
when energy budget is up to 6.8 J, all the three algorithms
consume the same energy. The reason is that the energy
budget is enough to provide each task with their
designated security level. In the range of 4.1 J to 6.5 J, the
real energy consumptions of all algorithms are increasing
with energy budget. SEAS consumes more energy than
USDP and Greedy methods, while RSDP has the random
value up or down the budget.

As can be seen in Fig. 10, the risk values of all
algorithms have the same trend as the first two
experiments between 4.1 J and 6.5 J. RSDP gets the
minimal security risk, while SEAS incurs the greatest
which is 25.7% more than RSDP on average when energy
budget is between 4.1 J and 6.5 J. This means SEAS is
not a good scheme to handle risk minimizing problem
identified in this paper. The security risks of Greedy and
USDP is between RSDP and SEAS. From Fig. 11, we can
obtain the energy error ratio results. From 7 J, the energy
error ratio is greatly decreased below zero. This is
because the energy consumptions of all algorithms are
fixed while the energy budget is increased step by step. In
the range of 4.1 J to 6.5 J, RSDP and USDP can guarantee
the energy slack ratio of 0.04, but Greedy sometime
violates the requirement. We can also notice that RSDP is
better in error ratios aspect, i.e. it is closer to zero.
Therefore, RSDP analyzes the tradeoff between the
security risk and energy consumption efficiently, which
tries to make full use of the energy with statistically zero
error while getting minimal security risk.

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

E
n

e
rg

y
C

o
n

su
m

p
tio

n
 (

J)

Energy Budget (J)

 RSDP
 USDP
 Greedy
 SEAS

Fig. 9 Impact of energy budget on energy consumption

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
60

65

70

75

80

85

90

95

100

105

O
ve

ra
ll

S
ec

u
rit

y
R

is
k

Energy Budget (J)

 RSDP
 USDP
 Greedy
 SEAS

Fig. 10 Impact of energy budget on security risk

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

E
n

er
gy

 E
rr

o
r

R
a

tio

Energy Budget (J)

 RSDP
 USDP
 Greedy
 SEAS

Fig. 11 Impact of energy budget on energy error

D	 	 Impact	of	task	number	on	security	risk	and	energy	

In the last group of simulation, we test the impact of
application sizes on the performance of these algorithms.
The energy budget and the energy slack ratio are set to 15
Joule and 0.04 respectively. We vary the task number
from 5 to 100 with step increment of 5.

Table III Energy error ratio of each algorithm
Algorithm RSDP USDP Greedy SEAS

Error Ratio 0.00021 0.0208 0.01123 0.00057

10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

350

O
ve

ra
ll

S
e

cu
rit

y
R

is
k

Task Number

 RSDP
 USDP
 Greedy
 SEAS

Fig. 12 Impact of task numbers on security risk

10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

16

E
ne

rg
y

C
on

su
m

pt
io

 (
J)

Task Numbers

 RSDP
 USDP
 Greedy
 SEAS

Fig. 13 Impact of task numbers on energy expenditure

The results of total security risk and energy
consumption are shown in Fig. 12 and 13 respectively.
From which, we can find that the real energy
consumption of all algorithms have the same value when
the task number is in range of (5, 45). Since 15 Joule
energy budget can provide these tasks with highest
security levels, the security risks of all algorithms are the
same when tasks number is in range of (5, 45), as in Fig.
12. But it is not schedulable when there are more than 80
tasks, seeing Fig. 13. The reason is that 15 J cannot
support these tasks even with minimal security level
assignments. This is also why there is no risk in Fig. 12
when tasks number more than 75. When tasks number are
in (50, 75), the energy budget is between the minimal and
maximal energy consumption of these tasks. Hence, the
proposed algorithm makes the most suitable choices for
each task to find the corresponding security level. In the
range of (50, 75), RSDP and USDP have the same pattern
as the first three experiments, which means RSDP is also
the best approach to get the lowest security risk and can
guarantee the energy slack ratio. The average energy error
ratios of all algorithms are listed in Table III. Clearly, the
error ratio of RSDP is closest to zero among these
algorithms.

E	 	 Simulation	conclusion	

Based on the detailed analysis of the former

simulations, we have following conclusions. 1）RSDP can
always get the minimal security risk, while the risks of
Greedy and SEAS are much higher, which means both of
Greedy and SEAS are not competent for security
risk-driven optimization problem. 2) RSDP is a
polynomial complexity algorithm, which can get good
solution with low time overhead. 3) RSDP has the same
time complexity as USDP, but it can achieve less risk and
statistically satisfy the given constraint with zero error. 4)
Clearly, our randomly scaling policy based dynamic
programming mechanism can be easily used for other
constrained optimization applications which have
statistical guaranteed requirements.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we investigate one general resource
allocation problem in security- and energy-critical
embedded systems. The problem seeks to find an offline
resource allocation policy such that the expected security
risk against security threatens is minimized, and the total
energy budget is met. This problem is a knapsack
problem which can be easily proved to be a NP-hard
problem, thus we propose an approximation algorithm to
find the near-optimal solution within statistically
guaranteed energy constraint. The proposed algorithm has
low complexity in both execution time and memory space,
which is very suitable for use in resource limited
embedded systems. Finally, extensive experiments
demonstrate the superiority of the proposed algorithm.

We are interested in two potential future works. The
first is to consider the systems which have additional
real-time requirement in our scheduling framework. The
second is to consider security as a dimension of
constraints (as the system design problem in [20]), and try
to obtain the minimal energy cost of the whole system.

VII. ACKNOWLEDGEMENT

This work was partly supported by the National
Natural Science Foundation of China under Grant No.
61003032, Fundamental Research Fund for the Central
Universities of China under Grant No. ZYGX2011J061
and Research Fund of National Key Laboratory of
Computer Architecture under Grant No. CARCH201104.

VIII. REFERENCES

[1] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, "Security

in embedded systems: Design challenges," ACM Transactions on

Embedded Computing Systems, vol. 3, no. 3, pp. 461-491, 2004.

[2] T. Xie and X. Qin, "Scheduling security-critical real-time

applications on clusters," IEEE Transactions on Computers, vol.

55, no. 7, pp. 864-879, 2006.

[3] N. Shankaran, N. Roy, D. C. Schmidt, X. D. Koutsoukos, Y. Chen,

and C. Lu, "Design and performance evaluation of an adaptive

resource management framework for distributed real-time and

embedded systems," EURASIP Journal on Embedded Systems,

2008.

[4] L. Sha, T. Abdelzaher, K. E. Arzen, A. Cervin, T. Baker, A. Burns,

G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, "Real time

scheduling theory: A historical perspective," Real-Time Systems,

vol. 28, no. 2, pp. 101-155, 2004.

[5] V. Chaturvedi and G. Quan, "Leakage conscious dvs scheduling for

peak temperature minimization," in IEEE/ACM Asia and South

Pacific Design Automation Conference (ASP-DAC), 2011, pp.

135-140.

[6] X. Zhong and C. Z. Xu, "System-wide energy minimization for

real-time tasks: lower bound and approximation," ACM

Transactions on Embedded Computing Systems, vol. 7, no. 3, pp.

1-24, 2008.

[7] V. Tiwari, S. Malik, and A. Wolfe, "Power analysis of embedded

software: a first step towards software power minimization," in

Readings in hardware/software co-design, 2001.

[8] A. Muttreja, A. Raghunathan, S. Ravi, and N. K. Jha, "Automated

energy/performance macromodeling of embedded software," IEEE

Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 26, no. 3, pp. 542-552, 2007.

[9] R. Chandramouli, S. Bapatla, K. P. Subbalakshmi, and R. N. Uma,

"Battery power-aware encryption," ACM Transactions on

Information and System Security, vol. 9, no. 2, pp. 162-180, 2006.

[10] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, "A study

of the energy consumption characteristics of cryptographic

algorithms and security protocols," IEEE Transactions on Mobile

Computing, vol. 5, no. 2, pp. 128-143, 2006.

[11] Z. Guo, W. Jiang, N. Sang, and Y. Ma, "Energy Measurement and

Analysis of Security Algorithms for Embedded Systems," in

IEEE/ACM International Conference on Green Computing and

Communications: IEEE Computer Society, 2011, pp. 194-199.

[12] S. Song, K. Hwang, and Y. K. Kwok, "Risk-resilient heuristics and

genetic algorithms for security-assured grid job scheduling," IEEE

Transactions on Computers, vol. 55, no.6, pp. 703-719, 2006.

[13] T. Xie and X. Qin, "Performance evaluation of a new scheduling

algorithm for distributed systems with security heterogeneity,"

Journal of Parallel and Distributed Computing, vol. 67, no.10, pp.

1067-1081, 2007.

[14] K. Jiang, P. Eles, and Z. Peng, "Optimization of message

encryption for distributed embedded systems with real-time

constraints," in 14th IEEE Symposium on Design and Diagnostics

of Electronic Circuits and Systems (DDECS11), 2011, pp. 243-248.

[15] T. Xie and X. Qin, "Security-aware resource allocation for

real-time parallel jobs on homogeneous and heterogeneous

clusters," IEEE Transactions on Parallel and Distributed Systems,

vol. 19, no.5, pp. 682-697, 2008.

[16] T. Xie and X. Qin, "Improving security for periodic tasks in

embedded systems through scheduling," ACM Transactions on

Embedded Computing Systems vol. 6, no.3, pp. 1-20, 2007.

[17] M. Lin, L. Xu, L. T. Yang, et al, "Static security optimization for

real-time systems," IEEE Transactions on Industrial Informatics,

vol. 5, no.1, pp. 22-37, 2009.

[18] B. Karabacak and I. Sogukpinar, "ISRAM: information security

risk analysis method," Computers & Security, vol. 24, no.2, pp.

147-159, 2005.

[19] H. Kellerer and U. Pferschy, "Improved dynamic programming in

connection with an FPTAS for the knapsack problem," Journal of

Combinatorial Optimization, vol. 8, no.1, pp. 5-11, 2004.

[20] K. Jiang, P. Eles, and Z. Peng, "Co-Design Techniques for

Distributed Real-Time Embedded Systems with Communication

Security Constraints," in Design Automation and Test in Europe

(DATE2012), 2012, pp. 947-952.

