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ABSTRACT—In this paper, we are interested in resource 
allocation for energy constrained and security-critical 
embedded systems. Tasks in such systems need to be 
successfully executed under certain energy budget and be 
robust against serious security threatens. Different to former 
energy minimal scheduling problem, we introduce a new 
optimization problem for a set of tasks with energy 
constraint and multiple security choices. We present a 
dynamic programming based approximation algorithm to 
minimize the security risk of the system while statistically 
guaranteeing energy consumption constraints for given 
energy slack ratio. The proposed algorithm is very efficient 
in both time and space dimensions, and achieves good 
solutions. Extensive simulations demonstrate the superiority 
of our algorithm over other approaches. 

I. INTRODUCTION 

With the trend of being connected by wireless or 
wired networks, embedded systems are facing more and 
more severe security threatens from network attacks or 
vulnerability of themselves. Meanwhile, embedded 
systems are popular to be used in safety or reliability 
critical areas. All these reasons make the need of 
protecting security-sensitive data in embedded systems to 
be emerging [1]. Since the snooping, spoofing and 
alternating of security-critical data lead to system failure 
or crash, resulting in great loss of finance, life and even 
disaster to the earth, we take these kinds of systems as 
Security-Critical Embedded Systems (SCES), e.g. flight 
control systems [2], satellite communication systems, 
radar tracking systems. All such systems have strict 
security requirements. To make sure the successful 
implementation of SCES, a series of security service, i.e. 
integrity, confidentiality, authentication, and auditing 
service, need to be considered and protected to ensure 
security of the systems. With most suitable security 
services in place, SCES could be effectively protected 
with less system resources. 

One major barrier against implementing SCES is the 
energy consumption, as security protections usually 
demand a significant amount of energy. Moreover, most 
of SCES are battery-powered and even under no nursing 
state. Quick energy consumption or early exhaustion of 
battery may lead to failure of critical task, resulting in 
unexpected loss, such as the energy incurred failure of 
Mar’s Path Finder, NASA Spatial systems [3]. Hence, 
design of energy-efficient SCES is another key problem. 
Considering security and energy together has obviously 

become of great challenge, and an imperative work. 
Resource allocation algorithm is a key approach to 

obtain high performance of embedded systems. 
Unfortunately, traditional approaches for real-time 
embedded applications are trying to assign most proper 
CPU resource to tasks with guaranteed timing 
requirements [4]. These researches ignore to consider 
both security and energy factors together in system-level 
design, which cannot be competent for security-critical 
embedded applications.  

In this paper, we identify one common problem 
lying in many SCES, namely how to allocate resource to 
ensure security performance without sacrificing the 
energy constraints. Concretely, we are going to devise an 
allocation algorithm for a set of security-critical tasks 
with the purpose of minimizing the total security risk 
while satisfying the given energy budget. We propose 
specific policies to solve the problem with low time and 
space complexity, which is suitable for SCES. 

The primary contributions are in three folds.  Firstly, 
a novel security- and energy-sensitive application for 
SCES is presented. Secondly, we formulate the design 
optimization problem that minimizes the security risk 
under predefined energy budget. Finally, we propose an 
approximation algorithm, which provides statistically 
guarantee of energy constraint with average error of zero. 
And the algorithm has polynomial time and bounded 
space complexity. 

The remainder of this paper is organized as follows. 
Section II describes the relative work. Section III presents 
the system model and system problem. Section IV 
presents our approximation scheduling mechanism. 
Section V demonstrates the simulation results, and 
Section VI concludes this paper and future work. 

II. RELATED WORK 

Energy related problems of embedded systems have 
been well studied from different perspectives. Based on 
DVS and DPM technology, there are many works on task 
scheduling to reduce the energy consumption of 
embedded systems like [5, 6]. Some work tried to 
estimate the energy consumption of program by the 
energy model in instruction level [7], or by macro 
modeling method [8]. Recently, energy characteristics of 
cryptographic algorithms also gained attention. Reference 
[9] measured the energy consumption of several chippers 



 

by measuring apparatus, and then established a 
mathematic model to denote the relation between security 
and energy cost. Detailed analysis has been done to study 
the energy characteristics of various ciphers under real 
embedded devices running Linux [10] and μC/OSII [11].  

To improve the security protection of 
mission-critical systems, security-aware resource 
allocation becomes a promising topic. For 
security-critical distributed systems, authors of [2] 
proposed a heuristic algorithm to assign security services 
to real-time tasks under distributed cluster environments. 
Based on a job failure model on trust level, ref. [12] 
researched on scheduling algorithms for independent jobs 
over grid computing environments, and proposed a 
space-time genetic strategy. In [13], authors proposed a 
task assignment algorithm for heterogeneous distributed 
security-critical systems. A communication mechanism 
that maximizes the security protection of the internal 
communication in distributed real-time systems is 
presented in [14]. In [15], they devised a critical-path 
based resource allocation  mechanism to improve the 
security quality of homogeneous parallel applications. 
Considering the security problem of embedded system, 
authors of [16] proposed a heuristic to maximize the 
security quality of periodic real-time tasks. Based on 
group-level security service model, ref. [17] designed two 
allocating approaches using integer linear programming 
technique and depth-first search. However, all the 
aforementioned works did not consider the energy factors 
of SCES, which is critical to be studied in SCES. 

In this paper, we propose a polynomial 
approximation scheme which obtains near-optimal 
solution for specified slack bound and also statistically 
approximates given constraint with zero error. To the best 
of our knowledge, this is the first work that defines a 
security- and energy-aware resource allocation problem.  

III. SYSTEM MODEL AND OPTIMIZATION 

PROBLEM 

   In this section, we first provide an example to 
motivate the need for studying the security- and 
energy-aware resource allocation. Then, the model of 
tasks and energy consumption will be given. We also 
introduce a risk metric to quantify the security protection 
strength of each task and finally formulate our 
optimization problem. 

A. Modeling	of	security	and	energy‐aware	Application	

    In this paper we consider battery-powered embedded 
systems, which run security-critical tasks under restricted 
energy. An illustrative system is depicted in Fig. 1, which 
is an Unmanned Aerial Vehicle (UAV). The UAV is 
sending messages to a service center, which is assumed to 
have infinite computation resources for the sake of 
simplicity. Each task generates a message that is sent over 
an unsafe region. In order to make the communication 
secure (i.e. to protect the confidentiality and integrity 

requirements of the messages), we need to carry out 
cryptography, e.g. like RC5, DES and SHA-2 on the tasks 
besides their normal executions. Therefore, the energy 
consumption of each task consists of two parts from its 
normal execution and extra security protection, which 
will be discussed in more details in Sec. III(B). However, 
the system can only provide limited energy budget for all 
tasks.  So, how to allocate resources to protect different 
messages becomes a clear design trade-off. In another 
word, our purpose is to provide best security protection 
for the whole system while meeting certain energy 
budget.  

 
Fig.1 Motivating application 

Given a set of security- and energy-aware tasks 
running on SCES, each task Ti is modeled by a tuple 
Ti={BEi, Di, Si, 

DM
iS , Vi, SRi }.  BEi denotes the basic 

energy consumption caused by execution of its 
non-security part. Di is the data size which needs to be 
protected by security service. Si and DM

iS  are the chosen 
and designated security level of Ti respectively. If DM

iS is 
achieved, this task is assumed to be absolutely secure. Vi 

is the security impact value of Ti, and represents the 
relevant importance of the message generated by the task, 
e.g., the task transmitting pictures of enemy’s military 
base has a higher security impact than the task 
transmitting the current weather condition. SRi is the 
security risk of Ti, which means the expected security loss 
of the security protection. In this paper we only focus on 
security-critical tasks. However, it is easily generalized to 
non-security tasks with Di = 0. 

B.	 	 Energy	consumption	of	security	tasks	

Implementing additional security service leads to 
better security protection, but also results in sacrifice of 
other protections. For example, the IDEA encryption on 
one task may incur degradation of protecting other tasks.  

In general, there are several classes of security 
services, e.g. confidentiality and integrity services. For 
confidentiality algorithms, there exists a series of 
protection algorithms, e.g. DES, 3DES, IDEA, AES, 
CAST, RC2, RC4, RC5, Blowfish. It is the same case for 
integrity services, e.g. MD2, MD4, MD5, SHA, SHA1, 
and HMAC. Authors in [10] have measured energy 
consumption characteristics of most security algorithms 



 

in a PDA-based Linux embedded platform. Inspired by 
their work, authors of [11] conducted lots of work to 
measure energy costs of security services in a real-time 
operating system based on ARM9 platform, in which their 
obtained results of energy cost will be more significant 
for security-critical real-time systems. Table I lists the 
obtained results for eight mostly used algorithms 
protecting confidentiality. Precisely quantifying the 
security strength of security algorithms is still an open 
and hard problem. Different metric will result in different 
security level assignment and newly developed algorithm 
may have higher level while lower overhead like 
AES-128 in Table I. So we enumerate the level according 
to their reasonable security strengths [2] in this paper, but 
we can also replace it with more reasonable data. In next 
section, we will introduce a risk-driven metric to quantify 
the security quality.  

TABLE I.  ENERGY COST OF CONFIDENTIALITY ALGORITHMS 

Algorithm Key Setup (μ J) Encrypt (μ J/B) Sec. level 

RC4 54.54 1.96 1 

BLOWFISH 69.36 4.6 2 

RC5 54.18 2.8 3 

DES 54.28 9.3 4 

IDEA 54.56 5.7 5 

SKIPJACK 55.88 7.95 6 

3DES 54.28 25 7 

AES-128 53.97 7.0 8 

If task Ti generates Di Bytes data with confidentiality 
requirement, then the energy consumption of Ti can be 
formulated as Eq. (1). Energy is composed of normal part 
(BEi) and security part (En_confidentiality). BEi is 
supposed to be given by the task user. ( )iKeySetup S is 
energy consumption of the key setup procedure. 

( )iConf S is the mapping function of security level Si to 
unit energy consumption of confidential encryption. 
Taking Si=3 for example, ( )iKeySetup S and ( )iConf S  
are thus energy consumptions of RC5 algorithm 
according to Table I. 

_

    ( ) ( )
i i

i i i i

En BE En Confidentiality

BE KeySetup S Conf S D

 

   
     (1) 

C.	 	 Security	Risk	of	each	task	

To quantify the security quality of tasks, it is 
necessary to introduce security risk model. In [15] and 
[17], linear security profit model, which is the sum of 
weighted security levels, is assumed to evaluate security 
quality of security-critical tasks. Obviously, linear model 
is impractical to depict the security quality of 
security-critical tasks. Ref. [12] proposed a trust level 
based job failure model to test the failure probability of 
security-critical tasks. Based on the job failure model, we 
establish a security risk model. Firstly, the failure 
probability of security-critical task Ti with security level 

iS  is defined as  

( )1 exp ,        if  <   

0,                              if    

DM
i i iS S DM

risk i i
i DM

i i

S S
P

S S

   


   (2) 

where i  is the security risk coefficient of Ti, which can 
be adjusted by the designer based on different risk 
scenarios. Eq. (2) demonstrates that if the assigned 
security level is greater or equal to the demanded security, 
we assume no failure will happen when security attacks 
are mounted. Inversely, the task has the probability to fail, 
and bigger security demand gap leads to higher 
probability. 

Since security risk is product of security breach 
probability and consequence of security breach [18], we 
model the security risk (SR) of Ti as Eq. (3). 

( )(1 exp ),    if  < 

0,                                   if  

DM
i i iS S DM

risk i i i
i i i DM

i i

V S S
SR V P

S S

      


  (3) 

D	 	 System	problem	description	

In this paper, we consider a task set of N tasks 
running in an energy-constrained security-critical 
embedded system. System managers give the energy 
budget (En-budget) for the execution of these tasks. In 
other words, if their execution leads to energy violation, 
then it may result in the failure of other components in the 
system. In special situations, it demands energy 
consumption not exceed (1 ) _ ,En budget where   is 
recognized as energy slack ratio. The system problem is 
to assign most suitable security services for tasks with the 
minimum security risk, and satisfying the given energy 
budget. Thus, Overall Security Risk (OSR) minimizing 
problem can be formulated as  

1 1 1 1

Min  ( )
N M N M

risk
ij i ij i ij

i j i j

OSR x SR T x V P
   

       (4) 

S.T.  1

1

(1 ) _

1,  {0,1}

N

i
i

M

ij ij
j

En En budget

x x






  

  





            

where, xij denotes whether task Ti is assigned security 
protection on j-th level. Clearly, the optimization problem 
is a Multiple Choice Knapsack Problem, which is 
NP-hard. It will take high computation overhead to get 
optimal solution, thus we try to find low-complexity 
assignment algorithm, which can obtain good solution 
while satisfying the predefined constraints efficiently.  

IV. RANDOM SCALED APPROXIMATION 

ALLOCATION POLICY 

The overall security risk minimizing problem is 
NP-hard, so it needs efficient methods to solve it. In this 
paper, we transform the problem to a multiple stage 
decision-making procedure, and use Dynamic 
Programming to address it.  



 

A	 	 Multi‐stage	decision‐making	procedure	 	

Considering a set of N tasks, the security risk 
minimization problem can be taken as an N-stage 
decision-making procedure. The decision variable for the 
i-th stage is Si, that needs to be assigned. Thus the 
purpose can be transformed to find a vector 

 1 2, ,..., NS S S S  with minimum system security risk 
while satisfying the energy budget constraint.  

We denote a three-tuple ( ik , ik , ikS ) to describe 
the k-th state in i-th stage. ik and ik are two values in 
this state, which present the accumulated energy 
consumption and the accumulated security risk for the 
first i tasks respectively. ikS is the specific value of 
security decision variable Si in this state. The State Set 

i  for i-th stage is defined as 

max max max1 1 1 2 2 2{( ,  ,  ),( ,  ,  ),..., ( ,  ,  )}i i i i i i i ii ii ii
S S S        

where imax is the number of all states for i-th stage. 

Given the 1i  in (i-1)-th stage, we can obtain the 

state set ik  by adding energy consumption and 

security risk of task i under security level [1, ]DM
ik iS S  

to all states of 1i ,  

1 ( ( ),  ( ), )ik i i ik ik ikEn S SR S S     

1,1 1,1{( ( ),  ( ),  ),i i ik i ik ikEn S SR S S      

1,2 1,2( ( ), ( ),  ),  ... }i i ik i ik ikEn l SR S S     
Thus, the state set in i-th stage is  

| |

1

iS

i ik
k

                       

We set |Si| as the number of available options for 
task Ti. Obviously, in the first stage, there are only |S1| 
states, and the number of states in i-th stage is the 
production of |Si| and the number of states in stage i-1. 
The maximal state space is as follows,  

1

| |
N

i
i

SS S


                 (5) 

From Eq. (5), the state space grows exponentially as 
the number of tasks and security choices grows. Thus it is 
infeasible to get the optimal solution using Dynamic 
Programming algorithm for large system designs. So, we 
must find efficient methods to reduce the solution space. 

Inspired by the approximation algorithm of Knapsack 
problem [19], grouping the energy consumption into a 
series of discretized integers is a good approach to reduce 
the decision states on each stage. Setting  as the group 
factor, then the energy consumption of each task can be 
divided to an integer by /iEn  . Thus, in each stage, we 
just keep the state with minimal security risk when 
several states have the same energy integer. 
Bigger gives smaller scaled energy integer and smaller 
number of states in each decision-making stage. 

Table II Matrix of Decision states 
0 1 2 … M 

T1 1,1 1,1 1,1( , , )S   
1,2 1,2 1,2( , , )S   … 1, 1, 1,( , , )M M MS 

T2 2,1 2,1 2,1( , , )S  2,2 2,2 2,2( , , )S   … 2, 2, 2,( , , )M M MS 

… … … … … 

TN-1 1,1 1,1 1,1( , , )N N NS    1,2 1,2 1,2( , , )N N NS   
 … 1, 1, 1,( , , )N M N M N MS   

 

TN ,1 ,1 ,1( , , )N N NS  ,2 ,2 ,2( , , )N N NS 
 … , , ,( , , )N M N M N MS 

Due to the number of states in each stage can be 
maximized to a constant _ /M En budget     , we use a 
two-dimension table to demonstrate all states as Table II. 

B	 	 Random	Scaled	Policy	

In this paper, we introduce a random scaling 
approximation mechanism. For each task Ti, the energy 
consumption is scaled by /iEn  . If the obtained result is 
not an integer, we randomly scale it to the closest smaller 
integer or to the closet bigger integer according to Eq. (6). 
The purpose of randomly scaling is to let the average 
error equal to zero statistically. This gives better solution 
while having the same complexity of down-scaling or 
up-scaling methods [6]. We will prove its advantages in 
later sections. 

1

2 1

,   probability of /

,   probability of  1  

i i
i

i

i

En En
En

En
En



 
 

 


           
     

   (6) 

For N tasks, we can obtain that the totally discretized 
energy consumption as the following equation. 

1

N

i
i

OEn En 



                      (7) 

And the total error for N tasks is 

1 1

( )
N N

i i i
i i

OErr Err En En
 

         (8) 

Theorem 1. Given the energy slack ratio  and the 
energy budget _En budget , the maximum value of 
grouping factor   is _ /( 1)En budget N    . 

Proof. Clearly, Random Scaling (RS) policy has the 
total error between Up Scaling (US) and Down Scaling 
(DS) policy. For US policy, the real energy consumption 
has the negative error to scaled energy, and the overall 
error (OErr ) is as follows, 

1 1

1

1

1

( )

             = ( )

             ( ( 1))

             ( )

             

N N
US

i i i
i i

N
i

i
i

N
i

i
i

N

i

OErr Err En En

En
En

En
En

N













 







   

     

   

 

 

 







 



 

For DS policy, the real energy consumption has the 
positive error, and the error can be inferred by the 
following equation. 

1 1

1

1

1

( )

             = ( )

             ( ( 1))

             ( )

             

N N
DS

i i i
i i

N
i

i
i

N
i

i
i

N

i

OErr Err En En

En
En

En
En

N













 







   

     

   





 







 

Thus for RS policy, the total error can be ranged as 

follows, 

N OErr N                       (9) 

That is, RS can lead the real energy consumption to at 
largest N  energy error comparing to the scaling 
energy. According to the description of 2-dimensional 
decision-making table, the maximum energy value is 

_ /En budget     which has the most   error 
to _En budget . Thus, the maximum error of the proposed 
policy comparing to the given energy budget is ( 1)N  . 
Hence, to guarantee the loosely energy constraint, we 
need to satisfy the following inequality.  

( 1) _N En budget     

Then we obtain, 

    
_

1

En budget

N

 



               (10) 

According to inequality (10), we can get the conclusion 

of Theorem 1. End of proof. 

Theorem 1 shows that we can only take the grouping 

factor   within [0, _ /( 1)]En budget N   by giving 

energy slack ratio  . If  is bigger 

than _ /( 1)En budget N  , then the energy slack ratio 

cannot be guaranteed. 

Lemma 1. The accumulated error of N tasks energy 

consumption is statistically zero. 
Proof. This is because RS rounds the energy to 

ceiling or to floor integer according to certain probability. 
Tasks can have positive and negative errors, and then 
positive errors and negative errors cancel out one another 
in the whole task set. Thus the accumulated error is 
minimized to zero statistically. 

Because the energy value of each task with RS 
policy is a random variable, then we can deduce the 
expected or mean error of each task. Without loss of 
generality, we take Ti as an example, and assume 
that iEn is not the integer times of . The expected error 
of Ti is inferred as following. 

          ( )

               + (1 )

          ( )

      

i i
i i i

i i i
i

i i i
i

i i i
i

En En
Err En En

En En En
En

En En En
En

En En En
En
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 


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
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
  

            
           
           

           

1 2e( ) ( - ) ( - )

( - )

( - )

( - )

         + ( )

          0

i i i
i

En En En
En 

  
          



( - )

 

Then the accumulated error of N tasks is, 

1

0
N

i
i

OErr Err


e( )= e( )                (11) 

Thus we get the conclusion of Lemma 1. 
Lemma 2. The standard deviation of RS 

approximating mechanism is bounded by  

_

2( 1)OErr

N En budget

N

 



            (12) 

Proof. According to the definition of variance of 
random variable, we can have the variance of energy error 
of Tasks Ti as follows, 

1

2

( ( )

            (

                (

            ( ( )

                (

k k
i i i i
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i
i i
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Then we obtain the maximum variance value of Erri as  



 

 max 2 21 1 1
(1 )

2 2 4iErr    D ( )=      (14) 

Thus, the total variance of N tasks is  

max max 21

4iOErr N Err ND ( )= D ( )=   (15) 

Therefore, the maximal standard variance of N tasks can 
be inferred by Theorem 1 and Eq. (15) 

max 1 _

2 2( 1)OErr

N En budget
OErr N

N

  
  


D ( )  (16) 

C	 	 RS‐based	Dynamic	Programming	Algorithm	

Based on RS policy and the 2-dimensional states 
presentation, we propose a Dynamic Programming based 
security-aware assignment algorithm. The main purpose 
of Random Scaling based Dynamic Programming (RSDP) 
is to assign most suitable security level to each task with 
minimum system security risk. The pseudo-code of the 
algorithm is given in Fig. 2. The approximation scheme 
works by reducing the number of decision states in each 
stage. For initialization, RSDP calculates the grouping 
factor   in line 1, and initializes the 2-dimension 
decision-making matrix by lines 2-5. From line 5 to line 
16, it is the upgrading procedure of decision states for 
every decision-making stage. Based on each non-zero risk 
state in (i-1)-th stage, RSDP calculate every possible state 
for i-th stage (lines 7-14). If the immediately generated 
state has lower security risk comparing to prior state in i 
-th stage with the same energy cost, RSDP replaces the 
old state by the new one with smaller security risk. After 
all the decision states in every stage have been renewed, 
RSDP selects the state with smallest security risk in the 
N-th stage as line 17-18. Security risk of selected state is 

 

Fig. 2 The pseudo code of RSDP 

the final solution of the optimization problem. To obtain 
the final security level, RSDP goes back from N to 1st 
stage to get the vector of security assignments (lines 
19-20). 

Theorem 2. RSDP is a polynomial time complexity 
algorithm with 2( ) / .iO RSDP N S   And the space 
complexity is bounded up to _ /En budget    . 

Proof. From Fig. 2, we can deduce the time 
complexity of RSDP. It takes O(1) by line 1, and 

( _ / )O En budget     by lines 3-4. Based on each state in 
(i-1)-th stage, the states upgrading procedure of i-th stage 
(lines 7-13) will cost time of iS ; and there exists at 
most _ /En budget    states in (i-1)-th stage (line 6). 
Thus, for all N stages, the state upgrading procedure will 
take ( _ / )iO N En budget S    , (seeing lines 5-16). For 
lines 17 to 20, it takes O(N) time. Therefore, we obtain 
the complexity of RSDP as, 
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Therefore, the time complexity of RSDP is polynomial in 

the number of tasks N, security choices |Si| and 1/  .  

On each stage, we only need to store 
_ /En budget     states at most, so it is the upper bound 

of memory space for our proposed RSDP algorithm. 
Theorem 3. The proposed algorithm is a polynomial 

complexity algorithm with guaranteed energy slack ratio 
and zero error violation of energy budget statistically.  

Proof. The grouping factor of RSDP is set as 
_ /( 1)En budget N    , seeing Fig. 2. Hence, according 

to Theorem 1, we can obtain that RSDP can satisfy the 
given energy slack ratio. According to Lemma 1, we can 
get to know that the energy error is statistically zero, thus 
RSDP can have zero error violation of given energy 
budget. According to Theorem 2, we know that RSDP is 
polynomial complexity. Therefore, we can have the 
conclusion that RSDP is a polynomial complexity 
algorithm with guaranteed energy slack ratio, and zero 
error violation of ideal energy budget statistically.  

V. SIMULATION RESULTS 

 In this section, we conduct experiments to verify the 
performance of the proposed algorithm. We implement a 
simulator using C# programming language to implement 
the security assignment procedure. For evaluation 
purposes, we compare our RSDP algorithm with three 
other methods, named USDP, Greedy and SEAS. The 
performance metrics in our experiments are overall 
security risk, real energy consumption, and energy error 
ratio. Energy error ratio is the ratio of real energy 
consumption error and energy budget. 

 USDP: It utilizes Up-Scaling approximation scheme 
like reference [6], but we focus on risk minimizing 

1. Calculate the grouping factor _ /( 1)En budget N     

2. Initialize matrix _ /N En budget   
  

3.   For each element in _ /N En budget   
  

4.       
, ( , , ) ( ,0,0)i j i i iz S j    

5.  For ( 1, , )i i N i     

6.    While 
1, 1 1 1( , , ) ( ,0,0)

i j i i iz S j 
      Do 

7.        For # # #( 1, , )DM
i i i iS S S S     

8.            #
1i i iEn     

9.            #
1i i iSR     

10.        IF # _ /i En budget      

11.           Then break; 
12.        IF # #( | )i i i i      

13.           Then # # #( , , ) ( , , )i i i i i iS S      

14.     EndFor 
15.   EndWhile 
16. EndFor 
17. For j=1 to _ /En budget      

18.    Find *
,N jz  with minimal security risk 

N  

19. For N to 1 
20.    Mark the final decision vector  1 2, ,..., NS S S S   



 

problem not energy minimal problem.  
 Greedy: For this scheme, we assign the security 

level to tasks in a greedy fashion. It provides the 
currently highest security level to tasks step by step 
according to their natural order until all available 
energy slack is depleted. 

 SEAS: It is a Security and Energy Aware Scheme, 
which is similar to SASES [16]. SEAS escalates the 
security level by comparing risk-energy ratios among 
tasks just like the benefit-cost ratio used in SASES. 

We conduct four groups of simulations. For all the 
tasks, the basic energy consumptions are randomly in 
range of 0.1J to 0.2J, the security demands are randomly 
assigned between levels 6 and 8 for confidentiality 
protection. The impact value of each task is randomly 
generated between 1 and 10. In this paper we consider the 
energy of security part is nearly the same order of basic 
energy cost. Thus, we set the size of sensitive data ranges 
from 10KB to 40KB uniformly based on the energy costs 
of security services in Table I, For simplification, the 
security coefficient   is set to 1 for all tasks.  

A	 	 Impacts	of	energy	slack	ratio	on	energy	and	risk	

The goal of this simulation is to evaluate the 
performance under different energy slack ratio. We set the 
energy budget to 4.5 Joule. The number of tasks is fixed 
as 20. Other task parameters are generated randomly 
based on the range described formerly. We vary the 
energy slack ratio from 0.01 to 0.2 with step increment of 
0.01. The simulation results of overall security risk, real 
energy consumption and energy error are shown in Fig. 3, 
4 and 5 respectively. For security risk in Fig. 3, we get to 
know that RSDP has the minimal security risks, while 
SEAS incurs maximal security risks under different 
energy slack ratio. Specifically speaking, USDP, Greedy 
and SEAS obtain increased security risk averagely up to 
2.8%, 5.1% and 8.2% of RSDP. From Fig. 4, we can 
notice that the real energy consumption of RSDP is 
randomly changed around the energy budget value due to 
the random scaling policy. For USDP, it is decreasing 
with bigger  , which is because that bigger  means 
bigger  , and the negative error of USDP is getting 
greater. One interesting thing is that all of the three test 
metrics of SEAS and Greedy are fixed under different   
due to the fact that   is affecting the searching 
procedure in neither of them. 
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Fig. 5 Energy error ratios under various slack ratios 

Fig. 5 illustrates the energy error ratios. RSDP can 
guarantee the given energy slack ratio even if it is very 
small, e.g. 0.01 and 0.02. Another interesting thing is that 
USDP always gets negative error ratio and RSDP can 
obtain smaller error ratio when it is negative. For example, 
when   is set to be 0.12 and 0.16, the energy error ratio 
of RSDP is only 0.033 and 0.034, while USDP is 0.057 
and 0.099. This is because RSDP utilizes random scaling 
policy which cancels out the positive and negative errors. 
As depicted in the figures, RSDP is the best algorithm 
among the four that get the lowest risk with little energy 
budget error. 

B	 	 Impact	of	delta	on	security	risk	and	energy	error	

In the second group of simulation, we are going to 
evaluate the impact of grouping factor   on the 
performances of the four algorithms. The energy budget 
and the number of tasks are also set to 4.5 Joule and 20 
respectively. In this part, we don’t deduce   by the 
energy slack ratio  , but we directly vary the grouping 
factor   from 2000 uJ to 40000 uJ with step increment 
of 2000 uJ instead. The results of total security risk, real 
energy consumption and energy error are shown in Fig. 6, 
7 and 8 respectively. For security risk in Fig. 6, the 
overall security risk of RSDP is the lowest among the 
four algorithms. RSDP’s security risk is averagely 4.5% 
less than USDP. Greedy and SEAS get more risk which is 
also fixed in this experiment. We also find that USDP 



 

cannot get the solution when  is 3600 uJ and 3800 uJ. 
This means the schedulability of RSDP is more robust 
than USDP. 

From Fig. 7 and 8, we get the same situations as the 
first experimental group. The real energy consumption of 
USDP is decreasing with bigger  . This is because that 
bigger  results in greater approximation error. The real 
energy consumption of RSDP is not changing as great as 
USDP either. Fig. 8 illustrates the energy error ratios of 
RSDP and USDP. The energy error ratios of Greedy and 
SEAMS are fixed as 0.0435 and 0.0063, so we omitted 
them in Fig. 8. Clearly, both of RSDP and USDP get 
bigger energy error ratios if  increases. RSDP can also 
obtain smallest error relatively. For example, when   is 
set to 3000 uJ, the energy error ratio of RSDP is only 
0.0215, while USDP is 0.0481. Given  =0.05, we can 
get the maximal   as 10714 uJ according to Theorem 1. 
From Fig. 8, we can see that energy slack ratios are all 
within 0.05 when  is from 2000 uJ to 10000 uJ. This 
proves the correctness of Theorem 1. Based on the results 
above, we can conclude that RSDP is a better algorithm 
to get less risk but with smaller energy budget error. 
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Fig. 8 Impact of group factor on energy error ratio 

C	 	 Impact	of	energy	budget	on	security	risk	and	energy	

In this group of simulation, we make efforts to verify 
the performances under various energy budgets. We set 
the energy slack ratio   to 0.04. The energy budget 
varies from 3.5 J to 9.2 J with the step increment of 0.3 
Joule. The rest simulated parameters are generated as in 
the second experiment. Fig. 9, 10 and 11 are numerical 
results of these four algorithms under different energy 
budget respectively. From Fig. 9, we find some 
interesting observations. When the energy budget is small 
like 3.5 J and 3.8 J, no algorithm can get the solution for 
the task set. This is because the energy budget is too small 
to provide the minimal energy consumption when all 
tasks select the lowest security levels. On the other hand, 
when energy budget is up to 6.8 J, all the three algorithms 
consume the same energy. The reason is that the energy 
budget is enough to provide each task with their 
designated security level. In the range of 4.1 J to 6.5 J, the 
real energy consumptions of all algorithms are increasing 
with energy budget. SEAS consumes more energy than 
USDP and Greedy methods, while RSDP has the random 
value up or down the budget.  

As can be seen in Fig. 10, the risk values of all 
algorithms have the same trend as the first two 
experiments between 4.1 J and 6.5 J. RSDP gets the 
minimal security risk, while SEAS incurs the greatest 
which is 25.7% more than RSDP on average when energy 
budget is between 4.1 J and 6.5 J. This means SEAS is 
not a good scheme to handle risk minimizing problem 
identified in this paper. The security risks of Greedy and 
USDP is between RSDP and SEAS. From Fig. 11, we can 
obtain the energy error ratio results. From 7 J, the energy 
error ratio is greatly decreased below zero. This is 
because the energy consumptions of all algorithms are 
fixed while the energy budget is increased step by step. In 
the range of 4.1 J to 6.5 J, RSDP and USDP can guarantee 
the energy slack ratio of 0.04, but Greedy sometime 
violates the requirement. We can also notice that RSDP is 
better in error ratios aspect, i.e. it is closer to zero. 
Therefore, RSDP analyzes the tradeoff between the 
security risk and energy consumption efficiently, which 
tries to make full use of the energy with statistically zero 
error while getting minimal security risk. 
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D	 	 Impact	of	task	number	on	security	risk	and	energy	

In the last group of simulation, we test the impact of 
application sizes on the performance of these algorithms. 
The energy budget and the energy slack ratio are set to 15 
Joule and 0.04 respectively. We vary the task number 
from 5 to 100 with step increment of 5.  

Table III  Energy error ratio of each algorithm 
Algorithm RSDP USDP Greedy SEAS

Error Ratio 0.00021 0.0208 0.01123 0.00057
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Fig. 13 Impact of task numbers on energy expenditure 

The results of total security risk and energy 
consumption are shown in Fig. 12 and 13 respectively. 
From which, we can find that the real energy 
consumption of all algorithms have the same value when 
the task number is in range of (5, 45). Since 15 Joule 
energy budget can provide these tasks with highest 
security levels, the security risks of all algorithms are the 
same when tasks number is in range of (5, 45), as in Fig. 
12. But it is not schedulable when there are more than 80 
tasks, seeing Fig. 13. The reason is that 15 J cannot 
support these tasks even with minimal security level 
assignments. This is also why there is no risk in Fig. 12 
when tasks number more than 75. When tasks number are 
in (50, 75), the energy budget is between the minimal and 
maximal energy consumption of these tasks. Hence, the 
proposed algorithm makes the most suitable choices for 
each task to find the corresponding security level. In the 
range of (50, 75), RSDP and USDP have the same pattern 
as the first three experiments, which means RSDP is also 
the best approach to get the lowest security risk and can 
guarantee the energy slack ratio. The average energy error 
ratios of all algorithms are listed in Table III. Clearly, the 
error ratio of RSDP is closest to zero among these 
algorithms. 

E	 	 Simulation	conclusion	

Based on the detailed analysis of the former 



 

simulations, we have following conclusions. 1）RSDP can 
always get the minimal security risk, while the risks of 
Greedy and SEAS are much higher, which means both of 
Greedy and SEAS are not competent for security 
risk-driven optimization problem. 2) RSDP is a 
polynomial complexity algorithm, which can get good 
solution with low time overhead. 3) RSDP has the same 
time complexity as USDP, but it can achieve less risk and 
statistically satisfy the given constraint with zero error. 4) 
Clearly, our randomly scaling policy based dynamic 
programming mechanism can be easily used for other 
constrained optimization applications which have 
statistical guaranteed requirements. 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we investigate one general resource 
allocation problem in security- and energy-critical 
embedded systems. The problem seeks to find an offline 
resource allocation policy such that the expected security 
risk against security threatens is minimized, and the total 
energy budget is met. This problem is a knapsack 
problem which can be easily proved to be a NP-hard 
problem, thus we propose an approximation algorithm to 
find the near-optimal solution within statistically 
guaranteed energy constraint. The proposed algorithm has 
low complexity in both execution time and memory space, 
which is very suitable for use in resource limited 
embedded systems. Finally, extensive experiments 
demonstrate the superiority of the proposed algorithm. 

We are interested in two potential future works. The 
first is to consider the systems which have additional 
real-time requirement in our scheduling framework. The 
second is to consider security as a dimension of 
constraints (as the system design problem in [20]), and try 
to obtain the minimal energy cost of the whole system. 
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