Schedulability Analysis for Processors with
Aging-Aware Autonomic Frequency Scaling

Alejandro Masrur, Philipp Kindt, Martin Becker

and Samarjit Chakraborty
Institute for Real-Time Computer Systems
TU Munich, Germany

Abstract—With the rapid progress in semiconductor tech-
nology and the shrinking of device geometries, the resulting
processors are increasingly becoming prone to effects like aging
and soft errors. As a processor ages, its electrical characteristics
degrade, i.e., the switching times of its transistors increase.
Hence, the processor cannot continue error-free operation at
the same clock frequency and/or voltage for which it was
originally designed. In order to mitigate such effects, recent
research proposes to equip processors with special circuitry that
automatically adapts its clock frequency in response to changes
in its circuit-level timing properties (arising from changes in
its electrical characteristics). From the point of view of tasks
running on these processors, such autonomic frequency scaling
(AFS) processors become slower as they gradually age. This
leads to additional execution delay for tasks, which needs to
be analyzed carefully, particularly in the context of hard real-
time or safety-critical systems. Hence, for real-time systems based
on AFS processors, the associated schedulability analysis should
be aging-aware which is a relatively unexplored topic so far.
In this paper we propose a schedulability analysis framework
that accounts such aging-induced degradation and changes in
timing properties of the processor, when designing hard real-time
systems. In particular, we address the schedulability and task
mapping problem by taking a lifetime constraint of the system
into account. In other words, the system should be designed to
be fully operational (i.e., meet all deadlines) till a given minimum
period of time (i.e., its lifetime). The proposed framework is based
on an aging model of the processor which we discuss in detail.
In addition to studying the effects of aging on the schedulability
of real-time tasks, we also discuss its impact on task mapping
and resource dimensioning.

I. INTRODUCTION

As device geometries continue to shrink with the advances
in fabrication technology, the resulting processors are increas-
ingly becoming susceptible to effects like aging. As a pro-
cessor ages, the switching times of its constituent transistors
increase because of which the processor is no longer able
to sustain the clock frequency it was originally designed
for. Hardware solutions to mitigate such effects consist of
equipping processors with on-chip monitors or sensors [8],
[5] that measure the timing margin available to circuits on
the chip, or variations in their timing behavior arising from
changes in their electrical characteristics. The output from
such monitors is coupled with the clock generation circuit to
adjust the clock frequency in response to changes in the signal
propagation delay due to effects like aging. Such techniques
have already been used in IBM’s POWERTY architecture [9] in

Veit Kleeberger, Martin Barke
and UIf Schlichtmann
Institute for Electronic Design Automation
TU Munich, Germany

order to automatically adjust the processor’s clock frequency
and voltage level, with the aim of saving energy. The same
technique is also applicable to cope with the effects of aging.

In such autonomic frequency scaling (AFS) processors, the
execution times of tasks increase over time as the processor
ages. For real-time or safety-critical applications running on
such AFS processors, a natural question is: how to perform
timing or schedulability analysis? Given a life-time constraint,
i.e., the duration of time during which all deadlines have to be
met, one obvious solution would be to perform schedulability
analysis with task execution times at the end of this duration
(i.e., using the aged execution times). However, for cost-
sensitive domains such a naive approach might be overly
pessimistic and lead to resource overdimensioning.

As a concrete example, let us consider the automotive
domain. Today, high-end cars have 50-100 electronic control
units (ECUs) or processors to run a variety of hard real-time,
safety-critical control applications. Currently, these ECUs
are often low-cost processors or microcontrollers that run
at 200-500 MHz. However, in order to reduce cost, weight
and cabling requirements, there is an increasing effort on
ECU consolidation, i.e., integrating multiple functionalities
on fewer more powerful ECUs. In the near future, we will
see ECU architectures evolve into powerful, multi-core
processors that are currently found in the high-performance
computing domain. As soon as that happens, such ECUs will
be faced with the effects of aging, soft errors, etc., especially
because they will be exposed to a wide variety of operating
environments and temperatures, depending on where the car
is deployed. This will be coupled with the fact that additional
processor cooling mechanisms — as found in the mainstream
computing domain — will probably be absent. Given that it
is common for automotive OEMs to provide guarantees in
the range of 15 years, it has to be ensured that tasks running
on aging-aware autonomic frequency scaling or AFS ECUs
continue to meet all deadlines over this entire time period. In
this paper we propose an appropriate processor aging-aware
schedulability analysis for such scenarios.

Processors with autonomic frequency scaling: In general,
aging effects can be divided into two categories: degradation
and destructive effects. Degradation effects may be classified
into Negative Bias Temperature Instability (NBTI) and Hot



Tasks

Schedulability Analysis

» Demand Bound <« Aging Model
Function
5 AFS Frequency -
2 Control Synthesis »
8
<] Processor
o
i Critical Path
< Monitor

Fig. 1. Schematic view of an AFS processor

Carrier Injection (HCI). These cause a shift in a device’s elec-
trical characteristics, such as threshold voltage or on-current,
which leads to prolonged switching times of transistors. On the
other hand, destructive effects like Time-Dependent Dielectric
Breakdown (TDDB) or Electro Migration (EM) cause the
destruction of device parts and irreparable damage. In this
paper, we are concerned with degradation effects, i.e., those
that do not damage a processor but rather affect its timing
behavior.

As a processor ages, its transistors gradually need more
time for switching (due to degradation effects). Hence, as
mentioned before, the processor cannot sustain the clock
frequency it was originally designed for. While very large
safety margins or timing guardbands can be used to mitigate
such effects, they lead to poor resource utilization and
hence more expensive processors, which are not acceptable
in cost-sensitive domains like automotive architectures.
Autonomic frequency scaling (AFS) processors use critical
path monitors (CPM) which allow measuring the maximum
delay degradation at runtime (see Fig. 1). Depending on
the implementation, an AFS processor may become slower
as it ages, in order to keep the processor operational. To
reliably design real-time systems based on AFS processors,
it is necessary to analyze the system’s aging behavior and
develop timing or schedulability analysis techniques that are
aging-aware.

QOur contributions: As discussed above, an AFS proces-
sor automatically reduces its clock frequency to account
for additional circuit-level signal propagation delay incurred
due to aging. This way, although the processor becomes
slower, it avoids the occurrence of aging-dependent func-
tional/computation errors. However, in the context of real-
time systems, we need to analyze what the maximum slow-
down is, to be able to guarantee deadlines all along the
system’s lifetime. For this purpose, we make use of the aging
model from [14] to predict the processor’s worst-case aging
behavior within the desired lifetime #;; .. This model returns
the maximum aging-dependent delay D, as a function of the
time under stress tsiress (1.€., the time in which the processor
is busy executing some workload).

Now, to account for aging in schedulability analysis, we
can use our aging-model to obtain D,,,, considering a
stress €qual to t;;7. and compute the speed of the aged
AFS processor after t;;¢. of continuous use. Clearly, if the
aged AFS processor can guarantee all deadlines, then the
system is schedulable along its whole lifetime. However, even
considering aging, the processor utilization is normally below
100% and, in most cases, tstress 1S much less than #;;7. (i.e.,
the processor is not being constantly used during its lifetime,
but rather it has some idle intervals). As a result, this first
naive approach leads to a pessimistic slow-down estimation
and, hence, a more expensive design.

In this paper, we are concerned with a second, tighter
analysis, which consists of integrating our aging model into the
well-known demand bound function (DBF) for fixed-priorities
[10]. We derive this way an aging-dependent DBF which can
be used to perform a more accurate schedulability analysis
for AFS processors. In particular, we can apply the proposed
schedulability analysis to design AFS-based systems such that
all timing constraints are guaranteed within a desired lifetime.

In addition, it is further possible to design task allocation
algorithms that take aging into account. In this paper, we
propose one such algorithm based on the well-known First-Fit
heuristic — note that optimization algorithms such as branch
and bound can also be used for this purpose. We show that
an allocation algorithm based on the proposed approach leads
to a more efficient design (i.e., one which requires fewer
processors) than an allocation algorithm based on the naive
approach.

This paper is organized a follows: Section II gives an
overview of related work, whereas Section III explains the
principles behind AFS processors. Section IV introduces and
discusses the models and the notation used along this paper.
We also explain our aging model in detail before continuing
with Section V where we derive and discuss our aging-aware
schedulability framework. In Section VI we introduce a task
mapping algorithm and in Section VII some experimental
results will be summarized. Finally, Section VIII concludes
the paper.

II. RELATED WORK

The aging behavior of semiconductors is a major topic of
research within the processor architecture community, but it
has so far received relatively less attention from the software
community. Notable exceptions to this are [7], [23], [16], [17].

There exists a large body of work that addresses aging
effects at the hardware level. For example, Wu and Marculescu
presented optimization techniques that allow synthesizing dig-
ital circuits that are less prone to aging degradation [23]. In
[24], different process variations at a chip level are studied and
characterized. In [16], [17], software techniques are presented
to cope with problems that are posed by unreliable hardware.
These include devising reliability-aware instruction sets, cou-
pled with appropriate instruction scheduling using reliability-
aware compilation techniques.



Recently, in [7], Huang et al. presented an allocation
framework based on a heuristic that aims at maximizing the
lifetime of an SoC (System-on-Chip). Our work here follows
this line of research and also deals with the allocation issues
that arise in aging devices. However, in contrast to recent
research efforts, the approach presented here deals with the
schedulability of real-time tasks and extends the state-of-
the-art by considering hardware-dependent behavior in the
schedulability and mapping problem, viz., aging effects.

III. AGING-AWARE AUTONOMIC FREQUENCY SCALING

A processor ages with the time under stress (i.e., the time
it is executing some workload). In general, aging effects can
be divided into two categories: destructive and degradation
effects. Destructive effects like Time-Dependent Dielectric
Breakdown (TDDB) or Electro Migration (EM) cause the
destruction of device parts and irreparable damage.

In this paper, we are concerned with degradation effects
such as Negative Bias Temperature Instability (NBTI) and
Hot Carrier Injection (HCI). These cause a shift of a device’s
electrical characteristics, e.g., threshold voltage or on-current,
which results in elongated switching times of transistors [20],
[4]. This leads to errors and, hence, the processor cannot
continue to run at the same frequency.

There are a number of approaches that can be used to
countervail aging degradation. In the following we discuss the
most relevant such approaches:

« Safety margins: A processor’s lifetime correct operation
can be guaranteed by considering safety margins in, for
example, supply voltage and/or clock frequency. These
safety margins should take the worst-case aging condi-
tions into consideration. In other words, if we know that
a processor incurs a maximum aging-dependent delay
D a2z, we can reduce its clock frequency by an amount
(i.e., a safety margin) that accounts for D,,,,. However,
safety margins usually lead to a waste of resources (or
energy) and, thus, a pessimistic design [9].

« Supply voltage regulation: Increasing the supply voltage
Ve allows reducing the delay of an aged circuit [19]
and, therefore, helps to keep the clock frequency constant
even though aging proceeds. An adaptive control circuit
can automatically regulate the supply voltage to a cur-
rently needed value [4]. However, increasing the supply
voltage strongly worsens the dynamic power consumption

Py [15]:
Py o< CLVEc f, (1)

where C, is the total load capacitance in a chip and
f is the operating frequency. In addition, the supply
voltage is normally limited by maximum allowable input
current, cooling constraints, temperature-dependent relia-
bility issues, etc. [20]. This latter makes a supply voltage
regulation be difficult to implement, in particular, as aging
degradation becomes more relevant with shrinking device
dimensions.

o Clock frequency scaling: Along a processor’s lifetime,
its clock frequency can be adapted to account for aging

degradation [4]. In contrast to supply voltage regulation,
where Voo needs to be increased, the clock frequency
needs to be decreased to account for aging. Hence, the
power consumption goes down — see Eq. (1). However,
as discussed previously, by reducing the clock frequency
the processor becomes slower.

Clearly, all the above approaches have advantages and
disadvantages. However, since scaling the clock frequency
allows reducing power consumption, we believe this to be
the most promising technique, particularly, in the context of
embedded systems. Note that it is possible to combine supply
voltage regulation with clock frequency scaling [9]. This leads
to an intermediate solution with less power consumption than
voltage regulation alone, but still more than what it is needed
by sole frequency scaling.

In this section, we briefly describe existing technologies that
allow for Autonomic Frequency Scaling (AFS) to compensate
aging degradation. Here the purpose is to reduce the clock
frequency; however, this should not be reduced more than
necessary (otherwise, more processing speed is sacrificed than
actually necessary). For this reason, we talk about finding
the maximum allowable clock frequency, i.e., the maximum
possible frequency that guarantees error-free operation.

To adjust the clock frequency to its maximum allowable
value under current operating conditions (i.e., temperature,
supply voltage drops, aging, etc.), a control circuit is required.
We refer to this circuit as AFS control — see Fig. 1. Another
circuit called Critical Path Monitor (CPM) allows measuring
the difference between the current and the maximum allowable
clock frequency. The output of the CPM is connected to the
AFS control. The output of the AFS control is then led to a
third circuit which allows synthesizing the clock frequency.
The frequency synthesis allows quick, glitch-free, virtually
continuous changes of the operating frequency [20].

The AFS control follows a desired strategy (i.e., control
algorithm). In [6], [9], a power management strategy is im-
plemented. However, in this paper, we assume that the AFS
control adjusts the clock frequency to its maximum allowable
value which then varies (i.e., decreases) as the processor ages.

1) Critical Path Monitor: As mentioned above, a circuit
termed Critical Path Monitor (CPM) is used to detect the
difference between the current and the maximum allowable
clock frequency.

Fig. 2 shows the CPM circuit as proposed by [15]. The
main idea behind CPM is as follows: A pulse-like signal
is fed to a circuit that replicates the critical path within
the processor, i.e., the electric network usually consisting of
multiple cascaded stages with the longest propagation delay.
Note that the critical path determines the maximum allowable
clock frequency, since all its stages need to have enough time
to switch within one clock cycle. The CPM circuit measures
the critical path’s delay and compares it with the current clock
period to determine the difference between them.

With shrinking device dimensions, within-die and die-to-
die variations are becoming more relevant. As a result, static
timing analysis at circuit level does not suffice to determine



Tunable Tunable

Delay Delay
CPR
CPRI—C-element
CPR
C-el;ent‘s
Delay

PI2] P[1] P[O]

Fig. 2.

Schematic view of the critical path monitor (CPM)

which electric network constitutes the critical path of a pro-
cessor [15]. However, it is possible to identify all critical path
candidates, i.e., a reduced subset of the processor’s electric
networks which might become critical at runtime. The CPM
circuit then consists of replicas of each of these circuits,
termed Critical Path Replicas (CPRs).

In Fig. 2, the flip-flop on the left-hand side toggles with
every cycle of CLK (i.e., the clock signal) since its inverted
output is fed back to its input. This toggling signal has to pass
through each of the CPRs in parallel. Since the different CPRs
may have different delays, these are connected to a special
circuit called C-element. The C-element’s output changes
when all its inputs (coming from the different CPRs) have the
same logic level (either high or low levels) — note that CPRs
are designed such that they do not change the polarity (i.e., do
not invert) their input signals. If the C-element’s inputs have
different logic values, its output remains unchanged. This way,
the C-element toggles at the rate of the slowest CPR in the
system.

The output of the C-element is further connected to a
number of detection flipflops on the right-hand side of Fig. 2.
Note that the clock signal attached to the detection flipflops
is deferred by the C-element’s delay. This way, it is possible
to measure the CPR’s delay without adding the extra delay
incurred by the C-element. By means of tunable delays, the
output signal of the C-element (i.e., the output signal of the
slowest CPR) arrives to each of the detection flipflops at de-
ferred points in time. Hence, by properly adjusting the tunable
delays, the CPM circuit measures the difference between the
clock and the delayed output signal of the slowest CPR. For
this purpose, XOR gates are used to compare the output of the
toggling flipflop on the left-hand side Fig. 2 with the outputs
of the detection flipflops. The resulting P|[2]...P[0] quantifies
the difference between the clock and the delayed output from
the slowest CPR.

If the signal edge only arrives at the first detection flipflop
(in one clock tick), P[2] will be high, but P[1] and P[0] will
be low. In this case, the clock frequency must be decreased.
After the frequency has been decreased to a lower value, it
will reach the second detection circuit. P[2] and P[1] will be

high, but P[0] is still low. If P[0] and P[1] and P[2] are high,
the frequency can be increased. In other words, the output
signal of the CPM is a 3-bit code indicating the slack between
the current and the maximum allowable clock frequency.
This technique can be extended for more accurate frequency
measurements. For instance, 12-bit CPMs are implemented in
the POWER?7 architecture [9].

2) Frequency synthesis: For implementing an autonomic
frequency scaling, a frequency generator is required that is
capable of changing the clock frequency in a seamlessly
manner.

PV pLLo l
l—»{ DIV }—: PLL1 x
REF » = | CLK
Do F: PLL2 |
‘ Controller ‘
Fig. 3. Frequency synthesis circuit

Fig. 3 depicts a frequency synthesis circuit similar to the
one described in [20]. The well-known frequency synthesis
technique Phase Lock Loop (PLL) is used to allow for fast
changes in the clock frequency. Three PLLs are locked to
different multiples of a reference clock (denoted by REF).

A controller commands a set of clock dividers allowing
the different PLLs to synthesize variations of REF, and a
multiplexer that selects the output of one PLL. The controller
implements a desired control strategy for changing the output
frequency. For example, one PLL can be locked to the current
clock frequency. The second PLL can then be locked to a
slightly higher whereas the third one is locked to a slightly
lower frequency. In case the clock frequency needs to be
modified, either the higher- or the lower-frequency PLL is
multiplexed to the output. (In our case, since the clock
frequency needs to be reduced due to aging, normally the
lower-frequency PLL is selected.) This allows quick frequency
changes without needing to wait for a PLL to re-lock. After-
wards, the two other PLLs are re-locked to frequencies that are
slightly below and slightly above the output frequency CLK.

The CPM and frequency synthesis circuits are connected
by the AFS control block (see Fig. 1) to allow adaptive
frequency controlling. The AFS control block implements a
desired control strategy. As discussed above, such frequency
control circuits have been already implemented, for example,
in the POWER?7 architecture [9].

IV. MODELS AND NOTATION

In this section we discuss the different models used for
performing a schedulability analysis on AFS processors. In
particular, we introduce the task, the processor, and the aging
model used in the paper. We further introduce the most



relevant notation, however, some notation will be discussed
as it becomes necessary along the paper.

A. Task model

We denote by T a set of n real-time tasks running in the
system. All these tasks are considered to be fully preemptive
and independent of each other. Since tasks may be mapped
to more than one processor, we use T; to denote an arbitrary
subset from T running on an AFS processor P,. Each task 7;
in T is characterized by:

o its relative deadline d;,
e its worst-case execution time e;, and
e its minimum inter-release time p;.

In general, a real-time task 7; can be seen as an infinite
sequence of jobs (or task instances). Jobs are released with
at least a minimum possible separation p; between them. In
this paper, the relative deadlines d; are assumed to be less
than or equal to the respective minimum inter-release times
p; for all tasks. In addition, e; must also be less than d;.
Otherwise, T; alone is not schedulable, i.e., it will not be able
to meet its deadline under any condition. Note that, since an
AFS processor becomes slower along its lifetime, e; stands
for the worst-case execution time of a 7; at the processor’s
unaged speed sg.

The ratio u; = < is known as task utilization and the sum
of all w; in Ty is the total utilization on the I-th processor
considering again P;’s unaged speed: U; = ZTi %, where
T; € T

Further, in this paper, we consider a fixed-priority schedul-
ing policy. That is, tasks are assigned priorities that remain
unchanged at runtime. Clearly, independent of the scheduling
policy, the processor utilization U; must be less than one in
order that T; be schedulable on F,. Otherwise, T; is not
schedulable on the unaged F;.

B. Processor model

The processing platform in this paper consists of a set of
identical AFS processors that we denote by P. As already
mentioned, the initial (i.e., unaged) speed of a processor in
P will be denoted by so. Note that sy does not depend on
l, since it is the same for all P, in P. A processor’s speed
is a factor indicating that it takes the processor j—o time for
executing e; time units of computation demand. Without loss
of generality, we assume that sy = 1 holds.

From our previous discussion, we know that the switching
delays of transistors increase as aging progresses. In other
words, we will need to wait longer for transistors to switch. An
AFS processor reduces its clock frequency in order to avoid
errors due to this increased propagation delay. However, by
reducing the clock frequency, the speed of the AFS processor
decreases.

The aging-dependent speed of an AFS processor P is a
function of tg4ycss, 1.€., the time P is busy executing some
workload. Hence, at a given point in time ¢,, P;’s speed
denoted by s;, depends on P;’s cumulative workload in the
time interval (0, ¢,]. Clearly, if ¢, = 0 holds, s, is equal to sg.

However, as time elapses, the cumulative workload executed
by P, increases and P starts aging. Its speed s;, decreases for
bigger t,, i.e., it becomes less than 1 — note that 0 < s;, < s
holds. As a result, for any ¢, > 0, P, needs a longer time

(fl > :—0) to execute e; time units of computation demand.

C. Aging Model

Overall, the speed of any digital circuit, including pro-
cessors, is directly proportional to the frequency at which it
works. Of course, in the case of processors, the access delay
to memory constitutes another speed limiting factor. Let us
divide a T;’s worst-case execution time into memory access
delay D,en,; and execution time on the CPU Dy, ;: €; =
Diyen,i+Depui- Even if Dy, ; remains constant, Dy, ; and
hence e; vary with the clock frequency. If Dy s << Depus
holds (e.g., data is retrieved from a high-end cache or T;
mainly works on data stored in the processor’s registers), e;
is going to depend in a non-negligible manner on the clock
frequency. As a result, a higher clock frequency yields shorter
execution times, i.e., a faster processing time.

In general, in order to obtain the highest possible clock
frequency for a digital circuit, the maximum signal propaga-
tion delay (between the primary inputs and outputs) needs to
be computed. Since the propagation delay depends on aging
effects, these have to be taken into account at all points in
time.

To compute the aging-dependent propagation delay, we
make use of the technique presented in [14]. This consists
of translating the circuit’s netlist into a directed acyclic graph,
where every circuit element is represented by a set of nodes
(or vertices v;) and their corresponding edges (or lines [;) —
see Fig. 4.

_—_—_ = =

L= - - =4

(a) AND gate (b) Timing graph repre-

sentation

Fig. 4. A circuit element and its timing graph

Each pin of a circuit element is represented by a node (v;)
in the graph and the edges (/;) between them represent all
possible signal propagation paths inside the circuit element.
The whole circuit graph is then built by connecting these nodes
together (see Fig. 5).

The maximum circuit delay between the primary inputs and
outputs is then computed by ropological traversal of this graph
[18]. It has been shown that such an approach is applicable to
even extremely large circuits and provides an accurate estimate
for a processor’s clock frequency [21].

First, for all fan-in edges of a node, the corresponding edge
delay Dy, (e.g., a pin-to-pin delay) is added to the signal arrival
time at the edge input ?;, jp.

100t = t1;in + Dy, )



(a) Functional cir-
cuit unit

(b) Timing graph of circuit unit

Fig. 5. Functional circuit unit and timing graph representation consisting of
primary inputs (PI), cells (G;), and primary outputs (PO)

Afterwards, the resulting arrival time ¢, of the signal at the
node v; is the maximum arrival time among all fan-in edges
l;.

tvj = m?_x (tli,oul) 3)

As the circuit ages every pin-to-pin delay of every cell
varies with time. The aging effects Negative Bias Temperature
Instability (NBTI) and Hot Carrier Injection (HCI) cause
a drift of the single transistor parameters. Thus, the delay
model of each cell has to incorporate these effects into the
pin-to-pin delay computation. This can be done by a linear
approximation. That is, the delay of the aged cell can be
computed by the sum [14]:

Dyge = Do + Dygri + Duct 4

The nominal unaged delay is denoted by Dy and the impact
of the different aging effects by Dnpry and Dycy respectively.
The impact of the aging effects is given by an empirical
technology-dependent degradation equation. For NBTI, this
degradation equation can be represented as:

DNBTI = f(T, V007 tstress, W); (5)

where 7' is the device temperature, Vo the supply voltage,
tsiress the time the circuit is constantly being used, and W
the workload of the processor which is characterized by the
data it processes. Similarly, the degradation equation for HCI
depends on the same parameters.

With this approach, we can model the worst-case aging
behavior of any digital circuit. In the case of a processor,
we can characterize how different circuits age considering
different sets of T', Vo, tsiress and W.

As discussed previously, an AFS processor reduces its clock
frequency as aging effects progress. For this, it makes use
of a CPM circuit which measures aging degradation in the
critical path — see Section III. Knowing the worst-case aging
degradation of the critical path, allows us to predict the worst-
case slow-down of the AFS processor. Again, it is difficult to
determine the critical path of a processor by static analysis,
however, it is possible to identify a reduced number of critical
path candidates. That is, a number of circuits that might
become critical at runtime limiting the maximum allowable
clock frequency. Now, characterizing the worst-case aging of

all critical path candidates allows us to model the worst-case
behavior of the whole processor.

On the other hand, among all parts of a processor, the
arithmetic logic unit (ALU) is probably the most complex
one. The ALU’s execution paths are among the longest in a
processor (i.e., they involve the largest number of cascaded
transistors). As a consequence, the ALU is certainly one
critical path candidate. Clearly, there might be other circuits
which can also become critical at runtime. However, for the
sake of simplicity, we consider the ALU as the only critical
path candidate. Note that the analysis of this paper holds valid
for all other possible critical path circuits.

In line with this, we use in this paper the ALU’s worst-case
aging model to infer the aging degradation and, hence, the
maximum allowable clock frequency of the whole processor.
Fig. 6 shows such an aging model for the 9-bit ALU (in
particular, c5315). Here the aging-dependent delay degradation
of the ALU is depicted against ¢g¢yess, 1.€., the time in which
the ALU is under continuous use. This is obtained considering
those values of T, Voo and W that lead to the worst-case
aging degradation.

15

& 10}
o
9
B
©
oy
©
&
T 5
a
d 2 4 6 s 0 1 1
t s“m[Years]
Fig. 6.  Aging-dependent worst-case delay degradation for a processor

considering its ALU as critical path

The curve of Fig. 6 gives the sum of Dygri+ Dycy. Further,
using Eq. (4) the delay of the aging ALU can be determined.
This delay is the inverse of frequency at which the ALU
and, hence, the whole processor can then be operated without
eITOrsw.

Finally, as stated in the previous sections, the processor ages
with the time it is busy executing some workload — we denoted
this time by t4:css. In general, if a processor’s circuit is idle,
circuit-level control techniques can be applied to put it into a
non-aging state [22]. In this paper, we assume that this non-
aging state is guaranteed at idle time.

V. SCHEDULABILITY ANALYSIS

In this section we present a technique for schedulability
analysis that takes aging into account. As mentioned above,
we consider a fixed-priority scheduling policy, i.e., where pri-
orities are assigned once to tasks and do not change at runtime.



An example of a fixed-priority policy is Deadline Monotonic
(DM) [12], where tasks are given priorities according to their
deadlines d;: the shorter d;, the higher the priority of 7.

We know that T is the set of real-time tasks running under
fixed-priorities on a processor P;. Traditionally, a schedu-
lability test for T; consists of computing the worst-case
response time of every task T; € T; [11], [1]. The worst-
case response time of a 7; results from considering T;’s
critical instant [13], i.e., that jobs of all higher-priority tasks
are released simultaneously with 7; and with the minimum
possible separation between them. This leads to the largest
possible interference by higher-priority jobs and, hence, to
T;’s longest (i.e., worst-case) response time. If the worst-case
response time of every 7; in T is less than its corresponding
d;, then T is said to be schedulable on P;.

As aging progresses, the speed of an AFS processor de-
creases. Thus, it takes the processor longer to finish a certain
amount of execution or computation demand. From the point
of view of the schedulability analysis, the execution demands
of tasks become larger. As a result, even if T is schedulable
on P, at design time, it might be the case that some task 7;
starts missing its deadline as the processor ages.

Of course, if we need to guarantee a given lifetime re-
quirement #;;7., we can use the worst-case aging model of
Fig. 6 to compute the worst-case delay degradation D, for
a tstress €qual to ¢y r.. However, since the processor utilization
is normally below 100%, this approach (referred to as naive
approach in this paper) leads to a pessimistic schedulability
analysis. This is because the workload (i.e., tgress) int (0, £ fe]
is usually less than #;;¢..

In this section we propose a tighter schedulability analysis
which better integrates our aging model. This can be done
by introducing the aging-dependent processor’s speed s;; into
the demand bound function (DBF) of a T; € T; — recall that
s1, denotes P;’s speed at time t,. Clearly, the resulting DBF
denoted by h;(t) allows computing the cumulative execution
demand on the aged processor (after ¢, time):

t| e
h(t)= > LJ . 6)
T,eHP(i) ' 7 z

where HP (i) C T, is the subset of tasks with higher priority
than T; together with T; (e.g., for every T} in HP(i), d; < d;
must hold under the DM policy). Thus, > 7 [-]5 where
T; € HP(%) results in the maximum execution demand within
(0,¢] (from the critical instant) produced by T; and all its
higher-priority tasks at a processor’s speed of s;,. Note that
h;(t) assumes that s;, remains constant within (0,¢]. If the
length of the interval (0,¢] is much less than the processor’s
age (i.e., t << t, holds), s;, changes in a negligible manner.
As a result, h;(t) is valid if ¢ << t,. This is normally the
case since t, is in the order of years whereas ¢ is in the order
of milliseconds.

From Eq. (6), T; is schedulable if h;(d;) < d; holds. On
the other hand, the minimum possible speed s;, that allows
meeting d; is given by:

G
= 4 - (N

Let us denote by D, the aging-dependent delay degradation
that leads to the s;, of Eq. (7) — note that 0 < D, < 1
holds. While an unaged processor can execute e; amount of
computation in e; time units, the aged processor needs e;(1+
Dy,.) time units for executing e;. Hence, we can express s,
as follows — recall that sy denotes the unaged speed of any
B

Slz

e ei(l+ D)
Siz B S0
50
x - 8
5 1+ Dy, ®)
D, = %= )
Slx

Now, we need to determine how much cumulative workload
(i.e., what value of ¢4,..ss in Fig. 6) yields the aging-dependent
delay degradation D;,. For this purpose, since all tasks on P,
(the lower- and the higher-priority ones) generate workload,
we need to consider the whole task set T; instead of only
HP(i) in Eq. (6). We can use this DBF to compute P;’s
total workload in the time interval (0, t,]. This is denoted by
hyr,|(tz) and represents the value of Zscss that yields Dy,
aging degradation.

Let us further assume that Dj, < D;, < Dj41 holds where
Dy, and Dy, are the degradation delays of two consecutive
markers on the aging curve of Fig. 6. That is, D;, falls onto
the k-th segment of this aging curve between Dy and Dy 1.
In addition, let us denote by t; the ts..ss corresponding to
Dy and 1 the tg4yess corresponding to Dy in Fig. 6. We
can interpolate the value of hjr,|(t.) in the following manner
— note that ¢, < hyr,|(t;) < tg+1 must also hold:

Dy, — Dy = (10)
by, (tz) = (11)

where oy, is the slope of the k-th segment of the aging curve
and is given by:

o (hyry (ta) —
Dy, — Dy,
a,

t))

+tk7

~ Dyy1— Dy

= (12)

b1 — i

Now, similar as for Eq. (8), we can express s, as a function
of sy, instead of sg. Here, s, denotes P;’s speed for tsipress =
ti in Fig. 6:

1 o 1+ Dz — Dy
Sle Sk ’
Sk
R — 13
5t 1+ Dy, — Dy (13

Replacing Eq. (10) in (13), we can find the expression of
the demand bound function %, (t;) on the k-th segment of
the aging curve:



t e;
hr(ts) = Y [ﬂ -
TjET[ pj lz

3 H (1 4 ap(hymy (t2) — ).
T, €T,

Pj | Sk

Further, solving for hr,|(t,), we obtain:

(1—aktk) Z ’th”—‘%
T,eT, pj k

1—ak Z "%"%

T;eTy

himy|(te) = (14)

The value of h,|(t,) given by Eq. (11) produces an aging-
dependent delay D;, that leads to a speed s;, as given in
Eq. (7). With this s;,, T; can still meet its deadline. Any
more additional workload than Ay, |(t;) will make 7; miss
its deadline. Considering this value of i, (t.) and that ;—*7 <

[;—j] < Itj—: + 1, we can find an upper and a lower bound for
ty, ie., the time by which Ay, (t;) amount of cumulative

workload is reached where U; = Y, <i:

T;€Ty P
h te
t, < 1 (Fe ) 7 (15)
U, (1 + ak(h|T,|(tw) — tk))
> €
by, (te)sk T;ET, !
te - (16)
Up (14 ar (b, (ta) — tr)) Ui

For the sake of our aging-aware schedulability analysis, we
are interested in ¢,’s lower bound of Eq. (16). By t,’s lower
bound, we can be sure that 7; will still be able to meet its
deadline. Finally, note that ¢, can also be computed in an exact
manner by iterating in Eq. (14) from the lower (Eq. (16)) to
the upper bound (Eq. (15)) of ¢, until h|Tl‘(tm) reaches the
value given by Eq. (11).

VI. TASK MAPPING

In many practical cases, it is necessary to satisfy a given
lifetime requirement for our system. That is, we need to
guarantee that the system will be fully operational within
a given time period equal to tj;7.. Now, with this lifetime
requirement, we search for task mappings that allow reducing
the number of processors and, hence, reducing the overall cost
of our system. Clearly, the task mapping technique we use for
this problem needs to be aging-aware.

The problem of finding the minimum number of processors
such that all timing constraints can be guaranteed is known to
be NP-hard in the strong sense. That is, finding an optimal
solution requires exponential complexity. If we now add a
lifetime requirement to this problem, it becomes even more
harder to solve.

In this paper, we propose an allocation algorithm which is
based on the well-known First Fit (FF) heuristic. FF leads to a
number of processors that is acceptably close to the optimum
and it further has polynomial complexity. Our algorithm
(Alg. 1) first sorts the tasks in T in order of decreasing priority

Algorithm 1 Aging-aware task mapping

Require: Set of all real-time tasks T

Require: Lifetime requirement ¢;; s, for the system
1: num_processors = 1
2: Sort T according to decreasing priority

3: fori=1tondo
4: for [ = 1 to num_processors do
5: if Schedulable(T7;, processors(l)) then
6: if Lifetime> ¢;;f. then
7. Allocate T to processors(l)
8: end if
9: else if {==num_processors then
10: num_processors = num_processors + 1
11: if Schedulable(T7;, processors(num_processors)) then
12: if Lifetime> ¢;; ¢ then
13: Allocate T7; to processors(num_processors)
14: else
15: Return (no solution found)
16: end if
17: end if
18: end if
19: end for
20: end for

21: Return (number_processors)

(i.e., in the case of DM, according to increasing values of d;).
Then, it iterates over the sorted T and tries to allocate tasks in
the minimum possible number of processors while observing
the given lifetime requirement.

The algorithm we propose starts with only one processor
and allocates tasks to it as long as they are schedulable and the
lifetime requirement is met (line 5 and 6). A T; is schedulable
on a processor if it can meet its timing requirement d;. To test
whether the lifetime requirement is met, we need to account
for aging while mapping tasks to processors. Towards this,
there are two possible ways of proceeding.

First, given #;; ¢, the aging model of Fig. 6 can be applied to
compute the worst-case aging-dependent delay after tspess =
t1ife time. With this worst-case delay, one can estimate the
speed degradation of the processor at ?;;r.. Then, when a
task 7; is mapped to a processor, the allocation algorithm
performs a schedulability test considering the degraded pro-
cessor’s speed sy, ., (the resulting speed of the processor after
stress = tiife in Fig. 6). If the schedulability test is successful,
this means that the system can also meet all deadlines at #;; .
and T} can be mapped to it. (This schedulability test can be
performed using Eq. (6), where s, is replaced by s;,,,.) If
the schedulability test fails on a given processor, then 7; needs
to be mapped to another processor. This is the approach based
on the naive schedulability analysis discussed before.

The problem with the naive approach is its pessimism,
which leads to a more expensive design. That is also the
reason for considering a more elaborate technique based on
the schedulability analysis presented in Section V. Our second
approach proceeds as follows: When a task 7 is to be mapped
to a given processor, the allocation algorithm also performs a
schedulability test. This time, s;, is computed (Eq. (7), i.e., the
processor’s speed by which T; still meets its deadline. Then,
Dy, is computed Eq. (9) and with this A, |(t,) Eq. (11) can
also be computed, i.e., the cumulate execution demand that
produces the aging leading to s;,.. Then, we can compute ¢,’s
lower bound (right-hand side of Eq. (16). If ¢,’s lower bound



100 ~

80

60

40 4

Schedulability [%]

20

5

Utilization [%] 100 0 Aging [Years]

Fig. 7. Schedulability versus aging and utilization

is greater than ?;;¢., 7; can be mapped to the processor since
the lifetime requirement is fulfilled. Otherwise, T; needs to be
sent to another processor where #;;7. can be met.

Our algorithm allocates all 7; onto one or more processors
in the list of existing processors (line 4 to 9). If a T;; could not
be scheduled on any of the exiting processors, it then adds a
new processor to the list (line 10). The algorithm concludes
when all T; have been allocated and returns the number of
processors that were necessary for accommodating all of them
(line 21) while meeting the lifetime requirement. If any task
T; running alone on a processor is not capable of meeting the
lifetime requirement, then the algorithm terminates with an
error (line 15).

VII. EXPERIMENTAL RESULTS

In this section we present and discuss some experimental
results we conducted to illustrate the influence of aging on
the schedulability.

Schedulability versus aging and utilization': To obtain a
schedulability curve with respect to aging and utilization,
we generated 100,000 random sets of 10 tasks each. First,
task utilizations u; were obtained for a varying processor
utilization [2], [3]. Then, we obtained periods p; using a
uniform distribution in [0,1] and computed e; = wu;p;. The
relative deadlines d; were also generated using a uniform
distribution in [e;, p;]. Fig. 7 shows how the schedulability
(i.e., the percentage of task sets that are schedulable) varies
with aging and utilization of the processor. The higher
the processor utilization the less the schedulability. In the
same manner, as the processor gets aged, the percentage of
schedulable task sets decreases. Note that the influence of
aging becomes more relevant for high processor utilizations.
With around 60% processor utilization, 70% of all task sets
are schedulable when the system is new, whereas 60% are
schedulable after 10 years. With 80% processor utilization,
30% of the task sets are schedulable in the new system,
however, and only 2% are schedulable after 10 years. That is,

ICorrected with respect to the version published at RTCSA’12.

80

60

404

Schedulability [%]

20

10

5

Gap [%] 70 80 0 Aging [Years]
Fig. 8. Schedulability versus aging and gap

TABLE I
TASK SET

Task | pi(s) | di(s) | ei(s)

T 0.0526 | 0.0055 | 0.0005

Ty 0.1073 | 0.0155 | 0.0077

T3 0.3176 | 0.0257 | 0.0009

Ty 0.0771 | 0.0298 | 0.0161

Ts 0.3597 | 0.0301 | 0.0021

with 60% processor utilization, the schedulability decreases
by 10% after ten years of use. On the other hand, with 80%
processor utilization, the schedulability decrease is around
30% after ten years.

Schedulability versus aging and gap': To analyze
schedulability with respect to aging and gap (i.e., the
difference between the period and the deadline of tasks),
we again generated 100,000 random sets of 10 tasks each.
First, task utilizations wu; were obtained for a constant
processor utilization of 60% [2], [3]. Then, we computed
periods p; using a uniform distribution in [0, 1] and computed
e; = u;p;. The relative deadlines d; were generated according
to a varying gap, i.e., gap = p; — d;. Fig. 8 illustrates
schedulability of task sets with respect to the aging of
the processor and the gap between periods and deadlines.
Similar to the previous figure, the larger the gap, the less the
schedulability of tasks. In addition, as the processor ages, the
percentage of schedulable task sets decreases. Note that aging
becomes more important for gaps between 50% and 70%.
With a gap of 60%, 85% of the task sets are schedulable
when the system is new, whereas only 33% of the task sets
are schedulable after 5 years. That is, the schedulability
decreases by around 50 in 5 years.

Task mapping and aging: Fig. 9 shows the performance of
the two variants of our mapping algorithms (i.e., the naive and
the proposed approach) for the case of allocating the task set
of Table I to processors. For a lifetime requirement of less
than 3 years, both approaches are equally good. However, our
proposed approach results in one processor less as the aging
of processors progresses from 4 to 10 years.



3 ‘ ‘ ‘ ‘
wn
§ Naive Approach
s 2r = e o ]
8 4
& /
Gy 7
1S / i
2 /
E / Proposed Approach
Z, 1

0 ‘ ‘ ‘ ‘

0 2 6 8 10

4
Aging [Years]

Fig. 9. Mapping results for task set of Table I

VIII. CONCLUDING REMARKS

As a processor ages, its transistors degrade and start re-
quiring more time for switching. As a result, the error-free
operation of the processor cannot be guaranteed at the same
frequency (and/or supply voltage).

New upcoming processors such as IBM’s POWER?7 are
able to reduce their clock frequency such that aging-dependent
errors can be avoided. However, such technique, termed auto-
matic frequency scaling (AFS), leads to a processing slow-
down, which makes new design and analysis methods be
necessary, in particular, for embedded and real-time systems.

In this paper, we have studied this problem in detail and
extended the state-of-the-art in the area of real-time systems
by presenting a schedulability analysis framework for such
AFS-based processors.

Towards this, we introduced an aging model for processors
and used it to make predictions about how the system ages and
how this aging affects the schedulability of real-time tasks. We
further presented a task mapping algorithm, which we showed
to be beneficial in case a system needs to be designed taking
lifetime constraints into account.

The main purpose of this work has been also to demonstrate
the necessity of considering aging and other hardware-related
issues when analyzing the schedulability of a system of
real-time tasks. As future work, we plan to refine our aging
model to allow for more accurate prediction of a processor’s
aging behavior.

Acknowledgments: This work was supported in parts by the
German Research Foundation (DFG) as part of the prior-
ity program “Dependable Embedded Systems” (SPP 1500 -
spp1500.itec.kit.edu).

REFERENCES

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Ap-
plying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8(5):284-292, 1993.

[2] E. Bini and G. Buttazzo. Biasing effects in schedulability measures. In
Euromicro Conference on Real-Time Systems, June 2004.

[3] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129-154, 2005.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De, and
S. Borkar. Circuit techniques for dynamic variation tolerance. In Design
Automation Conference (DAC), July 2009.

A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen,
N. James, M. Floyd, and V. Pokala. A distributed critical-path timing
monitor for a 65nm high-performance microprocessor. In International
Solid-State Circuits Conference (ISSCC), Feb. 2007.

M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A. Drake,
L. Pesantez, T. Gloekler, J. Tierno, P. Bose, and A. Buyuktosunoglu.
Introducing the adaptive energy management features of the POWER7
chip. IEEE Micro, 31(2):67-75, 2011.

L. Huang, F. Yuan, and Q. Xu. Lifetime reliability-aware task allocation
and scheduling for MPSoC platforms. In Design, Automation, and Test
in Europe (DATE), Apr. 2009.

J. Keane, T.-H. Kim, X. Wang, and C. Kim. On-chip reliability
monitors for measuring circuit degradation. Microelectronics Reliability,
50(8):1039-1053, 2010.

C. Lefurgy, A. Drake, M. Floyd, M. Allen-Ware, B. Brock, J. Tierno,
and J. Carter. Active management of timing guardband to save energy in
POWER?7. In International Symposium on Microarchitecture (MICRO),
Dec. 2011.

J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Real-Time Systems Symposium (RTSS), Dec. 1990.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In Real-
Time Systems Symposium (RTSS), Dec. 1989.

J. Leung and J. Whitehead. On the complexity of fixed-priority schedul-
ing of periodic, real-time tasks. Performance Evaluation, 2(4):237-250,
1982.

C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
hard real-time environments. Journal of the Association for Computing
Machinery, 20(1):40-61, 1973.

D. Lorenz, M. Barke, and U. Schlichtmann. Aging analysis at gate
and macro cell level. In International Conference on Computer-Aided
Design (ICCAD), Nov. 2010.

J. Park and J. Abraham. A fast, accurate and simple critical path monitor
for improving energy-delay product in DVS systems. In International
Symposium on Low Power Electronics and Design (ISLPED), Aug. 2011.
S. Rehman, M. Shafique, F. Kriebel, and J. Henkel. Reliable software for
unreliable hardware: embedded code generation aiming at reliability. In
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Oct. 2011.

S. Rehman, M. Shafique, F. Kriebel, and J. Henkel. RAISE: Reliability-
aware instruction scheduling for unreliable hardware. In Asia and South
Pacific Design Automation Conference (ASP-DAC), Jan. 2012.

S. S. Sapatnekar. Static timing analysis. In L. Scheffer, L. Lavagno,
and G. Martin, editors, EDA for IC implementation, circuit design, and
process technology. Taylor and Francis, 2006.

V. Stojanovic, D. Markovic, B. Nikolic, M. Horowitz, and R. Brodersen.
Energy-delay tradeoffs in combinational logic using gate sizing and sup-
ply voltage optimization. In European Solid-State Circuits Conference
(ESSCIRC), Sept. 2002.

J. Tschanz, N.-S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vanga,
S. Narendra, Y. Hoskote, H. Wilson, C. Lam, M. Shuman, C. Tokunaga,
D. Somasekhar, S. Tang, D. Finan, T. Karnik, N. Borkar, N. Kurd,
and V. De. Adaptive frequency and biasing techniques for tolerance
to dynamic temperature-voltage variations and aging. In International
Solid-State Circuits Conference (ISSCC), Feb. 2007.

C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, S. Narayan,
D. Beece, J. Piaget, N. Venkateswaran, and J. Hemmet. First-order
incremental block-based statistical timing analysis. /EEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 25(10),
2006.

Y. Wang, X. Chen, W. Wang, V. Balakrishnan, Y. Cao, Y. Xie, and
H. Yang. On the efficacy of input vector control to mitigate NBTI effects
and leakage power. In International Symposium on Quality Electronic
Design (ISQED), Mar. 2009.

K.-C. Wu and D. Marculescu. Aging-aware timing analysis and
optimization considering path sensitization. In Design, Automation, and
Test in Europe (DATE), Mar. 2011.

L. Zhang, L. Bai, R. Dick, L. Shang, and R. Joseph. Process variation
characterization of chip-level multiprocessors. In Design Automation
Conference (DAC), July 2009.



