2013 IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

Generalized Standby-Sparing Techniques for Energy-Efficient Fault Tolerance in

Multiprocessor Real-Time Systems

Yifeng Guo, Dakai Zhu

University of Texas at San Antonio

San Antonio, TX 78249

{yguo, dzhu}@cs.utsa.edu

Abstract—The Standby-Sparing (SS) technique has been pre-
viously explored to improve energy efficiency while providing
fault tolerance in dual-processor real-time systems. In this paper,
by considering both transient and permanent faults, we develop
energy-efficient fault tolerance techniques for real-time systems
deploying an arbitrary number of identical processors. First, we
study the Paired-SS technique, where processors are organized
as groups of two (i.e., pairs) and SS is applied within each pair
of processors directly after partitioning tasks to the pairs. Then,
we propose a Generalized-SS technique that partitions processors
into two groups containing primary and secondary processors,
respectively. The main and backup copies of tasks are executed
on the primary and secondary processors under the partitioned-
EDF and partitioned-EDL scheduling policies, respectively. The
objective is to reduce the overlapped executions of the main
and backup copies in order to improve energy savings. Our
experimental evaluations show that, for a given system with
fixed number of processors, typically there exists a configuration
of primary and secondary processors under the Generalized-SS
technique that can lead to better energy savings when compared
to the Paired-SS technique.

I. INTRODUCTION

The recent progress in the multiprocessor/multicore systems
has important implications for real-time embedded system
design and operation. From vehicle navigation to space ap-
plications as well as industrial control systems, the trend is to
deploy real-time embedded systems with multiple processors:
Systems with 4-8 processors are common [1] and it is expected
that many-core systems with dozens of processing cores will
be available in near future [2]. For such systems, in addition
to general temporal predictability requirement common for all
real-time systems, two additional operational objectives are
seen as critical: energy efficiency and fault tolerance.

There is a large body of literature (see Section VI for
a partial list of related works) on multiprocessor energy
management. Essentially, the solutions are based on two well-
known techniques. With Dynamic Power Management (DPM),
the system components are put into idle/sleep states when
they are not in use [19]. Another widely studied technique
is Dynamic Voltage Scaling (DVS), where the CPU supply
voltage and frequency are simultaneously reduced to slow
down the execution to save energy [21].

In addition to energy efficiency, providing fault tolerance
features to achieve high reliability figures is also important, es-
pecially for safety-critical real-time applications that operate in
harsh environments [8]. Computer systems may be subject to

978-1-4799-0850-9/13/$31.00 ©2013 IEEE

62

Hakan Aydin
George Mason University
Fairfax, VA 22030
aydinecs.gmu.edu

different types of faults at run-time due to various effects, such
as hardware defects, electromagnetic interference, and cosmic
ray radiations [17]. Permanent faults can bring a system
component (e.g., the processor) to halt and cannot be recovered
from without some form of hardware redundancy. Transient
faults are often induced by electromagnetic interference or
cosmic ray radiations and disappear after a short time interval.
When they occur, transient faults may result in soft errors (e.g.,
incorrect computation) and there may be a need to re-execute
the affected task (or, an alternative recovery task) to obtain
the correct result. While transient faults are more common
than permanent faults [17], a comprehensive framework should
have provisions for both transient and permanent faults in a
safety-critical real-time system.

An intriguing dimension of the problem is that energy effi-
ciency and fault tolerance are typically conflicting objectives,
due to the fact that tolerating permanent/transient faults often
requires extra resources with high energy consumption poten-
tial. In addition, existing research shows that the probability
of having transient faults increases drastically when systems
are operated at lower supply voltages in the context of the
popular DVS technique [10], [27].

Recently, a dual-processor framework has been proposed
to provide tolerance to transient and permanent faults while
managing energy in real-time systems. The technique, called
Standby-Sparing (SS), deploys two processors. For each task,
a main copy is executed on the first (primary) processor,
while a backup copy is executed on the second (spare)
processor. Due to its nature, the framework naturally tolerates
a single permanent fault on any processor. In terms of energy
management, the key point is to use DVS on the primary
processor and to delay the backup tasks on the spare processor
as much as possible — with the objective of canceling a
backup task as soon as the main task completes successfully
(i.e., without encountering a soft error) to avoid unnecessary
energy consumption. However, should the primary task fail,
the backup runs to completion at the maximum speed on
the spare processor. Moreover, the system’s original reliability
(in terms of resilience with respect to transient faults) is
also preserved since a full re-execution at maximum speed
is guaranteed in case of a transient fault [9]. The problem is
then to statically allocate backup tasks on the spare processor
to minimize the overlap between primary and backup copies
of the same task, to reduce the energy consumption.

However, the original proposal in [9] considers only nonpre-
emptive scheduling of aperiodic tasks. In [14], Haque et al. ex-
tended the Standby-Sparing technique for preemptive periodic
real-time applications. In that work, the earliest-deadline-first
(EDF) scheduling policy is applied on the primary processor
while the backup tasks are executed on the spare processor
according to the earliest-deadline-late (EDL) scheduling pol-
icy [7]. By delaying the backup tasks as much as possible to
obtain idle intervals as early as possible, the joint use of EDF
and EDL on the primary and spare processors provides better
opportunities to reduce the overlapped execution of primary
and backup copies of the tasks at run-time and thus reduces
the system energy consumption.

The existing SS-based solutions ([9], [14]), while effective,
are limited to dual-processor systems. Considering that the
number of available cores grows quickly in existing sys-
tems ([1], [2]), our objective in this paper is to explore how
the standby-sparing technique can be applied to systems with
more than two processors. Since the SS-based solutions are
suitable for addressing both transient and permanent faults
while managing energy, there may be significant value in
investigating the design options for applying the SS-based
solutions to general multiprocessor configurations.

Specifically, we investigate two main design options,
namely, the Paired-SS and the Generalized-SS techniques,
and their impact on energy savings. In Paired-SS, processors
are organized as groups of two (i.e., pairs) and, after parti-
tioning tasks to the pairs, the conventional SS technique is
applied within each pair of processors directly. In contrast,
Generalized-SS partitions processors into two groups of po-
tentially different size, designated for primary and secondary
processors, respectively. Then, following the principle of re-
ducing the overlapped executions of tasks and thus to obtain
more energy savings as in SS, the main and backup copies of
tasks are executed on the primary and secondary processors
with DVS and DPM techniques and under the partitioned-EDF
and partitioned-EDL scheduling, respectively.

By scheduling a separate backup task for each task in the
workload at the maximum frequency, our solutions have the
desirable feature of tolerating a single permanent fault on any
processor while preserving the original system reliability (in
terms of resilience to transient faults) [25]. In addition, we
propose an online scheme based on the wrapper-task based
slack management framework [25] to improve energy savings
at run-time. The online component is applicable to both Paired-
SS and Generalized-SS schemes.

We evaluate the energy savings of the proposed techniques
through extensive simulations. The results show that, for a
system with a given number of processors, typically there
exists a configuration of primary and secondary processors for
Generalized-SS outperforming Paired-SS in terms of energy
savings. Moreover, the performance of the wrapper-task based
online energy management scheme is comparable to that of
the existing SS-based CSSPT scheme (that needs statistical
execution information of tasks [14]) and can be much better
than the ASSPT scheme (which is very aggressive [14]) at

63

high system loads.

The remainder of this paper is organized as follows. Sec-
tion II presents task and system models and states our as-
sumptions. As the motivational example, an instance of the
problem with three processors is discussed in Section III. Both
the Paired and Generalized Standby-Sparing techniques are
presented in Section IV. Section V presents and discusses the
evaluation results. In Section VI, we present an overview of
the closely-related work and Section VII concludes the paper.

II. SYSTEM MODELS AND PROBLEM STATEMENT
A. Task Model

We consider a set of n periodic real-time tasks I' =
{Ty,...,T,}. Each task T; is represented as a tuple (c;,p;),
where ¢; is its worst-case execution time (WCET) under the
maximum available CPU frequency and p; is its period. The
utilization of a task 7; is defined as wu; ;— The system
utilization U of a given task set is the summation of all task
utilizations (U = » 1 o ;).

The tasks have implicit deadlines. That is, the jth task
instance (or, job) of Tj, denoted by Tj;, arrives at time
(j — 1) - p; and must complete its execution by its deadline
at j - p;. Since a task has only one active task instance at any
time, when there is no ambiguity, we use 7; to represent both
the task and its current task instance.

B. Processor and Power Models

The tasks are executed on a multi-processor system with
m identical processors. The processors are assumed to have
DPM and DVS capabilities, which are common features in
modern processors. With increasing importance of leakage
power and emphasis on the need for considering all system
components in power management [3], [15], [16], we adopt a
system-level power model used in the previous energy-efficient
fault-tolerant real-time system research [25]. Specifically, the
total power consumption is expressed as:

1)

Above, P, stands for static power, which can be removed
only by powering off the whole system. Due to the prohibitive
overhead of turning off and on the system in periodic real-time
execution settings, we assume that the system is in on state at
all times and that Py is always consumed.

Hence, we focus on the energy consumption related to active
power, which is given by the last two items in the above
equation. P;,q is the per-processor frequency-independent
active power. The frequency-dependent active power depends
on the system-dependent constants C.s and k, as well as
the processing frequency f, which can be managed through
the DVS technique [6]. We assume that the processors can
only operate at one of the L different discrete frequency
levels {f1, f2,..., fr}, where fr = fpas is the maximum
frequency. Moreover, the time overhead for frequency (and
supply voltage) changes is assumed to be incorporated into
the WCETs of tasks [26].

P =P, +m-(Ppa+Cey- f*)

Given the frequency-independent component in the active
power, normally there exists an energy-efficient frequency
below which the DVS technique cannot save energy [18].
In addition, when there is no active task on a processor, we
further assume that both components of the active power can
be efficiently removed by putting the idle processor to sleep
states through the DPM technique.

C. Fault and Recovery Models

For fault tolerance and system reliability, we assume that
each task T; has a backup task B;, which has the same timing
parameters (i.e., ¢; and p;) as task T;. To distinguish with the
backup tasks, we occasionally use the term main tasks to refer
to the tasks in I'. As with main tasks, the jth task instance
(or, job) of B; is denoted by B; ;.

There are two objectives for deploying the backup tasks.
First, they are utilized to tolerate permanent faults. Individual
processors may be subject to such faults due to circuit wear-
out or manufacturing defects [17]. For this purpose, a given
main task and its backup task must be scheduled on differ-
ent processors. Note that, a number of schemes are readily
available from the literature to detect the permanent faults at
run-time [17].

With only one backup task for each main task, we know that
only a single permanent fault on any processor can be tolerated
at a given time. Once a permanent fault is detected, the system
will switch to the emergency operation mode where the related
processors, which have at least one task whose corresponding
backup (or main) task is on the faulty processor, have to exe-
cute their tasks at the maximum processor frequency. This is
necessary to maintain system reliability (in terms of resilience
to transient faults) [25]. However, unless an appropriate recov-
ery mechanism re-maps the tasks and re-configures the system
with the remaining processors, the system may not be able to
tolerate any additional permanent fault. The investigation of
such additional recovery mechanisms is beyond the scope of
this paper and we focus on tolerating a single permanent fault
in this work.

The second objective of backup tasks is to recuperate the
reliability loss due to increased transient faults when the DVS
technique is exploited for main tasks to save energy [27].
For such a purpose, the backup tasks have to be executed
at the maximum processing frequency, should they are needed
at runtime. This guarantees that the original reliability of a
task is preserved with respect to transient faults [24]. A task’s
original reliability is defined as the probability of finishing the
execution of the task successfully when no voltage scaling is
applied.

To detect the existence of soft errors triggered by transient
faults, we assume that sanity (or consistency) checks are
performed at the end of execution of every task instance [17].
If there is no error, the backup task running (or, scheduled
to run) on another processor is canceled to save energy.
Moreover, the overhead for fault detection is also assumed
to be incorporated into tasks’” WCETs.

64

D. Problem Statement

The main problem that we address in this paper can be
stated as follows: For a given set of n periodic tasks to be
executed on m identical processors, how to schedule the tasks
(and their backup tasks) on the processors to: a) tolerate a
single permanent fault; b) maintain system original reliability
with respect to transient faults; and c) minimize system energy
consumption.

For dual-processor systems, the Standby-Sparing (SS) tech-
nique has been studied to address this problem [14]. The
central idea of SS is to run the main and backup copies of tasks
on separate primary and secondary processors, respectively.
The tasks’ main copies are executed at scaled frequency with
DVS under EDF, while the backup copies run at the maximum
frequency but are delayed using EDL to reduce overlapped
executions with the corresponding main copies for energy
savings [14]. When there are more than two processors avail-
able in the system, a natural question to ask would be: “how
to configure such processors for higher energy efficiency?”
We can either have more primary processors to execute main
copies of tasks to further slow down their executions or have
more secondary processors for additional delayed execution of
the backup copies.

Focusing on the SS technique and partitioned scheduling,
we investigate the following dimensions to improve energy
savings:

o how the available processors should be partitioned as

primary or secondary processor groups,

« how the main and backup tasks should be allocated to the

available primary and secondary processor groups, and,

o how the DVS mechanism can be used on the primary

processors to reduce the overlap between the main and
backup tasks to save energy.

Clearly, this is not a trivial problem considering the intrigu-
ing interplay between the scaled frequency of tasks’ main
copies and the amount of overlapped execution with their
backup copies. In fact, even without the fault tolerance and
system reliability dimensions, finding the optimal partitioning
of tasks to processors and their scaled frequencies with DVS
to minimize energy consumption has shown to be NP-hard in
the strong sense [4].

III. AN EXAMPLE: THREE-PROCESSOR SYSTEMS

Before presenting our solutions for the general problem,
we first consider a simple case of a 3-processor system and
illustrate the intriguing dimensions of the problem. For such a
3-processor system, we have two options: a) one primary and
two secondary processors (denoted as “X1Y2”), and, b) two
primary and one secondary processor (denoted as “X2Y1”).

A. A Motivational Example

Consider a task set with three periodic real-time tasks
I = {T1(1,5),72(2,6), T53(4,15)}. We can easily find that
the system utilization is U 0.8 and the least common
multiple (LCM) of task periods is LC'M = 30. Suppose that

TT,T, T YL T, ¥z, y1T T, Y1, T, Y, LM
PL| T, T, T, Tl.; T, ‘ T, | T3 ‘ T, ‘ 1"2\3 ‘ T4 h} T ‘ Ts T, Ts| Te| s M

T, T,T, 12 375 T, VTz“S 875 T, 1125 YT, 1375 h“l Ty1625 175 YT, YTR05 2175 T, T, 2625 27.75
P2

01 2 3 4 5 6 7 8 9 10 11 12 13"M4 15 16°¥17 18 19 20 21 22 23 24 25 26 277728 29 30

a. The schedule of the tasks under Standby-Sparing on a dual-processor system with primary frequency at 0.8 [14]

TLT T YT, T It ¥, T, YT, T, YT, LeM
PL| T, T, T.| T, T, ‘ T.| Ts T, ‘ T3 ‘ T4 T, T4 Ts ‘ T, Ts| Ts| s ‘ QN

T2 1.25 375 szﬁ.ZS 8.75 11.25 VTZ 13.75 16.25 17.5 T2 205 21.75 T2 26.25 2775

TT T T, YT, T, 1625 T, T,
r)4 X om) S X om D

01 2 3 4 5 6 7 8 9 10 11 12 13%%4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

b. The schedule with one primary processor (using frequency 0.8) and two secondary processors

T T, T, T, T, LCM
P1 T, T, ‘ T3 ‘ T4 ‘ Ts ‘

TT, T, T, T, T. T, T,
P2l T, T, TI‘\Z ‘ T, Tis ‘ Ta ‘ T, Tis T, ‘ Tie

T, T,T, 167 T, YT,667 T, L6y, T, T, 1667 YT, T, 21.67 YT, VT, 26.67
P3

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c. The schedule with two primary processors (using frequencies 0.4 and 0.6) and one secondary processor

Fig. 1: Scheduling alternatives for three tasks T3 (1,5), T52(2,6) and T5(4, 15) running on a 3-processor system

the processors have four discrete (normalized) frequency levels
{0.4,0.6,0.8,1.0}.

Figure la shows the schedule within LCM on a dual-
processor system with the Standby-Sparing technique [14].
The primary processor executes the main tasks under Earliest-
Deadline-First (EDF) at the scaled frequency of 0.8 while
the secondary processor schedules their backup copies with
Earliest-Deadline-Late (EDL) policy [7] for energy savings.
Suppose that P, = 0.02, Cey = 1, and k£ = 3 in the power
model. Further, assume that tasks take their WCETSs, and there
are no faults at run-time. Then, we can find the overall energy
consumption for the tasks within LCM as Ess_spy = 27.2,
where the majority of backup tasks (marked by ’X’) are
cancelled.

For the X1Y2 configuration of the three-processor system,
where the extra processor is used as an additional secondary
(with increased Ps = 0.03), the schedule of tasks is shown in
Figure 1b. The primary processor P; still runs at the frequency
0.8, executing the main copies of tasks. However, the backup
copies of tasks can be re-allocated. Suppose that task 75’s
backup runs on processor P, and tasks 77 and T3’s backups
run on processor Ps. This can further delay the execution of
backup tasks and reduce the overlaps with their main tasks.
It turns out that, although the overlapped executions can be
reduced slightly, the additional energy consumption from the
static power of the extra processor overshadows such benefits
and leads to the overall energy consumption of Exiys =
27.45. This is slightly than that of the dual-processor system
under the traditional SS scheme.

When the extra processor is utilized as an additional primary

65

(the X2Y1 configuration), Figure 1c shows the schedule of
tasks. The main task 75 is allocated to processor P;. The
other tasks (77 and 73) are allocated to P», running at the
scaled frequencies of 0.4 and 0.6, respectively. The overall
energy consumption under this configuration can be found as
Exoy1 = 23.37, which represents a 14% improvement over
the traditional SS scheme on a dual-processor system.

B. Energy Efficiency of Different Configurations

normalized energy consumption

Il
0.6
system utilization (U)

0.3 .
02 03

Il Il Il
04 05 0.7 0.9

Fig. 2: Energy consumption of X1Y2 and X2Y1 configurations

For task sets with different system utilizations, Figure 2 fur-
ther shows the energy consumption of the two configurations
for a three-processor system, using the same power parameters
as in Section III-A. The Y-axis represents the energy con-
sumption under two system configurations, normalized to the
energy consumed by the SS-NPM scheme where we deploy

the traditional SS on a dual-processor system and without
any voltage scaling. We assume that no fault occurs during

execution and each data point shows the average result of 100
synthetic task sets and each set has 20 tasks (Section V gives
further details on task set generation methodology).

First, at low system loads (i.e., U < 0.4), the main copies
of tasks are executed at the lowest available frequency 0.4 and
almost all backup copies are cancelled under both configura-
tions, giving the same energy performance. However, at high
system loads, having two primary processors (X2Y1) allows
the system to execute tasks’ main copies at low frequencies
compared to the case with one primary and two secondary
processors (X1Y?2), improving energy savings. When U = 0.9,
such differences can be up to 50% since tasks’ main copies
under the X1Y2 configuration need to run at the maximum
frequency due to the limitations of discrete frequencies.

IV. STANDBY-SPARING FOR MULTIPROCESSORS

From the above discussion, we can see that the different
configurations of primary and secondary processors can have
important effects on the energy efficiency of multiprocessor
systems. In this section, following the ideas and principles of
the traditional SS scheme for periodic real-time tasks [14] and
focusing on partitioned scheduling, we discuss the details of
the Paired Standby-Sparing (P-SS) and Generalized Standby-
Sparing (G-SS) schemes in Sections IV-A and IV-B, respec-
tively. Moreover, based on the wrapper-task slack management
mechanism [25], we also develop a generic online energy
management technique that can be applied to both P-SS and
G-SS in Section IV-C.

A. Paired Standby-Sparing

Considering the fact that the traditional SS scheme was
designed for dual-processor systems [14], a straightforward
approach is to first configure processors as groups of two
(i.e., pairs). Then, after partitioning tasks to processor pairs
appropriately, the SS scheme can be applied directly within
each pair of processors. We call this scheme Paired Standby-
Sparing (P-SS).

From the results in [14], we know that different system
utilizations may have a great impact on the energy efficiency of
a dual-processor system under the SS scheme. This is because
both the scaled frequency on the primary processor to execute
tasks’ main copies and the delayed execution of tasks’ backup
copies depend heavily on system utilizations. The SS scheme
may perform quite poorly when the system utilization gets
higher, due to higher execution frequency of tasks’ main copies
and the increased amount of overlapped executions between
tasks’ main and backup copies [14]. On the other hand, once
the scaled execution frequency of tasks’ main copies reduces to
the minimum (available) energy-efficient frequency, additional
energy savings are rather limited with further reduced system
utilizations [14].

Therefore, the key factor that determines the energy con-
sumption under P-SS is the mapping of tasks to processor
pairs. Intuitively, for higher energy efficiency, the mapping
with balanced workload among processor pairs sould be pre-
ferred. Unfortunately, it is well-known that finding the optimal

66

task-to-processor mapping with the most balanced workloads
is NP-hard. Hence, in this work, we adopt the Worst-Fit-
Decreasing (WFD) heuristic when mapping tasks to processor
pairs in P-SS, given its inherent ability to produce relatively
balanced workloads [4].

For a system with m processors, although there are | % |
processor pairs, they are operated under the SS scheme
independently. Therefore, with one backup copy for each task
running on its secondary processor in the pair, the system
under P-SS can still tolerate only a single permanent fault
at any time, which is the case as well for the G-SS scheme
(as will be discussed in Section IV-B). However, once the
processor affected by a permanent fault is identified and
isolated, we can re-configure the system by re-grouping the
remaining (m — 1) processors and/or re-mapping the tasks to
tolerate additional permanent faults, which is left as a future
work.

m

B. Generalized Standby-Sparing

In Section III, for systems with three processors, we showed
through an example that having two primary processors for
the execution of tasks’ main copies while sharing one sec-
ondary processor for the backup copies of all tasks may
lead to higher energy efficiency. Following this principle
and generalizing the idea of Standby-Sparing [14] for m-
processor systems, the Generalized Standby-Sparing (G-SS)
scheme organizes the processors into two groups: a primary
group of X processors and a secondary group of Y processors
(where m = X + Y). Then, the main copies of tasks are
executed under the partitioned-EDF on the primary processor
group at scaled frequencies with the DVS technique, while
the secondary processor group adopts the partitioned-EDL to
execute the backup copies at the maximum frequency and as
late as possible, to save more energy.

Note that, for a given (X,Y)-configuration of processors,
finding the feasible partitioning of main and backup tasks to
the primary and secondary processors, respectively, is NP-
hard. Therefore, the problem of finding the optimal parti-
tioning of tasks to processors for minimizing system energy
consumption under G-SS is NP-hard as well. As in P-SS, we
again use the WFD heuristic to map the main and backup tasks
to primary and secondary processors for a given (X,Y’) con-
figuration, by considering its ability to produce the relatively
balanced partitionings.

Algorithm 1 summarizes the main steps of G-SS for a
given (X,Y") system configuration. First, the main and backup
copies of tasks are partitioned to X primary and Y secondary
processors, respectively, by using the WFD heuristic (line 2).
Then, the schedulabilities of the resulting WFD mappings on
all primary and secondary processors under EDF and EDL,
respectively, are examined (line 3).

If tasks are schedulable with the resulting WFD mappings
for the given processor configuration, the main copies of tasks
on each primary processor are executed under EDF at the
appropriate scaled frequency while tasks’ backup copies are
executed on each secondary processor under EDL (lines 4

Algorithm 1 Main steps of G-SS for a X/Y configuration

Algorithm 2 Finding the optimal X /Y Configuration

: Input: task set T', X and Y = (m — X);

Find X and Y WFD partitions of I':

Uy ={r¥,-.. 7L} and lip = {T'8,.-- TE};
if (vi, U(I'T) <1 and Vj,U(T'?) < 1) then

4: On X primary processors: run main copies of tasks
under EDF at scaled frequencies;

5: On Y secondary processors: run backup copies of tasks
under EDL;

6: end if

and 5). Here, the scaled frequency on the i*" primary processor
can be determined as the lowest discrete frequency level f,
such that fr—1 < U(T7?) - fiaz < fo-

Note that, as in the conventional SS scheme [14], when
the main (or backup) copy of a task completes successfully
on one processor at run-time, the processor that has the
backup (or main) copy of the task will be notified to cancel
the corresponding execution for energy savings, which is not
shown in the algorithm for brevity.

Energy-Efficient Processor Configuration for G-SS: Tt is
clear that different configurations of primary and secondary
processors in G-SS have great impact on the energy ef-
ficiency of the system under consideration. Depending on
the configuration of primary and secondary processors (i.e.,
depending on the (X,Y’) configuration), it is very likely that
the backup copies of two main tasks running on the same
primary processor will be allocated to different secondray
processors. This is quite different from P-SS where each
primary processor has a dedicated secondary processor and
the main and backup copies of the same subset of tasks are
executed on these two processors, respectively.

Due to such complications, it is quite difficult to identify the
overlapped execution regions between tasks’ main and backup
copies in the EDF and EDL schedules on different processors,
which makes it infeasible to find the optimal configuration of
processors in G-SS for energy minimization analytically. In
this section, for a given task set I' running on a m-processor
system, we present an iterative approach to find out the best
processor configuration(s) for the G-SS scheme to minimize
system energy consumption. Again, we use the WFD task-
to-processor mapping heuristic. The main steps of such an
iterative scheme are summarized in Algorithm 2.

In Algorithm 2, the minimum and maximum numbers of
primary processors needed are first determined (line 3). Then,
for each possible processor configuration (i.e., a pair of X
and Y'), we check the schedulability of the given task set I"
under G-SS assuming the WFD task-to-processor mapping (by
invoking Algorithm 1 at line 6). If I is schedulable, the system
energy consumption under G-SS can be obtained from the
emulated execution of the tasks in LCM (line 7). During such
emulations, we assume that tasks take their WCETSs and no
faults occur. Finally, considering all feasible pairs of X and
Y, the efficient configuration with the lowest fault-free system

67

1: Input: task set I' and m (number of processors);
2: E™in = o0; X°Pt = —1; //initialization
3 Xmin — {U(F)—I, XmexT — gy Xmin;
4: for (X = X™" — X™e) do
5: Y =m — X; /mumber of secondary processors
6: if (T is schedulable under G-SS with X/Y) then
7 Get Eg_s55(X,Y) by emulation in LCM;
8 if (™" > Eg_55(X,Y)) then
9 Xort = X
end if

end if

end for

10:
11:
12:

energy consumption can be found out (lines 8 and 9). The
variations in the system energy consumption with different
processor configurations are further illustrated in Section V-A.

C. Online Scheme with Wrapper-Tasks

As shown in Section V, the statically determined scaled
frequencies for the main copies of tasks in P-SS and G-SS
can lead to energy savings. Considering the fact that real-time
tasks normally only take a small fraction of their WCETs [11],
large amount of dynamic slack can be expected at run-time and
should be exploited for better energy efficiency. In [14], two
online schemes, namely ASSPT and CSSPT, were proposed.
These two schemes reclaim dynamic slack in aggressive and
conservative manner, respectively, to further slow down the
main copies of tasks at run-time to save more energy.

Although ASSPT and CSSPT can be applied directly to
each processor pair in the P-SS scheme, it is not obvious how
they can be extended to the G-SS scheme. Observing that a
task’s backup copy normally starts later than its main copy,
ASSPT and CSSPT determine the amount of available slack
for a task’s main copy based on the start time of its backup
copy in the EDL schedule of the secondary processor [14].
However, such relations may not hold under the G-SS scheme,
especially for the configurations with different numbers of
primary and secondary processors that can have completely
different subsets of tasks.

Therefore, we propose a generic online scheme based on
the wrapper-task slack management mechanism [25], which
can be applied to main tasks running on primary processors
for both the P-SS and G-SS schemes at run-time. Essentially,
a wrapper-task represents a piece of slack with two parameters
(¢, d), where the size ¢ denotes the amount of the slack and the
deadline d equals to that of the task creating this slack [25].

In our online scheme, the available slack times (i.e.,
wrapper-tasks) are managed separately on each primary pro-
cessor. At run-time, the main copy of a task reclaims the
available slack on its own processor, independently of the
backup execution of the task. Since the main tasks are executed
under the EDF scheduling on primary processors, from [25],
we know that a main task can safely reclaim any dynamic

075 ‘ ‘ 09 ‘ ‘ 1.05 ;

s P-SS —+ s 0.85 P-SS —+— s 1+ -

3 0.7 3 E = 8o i b = P-SS —+—

g G-88 g gl &S 1l B oss| ass 1

g 065 . 2 2 o9l .

: § o7] S oss]

> 0.6 [1 > 07 | g > .

= = = 08 | ,

)) | i) :

S 055 g s 065 5 o075 8

8 3 055 i s 065 | :

E o045} g E A ST S E

5 5 o05r : - 5 o6 E
04 Il 1 Il Il 045 Il Il Il Il 055 Il % Il Il

L
4 6 8 10 12
number of secondary processors (Y)

14 4

a. System utilization U = 3.0;

Fig

slack that has an earlier deadline than that of the task to further
reduce its processing frequency and thus to save more energy.
The detailed steps on how to manage and utilize the dynamic
slack at run-time with wrapper-tasks can be found in [25].

V. EVALUATION AND DISCUSSION

In this section, we evaluate the performance of the proposed
P-SS and G-SS schemes for multiprocessor real-time systems
through extensive simulations. To this aim, we developed a
discrete event simulator in C++. From previous studies [9],
[14], we know that, in addition to tolerating a single per-
manent fault, the Standby-Sparing scheme can preserve the
original system reliability with respect to transient faults by
executing the backup tasks at the maximum frequency. Since
the proposed P-SS and G-SS schemes follow the same design
principle for fault tolerance (see the discussions in Section IV),
the reliability goals (of tolerating both permanent and transient
faults) can be ensured as well. Therefore, in what follows,
we focus on evaluating the energy efficiency of the proposed
schemes.

As modern processors have a few frequency levels, we
assume that there are four frequency levels, which are nor-
malized as {0.4, 0.6, 0.8, 1.0} in the evaluations. Moreover, we
focus on 16-processor systems, and we assume that P, = (.16,
Cey =1 and k = 3, as in [14].

The utilizations of tasks are generated according to the
UUniFast scheme proposed in [5]. We used two different
average task utilization values u®*¢ = 0.1 and u*"¢ = 0.05, in
different experiments. For each task set, we generate enough
number of tasks so that the system utilization reaches a given
target value. That is, for a given system utilization U, the
average number of tasks in a task set is _WLeJ The periods
of tasks are uniformly distributed in the range of [10,100]
and the WCET of a task is set according to its utilization
and period. Each data point in the figures corresponds to the
average result of 100 task sets.

A. Energy Efficiencies for Different Configurations in G-SS

First, we illustrate the variations in energy consumption un-
der different primary and secondary processor configurations
in the G-SS scheme for 16-processor systems and compare

6

number of secondary processors (Y)

b. System utilization U = 4.0;

68

L
4 6 8 10 12
number of secondary processors (Y)

L
8 10 12 14 14

c. System utilization U = 5.0;

. 3: The effects of different configurations of processors in G-SS for a 16-CPU system under different system loads.

them against that of the P-SS scheme. Here, without consid-
ering online slack reclamation (which will be evaluated next),
we assume that all tasks run at their statically assigned scaled
frequencies and take their WCETs at run time. Moreover, it
is assumed that no fault occurs during the execution of tasks
and the backup (main) copies of tasks are cancelled under
both schemes once their coresponding main (backup) copies
complete successfully!. We show the energy consumption
figures as normalized with respect to the P-SS scheme when
both primary and secondary processors execute all the tasks
at the maximum frequency.

For 16-processor systems, the upper-bound on the total
main task system utilization schedulable under the proposed
schemes would be 8 (since a similar processor capacity
should be reserved for backup tasks). For the cases of system
utilization U = 3.0,4.0, and 5.0, Figure 3 shows the results
for the G-SS scheme with varying numbers (Y) of secondary
processors as well as that of the P-SS scheme for comparison.
In these experiments, the average task utilization is set to
u®® = 0.1.

Not surprisingly, for different processor configurations (i.e.,
as the number of secondary processors varies) in the G-SS
scheme, the system energy efficiency can exhibit significant
differences ranging from 30% to 45%. As in the example
discussed in Section III, for a given system utilization, the
processor configuration that can lead to the best system
energy efficiency normally has more primary processors than
secondary processors (i.e., smaller values of Y). On the other
hand, since the backup copies of tasks have to be executed at
the maximum frequency for reliability preservation [14], the
spare capacity on secondary processors is normally wasted,
which leads to inferior performance for G-SS when more pro-
cessors are used as secondaries. From the results, we can see
that with a judicious selection of the processor configurations
(i.e., the X and Y values), G-SS can outperform P-SS by 15%
additional energy savings when U = 5.0.

With varying system utilizations, the performance of the
G-SS scheme with the most energy-efficient processor con-

INote that, due to independent scheduling of tasks’ main and backup copies
under EDF and EDL, respectively, it is possible for a task’s backup copy to
finish earlier than its main copy in the SS scheme [14].

0.8

075
0.7
0.65

06
0.55

045 /
— I L L

04 T —
2 25 3 35 4 45 5 55 6

system utilization (U)

a. u'=0.1

0.5

normalized energy consumption
normalized energy consumption

/7

L
2 25 3 35 4 45 5 55 6
system utilization (U)

b. u*¢ =0.05

0.4

Fig. 4: Energy consumptions of P-SS and G-SS vs. U

figuration is shown in Figure 4a. The results indicate that,
compared to the P-SS scheme, the G-SS with its most energy-
efficient processor configuration gives better energy savings.
However, the exact performance difference diminishes at very
low and high system utilizations. This is because, at low
system utilizations (U < 2.5), the tasks’ main copies can be
executed at f = 0.4 (the lowest available frequency) while
most backup copies of tasks can be cancelled under both P-
SS and G-SS schemes.

At high system utilizations (for example, U = 6.0), there
are only a few feasible processor configurations (e.g., X = 7,8
and 9) in most cases for the G-SS scheme. Further, the most
energy-efficient configuration turns out to be X = 8, which
makes G-SS to act exactly the same as P-SS since we use
the same WFD heuristic when partitioning main and backup
copies of tasks. The close performance between G-SS and P-
SS at the middle range of system utilizations comes from the
limitation of discrete frequencies, which becomes clearer for
systems with smaller tasks (i.e., u®’¢ = 0.05) as shown in
Figure 4b.

B. Performance of Online Schemes

In this section, by varying the ratio of average over worst
case execution times of tasks, we further evaluate the perfor-
mance of P-SS and G-SS with different online techniques.
Specifically, we implement both ASSPT and CSSPT tech-
niques [14] and apply them to processor pairs under P-SS,
which are denoted as “P-SS-ASSPT” and “P-SS-CSSPT”,
respectively. Moreover, the wrapper-task based online scheme
is also implemented and applied on the primary processors
under P-SS and G-SS, which are denoted as “P-SS-Wrap”
and “G-SS-Wrap”, respectively. For G-SS and a given task set
with certain total utilization, we assume that the most energy-
efficient processor configuration (obtained from Algorithm 2)
is adopted.

Since we focus on evaluating the energy efficiency of the
proposed schemes, we again assume that no fault occurs during
tasks’ execution. Again, the execution of backup (or main)
copies of tasks are cancelled once the corresponding main
(or backup) copies complete under all schemes. Moreover,
the normalized energy consumptions are reported, where the
baseline corresponds to the P-SS scheme when both primary
and secondary processors running at the maximum frequency.

In these experiments, we set u®’¢ = (0.1. To emulate the

69

dynamic execution behaviors of tasks, we use a system wide
average-to-worst case execution time ratio «. For each task 75,
its average-to-worst case execution time ratio «; is generated
randomly around «. Then, at run-time, the actual execution
time for each instance of task 7; is randomly generated with
the mean «; - ¢;, where ¢; is task T;’s WCET. Essentially, v as
an indicator of the expected amount of dynamic slack, lower
values suggesting greater dynamic slack.

Figures Sabc show the performance of the schemes with
varying « (average-to-worst case execution times of tasks)
under three different system utilizations U = 3.0,4.0, and
5.0, respectively. Again, when the system utilization is low
(i.e., U = 3.0), the main copies of tasks can be executed
at the lowest frequency 0.4 and most backup copies are
cancelled, leading to very similar (within 6% difference)
energy consumption figures for P-SS and G-SS with all online
techniques.

When «o 1, there is no dynamic slack at run-time.
However, due to the limitation of discrete frequencies, there
will be some spare capacity on each primary processor, which
can be exploited by the wrapper-task based scheme and some
additional energy savings can be obtained when compared to
that of ASSPT and CSSPT. Therefore, with the limited benefits
of the online techniques at = 1, G-SS outperforms P-SS
slightly, which is consistent with the prior results.

When the system utilization gets higher (i.e., U = 4.0 and
U = 5.0), we can see that the ASSPT technique can cause
drastic performance degration for P-SS as tasks’ dynamic
loads increase (with higher values of). These results are
consistent with those in [14]. The reason comes from the
aggressive slack usage under the ASSPT technique, which
executes the main copies of tasks at very low frequency at
the beginning of the schedule. Such scaled executions force
remaining tasks’ main copies to run at much higher frequency
and cause more overlapped executions with tasks’ backup
copies on the seconary processors.

To address the above mentioned problem, based on the
static and dynamic loads of tasks, the CSSPT scheme stat-
ically determines a lower bound for the scaled frequency
for executing tasks’ main copies when reclaiming slack at
run-time [14]. With such a scaled frequency bound, CSSPT
can effectively prevent the aggressive usage of slack time in
the early part of the schedule. Therefore, when compared to
ASSPT, P-SS performs much better with the CSSPT online
technique, especially for tasks with higher dynamic loads.

For our proposed wrapper-task based online technique, we
can see that its performance is pretty stable under different
dynamic loads of tasks. Although it performs (slightly) worse
than that of ASSPT and CSSPT for the P-SS scheme at low
dynamic loads (i.e., & < 0.6), its performance is very close
to that of CSSPT at higher dynamic loads of tasks. However,
unlike CSSPT, the wrapper-task technique does not require the
pre-knowledge of tasks’ average-case workloads.

Moreover, as a generic online technique, wrapper-tasks can
also be applied to the primary processors in the G-SS scheme,
which exhibits a stable performance as well. Although the

0.6

0.85

0.58
0.56 |-
0.54
0.52
05
0.48
0.464
0.44
0.42
0.4

08 |
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4

-SS-ASSPT +—+—t
SS-
P-SS-Wrap *
G

normalized energy consumption
normalized energy consumption

1

1 T T
-SS-ASSPT #—+—i

S
P-SS-Wrap 2+ @
G-SS-Wrap e

normalized energy consumption

1 1
03 04 05 06 07 08 09 1

average/worst case execution time

03 04 05

a. system utilization U = 3.0;

Fig. 5: Performance of P-SS and G-SS with online techniques

performance gain of applying the wrapper-task technique on
G-SS is rather limited (within 5%) when compared to that of
P-SS, we can see that G-SS-Wrap always performs better than
that of P-SS-CSSPT at higher dynamic loads of tasks.

VI. CLOSELY RELATED WORK

By incorporating the negative effects of DVS on system
reliability, the Reliability-Aware Power Management (RAPM)
framework has been studied, exploiting time-redundancy for
both reliability preservation and energy savings [12], [18],
[25]. Here, the main idea is to schedule a separate recovery job
for every job that has been selected to scale down to preserve
the system’s original reliability, which is assumed to be satis-
factory. The recovery job is executed at the maximum speed
only when its scaled primary job incurs transient faults. The
shared-recovery based RAPM scheme has also been studied
where several tasks with scaled frequencies may share one
recovery task for reliability preservation [22]. More recently,
considering such negative effects of DVS on system reliability,
the recovery allowance based scheme that can achieve arbitrary
reliability levels for each periodic task is further studied [23].

Although the RAPM schemes can preserve the system reli-
ability with respect to transient faults, there are no provisions
for permanent faults. Moreover, due to the separate allocation
of the recovery job on the same processor with its primary
job, large tasks with utilization greater than 50% cannot be
managed under RAPM, which limits its applicability.

Instead of dedicating a spare processor for backup tasks as
in [9], [14], the designs in [13] and [20] treat both processors
equally and schedule a mixed set of primary and backup
copies of different tasks on each of them. Specifically, based
the Preference-Oriented Earliest Deadline (POED) scheduling
algorithm, the authors of [13] developed energy-efficient fault
tolerance (EEFT) schemes. Here, on each processor, primary
tasks are executed as soon as possible while backup tasks
are delayed as much as possible under POED. That is, the
slack time on both processors can be efficiently utilized to
minimize the overlapped execution of the primary and backup
copies of the same task for better energy savings. However,
the work only considered dual-processor systems. In our future
work, we will investigate how to extend the EEFT scheme

0.6
average/worst case execution time

b. system utilization U = 4.0;

70

1 1
07 08 09 1 0.7 0.8

0.4
average/worst case execution time

0.5 0.6 0.9 1

c. system utilization U = 5.0;

under different system loads.

to multiprocessor systems and compare it against with our
proposed Standby-Sparing based schemes.

VII. CONCLUSIONS

The Standby-Sparing (SS) technique has been studied as
an effective technique to address both energy and reliabil-
ity issues in dual-processor systems [9], [14]. However, no
existing work has analyzed applicability of this framework
to systems with more than two processors. In this paper,
with the focus on multiprocessor systems, we studied the
SS-based energy efficient fault tolerance techniques that can
address both transient and permanent faults. Specifically, we
first proposed the Paired-SS scheme, where processors are
organized as groups of two (i.e., pairs) and SS is applied
directly within each processor pair after partitioning tasks.
Then, we proposed a Generalized-SS technique that partitions
processors into two groups, which are for primary and sec-
ondary processors, respectively. The main (backup) copies of
tasks are executed on primary (secondary) processor group
under the partitioned-EDF (partitioned-EDL) scheduling. An
online energy management scheme with wrapper-tasks is also
studied.

Our empirical evaluations show that, for systems with a
given number of processors, there normally exists an energy-
efficient configuration of primary and secondary processors for
the Generalized-SS technique that can lead to better energy
savings when compared to that of the Paired-SS technique.
Moreover the wrapper-task based online scheme has a pretty
stable performance for both P-SS and G-SS schemes.

ACKNOWLEDGMENTS

This work was supported by US National Science Foun-
dation awards CNS-0855247, CNS-1016855, CNS-1016974,
and CAREER Award CNS-0953005.

REFERENCES

[1] Intel corporation. single-chip ~ cloud computer: Project.
http://www.intel.com/content/www/us/en/research/intel-labs-single-
chip-cloud-computer.html, 2013. [Online; accessed 10-June-2013].

[2] Tilera, tile-gx processor family. http://www.tilera.com/products/processors/,

2013. [Online; accessed 10-June-2013].

H. Aydin, V. Devadas, and D. Zhu. System-level energy management for

periodic real-time tasks. In Proc. of The 27t" IEEE Real-Time Systems

Symposium (RTSS), pages 313-322, 2006.

[3]

[4]

[5]
[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

H. Aydin and Qi Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Proc. of the Parallel and Distributed Processing
Symposium (IPDPS), Apr. 2003.

E. Bini and G.C. Buttazzo. Biasing effects in schedulability measures.
In Proc. of the Euromicro Conf. on Real-Time Systems, 2004.

T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor
design. In Proc. of HICSS Conference, 1995.

H. Chetto and M. Chetto. Some results of the earliest deadline
scheduling algorithm. IEEE Trans. Softw. Eng., 15:1261-1269, 1989.
D. Clark, C. Brennan, and M. Jaunich. Survey of nasa mars
exploration missions software fault protection architecture. available at
http://mkjaunich.typepad.com/files/ssw689-surveyofnasamarsexpnmsn-
final.pdf, 2010. [Online; accessed 26-March-2013].

A. Ejlali, B.M. Al-Hashimi, and P. Eles. A standby-sparing technique
with low energy-overhead for fault-tolerant hard real-time systems. In
Proc. of the IEEE/ACM Int’l conference on Hardware/software codesign
and system synthesis (CODES), pages 193-202, 2009.

D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner. Razor: circuit-level correction of timing errors for
low-power operation. [EEE Micro, 24(6):10-20, 2004.

R. Ernst and W. Ye. Embedded program timing analysis based on
path clustering and architecture classification. In Proc. of The Int’l
Conference on Computer-Aided Design, pages 598-604, 1997.

Y. Guo, D. Zhu, and H. Aydin. Reliability-aware power management
for parallel real-time applications with precedence constraints. In Green
Computing Conference and Workshops (IGCC), 2011 International,
pages 1 -8, july 2011.

Y. Guo, D. Zhu, and H. Aydin. Efficient power management schemes
for dual-processor fault-tolerant systems. In First Workshop on Highly-
Reliable Power-Efficient Embedded Designs, Feb. 2013.

M. Haque, H. Aydin, and D. Zhu. Energy-aware standby-sparing
technique for periodic real-time applications. In Proc. of the IEEE
International Conference on Computer Design (ICCD), 2011.

S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In
Proc. of The 14*" Symposium on Discrete Algorithms, 2003.

R. Jejurikar and R. Gupta. Dynamic voltage scaling for system wide
energy minimization in real-time embedded systems. In Proc. of the Int’l

71

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Symposium on Low Power Electronics and Design (ISLPED), pages 78—
81, 2004.

D. K. Pradhan, editor. Fault-tolerant computer system design. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996.

X. Qi, D. Zhu, and H. Aydin. Global scheduling based reliability-aware
power management for multiprocessor real-time systems. Real-Time
Systems: The International Journal of Time-Critical Computing Systems,
47(2):109-142, 2011.

M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. System-Level Design
Techniques for Energy-Efficient Embedded Systems. Kluwer Academic
Publishers, Norwell, MA, USA, 2004.

O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware
software-based fault tolerance in real-time systems. In Proc. of the Int’l
Symp. on Low Power Electronics and Design, pages 124—129, 2002.
M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced cpu energy. In Proc. of The First USENIX Symposium on
Operating Systems Design and Implementation, Nov. 1994.

B. Zhao, H. Aydin, and D. Zhu. Enhanced reliability-aware power
management through shared recovery technique. In Proc. of the
IEEE/ACM Int’l Conference on Computer Aided Design (ICCAD), 2009.
B. Zhao, H. Aydin, and D. Zhu. Energy management under general
task-level reliability constraints. In Proc. of the IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), Apr. 2012.
D. Zhu. Reliability-aware dynamic energy management in dependable
embedded real-time systems. In Proc. of the IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 397 — 407,
2006.

D. Zhu and H. Aydin. Reliability-aware energy management for periodic
real-time tasks. IEEE Trans. on Computers, 58(10):1382-1397, 2009.
D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multi-processor
real-time systems. IEEE Trans. on Parallel and Distributed Systems,
14(7):686-700, 2003.

D. Zhu, R. Melhem, and D. Mossé. The effects of energy management
on reliability in real-time embedded systems. In Proc. of the Int’l Conf.
on Computer Aidded Design, pages 35-40, 2004.

