

Overhead-aware schedulability evaluation of
semi-partitioned real-time schedulers

Conference Paper

*CISTER Research Center

CISTER-TR-150402

2015/08/19

Pedro Souto*

Paulo Baltarejo Sousa*

Robert Davis

Konstantinos Bletsas*

Eduardo Tovar*

Conference Paper CISTER-TR-150402 Overhead-aware schedulability evaluation of ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Overhead-aware schedulability evaluation of semi-partitioned real-time
schedulers

Pedro Souto*, Paulo Baltarejo Sousa*, Robert Davis, Konstantinos Bletsas*, Eduardo Tovar*

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: pfs@fe.up.pt, pbs@isep.ipp.pt, ksbs@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Schedulability analyses, while valuable in theo-retical research, cannot be used in practice to reason aboutthe
timing behaviour of a real-time system without includingthe overheads induced by the implementation of the
schedul-ing algorithm. In this paper, we provide an overhead-awareschedulability analysis based on demand
bound functions fortwo hard real-time semi-partitioned algorithms, EDF-WM andC=D. This analysis is based on a
novel implementation thatrelies on the use of a global clock to reduce the overheadsincurred due to the release
jitter of migrating subtasks. Theanalysis is used to guide the respective off-line task assignmentand splitting
procedures. Finally, results of an evaluation areprovided highlighting how the different algorithms performwith and
without a consideration of overheads.

Overhead-aware schedulability evaluation of semi-partitioned real-time schedulers

Pedro Souto∗‡, Paulo Baltarejo Sousa∗†, Robert I. Davis§§, Konstantinos Bletsas∗†, and Eduardo Tovar∗†

∗CISTER/INESC-TEC Research Center † ISEP-Polytechnic Institute of Porto, Portugal
‡ University of Porto, FEUP-Faculty of Engineering, Portugal § University of York, UK

Email: †{pbs, ksbs,emt}@isep.ipp.pt, ‡pfs@fe.up.pt §rob.davis@york.ac.uk

Abstract—Schedulability analyses, while valuable in theoret-
ical research, cannot be used in practice to reason about the
timing behaviour of a real-time system without including the
overheads induced by the implementation of the scheduling
algorithm. In this paper, we provide an overhead-aware schedu-
lability analysis based on demand bound functions for two
hard real-time semi-partitioned scheduling algorithms, EDF-
WM and C=D. This analysis is based on a novel implementation
that uses a global clock to reduce the overheads incurred due
to the release jitter of migrating subtasks. The analysis is used
to guide the respective off-line task assignment and splitting
procedures. Finally, results of an evaluation are provided
highlighting how the different algorithms perform with and
without a consideration of overheads.

I. INTRODUCTION

In multiprocessor real-time scheduling, the potential for

tasks to migrate from one processor to another adds an extra

dimension to the scheduling problem. Scheduling algorithms

range from global algorithms, which allow unrestricted mi-

gration, to partitioned algorithms, which permit no migration

at all [19]. Several approaches have been proposed that lie

between these two extremes. This paper investigates two

such algorithms, EDF-WM [24] and C=D [15]. In particular,

we consider their implementation and detailed schedulability

analysis, including a consideration of the overheads they

induce.

When scheduling algorithms are first proposed and a

schedulability analysis given, overheads are often disre-

garded or assumed to be negligible. In practice, however,

when assessing the schedulability of a real-time system it is

crucial that the overheads induced by the implementation of

the algorithm are correctly accounted for. Without accurate

accounting for such overheads schedulability tests may give

false positives, indicating that a system is schedulable when

in fact it is not, with obvious undesirable consequences.

Alternatively, it is often said that overheads are assumed

to be subsumed into the worst-case execution times (WCET)

This work was partially supported by FCT/MEC (Portuguese Foun-
dation for Science and Technology) and when applicable, by ERDF
(European Regional Development Fund) under the PT2020 Partnership
within project UID/CEC/04234/2013 (CISTER Research Centre); by FC-
T/MEC and ERDF through COMPETE (Operational Programme ’Thematic
Factors of Competitiveness’), within project FCOMP-01-0124-FEDER-
020447 (REGAIN); by FCT/MEC and the EU ARTEMIS JU within
project ARTEMIS/0001/2013 - JU grant 621429 (EMC2). The research
described in this paper was funded in part by the UK ESPRC grant, MCC
(EP/K011626/1). EPSRC Research Data Management: No new primary
data was created during this study.

of tasks. While this can result in valid overhead-oblivious

analyses, there are two potential problems with such an

approach. Firstly, certain overheads may result in additional

release jitter, blocking or non-preemptive regions which need

to be accounted for in other ways than just an inflated

WCET, if the test is to remain valid. Secondly, inclusion

of overheads within the WCET of tasks cannot accurately

capture the real-time behaviour of a system that includes

interrupts used to release tasks (or sub-tasks) on different

processors.

A. Related Work

The papers introducing both EDF-WM [24] and C=D [15]

algorithms include overhead-oblivious schedulability evalu-

ations based on computation of the demand bound function

(dbf), a technique first proposed by Baruah et al. [7], [6]. The

evaluation of C=D uses the Quick convergence Processor-

demand Analysis (QPA) [36].

Early overhead-aware schedulability analyses targeted

fixed-priority uniprocessor algorithms: Rajkumar et al. [29]

considered cycle-stealing caused by DMA, Katcher et al.

[23] considered the operating system overheads, and Aud-

sley et al. [3] considered the effects of jitter and blocking.

The effect of interrupts on dynamic priority uniprocessor

algorithms were addressed by Jeffay and Stone [22]. Spuri

[34] extended the results on the effects of jitter and blocking

[3] to dynamic priority algorithms and also took into account

system overheads.

The cache line evictions caused by task preemption or

migration may cause significant overheads referred to as

cache related preemption delays (CRPD) or cache related

preemption and migration delays (CPMD). In the fixed-

priority uniprocessor scheduling domain, Busquets-Mataix

et al. [16] extended [3] to incorporate these overheads. More

recently, improved methods were introduced by Altmeyer et

al. [1] and extended to EDF by Lunniss et al. [28].

Extensive overhead-aware evaluations of multiprocessing

scheduling algorithms were carried out at UNC, Chapel Hill,

following the methodology initially developed by Calan-

drino et al. [17], namely 1) implementing the algorithms

under analysis on the LITMUSRT platform, 2) experimentally

measuring the overheads incurred by these implementations

and 3) randomly generating numerous task sets, whose

schedulability is checked using schedulability tests for each

tested algorithm, modified to account for the overheads

measured. Calandrino et al. [17] evaluated global EDF (G-

EDF) and partitioned EDF (P-EDF) and various other global

scheduling algorithms implemented in LITMUS
RT on a 4-

processor symmetric multi-processor (SMP). Brandenburg et

al. [13] used a larger platform (32 logical CPUs) to test the

scalability of the algorithms evaluated in [17]. Brandenburg

and Anderson [12] evaluated 7 different implementations of

G-EDF. Finally, Bastoni et al. [9] compared the schedulabil-

ity of clustered EDF (C-EDF) with both G-EDF and P-EDF,

and later examined semi-partitioned scheduling algorithms

with a focus on CPMD [10].

Overhead-aware schedulability analysis and task assign-

ment for slot-based semi-partitioned algorithms were pro-

vided by Sousa et al. [31], [33], [32]. The methodology

used was similar to that of [17], except that the algorithms

were implemented directly on Linux and overhead-aware

dbf-based schedulability tests were specifically developed

for the algorithms. Brandenburg et al. [14] also evaluated

different methods of accounting for interrupts in the schedu-

lability analysis of global scheduling algorithms using tests

specifically developed for that purpose.

Bastoni et al. [10] evaluated the overhead-aware schedu-

lability of EDF-WM; however, that work does not detail

how the original overhead-oblivious scheduling tests [24]

were modified to take into account the overheads, nor the

adaptations required to the task splitting algorithm1.

Another evaluation approach consists of executing ran-

domly generated task sets on a multiprocessor platform

running the scheduling algorithms under study. Lelli et al.

[25] used this approach to compare G-EDF, P-EDF and

C-EDF and also variants of rate monotonic scheduling,

focusing on soft real-time systems. Dellinger et al. [20]

performed similar experimental evaluations on a 48-core

AMD platform with a different Linux version, focusing on

the scalability of G-EDF, P-EDF and C-EDF.

Complementary work by Andersson et al. [2] and Wu et

al. [35] focused on the overheads incurred on the execution

time of tasks caused by the sharing of hardware resources

such as caches, memory and the memory bus with tasks

executing in other cores/processors.

B. Contribution and Organization

In this paper we provide detailed overhead-aware analyses

for the semi-partitioned algorithms EDF-WM and C=D.

These analyses account for the overheads to do with task

and sub-task releases via interrupts and inter-processor in-

terrupts, including their blocking and release jitter effects.

We account for scheduling and migration overheads, the

overheads of budget enforcement timer interrupts, and show

how cache related preemption and migration delays can also

be included. We note that some of these overheads could be

included in task WCETs, which we make clear by including

them in revised computation demands for each sub-task.

1Brandenburg’s thesis [11] offers some additional insights on the general
approach used.

Since different types of task and sub-task incur different

overheads, such an approach results in greater precision.

In Section II we present relevant background information

and outline an implementation of both EDF-WM and C=D

based on a novel approach that uses a global clock to reduce

the jitter and overheads incurred due to migrating subtasks.

In Sections III and IV we develop a detailed overhead-

aware dbf-based schedulability analysis for EDF-WM and

for C=D, respectively. A detailed experimental evaluation

of these overhead-aware schedulability tests is provided in

Section V, which shows how the relative performance of the

algorithms changes when overheads are taken into account.

Section VI concludes with a summary and discussion of

future work.

II. BACKGROUND

A. System Model

We consider m identical processors and a set Γ of n

independent sporadic tasks, τ1,. . . ,τn. Each task τi generates

a potentially unbounded number of jobs and is characterized

by four parameters: the worst case execution time Ci,

relative deadline Di (with 0 ≤ Ci ≤ Di), and maximum

release jitter Ji of each job; and the minimum inter-arrival

time between consecutive jobs Ti.

B. Overhead-oblivious EDF Schedulability Analysis

Exact schedulability analysis for sporadic tasks scheduled

on a uniprocessor using EDF relies on the use of the demand

bound function proposed by Baruah et al. [7], [6]:

dbf(t) =
n
∑

i=1

dbf(τi, t) =
n
∑

i=1

max

(

0, 1 +

⌊

t−Di

Ti

⌋)

· Ci

A taskset is schedulable under EDF if and only if

∀t, dbf(t) ≤ t.

The above analysis was extended by Spuri [34] to include

tasks with release jitter and resource sharing under the Stack

Resource Protocol (SRP) [4]. Zhang and Burns [37] consoli-

date these results providing the following schedulability test:

dbf(t) = b(t) +
n
∑

i=1

ni(t) · Ci ≤ t, ∀t (1)

where b(t) is the maximum time a job of a task τk with

relative deadline Dk ≤ t, can be blocked by a task τb whose

deadline is Db > t, and ni(t) is the number of jobs of task

τi with release times and deadlines in an interval of length

t:

ni(t) = max

(

0, 1 +

⌊

t+ Ji −Di

Ti

⌋)

where Ji is the release jitter of task τi.

Given that the demand bound function dbf(t) changes

its value only at discrete points, it is enough to check

the inequality at those points. Furthermore, it has been

shown that this inequality needs to be checked for an upper

bounded interval of length L, equal to the longest busy

period. Nevertheless, the number of points in which the

2

dbf(t) changes its value in that interval can be very large.

To speed up this analysis, Zhang and Burns [36] proposed

the Quick convergence Processor-demand Analysis (QPA).

C. Overview of EDF-scheduler Implementation

We now outline an implementation of an EDF-scheduler

on a uniprocessor. We assume this implementation later in

the derivation of an overhead-aware schedulability analysis

for EDF.

The EDF scheduler keeps a queue of jobs ready to exe-

cute, the ready queue, sorted by ascending absolute deadline.

The scheduler picks the job at the head of the queue (i.e.,

the ready job with the earliest absolute deadline) to run.

When a job is released (by a timer interrupt, if it is

periodic, or else by another interrupt), it is inserted into

the ready queue. (This is akin to the approach suggested

in [26].) When the interrupt returns, if the absolute deadline

of the new job, i.e the one just released, is earlier than that of

the interrupted job (if any), the scheduler is invoked and the

new job is selected to execute next. The kernel then performs

a context switch, the job which was previously running is

preempted and the new job is started. Otherwise, the job that

was previously running resumes its execution.

When a job terminates, it is removed from the ready queue

and the scheduler is invoked. The scheduler then picks the

job that is at the head of the ready queue, and the kernel

performs a context switch starting the execution of that job.

D. Overhead-aware EDF Schedulability Analysis

In this section, we identify the run-time overheads induced

by the “baseline” EDF scheduler and then integrate them

into its schedulability analysis such that the analysis is valid

by construction. (Note, here we do not consider cross-core

interference or overheads that may arise from the sharing

of hardware resources such as caches, main memory or the

memory bus among processors [2], [35]).

From the implementation overview of EDF on a unipro-

cessor we can identify the following overheads and delays:

Release overhead (RelO) is the processing required upon

release of a job, namely the handling of the interrupt that

releases the job and the insertion of the job into the ready

queue. We assume that interrupts are disabled during RelO,

which we model as an immediate processing demand.

Scheduler overhead (SchedO) is incurred whenever the

scheduler runs. Because in the implementation outlined

above there may be a context switch every time the scheduler

runs, this overhead also includes saving the context of the

completed or preempted job and restoring the context of the

job chosen to run next, including memory management unit

registers, and, possibly, the invalidation of the translation

lookaside buffer (TLB). We assume that interrupts and hence

preemptions are disabled while the scheduler runs. With

EDF scheduling this overhead occurs at most twice per job:

when the job is released and when it terminates. Hence,

we account for this overhead (2 · SchedO) by adding it to

the computation demand of each job and also including its

blocking effect.

Cache related preemption delay (CRPD) is caused when

one job preempts another. This may lead to eviction of the

preempted job’s cache lines, which will have to be fetched

again when that job is resumed. This leads to a longer

execution time than the WCET, Ci, because this parameter is

typically obtained assuming no preemption [27]. Because, in

the worst case, the preempted job may be resumed as soon

as the preempting job terminates, we simply account CRPD

as increasing the computation of the preempting job (Ci).

This overhead depends in a complex way on the preempted

and preempting tasks [28]. Tight estimation is out of the

scope of this paper, instead, we assume an upper bound,

CprdOi, for the CRPD that each job τi may inflict on all

other jobs it preempts (directly or indirectly).

Interrupt/preemption blocking (IpB), this is a delay that

the release of a task may suffer, with respect to its arrival

(indicated by the appropriate interrupt being raised). This

delay is caused by the disabling of interrupts or the disabling

of preemption during the normal execution of the currently

running task.

Fig. 1 illustrates these overheads and how they are taken

into account in our model. Initially, task τ1 is running. At

time t1, task τ2 is released with some blocking delay after

its arrival time. The blocking delay is due to interrupts

being disabled by task τ1 for IpB and is shown as a

crossed box on the timeline for τ2. Because its absolute

deadline is earlier than that of task τ1, the scheduler runs

and decides to preempt τ1. After a context switch, τ2 runs

until completion. Again the scheduler runs and decides to

resume task τ1. This task starts to run at time t2, after the

context switch. Because τ1 was preempted, some (or all)

of its cache lines may have been evicted, and therefore it

will incur a CRPD. As mentioned above, we charge this

overhead to the preempting task and therefore this overhead

is shown as a dashed rectangle in the timeline corresponding

to the execution of τ1. The CPRD may be spread throughout

the full execution of task τ1, but we assume the worst case

(i.e. that it occurs immediately). Later, at time t3, task τ3 is

released and inserted in the ready queue. Since its absolute

deadline occurs after that of τ1, the scheduler does not run,

and task τ1 is resumed after the interrupt. We assume that

interrupt handling (IH) does not cause any CRPD, either

because the cache is disabled or because interrupt handlers

use a separate cache partition.

Note that in our analysis, we do not consider the over-

heads required to manage periodic scheduler-tick interrupts,

since event-driven schedulers such as EDF do not make use

of those interrupts [10].

We now amend the dbf given in (1) to take into account

the overheads of the EDF implementation described above,

as follows:

dbf(t) = b(t) +

n
∑

i=1

ni(t) · C
′

i +

n
∑

i=1

RelIi(t) (2)

3

SchedO CrpdORelO

τ1

τ2

S

R S

D1

τ3

SS

D2

t1 t2 t3

D3

S

P

S

C

P
C

R

R

R

IpB

Figure 1: Time diagram of overheads in uniprocessor EDF.

where

b(t) =

{

max(IpB, SchedO) if t < maxni=1Di

0 otherwise
(3)

C′

i = Ci + 2 · SchedO + CprdOi (4)

RelIi(t) =

⌈

t+ Ji
Ti

⌉

·RelO (5)

Here, b(t) is the maximum blocking due to disabling in-

terrupts during either normal task execution, i.e. IpB, or

scheduler operation, i.e. SchedO. We assume that every task

effectively includes scheduler operations and can cause the

same maximum blocking due to disabling interrupts, since

such critical sections typically only occur during system

calls. For simplicity, we assume that there are no software

resources shared among tasks. The blocking effects caused

by accessing such resources under SRP can however easily

be incorporated into our model via their inclusion in the

blocking factor b(t).

Note that (4) is safe but may be very pessimistic, as it is

tantamount to assuming that every job release leads to a pre-

emption. A tighter demand bound can be achieved by using

a tighter bound on the number of preemptions [30][21].

Since all of the overheads and delays are included within

the blocking and execution time terms, the worst-case

scenario for baseline EDF also applies to the augmented

equations. Note that the interference RelIi caused by the

release of a job via the respective interrupt handler is

accounted for by independently maximizing the interference

from it in any given time interval t in (5), thus ensuring that

the overall value for dbf(t) remains a valid upper bound.

E. Budget Enforcement Timers

In order to ensure that the processor utilization by a task

does not exceed its upper bound, it is common to use a

budget enforcement timer, or budget timer for short, per task.

Such a timer can be implemented with the help of standard

kernel operations for setting and cancelling timers, by using

a function to read the current time and a variable per task

used to keep its remaining execution time. Furthermore, for

quick handling of their expiry, the timers can be maintained

in a queue sorted by ascending expiry time. This is similar to

the timer described in [24] for the implementation of timed

(sub)tasks in EDF-WM.

SchedO CrpdORelO

τ1

τ2

R

D1

τ3

D2

t1 t2 t3

D3

P
C

P
C

TsetO

R

R

R

IpB

S

S

S

S

S

S

T

T

T

TT

TT

Figure 2: Time diagram of overheads in uniprocessor EDF

with budget enforcement timers.

The handling of the budget timer leads to one additional

overhead, the timer setup overhead (TsetO). This comprises

both the overhead required to cancel the timer of the

previously executing task and to setup the budget timer of

the next task. Although these overheads do not occur one

after the other, we lump them together (see Fig. 2) for ease

of representation, and also to simplify the expressions used

in the analysis.

The timer setup overhead has two main effects. First,

it increases the interval during which interrupts may be

disabled by TsetO. Therefore, we amend the blocking term,

b(t), given in (3) to:

b(t) =

{

max(IpB, SchedO + TsetO) if t < maxni=1Di

0 otherwise

(6)

Second, as shown in Fig. 2, each job may incur this

overhead twice: once upon its release and again upon its

termination. Therefore we amend (4) and (5), respectively,

as follows:

C′

i = Ci + 2 · SchedO + TsetO + CprdOi (7)

RelIi(t) =

⌈

t+ Ji
Ti

⌉

· (RelO + TsetO) (8)

An alternative to a budget timer is a deadline-enforcement

timer. While the former ensures that a job does not exceed its

allocated processing time, the latter ensures that a job does

not execute past its deadline. Deadline-enforcement timers

are simpler to implement, but it is not possible to implement

timed (sub)tasks in EDF-WM (see below) with them, hence

the use of budget timers here.

For ease of reference, Table I lists all the symbols defined

in this and the following sections and provides a short

description of their meaning. A more detailed explanation

is provided at the appropriate point in the text.

In the next two sections we extend the above analysis for

both EDF-WM and C=D. First, we give an overview of the

implementation of both algorithms.

F. EDF-WM and C=D

Both the EDF-WM and C=D algorithms use strict EDF

on each processor. In both cases, tasks are partitioned by

default. Only when this is not possible is a task “split”,

4

Symbol Meaning

τi ith task in a task set
Γ Task set
Ci Worst-case execution time of τi
C′

i Worst-case execution time including overheads of τi (ex-
cept overheads that occur when τi is released)

Di Relative deadline of τi
Ji Maximum release jitter of (periodic) task τi
p A processor
Ti Minimum inter-arrival time of task τi

b(t) Maximum blocking of any job with relative deadline
smaller or equal to t, by jobs whose relative deadline is
larger than t

dbf(t) Demand bound function for all tasks assigned to a proces-
sor in a time interval of duration t

ni(t) Maximum number of executions of τi in a time interval t
RelI(t) Demand caused by the release of all tasks on a processor

in a time interval t
RelIi(t) Demand caused by the release of τi in a time interval t
IpiI(t) Demand caused by IPI used to set the release timer for all

middle and last subtasks on a processor in a time interval
t

π Global clock precision
BetO Upper-bound of the budget enforcement timer IH overhead
CrpdOi Upper-bound of the CRPD caused by τi

CrmdO
j
s Upper-bound of the cache related migration delay of τ

j
s

IntBp Upper-bound of the blocking of an interrupt on p
IntCp Upper-bound of the delay of an interrupt on p because of

interrupt contention
IpiJ Upper-bound of the interprocessor interrupt (IPI) jitter
IpiO Upper-bound of the IPI overhead
MigrO Upper-bound of the migration overhead
IpB Upper-bound of the blocking caused by disabling interrupts

or task preemptions during normal execution of a task
RelO Upper-bound of the release overhead
RihRs Maximum response time of the release IH of τs
SchedO Upper-bound of the scheduling overhead (includes context

switch overhead)
TsetO Upper-bound of the timer setup overhead

Table I: Notation

Some parameters in this table appear also in the form parjs, to
denote the parameter par of subtask τ j

s of task τs, where j can be
one of 1, m or ℓ, denoting respectively the first, a middle or the
last subtask.

i.e. configured to migrate between selected processors. The

execution of a task on different processors is conveniently

described as a sequence of subtasks with precedence con-

straints. On its processor, a subtask is handled by the local

EDF scheduler just like any other task. Where EDF-WM

and C=D differ is in the algorithms used 1) to assign tasks

to processors and chose tasks to split, and 2) to compute

the scheduling parameters (C and D) of the subtasks of

migratory tasks.

EDF-WM assigns tasks in order of non-increasing Di. It

first tries to assign a task as non-migrating using first-fit; if

this fails, it then tries to assign the task by splitting. The

number of subtasks is determined tentatively, starting with 2

and incrementing until success; if a task cannot be scheduled

even if split into m subtasks (the number of processors),

the task set is deemed unschedulable. EDF-WM assigns to

all s subtasks of a given migratory task with deadline D

the same deadline D/s. The execution time Ci
s of subtask

i of migratory task τs, is the maximum computation that

the respective processor can provide and still ensure the

schedulability of that subtask and all other tasks already

assigned to that processor. To avoid splitting tasks into too

many subtasks, EDF-WM calculates the maximum amount

of computation time that each processor can provide to the

migratory task and then selects processors for the subtasks

in decreasing order of that quantity.

Under C=D, on the other hand, all subtasks but the last

of a migratory task have their relative deadlines equal to

their computation time, hence the name “C=D”. As a result,

all subtasks, except possibly the last, run at the highest

(task) priority on their respective processors. Several strate-

gies and task orderings were explored for task assignment

and splitting by the original authors [15]. Assuming no

overheads, the best results were obtained by pre-selecting

the tasks to split in non-decreasing Di order and by as-

signing non-migratory tasks to processors in non-increasing

density order. Like EDF-WM, the number of split tasks is

determined tentatively. Unlike EDF-WM, when assigning

subtasks, processors are selected by increasing index order.

G. EDF-WM/C=D Scheduler implementation

A characteristic of both EDF-WM and C=D is that all

subtasks, but the last, of a migratory task are timed. That

is, their termination occurs on expiry of their assigned

(artificial) budget, rather than on completion of all of the

task’s computation. Timed subtasks can be easily imple-

mented with budget timers. Indeed, as described in Sec. II-E,

these timers are started when a subtask is scheduled to

run for the first time, and are then suspended and resumed

as the processor suspends and resumes execution of that

subtask. Upon expiry of a subtask budget timer, the subtask

is terminated. Thus, budget timers ensure that subtasks never

overrun.

With budget timers, the implementation of an EDF-

WM/C=D scheduler raises essentially one implementation

issue that affects the schedulability analysis: the release of

a subtask on another processor.

The release of a subtask on a remote processor can

be implemented in a number of different ways. In our

implementation, when a migratory task, i.e. its first subtask,

is released, an interprocessor interrupt (IPI) is sent to each of

the other processors that execute a subtask of that migratory

task. The IPI handler on each of those processors then sets up

a release timer. The release time set depends on which part

of the migratory task the processor was assigned. Therefore,

all subtasks of a migratory task, except possibly the first,

are released by means of a timer interrupt. The release of a

subtask upon expiry of the release timer is handled as per

the release of any normal task under partitioned EDF.

5

To set up the release timer, we assume the availability of a

high-resolution clock that can be read from any processor2.

Before sending the IPI, the release handler of the first

subtask reads this clock and puts the reading in a known

memory location. The IPI handlers then read this value

as well as the global clock, in order to determine the

delay incurred by the IPI notification. This delay is then

used to compute a corrected value with which to program

the release timer for each subtask. We use a global clock

(synchronised) approach in this way since it avoids the

accumulation of release jitter along a chain of sub-tasks

which would otherwise adversely affect schedulability.

By computing the appropriate release timer values, based

on the analysis presented in the following sections, and by

using upper bounds on the overheads, we can ensure that the

subtasks precedence constraints are satisfied. Furthermore,

any violation of these constraints can be easily detected e.g.

by locking the task’s data structure.

III. EDF-WM

In this section, we integrate the overheads introduced

by the mechanisms used to implement EDF-WM into the

overhead-aware analysis of uniprocessor EDF.

Overheads: From the implementation outlined in the

previous section, we identify the following additional over-

heads, illustrated in Fig. 3.

Interrupt/preemption Blocking (IpB) Recall that this is the

time for which interrupts may be disabled during normal task

execution. In EDF-WM such blocking may delay handling

of the budget timer interrupt, prolonging the execution time

of a subtask and effectively increasing the job’s execution

demand. This effect can also occur in uniprocessor EDF

with budget timers, when a job overruns its estimated

WCET. However this case corresponds to a timing-fault,

and hence was not taken into account in the overhead-

aware uniprocessor analysis. With EDF-WM it needs to be

accounted for since budget expiry is part of the normal

operation of the system.

Budget (Enforcement) Timer Overhead (BetO) This is the

overhead of handling a budget timer interrupt. It is incurred

by all of the subtasks, except the last, of every migratory

task. This adds to the job’s demand. We assume that inter-

rupts are disabled while the budget timer interrupt handler

executes. Since the budget timer interrupt can only occur

when the associated subtask is executing, we can include

this overhead as if it were part of the subtask’s execution

time).

Migration overhead (MigrO) is the overhead required to

move the task from the current processor to a ”place” where

the next processor can find it. This adds to the job’s demand.

In our implementation, this overhead occurs as part of the

context switch. In Fig. 3 we represent it as occurring after

2E.g. recent x64 multicore processors, from either Intel or AMD, ensure
that the Time Stamp Counter of the different cores are synchronized and
increment at an invariant rate.

MigrO IpiORelO

τ 1s

RelT imer2τ 2s

CrpdO CrmdO

D2
s = D/s

RelT imerℓτ ℓs

Dℓ
s = D/s

D

IpiJ

π

π

SchedO TsetOIpB BetOC
P

T B M
C
M

I

RT BT M
C
P

I

I

RT
C
M

T M
C
P

RT
C
M

T
C
P

D1
s = D/s

R S

S S

S S

S S

B

Figure 3: Time diagram of EDF-WM for an implementation

based on release timers.

the scheduling overheads. Note that interrupts are disabled

during this time.

IPI jitter (IpiJ) is the jitter of the IPI delay, i.e. the

maximum delay between the sending of an IPI on one

processor and the raising of the IPI on the target processor. It

contributes to the jitter of the IPI overhead (see below), but

not to the release jitter of the subtask, since the implemen-

tation relies on a global clock that can be used to determine

and compensate for the IPI delay.

IPI overhead (IpiO) is the time required to handle the IPI

interrupt, including reading the global clock and setting up

the release timer, and also suspending and later resuming

the budget timer of the interrupted task. We assume that

interrupts are disabled during this time interval. This IPI

overhead is modeled in a way similar to the release overhead,

i.e. immediately upon its occurrence, but taking into account

its own jitter, rather than that of the task release.

Cache related migration delay (CRMD) is caused upon

migration of a job, as it may have to fetch again its cache

lines when it is resumed on another processor. As for the

CRPD, computing a tight bound of this overhead is out of

scope of this paper. Instead, we assume that there is a known

upper bound for the CRMD of each migratory job, CrmdOj
s.

In addition to these overheads, schedulability is also

affected by the precision of the readings of the global clock,

π. As the values of the release timers depend on these

readings, their uncertainty π, contributes to some jitter in

the release of all subtasks except for the first.

Processor Demand: Because different types of subtask

(first, middle and last) incur different overheads, as shown in

Fig. 3, we develop the processor demand for each subtask

type. We consider first the effect of the overheads on the

computation demand and then their effect on the jitter.

First subtask: This is a timed task, i.e. it terminates

upon expiry of its budget timer and is followed by another

subtask. Therefore the computation demand including over-

heads of the first subtask becomes:

C′1
s = C1

s + 2 · SchedO + TsetO + CrpdO1
s

+ IpB +BetO +MigrO
(9)

6

In comparison with partitioned EDF (see (7)), it includes

BetO and MigrO, as well as IpB. The latter is included

since the subtask might have blocked interrupts/preemption

and therefore overrun by up to IpB after the expiry of its

budget timer.

Last subtask: This is like a non-migratory task, except

that it incurs one additional CrmdOℓ
s because it has migrated

from another processor and has to restore its cache lines.

Therefore, the computation demand, including overheads, of

the last subtask becomes:

C′ℓ
s = Cℓ

s + 2 · SchedO + TsetO

+ CrpdOℓ
s + CrmdOℓ

s

Middle subtask: A middle subtask like the first subtask

is timed and is followed by another subtask. It is also

similar to the last subtask in that it ”migrates” from another

processor. Therefore, its computation demand, including

overheads, becomes:

C′m
s = Cm

s + 2 · SchedO + TsetO + CrpdOm
s

+ IpB +BetO +MigrO + CrmdOm
s

(10)

Next we analyze the effect of the overheads on the release

jitter. The release of either a middle or a last subtask suffers

an additional jitter, comprising the response time of the

release interrupt handler RihRs, of the first subtask and the

precision, π of the reading of the global clock. Therefore,

Ji in (II-B) and (8) for all subtasks τ is, that are not the first

of the respective migratory task is replaced by:

J i
s = Js +RihRs + π (11)

RihRs comprises a blocking term IntBp, caused by dis-

abling interrupts and preemptions (note p is the processor

of the first subtask), and another term IntCp, caused by the

contention among the different interrupt sources. RihRs is

given by:

RihRs = IntBp + IntCp (12)

where IntBp is given by:

IntBp =







max(IpB, SchedO + TsetO +MigrO), if there

is another subtask in p that is not the last

max(IpB, SchedO + TsetO), otherwise

and, IntCp is given by:

IntCp = Np ·max(RelO + TsetO, IpiO,BetO) (13)

where Np is the number of (sub)tasks in processor p.

There are three assumptions underlying (13). First, that

no interrupt can reoccur within the short time interval

IntCp (and hence fixed point iteration is not needed to

compute IntCp). Second, to ensure that IntCp is an upper

bound, we assume that the release interrupt of interest is the

lowest priority interrupt in its processor. Finally, we assume

that the only interrupts are those used to implement task

releases, budget enforcement and migration. (We note that

other interrupts could easily be included by modifying the

calculation of IntCp).

Finally, the release of subtasks on remote processors

induces one IPI overhead per release of middle or last

subtasks on the respective processor. This is in addition to

the release overhead, therefore we amend (2) as follows:

dbf(t) = b(t) +
n
∑

i=1

RelIi(t) +
n
∑

i=1

ni(t) · C
′

i +
∑

τ is∈Ω

IpiIis(t)

(14)

where Ω is the set of either middle or last subtasks of

migratory tasks, and the interference due to each of these

tasks caused by IPI is:

IpiIis(t) =

⌈

t+ Js +RihRs + IpiJ

Ts

⌉

· IpiO (15)

and

b(t) =















0, if there is no (sub)task, τi, s.t. Di ≥ t

max(IpB, SchedO + TsetO +MigrO), if there is

a subtask, τ is, that is not the last s.t. Di
s ≥ t

max(IpB, SchedO + TsetO), otherwise

A more detailed analysis of the jitter incurred by migra-

tory tasks, and the adaptation of the partitioning and splitting

algorithm presented in the original EDF-WM paper [24] can

be found in the appendices.
This analysis leads to a dbf-based test that is sustainable

with respect to changes in the same task parameters as the

overhead oblivious analysis [5]. Indeed, the early completion

of a migratory task in a subtask different from the last,

also leads to a lower demand on both the corresponding

processor as well as on all processors that were assigned

the following subtasks of that migratory task. It is also

sustainable with respect to decreases in the size of the

various overheads, since all of the terms that are added in the

dbf are monotonically non-decreasing with respect to these

values.
We note that due to the heuristics used in task allocation,

it could occasionally be the case that a task set that is

”easier” to schedule (smaller parameter values) is deemed

unschedulable by the tests when one that is ”harder” to

schedule would be deemed schedulable due to a differ-

ent processor allocation. Nevertheless, any task set that is

deemed schedulable by the tests will be schedulable at run

time even with smaller values for overheads, execution times

etc.

IV. C=D SCHEME

Because we assume identical implementations, the

schedulability analysis developed for EDF-WM is also ap-

plicable to C=D.
However, to preserve the C=D notion, the deadline for the

first subtask must be the earliest time by which its demand

can be guaranteed to be supplied, even in the presence of

delays caused by blocking, inter-processor interrupts and the

release of other (sub)tasks assigned to the same processor.

Thus, D1
s is given by:

D1
s = max(IpB, SchedO+TsetO)+C′1

s+RelI(D1
s)+IpiI(D1

s)

(16)

7

where C′1
s is given by (9), RelI(t) is an upper bound on the

release interference in a time interval of duration t and is

given by:

RelI(t) =
∑

i:τi∈Γ

RelIi(t) (17)

where RelIi(t) is given by (8), replacing Ji with the jitter

expression for the appropriate type of subtask (i.e. from (11)

for middle and last subtasks), and Γ is the set of tasks on

the same processor. Note that this expression includes the

release overheads of the C=D subtask itself. Finally, IpiI(t)

is an upper bound on the IPI interference in a time interval

of duration t and is given by:

IpiI(t) =
∑

i:τi∈Ω

IpiIis(t) (18)

where IpiIis(t) is given by (15) and Ω is the set of middle

and last subtasks of migratory tasks on the same processor.

Computing C′s and D′s of subtasks: Although it would

be possible to adapt the iterative algorithm described in

Section 2.3 of [15] to compute the C’s and the D’s of the

different subtasks, it is simpler and more intuitive to use

binary search. Like in the original algorithm, we tentatively

add the first subtask to the set of tasks already assigned

to the processor under analysis. The algorithm is used to

compute D1
s , rather than C1

s , because (16) is a fixed point

iteration on D1
s and it is easier to derive C1

s from the latter

than the other way around.

The initial interval is set to [0, Ds], where Ds is the

relative deadline of the task to split. In each iteration, we

set D1
s to the midpoint of the current interval, compute

the corresponding C1
s , from (16) and (9), and run QPA to

determine whether the taskset is schedulable, and adjust the

interval as appropriate. When the width of the interval is 1,

we assign the value of the lower end of the interval to D1
s

and derive the corresponding C1
s .

If C1
s is positive the splitting is successful and we set the

parameters of the second subtask of the split (sub)task as:

C2
s = C − C1

s

D2
s = D −D1

s

Migratory tasks with more than two subtasks: In [15]

the authors describe two strategies for selecting the tasks to

split: the continuous strategy always leads to migratory tasks

with only two subtasks, but the pre-selection strategy may

lead to migratory tasks with more than two subtasks.

To account for middle subtasks, we need to make some

adjustments. First, we compensate for the (lack of) precision

of the global clock, by taking it into account in the compu-

tation of the deadline, i.e. by amending (16) of the middle

subtask as follows:

Dm
s =π +max(IpB, SchedO + TsetO) + C′m

s

+RelI(Dm
s) + IpiI(Dm

s)

Second, Cm
s must be derived from (10) rather than (9).

V. SCHEDULABILITY EXPERIMENTS

In this section, we present an overhead-aware evaluation

of the schedulability of different configurations of the EDF-

WM and C=D algorithms. The main goal of this study is

to see how the relative performance of these algorithms is

affected when overheads are taken into account, and how

this differs from the case where overheads are ignored. The

metric used in this evaluation is the fraction of successfully

scheduled task sets.

A. Random task set generation and overhead parameters

We considered a system with m = 8 processors and used

the UUnifast-Discard [18] algorithm to generate task sets

with utilisations in the range 5.6 to 7.9 (70% to 97.5%

normalized utilisation) and uniformly distributed task utilisa-

tions. To investigate the effect of average task utilisation on

algorithm performance, we explored three scenarios: n = 12,

16 or 24 (dubbed ”heavy/medium/light tasks”). Task periods

were uniformly distributed in the range [5, 50] ms, with

a resolution of 1 ms. All tasks generated were implicit

deadline (Di = Ti). The WCET of each task was derived

from its utilization and its period (Ci = ui · Ti).

The values used as upper bounds for the different over-

head parameters are listed in Table II. These values, except

for the cache-related delays and the clock reading precision,

were determined experimentally on a preliminary implemen-

tation of the scheduler outlined in Sec. II-G on a 2.6.31

Linux kernel running on a platform of 24-cores built from

two 1.9 GHz AMD Opteron 6168 processors, using an

approach similar to that used in [10]. Specifically, we ran

100 randomly generated task sets (each with a randomly

selected number of tasks) for 1000 seconds each. Given

the unpredictability of our platform, we rounded up the

worst case observed value for each overhead, after discarding

outliers using an 1.5 inter-quartile range filter. The cache-

related delays are taken from the values measured in [10].

The clock reading precision is a very safe estimate3.

B. Results

Fig. 4 shows the results obtained for a system with

m = 8 processors. Each point in these plots represents

the schedulability success ratio for 500 task sets with the

corresponding characteristics. The overall effectiveness of

the different algorithms (with and without overheads) is

also given by the weighted schedulability measures [8] in

Table III. These values are for the same experiments and

thus summarise the results illustrated in Fig. 4.

For EDF-WM, we ordered tasks by non-increasing dead-

line (EDF-WM(D)), as recommended by its authors, and

by decreasing density (EDF-WM(DN)). For C=D, we tested

both the “pre-selection” (C=D(Pre-sel)) and the “continu-

ous” strategies (C=D(Cont)), both with decreasing density

as the packing order and increasing deadline as the splitting

3Recent measurements on the same platform show that the clock reading
precision is of the order of a few tens of ns.

8

Table II: Experimentally-derived values for the various scheduling overheads (in µs).

π BetO CrpdO CrmdO IpB IpiJ IpiO MigrO RelO SchedO TsetO

Values 1 10 100 100 10 10 15 10 10 20 5

Table III: Weighted Schedulability.

n Overheads P-EDF(D) P-EDF(DN) EDF-WM(D) EDF-WM(DN) CD(Cont) C=D(Pre-sel)

12 No 0.453 0.534 0.759 0.789 0.718 0.879
12 Yes 0.413 0.497 0.582 0.712 0.665 0.638
16 No 0.522 0.697 0.806 0.867 0.855 0.894
16 Yes 0.47 0.642 0.629 0.767 0.766 0.729
24 No 0.686 0.882 0.865 0.896 0.9 0.906
24 Yes 0.595 0.782 0.687 0.794 0.788 0.789

6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0

0.0

0.2

0.4

0.6

0.8

1.0

U target

(a) n = 12

6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0

0.0

0.2

0.4

0.6

0.8

1.0

U target

(b) n = 16

6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0

0.0

0.2

0.4

0.6

0.8

1.0

U target

(c) n = 24

P − EDF(D)0; P − EDF(DN)0; EDF − WM(D)0; EDF − WM(DN)0; C = D(Cont)0; C = D(Pre − sel)0;

P − EDF(D)1; P − EDF(DN)1; EDF − WM(D)1; EDF − WM(DN)1; C = D(Cont)1; C = D(Pre − sel)1;

Figure 4: Schedulability ratio with and without overheads (superscripts 1 and 0, respectively) for m = 8.

order, see [15]. Partitioning (First-fit), is also provided for

reference, both with decreasing density (P-EDF(DN)) and

decreasing deadline (P-EDF(D)) used for task assignment.

We drawn the following conclusions from the results

illustrated in Fig. 4. These results confirm some of the

conclusions previously drawn from overhead-oblivious eval-

uation, while contradicting others.

(i) A higher average task utilisation (i.e. fewer, but “heav-

ier” tasks) tends to make the task sets harder to schedule

for all three semi-partitioned algorithms, as well as for

the baseline partitioning approach. This is observed as an

increase in schedulability as the number of tasks n increases

(from 12 to 16 to 24). With many light tasks, it is the packing

algorithm that is most important, with decreasing density

being most effective, and there is little benefit to be obtained

from splitting tasks. (The weighted schedulability (WS) is

approximately equal for EDF-WM(DN), P-EDF(DN) and

both C=D approaches at 0.79 for 24 tasks).

(ii) The semi-partitioned algorithms perform significantly

better than pure partitioning, for task sets with medium

or heavy tasks and crucially this remains the case when

overheads are considered. In other words the additional over-

heads of the semi-partitioned approaches are more than made

up for by improvements in schedulability. (The weighted

schedulability of the semi-partitioned approaches is over

0.58 (with overheads), compared to 0.50 for P-EDF(DN)).

(iii) In general, for low n (a few heavy tasks) EDF-

WM(DN) performs best. For medium n, the C=D(Cont)

algorithm performs as well as EDF-WM(DN), and both

perform better than C=D(Pre-Sel).

(iv) When overheads are considered, C=D(Cont) per-

forms better than C=D(Pre-sel) with a weighted schedu-

lability of 0.67 v. 0.64 for 12 tasks. This is in direct

contrast to the overhead-oblivious case (see also Fig. 7 in

[15]) where C=D(Pre-sel) outperforms C=D(Cont) with a

weighted schedulability of 0.88 v. 0.72. The reason for this

turnaround is that C=D(Cont) typically results in fewer split

tasks and thus lower overheads than C=D(Pre-sel).

This final point highlights not only the importance of

including overheads on the overall schedulability of different

algorithms, but also how an appropriate consideration of

overheads affects relative performance and thus the choice

of which methods to deploy in real systems.

VI. CONCLUSIONS

The availability of overhead-aware schedulability analysis

for multiprocessor scheduling algorithms is critical to reli-

ably schedule hard real-time tasks using these algorithms.

In this paper we developed detailed overhead-aware

schedulability analysis based on the demand bound func-

tion for two state-of-the-art semi-partitioned hard real-time

multiprocessor scheduling algorithms, EDF-WM and C=D.

9

This analysis was founded on a detailed investigation of

the implementation issues inherent in these two algorithms.

Further, we showed how to apply this analysis to determine

the tasks’ scheduling parameters.

We used the overhead-aware schedulability analysis to

perform an evaluation of the two algorithms, using measured

values as upper bounds for the various overheads identified.

We found that when overheads are accounted for, EDF-

WM and C=D retain the significant advantages that they

have over simple partitioning, particularly for systems with

heavy (high utilisation) tasks. We evaluated two variants of

C=D, one based on continuous selection of tasks to split

and the other based on pre-selection. Our results showed

that in direct contrast to earlier results ignoring overheads,

the continuous selection approach was significantly more

effective than the pre-selection approach when overheads are

considered. We note that this is due to the former typically

splitting fewer tasks and thus incurring lower overheads.

REFERENCES

[1] S. Altmeyer, R. Davis, and C. Maiza. Improved cache related
pre-emption delay aware response time analysis for fixed
priority pre-emptive systems. Real-Time Systems, 48(5):499–
526, 2012.

[2] B. Andersson, A. Easwaran, and J. Lee. Finding an upper
bound on the increase in execution time due to contention on
the memory bus in cots-based multicore systems. SIGBED
Rev., 7(1), January 2010.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. Wellings. Applying new scheduling theory to static pri-
ority pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, September 1993.

[4] T. Baker. Stack-based scheduling of realtime processors.
Real-Time Systems, 3(1):67–99, March 1991.

[5] S. Baruah and A. Burns. Sustainable scheduling analysis.
In proceedings of the 27th Real-Time Systems Symposium
(RTSS), 2006.

[6] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In proceed-
ings of the 11th Real-Time Systems Symposium (RTSS), pages
182–190, 1990.

[7] S. Baruah, L. Rosier, and R. Howell. Algorithms and
complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor. Real-Time Systems, 2:301–
324, 1990.

[8] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related
preemption and migration delays: Empirical approximation
and impact on schedulability. In proceedings of the 6th
International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT), pages 33–44,
Brussels, Belgium, 2010.

[9] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical
comparison of global, partitioned, and clustered multiproces-
sor EDF schedulers. In proceedings of the 31st Real-Time
Systems Symposium (RTSS), pages 14–24, 2010.

[10] A. Bastoni, B. Brandenburg, and J. Anderson. Is semi-
partitioned scheduling practical? In proceedings of the 23rd
Euromicro Conference on Real-Time Systems (ECRTS), pages
125–135, 2011.

[11] B. Brandenburg. Scheduling and Locking in Multiprocessor
Real-Time Operating Systems. PhD thesis, UNC at Chapel
Hill, 2011.

[12] B. Brandenburg and J. Anderson. On the implementation of
global real-time schedulers. In proceedings of the 30th Real-
Time Systems Symposium (RTSS), 2009.

[13] B. Brandenburg, J. Calandrino, and J. Anderson. On the
scalability of real-time scheduling algorithms on multicore
platforms: A case study. In proceedings of the 29th Real-
Time Systems Symposium (RTSS), 2008.

[14] B. Brandenburg, H. Leontyev, and J. Anderson. Accounting
for interrupts in multiprocessor real-time systems. In proceed-
ings of the 15th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA),
pages 273–283, 2009.

[15] A. Burns, R. Davis, P. Wang, and F. Zhang. Partitioned EDF
scheduling for multiprocessors using a C = D task splitting
scheme. Real-Time Systems, 48(1):3–33, Jan 2012.

[16] J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil, and
A. Wellings. Adding instruction cache effect to schedulability
analysis of preemptive real-time systems. In proceedings
of the 2nd Real-Time and Applications Symposium (RTAS),
1996.

[17] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT : A testbed for empirically comparing
real-time multiprocessor schedulers. In proceedings of the
27th Real-Time Systems Symposium (RTSS), 2006.

[18] R. Davis and A. Burns. Priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time
systems. In proceedings of the 30th Real-Time Systems
Symposium (RTSS), pages 398–409, 2009.

[19] R. Davis and A. Burns. A survey of hard real-time schedul-
ing for multiprocessor systems. ACM Computing Surveys,
43(4):35:1–35:44, October 2011.

[20] M. Dellinger, A. Lindsay, and B. Ravindran. An experi-
mental evaluation of the scalability of real-time scheduling
algorithms on large-scale multicore platforms. Journal of
Experimental Algorithmics, 17:4.3:4.1–4.3:4.22, Oct. 2012.

[21] A. Easwaran, I. Shin, I. Lee, and O. Sokolsky. Bounding
preemptions under edf and rm schedulers. Technical report
MS-CIS-06-07, University of Pennsylvania, 2013.

[22] K. Jeffay and D. Stone. Accounting for interrupt handling
costs in dynamic priority task systems. In proceedings of the
14th Real-Time Systems Symposium (RTSS), 1993.

[23] D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering
and analysis of fixed priority schedulers. IEEE Transactions
on Software Engineering, 19(9):920–934, 1993.

[24] S. Kato and N. Yamasaki. Semi-partitioned scheduling of
sporadic task systems on multiprocessors. In proceedings
of the 21st Euromicro Conference on Real-Time Systems
(ECRTS), 2009.

[25] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari. An
experimental comparison of different real-time schedulers
on multicore systems. Journal of Systems and Software,
85(10):2405–2416, 2012.

[26] L. Leyva-del-Foyo, P. Mejia-Alvarez, and D. de Niz. Pre-
dictable interrupt management for real time kernels over
conventional PC hardware. In proceedings of the 12th Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2006.

[27] W. Lunniss, S. Altmeyer, and R. Davis. A Comparison
between Fixed Priority and EDF Scheduling accounting for
Cache Related Pre-emption Delays. Dagstuhl Transactions
on Embedded Systems (LITES), 1(1):01:1–01:24, 2014.

[28] W. Lunniss, S. Altmeyer, C. Maiza, and R. Davis. Integrating
cache related pre-emption delay analysis into EDF schedul-
ing. In proceedings of the 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013.

10

[29] R. Rajkumar, L. Sha, and J.P. Lehoczky. On countering the
effects of cycle-stealing in a hard real-time environment. In
proceedings of the 8th Real-Time Systems Symposium (RTSS),
pages 2–11, 1987.

[30] H. Ramaprasad and F. Mueller. Tightening the bounds
on feasible preemptions. ACM Transactions on Embedded
Computing Systems, 10(2):27:1–27:34, December 2010.

[31] P. Sousa, K. Bletsas, B. Andersson, and E. Tovar. Practical
aspects of slot-based task-splitting dispatching in its schedu-
lability analysis. In proceedings of the 17th International
Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pages 224–230, 2011.

[32] P. Sousa, K. Bletsas, E. Tovar, P. Souto, and B. Akesson.
Unified overhead-aware schedulability analysis for slot-based
task-splitting. Real-Time Systems, 50(5-6):680–735, 2014.

[33] P. Sousa, P. Souto, E. Tovar, and K. Bletsas. The Carousel-
EDF scheduling algorithm for multiprocessor systems. In
proceedings of the 19th International Conference on Em-
bedded and Real-Time Computing Systems and Applications
(RTCSA), 2013.

[34] M. Spuri. Analysis of deadline scheduled real-time systems.
Technical report, INRIA, 1996.

[35] Z. Wu, Y. Krish, and R. Pellizzoni. Worst case analysis of
DRAM latency in multi-requestor systems. In proceedings of
the 34th Real-Time Systems Symposium (RTSS), 2013.

[36] F. Zhang and A. Burns. Schedulability analysis for real-
time systems with edf scheduling. IEEE Transactions on
Computers, 58(9):1250–1258, 2009.

[37] F. Zhang and A. Burns. Schedulability analysis of edf-
scheduled embedded real-time systems with resource shar-
ing. ACM Transactions on Embedded Computing Systems,
12(3):67:1–67:19, March 2013.

APPENDIX A.

The use of a global clock allows us to reduce the jitter

of the release of a remote subtask and of the IPI handler. In

the following subsections we provide a detailed analysis.

Without the use of a global clock the release of a migra-

tory subtask would have to be done by means of an IPI sent

at the end of the previous subtask, as appears to be used by

Bastoni et al. [10] in their EDF-WM implementation. This

has two negative effects. First, the IPI latency is now on the

critical path, and therefore needs to be fully accounted in the

jitter of the release of a migratory subtask, rather than just

the jitter in the IPI latency as in the implementation outlined

in this paper. Second, this overhead needs to be added for

each subtask, so that the release jitter of the last subtask of a

task split into a large number of subtasks is much larger. In

a global-clock based implementation, all migratory subtasks

have the same jitter, which does not account for the full IPI

latency but only its jitter.

A. Release jitter of a remote subtask

In the release of a remote subtask, we can use the global

clock to reduce the jitter it experiences. The key observation

is that, independent of the delay in processing the arrival

of the first subtask, we may compute an upper bound on

the length of the time interval since the release of the first

subtask until the completion of any subtask. Therefore, when

the (first sub)task is released, the global clock is read, and

an IPI is sent to the processors running other subtasks of the

same task. Upon processing the IPI at these processors, the

relevant interrupt handler can program a timer to release

a subtask at the appropriate global time, based on the

relative delay by which completion of the previous subtask is

guaranteed to have occurred and the global time read when

the task was first released.

Thus, the release of either a middle or a last subtask

suffers an additional jitter, with respect to the jitter of the

migratory task, Js, comprising the response time RihRs of

the release interrupt handler of the first subtask and the

precision, π of the reading of the global clock. Therefore,

Ji in (II-B) and (5) for all subtasks, τ is, that are not the first

of the respective migratory task is replaced by:

J i
s = Js +RihRs + π

RihRs comprises a blocking term IntBp, caused by

disabling interrupts and preemptions (note p is the processor

of the first subtask), and another term IntCp, caused by the

contention among the different interrupt sources. RihRs is

given by:

RihRs = IntBp + IntCp (19)

In our model, blocking of interrupts may occur either

when a task is running, IpB, or when the kernel executes

the scheduler and/or the context switch. The cost of the

latter depends on the events that trigger the execution of the

scheduler and/or the context switch, as described in Sec. III.

From that description we derive:

IntBp =







max(IpB, SchedO + TsetO +MigrO), if p has

some other subtask that is not the last

max(IpB, SchedO + TsetO), otherwise

If there is another subtask that is not a last subtask, then the

maximum blocking may occur upon the context switch due

to the expiration of the budget enforcement timer of such a

task, which incurs an additional MigrO cost, with respect

to context switches triggered by other events, such as the

release of another job.

The occurrence of multiple interrupts at approximately

same time may add to the delay in handling a particular

interrupt. In our model, we consider three types of interrupts:

interrupts that release the job of a task, IPIs that are used in

the release of remote subtasks and the interrupts generated

by budget enforcement timers. Each of these interrupts is

associated with a particular task, and we assume that in any

continuous time interval in which there is some interrupt

being handled or pending in processor p, there is at most

one interrupt per (sub)task in p. Thus IntDp is given by:

IntCp = |p| ·max(RelO + TsetO, IpiO,BetO)

where |p| is the number of (sub)tasks in processor p.

If the migratory task is periodic, it is possible to reduce

even more the jitter. The key observation is that, in that

case, the global time at which the release interrupt of the

(first sub)task is raised is known. From the relative deadline

11

of the each subtask, it is possible to derive the global time

by which each subtask will have completed. Thus the IPI

handler can program a local timer to expire at that global

time, and the jitter of any subtask can be reduced to:

J i
s = Js + π

where Js is the jitter of the migratory task and π is the

precision of the global clock. The latter arises because when

the global clock is read in the IPI handler there is an

uncertainty of π with respect to actual value of the global

clock.

B. Jitter of the IPI Handler

The blocking of interrupts and the possibility of interrupt

contention at the processor of the first subtask may introduce

variable delays in the sending of IPI to the processors of the

other subtasks, and thus to some jitter that adds to the jitter

of the (first sub)task and the IPI jitter proper. Because, the

sending of the IPI occurs at the end of the release of the

first subtask, we use the release interrupt handler response

time, RihRs, of the (first sub)task for this additional jitter.

That is, the interference caused by the IPI handler for each

subtask is given by:

IpiIis(t) =

⌈

t+ Js +RihRs + IpiJ

Ts

⌉

· IpiO

where RihRs is given by (19).

APPENDIX B.

We now describe how to adapt the partitioning and

splitting algorithm presented in the original EDF-WM pa-

per [24], so as to apply the overhead-aware analysis devel-

oped in section III. The main difference is that we use QPA

sensitivity analysis to compute the largest value that each

processor can accommodate for the migratory task.

As in the original algorithm, we first try to assign every

task as a non-migratory task. If a task cannot be assigned

as non-migratory, the number of parts in which it is split is

determined tentatively, starting with two and incrementing

it by one until either the task is successfully assigned or the

number of parts exceeds the number of processors in the

system.

Because the overheads of each type of subtask are dif-

ferent, we consider each type separately. For each tentative

number of processor where the task may run, s, we start

with the first subtask and use (14) and QPA-based sensitivity

analysis to compute, for every processor, the largest value

C1
s that preserves its schedulability, assuming D1

s = D/s.

The processor with the largest computed C1
s is chosen to

run the first subtask. Next, we apply QPA-based sensitivity

analysis to compute, for each of the remaining processors,

the largest value Cm
s that preserves its schedulability. The

processors for the 2nd, 3rd, ... (s−1)-th subtasks are chosen

in order of non-decreasing values of Cm
s . Finally, for the last

subtask, we need to check, using (14) and QPA, whether its

computation demand (Cs−
∑

i C
i
s) can be accommodated on

its respective processor. Accordingly, either the last subtask

is assigned to that processor or else, the migratory task

is unschedulable as s subtasks and we need increment

the tentative number of subtasks by one and retry. Since

this affects the subtask deadline D/s, the respective Ci
s

needs to be recomputed. Eventually, either the task is split

successfully or, if this is not possible even when using all

m processors, the task set is deemed unschedulable.

Our implementation of QPA-based sensitivity analysis

relies on binary-search to compute both C′1
s and C′m

s rather

than C1
s or Cm

s . The latter are computed from the former

using (9) and (10), respectively. The initial interval is set

to [0,min(C′
s, Ds/s)], because splitting is attempted only if

C′
s cannot be accommodated on a single processor. In each

iteration of the binary search, we set C′i
s to the mid-point of

the current interval and apply QPA using (14). Depending

on whether the task set is deemed schedulable or not, we set

respectively the lower-end or the upper-end of the interval

to the previous mid-point. When the width of the interval is

1, we assign C′i
s the value of the lower end of the interval

and terminate.

Note that in QPA, schedulability must be checked only at

the deadlines, otherwise, a taskset that is schedulable may

fail QPA. This is because we account for RelO and IpiO at

the earliest time these overheads may be incurred, not at the

deadline of the respective task.

In EDF-WM, QPA-based sensitivity analysis may lead

to backtracking. To understand why, assume that a first

subtask, τ1s is assigned to a processor p. The mapping of the

other subtasks of τs to processors, that follows immediately,

takes into account the number of (sub)tasks on p, according

to the analysis in Sec. III (cf. (13)). Further assume that

after this mapping, EDF-WM assigns another (sub)task to p,

incrementing the number of (sub)tasks in p. This invalidates

the schedulability analysis of the processors assigned the

other subtasks of τs. Therefore, a new schedulability analysis

with the new number of (sub)tasks in p must be performed

for each of these processors. If some processor fails this

analysis, we need to backtrack the assignment of the tasks

up to τs.

Note that for C=D, QPA sensitivity analysis does not

require backtracking. The reason is that all first subtasks are

notionally C=D, and therefore once the algorithm assigns

a first subtask to a processor, no other (sub)task will be

assigned to that processor.

12

