Effectively Utilizing Elastic Resources in
Networked Control Systems

Michael Balszun*, Debayan Roy*, Licong Zhang*, Wanli Chang', Samarjit Chakraborty*
*TU Munich, Germany, TSingapore Institute of Technology, Singapore
*Email:{michael.balszun, debayan.roy, licong.zhang, samarjit} @tum.de, TEmail:wanli.chang@singaporetech.edu.sg

Abstract—The rapid growth in the size and complexity of
modern Cyber-Physical Systems (CPS) imposes increasing de-
mand for the embedded resources, especially the communication
resources. As a result, resource-efficient CPS design has become
an important issue. Towards the design of networked embedded
control systems, a major branch of CPS, reliable and deter-
ministic communication is able to achieve satisfactory control
performance. However, the amount of this type of resource that
can be provided by the embedded platform is often limited. On
the other hand, it is difficult to guarantee the control performance
with non-deterministic communication resources, due to their
unpredictable behavior. In this paper, we propose a novel control
scheme to efficiently utilize elastic communication resources. In
general, the non-deterministic communication resources are flexi-
bly deployed on top of the deterministic communication resources
to achieve stability and good control performance. In the rare
worst-case, when non-deterministic communication is completely
unavailable, the deterministic communication resources are used
to guarantee stability and the control performance satisfying
the design requirement. The experimental results show that the
performance of the control application is ensured to satisfy the
design requirement in the worst case and that better control
performance is achieved when non-deterministic resources are
available.

I. INTRODUCTION

Cyber-physical systems (CPS) are widely found in the auto-
motive, industry automation and avionics domains. Embedded
control systems form a major branch of CPS. With rapid
development in wired and wireless communication systems,
coupled with the prominence of modern sensors and actuators
with integrated communication interfaces, networked control
systems (NCS) have become very popular. In the NCS, a
control loop is implemented over distributed components, such
as multiple sensors, actuators, and processors, that are con-
nected over one or more communication networks. Very often,
multiple applications share the communication resources.

Many control applications are safety-critical and even when
not, a malfunction could lead to significant costs in terms
of damaged equipment, loss of production or degraded cus-
tomer satisfaction [1]. Therefore, it is important to ensure
that the control performance satisfies certain requirements.
Deterministic communication, such as e.g. provided by time
triggered protocols on wired networks, guarantees the timing
of the closed-loop control messages transmission, and thus the
control performance with an appropriately designed controller.
However, wastage frequently occurs, making such determinis-

978-1-5386-1898-1/17/$31.00 © 2017 IEEE

tic communication resources expensive, especially for the cost-
sensitive automotive industry. For example, a fixed time slot is
periodically and exclusively assigned to an application, which
may not need the entire duration for information transmission,
if at all. There is also non-deterministic communication, such
as e.g. over wireless networks where packet dropouts can
occur at any moment or event-driven, best-effort scheduling
schemes. Those are often more cost efficient and flexible but
make it difficult to guarantee a certain control performance.

In this paper, we consider a control system exposed to both
deterministic and non-deterministic communication resources,
as shown in Figure 1. The sensor is connected to the controller
and the actuator via two kinds of communication channels.
Examples are the static (deterministic) and dynamic (non-
deterministic) segments of FlexRay, or wired (deterministic)
and wireless (non-deterministic) networks. The sensor sends
the states of the physical process to the controller every
sampling period. The deterministic communication enables a
reliable, but longer sampling period h, which is the interval
between two neighboring deterministic samples. We design a
controller for hy (i.e., the safe controller) achieving stability
and the control performance satisfying the requirement. When
the non-deterministic communication resources are available,
an additional shorter sampling period hy, which is the in-
terval between two neighboring non-deterministic samples,
is possible. We make use of hy (i.e., applying the fast
controller), whenever it will improve the control performance
and still ensure the stability. In the case that deploying non-
deterministic communication resources (i.e., using hy) might
degrade the control performance or jeopardize the stability, we
will fall back to the deterministic communication resources
and stick to hg.

In the literature on control systems with mixed communica-
tion, almost all the works that consider non-deterministic com-
munication resources assume a certain degree of determinism.
For example, the maximum rate of packet drops is assumed
in [2], [3], [4]. The worst-case delay and jitter are assumed
in [5]. Event-triggered control is discussed in [6], [7], [8], [9],
where the communication resource is assumed to be available
whenever required. In [10], [11], [12], the non-determinism
comes from contention among various applications sharing the
communication resources. That is, the communication channel
itself is always assumed to be reliable. Besides, most previous
works only allow a fixed usage pattern of the non-deterministic
communication resources.

For instance, in [10], [11], [12], the system can only switch
once from the non-deterministic event-triggered communica-
tion to the deterministic time-triggered communication.

The main contributions of this paper are as follows. First,
we are able to use the non-deterministic communication more
flexibly (unlike a fixed usage pattern) and the decision boils
down to every sampling period. This potentially optimizes
the utilization of the non-deterministic communication re-
sources, which can be further investigated in the future. Second
and more importantly, we are able to guarantee the control
performance and stability for completely non-deterministic
communication resources. That is, the system is able to handle
the case when only the deterministic communication is avail-
able. The proposed approach can be generalized to address
broader non-determinism in the control systems, beyond the
communication perspective.

The rest of the paper is organized as follows. In Section II,
we summarize the related works. The background on feed-
back control systems is provided in Section III. We formally
describe the system model under consideration, the proposed
control scheme and the corresponding implementation tech-
nique in Section IV. The advantages of our proposed scheme
are demonstrated with experimental results from a case study
in Section V. Section VI makes the concluding remarks and
points out future research directions.

II. RELATED WORK

In control theory, the main emphasis has been on designing
controllers taking the network and computation uncertainties
into account and analyzing the stability and worst-case perfor-
mance of control loops in the presence of non-determinism.
However, most of the design approaches, ensuring safety
and worst-case performance, impose constraints on network
determinism such as maximum rate of packet drops [2],
[3], [4], worst-case delay and jitter [5]. Otherwise, if the
communication timings are stochastic, then only probabilistic
or approximate analysis is possible [13], [14], which is not
acceptable for safety-critical systems. Here, it may be noted
that better guarantees on closed-loop system properties can be
provided by imposing stricter constraints on determinism of
implementation platform.

On the other hand, embedded systems engineers have
mainly focused on implementing the controllers on embedded
platforms in such a way that certain timing guarantees can
be provided. Consequently, a conventional approach is to
implement the controller in a time-triggered fashion, where all
the timing characteristics like closed-loop delay and sampling
period can be calculated [15], [16]. Correspondingly, safe and
performance-optimal controller can be designed. However, this
often leads to resource over-provisioning and wastage. A more
recent approach is event-triggered or self-triggered control,
where the controller is triggered only when required [6], [7],
[8], [9]. However, such an implementation loosely assumes
that the resource is available when required, requiring a
thorough schedulability analysis.

Actuator H Physical Process H Sensor ’

[Actuator Task]

Controller Task

Switching Scheme

~

Fast Safe
Controller| | Controller

< Deterministic Communication >
< Non-Deterministic Communication >

TIIIT

I Deterministic Samples

Sensor Task I

Non-Deterministic Samples
Figure 1: The proposed control scheme using elastic resources.

In the control literature, there is a well-established theory to
determine the stability of switched control systems. In order
for the overall system to be stable, it is insufficient to prove
the closed-loop stability of each individual system. Tools to
ensure the switching stability include the common quadratic
Lyapunov functions (CQLF) and switched quadratic Lyapunov
functions (SQLF) [17], [18]. However, this cannot be applied
in a straightforward way for the problem under consideration,
which involves one control system with non-determinism.

Furthermore, in the context of mode switching in controller
implementations, a control scheme is proposed in [19], where
the controller switches from a self-triggered mode to a time-
triggered mode based on the current state of the closed-
loop system. In the self-triggered mode, the next time instant
when the control input must be computed and transmitted,
namely, the trigger time, is decided in the current instance
while in the time-triggered mode, the controller is triggered
periodically. The trigger times for a certain discretized region
of the state space are pre-computed and stored in the cache
memory, so that they can be fetched based on the current state
in the self-triggered mode. This is done to save the online
computation time. When the current state does not fall into
the pre-considered region, the trigger time computation task
is dispatched with a low priority. If the task is not executed,
the schedule switches to the time-triggered mode. The idea is
to use self-triggered control as much as possible to improve
the resource efficiency. However, the communication network
to implement the controller is not considered.

Another group of works [10], [11], [12] consider exploiting
hybrid communication protocol of FlexRay in the controller
implementation. It is proposed in [10] that switching from the
dynamic (flexible TDMA) to the static (TDMA) segment of
FlexRay in the event of disturbance can lead to high resource
efficiency while maintaining the performance of the time-

triggered control. These works consider that multiple control
applications can share few TDMA slots. When a disturbance
occurs, the application is allocated with a TDMA slot, if
it has not been occupied by other applications. However,
slot sharing among multiple control applications requires the
underlying platform to be runtime reconfigurable, which is not
the case for most time-triggered architectures like FlexRay,
and thus presents an important implementation challenge to
be addressed.

In [11] the minimum number of slots required to guarantee
the worst-case settling time of each control application in a
given set is computed with an assumption on the arrival rate of
disturbance for the whole set. However, this analysis is restric-
tive in the sense that not all the control applications sharing
one slot may be interdependent and several applications may
experience disturbances at the same time. The authors lift the
restriction in [12] on the disturbance arrival and correspond-
ingly considered that a controller may have to wait to get a
TDMA slot if it is not free. However, in order to guarantee
the control performance, these works assume that the worst-
case delay of a control application can be calculated when
mapped onto the dynamic segment of FlexRay. Our approach
requires no worst-case timing analysis, which is useless for
the completely non-deterministic communication, since in the
worst case, the non-deterministic communication resources are
not available at all. Moreover, probabilistic guarantees can
be provided over such contention-based protocols [20], [21].
However, they are not helpful in safety-critical systems.

Lastly, our approach is also inspired from the simplex
architecture [22], where a complex unverifiable controller
is used in combination with a simple controller. In this
architecture, the complex controller is used for better
performance while the worst-case stability is guaranteed by
the simple controller. Here, the system is in the complex
control mode within a bounded safe region in the state space
and switches to the simple control mode as the system state
crosses the boundary. This safe region is usually a subspace
within the stable region of the simple controller. We adapt
the simplex concept to be applied in the NCS, where the
complex controller is fast, yet subject to packet drops while
the simple controller is safe and robust. We further propose an
implementation scheme to realize such a switched controller
system.

III. FEEDBACK CONTROL SYSTEMS

This paper mainly addresses the problem of guaranteeing
the worst-case and improving the expected performance of
networked embedded control systems by taking into con-
sideration the elastic nature of the platform resources on
which the control applications are implemented. There are
mainly two aspects of designing networked embedded con-
trollers: (i) computing the control law and (ii) implementing
the controllers. It is to be noted here that our contribution
is on the implementation part. Correspondingly, we assume
as a prerequisite for our proposed implementation scheme

1] a[i

; e 3 Tk + 1]
ulk — 2] ¢ (k-1 | L—

acutuate

de%

measure acutuate measure acutuate measure

peemd

T

b deh

h i | h

tr—1 ty Li+1

Figure 2: Distrete-time system with sensor-to-actuator delay.

that given the closed-loop timing properties like sampling
period and delay, there exists a control law which satisfies
the required control performance. In this regard, we describe
in this section the basics of feedback control systems under
consideration [23]. We also give an example of how one may
compute a control law for the given performance requirement,
sampling period and delay.

A. System Model

In this section, we discuss linear time-invariant (LTI) single-
input systems for which the continuous-time dynamics can be
represented mathematically as a set of differential equations
given by

z(t) = Ax(t) + Bul(t),
y(t) = Cx(t).

For an n-th order system with m outputs, x(t) € R™*1, u(t) €
R and y(t) € R™*! represent respectively the system states,
the control input and the outputs at time ¢. For LTI systems,
the matrices A € R"*", B € R"*! and C € R™*", i.e., the
state, input and output matrices respectively, are constant.
Now, in a networked embedded control system, a controller
is implemented as a software running on the processor and the
feedback and control signals are transmitted as data frames
over a communication network. Correspondingly, we may say
that the sensors read the feedback signals and the actuator
applies the control input at discrete instants of time, and
therefore, the closed-loop system can be naturally represented
by a sampled-data model, as shown in Figure 2. Let us
consider that the feedback signals are measured at time instants
{tr} and are represented by {xz[k]|}, where, z[k] = x(tx).
Traditionally, for the sake of simplicity, a controller is im-
plemented according to a constant sampling period h, where,
tk+1 — tx = h. In addition, software execution and frame
transmission take non-negligible time (particularly for highly
constrained processing units and contention-based networks).
Therefore, we must consider a delay 7 between sampling and
actuation. Correspondingly, the control input u[k] calculated
based on the measurement x[k] is applied at time instant t5+7
and is held constant till the next input u[k + 1] is applied at

(1)

ti+1+7, as shown in Figure 2. From this assumption, we may
write that

u(t) =ulkl, tr+7<t<tpg+T.)
Thus, the delayed sampled-data model [23] becomes
ok +1] = ¢z[k] + Toulk — | -]+ Trulk — | = |]
= 0 h 1 hl 3)

ylk] = Cxlk],

where ¢, I'y and I'y, for the continuous-time model presented
above, sampling period i and closed-loop delay 7, are given
by

Ah
¢ =e,

h—1
_ At g0y
FO._.]C (eMdt) - B, @

B. Stability

We recognize that closed-loop control systems are predom-
inantly based on the theory of feedback. A state-feedback
controller to close the control loop can be mathematically
represented as

ulk] = —Kxl[k], 5)

where the control input is a linear function of the system states.

Here, we will give an example on how such a feedback
controller can be designed, so that the closed-loop system is
stable. For the sake of simplicity, let us consider a system
where 0 < 7 < h, and thus, (3) can be written as

zlk + 1] = ¢x[k] + Toulk] + T1ulk — 1], y[k] = Cz[k]. (6)
Now, for an augmented state vector z[k] = [z[k] ulk — 1}]T,

this becomes
z[k+ 1] = ¢, z[k] + TLulk], y[k] = C.z[k], @)

where ¢, I, and C, are given by
e In _|To _

It is to be noted that for 7 > h, we can augment the state
to z[k] = [z[k] ulk —1]-- u[k — [%]]]T and then represent
the augmented system accordingly.

Now, substituting u[k] = —K,z[k] in (7), we get

z[k+ 1] = (¢, — T K,)z[k]. ©)]
Considering ¢ = ¢, — ', K., (9) can be rewritten as
2k +1] = g%V 2[0). (10)

Without loss of generality, let us assume z. = 0 as the
equilibrium state of the system, and therefore, a system is
globally asymptotically stable (GAS) if

lim ||2[k]|| = o.
k—o0

(1)

Consequently, the system in (10) is GAS when

lim ||| = 0. (12)
k—o0
This is only possible when the eigenvalues of ¢, i.e., A;
Vi=1,2,...,(n+1), satisfy

I\ < 1. (13)

Here, \;’s also represent the closed-loop system poles.

Considering this stability condition, pole-placement can be
used to design a stabilizing controller for LTI single-input
systems using the Ackermann’s formula

K.=[0 0 1] v: H (o), (14)
where . is the controllability matrix given by

and for the selected poles \;’s satisfying (13), H(¢,) is given
by

H(¢:) = (62 — MID)(¢2 — A2l) -+ (¢ = Anya D).

It is to be noted here that Ackermann’s formula is only valid
when the system is controllable, i.e., . has a full rank or is
invertible.

(16)

C. Performance-Aware Controller Design using PSO

Besides stability, the design of a controller often also need
to consider closed-loop performance and physical constraints.
Common performance metrics include settling time, control
error, input energy, and so on. On the other hand, the phys-
ical constraints are input saturation, actuator bandwidth, etc.
Correspondingly, in order to design a controller, we need to
formulate an optimization problem with closed-loop poles \;’s
as variables satisfying (13) and physical constraints where
the optimization objective is the closed-loop performance.
However, the resulting problem is non-convex in nature, and
therefore, in this paper we use Particle Swarm Optimization
(PSO) technique [24], [25] to solve the problem as it is of
polynomial time complexity.

In this technique, the process starts with an initial set of
particles with certain position and velocity in the design space.
Subsequently, the particles travel the design space in search
of more optimal solution according to certain rule. For each
particle, the trajectory of search is guided by two points, i.e.,
the local optimal, P!, and the global optimal, P9, points. P}
corresponds to the best point the i-th particle has come across
in terms of optimality while PY is the best among all P!’s.
Now, the position update for each particle is given by
V' = aoVi* + a1 R} (P} — P}) + apR*(PY — P}),

i i 17
pt =P+ V7, 17

7

where V;*, P and Pf represent respectively the current
velocity, the current position and the next position, R} and R?
are two uniformly distributed random numbers between 0 and
1, and oy, a1 and a9 are parameters determined empirically.

Moreover, any two points in the design space are compared

based on the objective value only if both or none satisfy
all the constraints otherwise the feasible one is better. The
algorithm is terminated once all particles have converged or
the maximum number of iterations has been reached.

IV. CONTROL SCHEME FOR ELASTIC RESOURCES

In the last section, we have described how to design a
controller when the closed loop system dynamics are known.
However, our goal in this paper is to design a control algorithm
that elastically uses additional available resources to improve
control performance, but does not rely on them to provide
basic performance guarantees. Specifically, we are working
under the assumption that those resources are available most of
the time, but that the system can not guarantee their availability
to our application. Such uncertainties might be rooted in
sporadic congestion on event triggered communication chan-
nels, intermittent faults in the sensors or event triggered, high
priority tasks that interrupt/prevent the execution of the control
task itself. Even if none of the above play a role, the reality in
most non-trivial networked control systems is that resource
utilization can not be accurately predicted in an analytical
fashion. So while simulations, test and approximations may
show that the resources will most likely be available, an
actual proof can often either not be given or at least only
via high amounts of over provisioning. Actually we want to
even encourage such a split into instances of deterministic and
non-deterministic allocation of resources to reduce the burden
to the system engineer, while still providing value to the
application developer. Once such a separation of deterministic
and non-deterministic time instances is provided, the control
designer only has to know whether the control loop can be
deterministically closed at a particular time instance ¢; or not.

With that knowledge, he should then be able to achieve the
following two goals:

(a) Guaranteeing a certain minimal performance — even in
the worst case.

(b) Achieving good performance in the expected case, where
the loop is closed (almost) every time.

As those two properties generally become relevant under
different operating conditions our intuitive approach is to use
one conservative/slow controller S that is able to guarantee (a)
under any conditions, a second, aggressive/fast controller F
that can provide (b) under expected conditions and from those
build a mixed controller M that switches between S and F
in a way that always preserves guarantee (a) and preserves (b)
as good as possible.

In the remainder of this section, we will provide a more
formal description of our model as well as the assumptions
we make about the system and the control algorithms. Then
we will describe the actual selection algorithm that merges S
and F into M and prove that this algorithm indeed preserves
(a) and (b).

A. Formal Description of System and Control Model

As explained, we model the actual availability of processing
and communication resources used by the control loop as a

sequence of time instances {¢;} at which the control loop is
closed. The exact sequence {t;} is unknown in advance, but
the following relations always hold:

{tr} € {t1' }
{tx} 2 {13}
{te} ~ {tr }

(18)

Where {tf } are the deterministic time instances (where the
control loop is guaranteed to be closed) and {tf } the union
of the deterministic and non-deterministic time instance. So
for all instances {tf } \ {t7} we expect the control loop
to be closed but can not be sure of it. The last relation
{tr} ~ {tf } shows our expectation that the control loop will
be closed at almost all non-deterministic time instances and
while we obviously can not rely on this for the guaranteed
base performance it is the assumption our algorithm will be
optimized for. Finally, we require the system to be configured
in a way that, if the control loop is not closed at a particular
time instance ¢; ¢ {tx}, then the control input w will remain
the same as before (the system does not update the set point of
the actuator) which is the most common behavior in practice.

We only consider sparse disturbances, where a disturbance
means that the plant state is moved from an equilibrium
region Zg¢ around the set-point to a disturbed state zy from
one time instance to another. This can either be due to an
external influence (e.g. an external force or a load change)
or because the set-point was changed. In order to keep the
equations and formulations simple however, whenever we talk
about the system state z we actually mean the system state
relative to the set-point. So the controller’s goal is always to
drive the system state back to zero. In many practical cases
this transformation can actually be achieved via an additional
feed-forward component in the controller. By sparse we mean
that a new disturbance only arrives after the previous on was
successfully rejected and the system state is back in Z¢.

Regarding the modeling of the proposed controller, we first
of all define a control strategy as the combination of the two
functions K(z,t) and G(z,t), where K is used to calculate the
new control input v and G decides if the control input should
be updated at all. Hence, G can be seen as the ability of a
controller to deliberately not close the control loop even when
t; € {tk}.

The mixed control strategy M we propose is based on
the combination of two simpler, deterministic, stateless, state
feedback control strategies (possibly with a feed-forward part)
denoted S and F. S was designed under the assumption that
{te} = {tJ} and F for the case {t,} = {t[} with the
property that — in the case of {t,} = {t[} — F yields a
much better control performance than S. For S and F we
require that

, s
QS(',ti) _ true t; € {tk} (19)
false otherwise
, F
QF(-,tZ-) _ true t; € {tk} (20)
false otherwise

Note however that for our system any t; € {¢;} will also
be in {tf'} and hence G¥'(-,¢;) will always return true.

An intuitive example that can be modeled in this way
is for {t7} and {t['} to represent periodic sampling with
two different periods h° and A with Z—i =N >1(05
being an integral multiple of A'). Conversely, S and F
could be linear state feedback controllers described by
control matrices K° and K* which are designed via pole
placement for the respective sampling periods as described in
sectionsec:background. While those are the cases we look at
in our experimental evaluation, we want to point out however
that the switching strategy proposed in the following does
not depend on {t7} and {t'} being periodic nor on S and F
being designed via pole placement (or even being linear at all).

For the scope of this paper, we define control performance
in terms of the settling time 7', which is the time a controller
needs to drive the plant from a disturbed state zp back to a
small equilibrium region Z¢ around the set point. With the
property that — once inside Z¢ — S can ensure that the plant’s
state stays in that region.

The fundamental guarantee we want to provide with M is
that — for any valid realization {¢;} and initial disturbed state
2o, the following inequality holds true:

TM(20) < T(z0) - A 1)
where T is the settling time of the mixed control strategy
M and A > 1 represents a design parameter that allows
to trade performance guarantees under worst case conditions
for better performance under the expected conditions (i.e.,
{tx} ~ {t&'}). This trade-off is important, as we want to
use the aggressive controller as much as possible, but in most
cases the state trajectory determined by F will lead through
an area, from which T° would be even longer than from zj.
In addition, our objective for the design of M is to minimize
the settling time T (zg) for the case {t;} = {¢f } (i.e. that
resources are available at all non-deterministic time instances).
A good heuristic seems to try to achieve the same control
performance as F as that control strategy was designed for
{te} = {t}'} in the first place. Consequently we formulate
our optimization goal as.

M Zi
min @F((ZSD |t} = {0

Finally we want to point out, that the condition (21) implies
stability as long as S guarantees stability.

(22)

B. Proposed control algorithm

Given a (potentially augmented) plant model A (see III),
a platform described by {tf } and {th } and the two control
strategies S and F, the strategy M we propose to achieve the
control objectives (21) and (22) is constructed by composing
S and F. More specifically it is characterized by a selection
strategy D (¢;,2;) — C € {S,F} that — for each t; € {tx}
— decides to apply either S or F. That strategy is formally
described in Algorithm 1, which is described in the following:

Algorithm 1 Selection strategy ®(t;, z;)

Input: z, t;

Parameters: S, F, A, Z¢

Global Variables: t;:= —1
1: if z € Z¢ then

2: tg:=—1
3: select S
4: else

50 let t, := findNext(t; € {t;})

6:

7. //calculate deadline if disturbance is new
8 if t; = —1 then

9

: if t; € {t; } then
10: tg=t; +T%(z)- A

11: else

12: tgi=t, +T%(2)-A
13: end if

14: end if

15:

16 let up ==K (z,t)
17: let z, := predictZn(z,t;, ur)
18 let ft :=T5(z,)

20: //apply F or fall back to S
21 if ty —t, < ft then

22: select F
23: else

24: select S
25: end if

26: end if

Lines 1 — 3: First of all, if the plant is already in the
equilibrium region Z¢, the slow control strategy S is picked
and the deadline is set to a negative value to indicate the
system is not in a transient state. As S does only need the
deterministic time instances, this is a simple way to guarantee
stability. Furthermore, depending on the system structure and
implementation, this might save system resources, as the new
control input hast to be computed and transmitted less often.
It might even be possible to switch the sensors into a mode
with a lower sampling frequency.

Lines 7 — 14: If however, the system is in a disturbed
state, the first step is to determine if a new deadline has to be
calculated (if the system just left the equilibrium state) or if
the controller still tries to reject a previous state. As described

in section IV-A T'(z) represents the settling time from state
z if only controller S was used. How exactly this time is
predicted during runtime obviously depends on the plant and
the controller. In cases where no closed form solution can be
given, a simulation might be necessary (for linear systems this
e.g. requires a sequence of matrix multiplications). In some
cases it might also be beneficial to pre-compute those settling
times and store them in a lookup table.

The reason, why the next deterministic time instance ¢,
serves as an offset if ¢; ¢ {tf } is that this would be the first
time instant after the disturbance, where S would initiate a
control update.

Lines 16 — 21: Whether the system just arrived in a
disturbed state or is in the process of rejecting a previous
disturbance, the next step is to determine if selecting the
fast controller is possible without running the risk to arrive
in a state from which (21) can no longer be achieved. To
that end, the algorithm first predicts the system state at the
next deterministic time instance ¢, assuming that F would
be picked now and the control loop is not closed at any of
the non-deterministic instances till then. Then the fall back
settling time ft = T"(z,) is determined. As explained before
this is the time the slow control algorithm would need to drive
the system from state z,, to the equilibrium state (figure 3
gives an overview over some of the time related variables
used in the algorithm). If this shows that applying up now,
not updating the control input until ¢,, and only selecting S
afterwards satisfies (21) F is selected. Otherwise the algorithm
falls back to S for this time instance, which might result in
not updating the control input at all.

disturbance current settled
sample
[T??[]TTTITTTI
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
tr tp
(a)
O 0
RERN S R .
ty 2%
g () (b)

Figure 3: (a) shows the relationship between the disturbance,
the current sample, the next guaranteed sample and the settling
of the system. (b) shows the fallback time ft is obtained on
the assumption that only deterministic time instances will be
available from now on.

A detailed explanation of why this algorithm fulfills our
performance criteria (21) and (22) will follow in the next
section, but we want to mention already at this point that
Line 21 presents a sufficient, but not a necessary condition
for selecting F — it might be possible to choose F even if
the fall-back time exceeds tq — t,. Also, choosing F when
possible is not necessarily optimal but a heuristic. Essentially
we are trading optimality for simplicity with the goal to reduce

computation effort during runtime and make the algorithm
easier to analyze and verify.

C. Analysis of Algorithm

An optimal selection strategy would — in each time step ¢; —
have to solve the optimization problem:

min (E[T™(2)]) (23)

s.t. TM(Zl) <tg—t; | v{tk}k>i (24)

As this does not seem computationally feasible in the
context of an embedded real-time application, our algorithm
described in the previous section uses a much simpler heuristic
approach, which still guarantees (21) but might result in
slightly worse control performance.

The first step is to identify which choices are actually
feasible in the first place. For either S or F to be viable we
have to show that after making this choice at time instance ¢;
there exist at least one sequence of selections {¢} for any
possible future {¢} that will drive the system state back to
the equilibrium region Z¢ before the deadline ¢4 as calculated
after the initial detection of the disturbance. Please note that
this does not have to be the same sequence that will actually
be taken, but the fact that there is such a sequence at all makes
the choice feasible.

Generally speaking, finding such a sequence can be con-

sidered a minimax search, where the algorithm first selects
either S or F with the goal of minimizing the settling time
and the system — as the adversary — selects the next time
instance where the control loop will be closed with the goal
of maximizing the settling time from the range of [t;11,ty].
Performing an actual minimax search that would find the
shortest possible settling time that can be guaranteed by the
control algorithm even for a worst case realization of ¢;, seems
complex at first but can be simplified in two ways:
First, the system can never make things worse by selecting
a time instance t;1, ¢ {t} }, because the controller has the
ability to select S which effectively means not to close the
control loop in this time instance, meaning the system can
only prevent updating the control inputs but not enforce it. As
a result, it is enough to find a valid selection sequence for
the case of {t;} = {¢{} and the exact same trajectory and
consequently settling time can be achieved for any other {¢;}.
In our proposed algorithm we do not actually search for the
sequence, resulting in the best settling time but instead only
check what would happen if S is selected every time. The
thus approximated settling time might exceed the true best
settling time that is achievable for {¢;} = {7 }. However, our
assumption is that if there would be a much better solution
for that case , then the control strategy S would have been
designed accordingly instead.

To summarize, in order to determine if a choice ¢; is
viable, we only determine the settling time for the case that
{te} = {t} and {¢r},.; = S. The fact that the check
assumes the usage of S for all future instances ¢ allows to
skip the check for ¢;11 = S as this would be redundant.

Furthermore S is trivially acceptable for the first choice when
the disturbance is initially detected, as the deadline is derived
from this. As a result, using S is always a viable choice and
does not have to be checked at all.

After determining if F is a viable choice at all, our algo-
rithm always picks that strategy if possible, even though this
might not actually be the optimal choice for that particular time
instance. The intuitive reason, why this very simple (and hence
fast) strategy works nonetheless is that our general assumption
about the system is that {¢;} = {¢} }, which is the situation
F was designed for in the first place. Furthermore, we expect
the base controllers S and F to exhibit a certain robustness
against noise anyway, such that small deviations from {t}: }
(meaning the control loop might not be closed at some non-
deterministic time instances) should not significantly degrade
control performance.

A final and very important observation is that providing
the guarantee (21) and a good expected control performance
in general (as expressed via (22)) depend on multiple as-
sumptions detailed in section IV-A. More basic properties like
stability however can be given under a much wider range of
circumstances, because at some point before or equal to the
deadline, the algorithm will permanently switch to S until
the equilibrium state is reached. That means in addition to
any properties discussed so far, the algorithm inherits any
properties from S, albeit in a possibly time delayed manner.

D. Computing settling time

The computationally heavy part of our algorithm is the
calculation of T°(z). Even for a relatively simple state-
feedback control algorithm, as used in this work, we are not
aware of a closed form solution to compute the settling time
for a discrete-time system. Instead, one has to simulate the
system evolution for a (possibly high) number of steps to
determine the settling time. Fortunately, the algorithm only
has to consider the deterministic time instances and as we only
need to know if the deadline ¢4 can be satisfied, this gives an
upper bound on how far the state evolution has to be predicted.
Still, depending on the dimensionality of the problem and the
complexity of the control algorithm, this computation might
be infeasible during runtime due to limited computational
resources on the embedded platforms and even if the number
of steps is bounded there might still be a high variability in
the runtime of this algorithm. An alternative approach would
be to rasterize the state-space, pre-compute the worst-case
settling times for each slice off-line and store them in a lookup
table. However, this approach might have a high memory
requirement, especially as a coarser granularity introduces a
higher over-approximation. The advantage is however, that the
run-time computation is very small (only the calculation of
zn and a lookup are required). Also, for linear systems the
function T'(z) usually has a logarithmic shape that — when
rasterized with an adaptive granularity — can be approximated
with comparatively few support points. For the case of simple
state-feedback controllers, where the control law itself only

involves a low-dimensional matrix multiplication, we expect
however that it is more efficient to compute the settling time
during runtime.

V. EXPERIMENTAL RESULTS
A. Simulation Setup

For our evaluation we use a plant model of a DC motor
taken from [26] with the following continuous state space
representation:

A= [8})%0 12} » B= m
C=[10], D=[0]

The sampling period and network delay parameters where
chosen as follows:

(25)

' =0.04
e =h!-3=0.12
T =h!/2=10.02,

(26)

where hf, h® and 7 represent the sampling period for the
fast/aggressive controller, the sampling period of the slow/safe
controller and the sensor-to-actuator delay respectively.

For this system we designed two linear state feedback
controllers via the PSO technique described in section III,
yielding the following control gain values:

K¥ =1[-50.0 —11.5 —0.431]
K% =[-11.0 —5.16 —0.201]

Note, that K has three dimensions as a network delay 7 < h
requires one additional state to keep track of the last control
input. In addition, we also designed a second, instable plant
by simply inverting the entry a7 in the matrix A. In that case,
the control gain values found by PSO are

K =[-500 -27.1 —0.917]
K% =[-139 —-104 -0.372]

Figure 4 shows the evolution of individual state dimensions
over time for each of the two plants with different control
strategies S, F and M for the case that {t;} = {t} }. In
addition, we also evaluated control strategy S’ that applies the
conservative control law K at every time instance of {}
and not just at instances {t; }. In particular the case of plant 2
demonstrates that even for linear plants, applying a control law
at additional time instances can actually degrade the control
performance significantly.

As discussed before, given the two basic control strategies
S, F, the remaining design parameter is the slack factor A
(i.e., the factor by which we allow the worst case settling
time of our mixed control strategy M to exceed that of S).
Figures 5 and 6 show how the performance of M depends
on different values of A and on how often the control loop is
closed at the non-deterministic time instances. For that purpose
we generated random sequences {¢} for each 0 < p < 1, s.t.

{2} C {ts}
e = 1{& I+ ({t = 1{&) -p

27)

(28)

(29)

T R S R L \F L
0.0 e S 1 —F
] / L — 5
28 M-a=11
—02- / s
| 21
04 L
—06 J | 14
~0.8 - F o7 m
| - s I | ¥
| 3)
109 M—-a=11|[00 \]
T

LB R S s B B S B B B L Tt T T T T T T T T
—01 00 01 02 03 04 05 06 07 —01 00 01 02 03 04 05 06 O

(a) Plant 1
, L
="
0.0 o~ 1
| / [228
—0.3 [E
| |
|
0.6 -| | F o171
] | I
|
—0.9 | r
| 11.4 -|
, | L
-1.24 | E
|
’J‘ 7 r 574
-1.54 / — 5 r
| M-A=13|[4
71‘87‘““““““‘700‘“““““““‘
00 02 04 06 08 10 12 00 02 04 06 08 10 12
(b) Plant 2

Figure 4: State evolution over time for different control strate-
gies with {t;} = {t}'}

In other words, a valid sequence {t;}, where only a frac-
tion p of all possible non-deterministic time instances where
actually included. Then we simulated the system evolution for
each of the sequences with different controllers M a, where
A was varied from 1.1 to 1.3. The observed average and worst
case settling times can be seen in the respective sub-figures.
They are normalized to the settling time of S and again, we
also give the performance of F, S and S’ for comparison.

B. Analysis of simulation results

What the figures show is that the worst case settling time
stays indeed below the set limit of A -T'% (represented by the
horizontal lines) in all cases and that for {t,} = {t}} we
indeed can achieve the same settling time as F.

However, those two examples also show that finding the
optimal value for A is a non-trivial problem: An upper limit
for A can obviously be given by the safety requirements of the
application (i.e., what is the worst case settling time we can
tolerate), but contrary to what one might expect, a higher A
does not always yield better results. In fact, Figure 5 shows that
a A of 1.1 yields better worst and average case performance
than the higher values. In particular, the settling times where
always smaller or equal to 7% and not just A-7"%. On the other
hand, the simulations for plant two show that in some cases,
values of A that are too small can — even in the best case
— result in worse settling times than just using S: For values
of 1.1 and 1.2 we see that T increases with the number of
additional time instances, so allocating optional resources to
this task would even be harmful. Only with A = 1.3 do we get

2.0 T

0.8+

0.4 -

0.0
T

T T
0.0 0.2 0.4 0.6 0.8 1.0

P

(a) Worst case settling time

2.0 T

0.8

2.0 T
1.6 4 r
1.2+ =
3
0.8 - =
7777777 3 F
04| S with & L
M—-A=11
— M—-A=12
0.0 M—A=13
T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
b2l
(a) Worst case settling time
2.0
1.6 4 =
12 <o F
\\\\\ -
084 i TR - F
,,,,,,, s
04| T ;"wnh) L
M—-A=11
— M—-A=12
0.0 - M—-A=13
: ‘ ‘ ‘ ‘ ‘ : : ; : ‘
0.0 0.2 0.4 0.6 0.8 1.0
p

(b) Average settling time

Figure 5: Observed settling times for plant 1

0.4 -

0.0
T

~~~~~

T T T T
0.2 0.4 0.6 0.8 1.0
r

(b) Average settling time

Figure 6: Observed settling times for plant 2




the desired result of having a settling time that is roughly half
of T, but consequently we do see a significant performance
degradation for low values of p, although they do not exceed
the set limit.

Still, in summary, our results show that the controller is able
to exploit the non-deterministic time instances to achieve the
same performance as F in the expected case, while guarantee-
ing that the performance does not fall below the predetermined
threshold. However, they also show the importance of choosing
a good A.

VI. CONCLUDING REMARKS

In this paper we presented a novel approach for the effective
utilization of elastic resources in the domain of networked
control systems. We provided a formalism that allows the
system designer to describe non-deterministic resources in
an abstract but usable manner to the control engineer and
provided an initial design template for control algorithms
that want to use those non-deterministic resources effectively
without compromising on basic performance guarantees.

In particular, our approach does not require any knowledge
about the availability of non-deterministic resources at the next
time instant (i.e. we don’t require the ability to reserve those
resources for a certain number of consecutive instances to be
of value to us). The limited resource can be the communication
between sensor and controller, or the communication between
the controller and the actuator, or even the processing time on
one of the involved processors.

While our approach provides a strict guarantee about the
worst-case behavior for the combination of any two given
stateless control algorithms, methods for analyzing the ex-
pected behavior and choosing a suitable value for the slack
factor A warrant more investigation. Another field worth
investigating is the generalization of this approach beyond the
case of rejecting a single disturbance to, e.g. general reference
tracking and different kinds of performance metrics.

ACKNOWLEDGMENT

This work was partially supported by Deutsche Forschungs-
gemeinschaft (DFG) through the TUM International Graduate
School of Science and Engineering (IGSSE).

REFERENCES

[11 X. Liu, X. Chen, and F. Kong, “Utilization control and optimization of
real-time embedded systems,” Foundations and Trends®) in Electronic
Design Automation, vol. 9, no. 3, pp. 211-307, 2015.

[2] R. Majumdar, I. Saha, and M. Zamani, “Performance-aware scheduler
synthesis for control systems,” in Proceedings of the ninth ACM inter-
national conference on Embedded software (EMSOFT), pp. 299-308,
ACM, 2011.

[3] 1. Saha, S. Baruah, and R. Majumdar, “Dynamic scheduling for net-
worked control systems,” in Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control (HSCC),
pp. 98-107, ACM, 2015.

[4] D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay
constraints in distributed embedded controllers,” IEEE Transactions on
Control Systems Technology, vol. 22, no. 6, pp. 2337-2345, 2014.

[5] A. Cervin, “Stability and worst-case performance analysis of sampled-
data control systems with input and output jitter,” in 2012 American
Control Conference (ACC), pp. 3760-3765, IEEE, 2012.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

P. Tabuada, “Event-triggered real-time scheduling of stabilizing con-
trol tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9,
pp. 1680-1685, 2007.

M. Abdelrahim, V. S. Dolk, and W. P. M. H. Heemels, “Input-to-
state stabilizing event-triggered control for linear systems with output
quantization,” in 2016 IEEE 55th Conference on Decision and Control
(CDC), pp. 483-488, 1EEE, 2016.

A. Aminifar, P. Tabuada, P. Eles, and Z. Peng, “Self-triggered controllers
and hard real-time guarantees,” in 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 636-641, IEEE, 2016.
S. Samii, P. Eles, Z. Peng, P. Tabuada, and A. Cervin, “Dynamic
scheduling and control-quality optimization of self-triggered control
applications,” in 2010 31st IEEE Real-Time Systems Symposium (RTSS),
pp. 95-104, IEEE, 2010.

D. Goswami, R. Schneider, and S. Chakraborty, “Re-engineering cyber-
physical control applications for hybrid communication protocols,” in
2011 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1-6, IEEE, 2011.

A. Masrur, D. Goswami, R. Schneider, H. Voit, A. Annaswamy, and
S. Chakraborty, “Schedulability analysis of distributed cyber-physical
applications on mixed time-/event-triggered bus architectures with re-
transmissions,” in 2011 6th IEEE International Symposium on Industrial
and Embedded Systems, pp. 266-273, IEEE, 2011.

A. Masrur, D. Goswami, S. Chakraborty, J. Chen, A. Annaswamy, and
A. Banerjee, “Timing analysis of cyber-physical applications for hybrid
communication protocols,” in 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1233-1238, 1IEEE, 2012.

J. Nilsson, B. Bernhardsson, and B. Wittenmark, “Some topics in real-
time control,” in 71998 American Control Conference (ACC), pp. 2386—
2390, IEEE, 1998.

E. Boje, “Approximate models for continuous-time linear systems with
sampling jitter,” Automatica (Journal of IFAC), vol. 41, no. 12, pp. 2091—
2098, 2005.

R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and
S. Chakraborty, “Constraint-driven synthesis and tool-support for
flexray-based automotive control systems,” in Proceedings of the seventh
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, pp. 139-148, ACM, 2011.

D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty, “Multi-
objective co-optimization of flexray-based distributed control systems,”
in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2016 IEEE, pp. 1-12, IEEE, 2016.

B. C. Kuo, Digital Control Systems. HRW Series in Electrical and
Computer Engineering, New York: Holt, Rinehart and Winston, Inc.,
1980.

H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear
systems: A survey of recent results,” IEEE Transactions on Automatic
Control, vol. 54, no. 2, pp. 308-322, 2009.

I. Saha and R. Majumdar, “Trigger memoization in self-triggered
control,” in Proceedings of the tenth ACM international conference on
Embedded software (EMSOFT), pp. 103-112, ACM, 2012.

R. Blind and F. Allgower, “Analysis of networked event-based control
with a shared communication medium: Part i - pure aloha and part ii -
slotted aloha,” in 2011 IFAC World Congress, 2011.

A. Molin and S. Hirche, “Optimal design of decentralized event-
triggered controllers for large-scale systems with contention-based com-
munication,” in 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC), pp. 4710-4716, IEEE, 2011.
L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18,
no. 4, pp. 20-28, 2001.

K. J. Astrom and B. Wittenmark, Computer-controlled systems (3rd ed.).
Prentice Hall Information and System Sciences, USA: Prentice-Hall,
Inc., 1997.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of IEEE International Conference on Neural Networks, pp. 1942—
1948, IEEE, 1995.

W. Chang and S. Chakraborty, “Resource-aware automotive control
systems design: A cyber-physical systems approach,” Foundations and
Trends®) in Electronic Design Automation, vol. 10, no. 4, pp. 249-369,
2016.

B. Messner and D. Tilbury, “Control tutorials for matlab and simulink.”



