EMPRESS: an Efficient and effective Method for
PREdictable Stack Sharing

Sebastian Altmeyer', Reinder J. Bril*> and Paolo Gai?
'University of Amsterdam (UvA), Amsterdam, The Netherlands
2Technische Universiteit Eindhoven (TU/e), Eindhoven, The Netherlands
3Evidence Srl, Pisa, Italy

Abstract—Stack sharing between tasks may significantly re-
duce the amount of memory required in resource-constrained
real-time embedded systems. On the downside, stack sharing
decreases the predictability of a system, e.g. may give rise to
a substantial variation in the address space for the memory
locations used for the stack of a task. As a result, the precision
of execution-time bounds may be reduced, the pessimism in
schedulability analysis increased, and optimizations to increase
schedulability hampered.

In this paper, we present EMPRESS, an Efficient and effective
Method for PREdictable Stack Sharing. We assume priority-
based scheduled systems, where the binary pre-emption relation
on tasks is a strict partial order, and static bounds on each task’s
stack usage. Both assumptions are common in the embedded real-
time domain. For such systems, EMPRESS provides a predictable
stack sharing between tasks, i.e. the stack of every task is always
located in the very same memory area, even for tasks sharing a
stack. It therefore combines the predictability of dedicated stack
spaces with the reduced memory need of a shared stack. We
exemplify the benefits of EMPRESS using as a case study an
implementation of an unmanned aerial vehicle, and explain how
EMPRESS can be realized within the Erika Enterprise RTOS
without additional overheads.

I. INTRODUCTION

Real-time embedded systems are typically resource con-
strained. To reduce the amount of memory (RAM) for such
systems, many real-time operating systems (RTOSs) provide
means for stack sharing between tasks, such as Erika Enter-
prise [13] and Rubus [31].

Compared to dedicated stacks for tasks, stack sharing be-
tween tasks increases the uncertainty in addresses of memory
accesses. In a setting with a shared stack, the positioning of a
stack frame, and with it the positioning of local data, depends
on the current progress and the set of active tasks in case of
pre-emptions. Static timing analyses for hard real-time systems
require precise knowledge about the addresses of all memory
accesses, however. Any variation within the address space
may therefore prohibit the use of static timing verification
and/or reduce the precision of the execution-time bounds [33].
This may result in increased pessimism in the schedulability
analysis. Whenever programmable platforms of these systems
contain a cache to bridge the gap between the processor speed
and main memory speed, the schedulability analysis [3, 7] may
become even more pessimistic, and optimizations of the layout
of tasks in memory [26] may be hampered. The initial stack
pointer of each task should therefore preferably be fixed and
known statically to enable offline analysis and optimizations.

92

We consider priority-based scheduled systems, where the
binary pre-emption relation between tasks is a strict partial
order (SPO), i.e. is irreflexive and transitive. Further, we
assume a system without virtual memory, or any other memory
address translation, static bounds on each task’s stack usage,
and that all tasks share a common memory space

For such systems, we present EMPRESS, an Efficient and
effective Method for PREdictable Stack Sharing, that enforces
a fixed and statically known initial stack pointer for each
task. It therefore combines the predictability of dedicated stack
spaces with the reduced memory need of a shared stack, and
it can be realized within the Erika Enterprise RTOS without
additional overheads.

The paper is structured as follows: In Section II, we intro-
duce our system model and the required technical background.
Section III introduces EMPRESS, the Efficient and effective
Method for PREdictable Stack Sharing. Section IV introduces
the case study that we use to exemplify the benefits of
EMPRESS: Section V discusses the reduction in the total stack
size, and Section VI discusses the increased predictability.
Section VII details how EMPRESS can be realized within
ERIKA OS without additional overheads. The related work is
described in Section VIII and Section IX concludes the paper.

II. BACKGROUND

In this section, we introduce our system model and the
required technical background.

a) System Model: We assume a single-processor system,
aset 7 of ntasks 71, 72, ... T, and priority-driven scheduling.
Tasks with the same priority are executed in first-in-first-out
(FIFO) order, and when they arrive simultaneously they are
executed based on their index, lowest index first. Tasks may
share mutually exclusive resources using an early blocking
resource access protocol, such as the stack resource policy
(SRP) [4]. Tasks are not allowed to either suspend themselves
or leave any data on the stack from one instance of the task to
the next. The system does not support memory address transla-
tion (as common within memory-management units or virtual
memory) and facilitates a direct address-mapping from cache
to main memory. Such a mapping is common amongst many
embedded architectures and embedded operating systems [23]
and often preferable over virtual memory for performance
reasons.

We assume that the stacks of all tasks are mapped to the
same memory space, starting at a system-wide static stack
pointer. Without loss of generality, we set the memory address
of this system-wide static stack pointer to 0, and only provide
stack addresses relative to the initial stack pointer.

b) Maximal Stack Usage: As stack overflows are a
common source of system failures, techniques exist to upper-
bound the stack-usage [8, 22] and hence to prevent stack
overflows. These techniques are in particular important for
hard real-time systems, where correctness is a primary concern
and has to be validated statically [24].

Using these techniques, we can derive for each task 7; its
maximum stack usage SU; € N°. For the sake of simplicity, we
assume that SU; provides the maximum stack usage of task
7; including the size of the stack frame. The stack memory
needed by any two pre-empting tasks 7; and 7; is therefore
bounded by SU; + SU;.

c) Pre-emption Relation and Pre-emption Graph: We
assume a binary pre-emption relation < on tasks [6], which
is derived from the priority levels and/or pre-emption levels
of the tasks. The relation 7; < 7; holds if and only if
task 7; can be pre-empted by task 7;. For common real-
time scheduling policies, such as fixed-priority pre-emptive
scheduling (FPPS), fixed-priority non-pre-emptive scheduling
(FPNS), fixed-priority threshold scheduling (FPTS), and ear-
liest deadline first (EDF), such a relation is a strict partial
order (SPO), i.e. both irreflexive (=t < 7) and transitive
(T <TjAT; <7, = 7 <T)).

Without loss of generality, we assume 7; < 7; = j > i, i.e.
when task 7; can be pre-empted by task 7;, 7; has a higher
index than 7;.

III. EMPRESS: AN EFFICIENT AND EFFECTIVE METHOD FOR
PREDICTABLE STACK SHARING

In this section, we detail the predictable stack sharing
method EMPRESS. First, we argue how the static stack
address of each task can be derived, without increasing the
worst-case stack usage, and then, we explain how the static
stack pointers can be enforced during runtime. EMPRESS
exploits a rather simple idea, but this simplicity is an advantage
rather than a disadvantage as it allows the implementation of
EMPRESS within a real-time operating system with minimal
changes only.

A. Static Stack Usage Analysis

The method requires a static analysis of each task’s stack
usage and of the pre-emption relation. Once this data is
available, we can derive the worst case, i.e., highest, stack
pointer for each task by assuming that

« each task uses the stack up to its stack bound, and

« the worst-case pre-emption scenario occurs.

Both assumptions are conservative, but not necessarily pes-
simistic. Without any further information on either the stack
usage or on the pre-emption relation, the worst-case situation
must be considered feasible.

93

Algorithm 1: TaskStackAddress(7, <, SU)
Input: A set of tasks 77, a pre-emption relation < (SPO),
and for each task 7; € 7 the max. stack usage SU,;.
Output: The static stack address SA; € N for each task 7;.
1: for each 7; (from highest to lowest index i) do
2 SA; <0
3: for each 7; with j> i do
4 if 7; < 7; then
5 SA; « max(S4;, SAI + SUJ),
6: end if
7
8:

end for
end for

Algorithm 1 starts with the task with the highest index, i.e.
a task that can be pre-empted by other tasks but cannot pre-
empt any task. The maximum stack address of task 7; is given
by the maximum sum of the stack address SA; and the stack
usage SU;, where 7, is potentially pre-empted by task ;. The
derived stack address of each task is relative to the system-
wide static stack pointer, which is set to memory address 0.
SA; therefore does not provide an absolute address.

B. Stack Implementation

The aim of EMPRESS is to statically determine the memory
address of each task’s stack, and to enforce it during runtime.
Whenever a new job of task 7; is created, its stack will
occupy the memory region [SA;: SA; + SU; — 1]. For the
sake of simplicity, we assume that all tasks share a common
memory space, as for instance in TinyOS [11] and ERIKA
Enterprise [13].

Some real-time kernels such as ERIKA Enterprise [13]
and the RTOS part of the QP Framework [27] allow the
possibility to provide a shared stack implementation. Thanks
to a run to completion execution and to the Immediate Priority
Ceiling protocol it is in fact possible to design a fixed priority
scheduler with support for preemption allowing the existence
of a single stack (more details in Section VII).

More complicated stack implementations, such as in FreeR-
TOS [5], can also be adapted, but we always assume a
system without virtual memory, or any other memory address
translation.

On pre-emption, the current value of the stack pointer
must be stored (as usual), and replaced with the statically
computed stack address SA; of the new active task 7; with
the highest priority. On task completion, the old value of the
stack pointer is restored and the previously pre-empted task
continues execution.

A task’s stack address therefore does not depend on the
dynamics of the system, but is statically determined. Despite
the static address of each task’s stack space, the stacks are
not statically allocated. Instead, the stacks of several tasks can
share the same memory space, if the tasks are mutually non-
preemptive; for instance due to shared priorities or limited-
preemptive scheduling policies. The worst-case memory usage

- Stack of task 7
- Stack of task 75

- Stack of task 73
D empty memory

v e
SA] SA] SAI
SU» I SU,
SAZ SA3
@ (i) (iii)
Fig. 1. The predictable shared stack implementation EMPRESS in action.

In scenario (i), where 7; pre-empts 72, the stack of both tasks are placed
sequentially, whereas in scenario (ii) and (iii) the memory is fragmented.

is not influenced by EMPRESS, but EMPRESS exhibits the
same memory usage for the stack as a standard shared stack.

To the best of our knowledge, many real-time operating
systems compute the memory address of a stack dynamically
on task creation, such as FreeRTOS [5]. TinyOS [11] uses a
limited number of statically allocated stacks, which already
reduces the unpredictability, but the assignment of task to
stack is still dynamic. Consequently, the worst-case memory
usage may be increased, compared to our implementation, and
the memory addresses of the stacks are still not completely
predictable.

C. Example

In the following example, we assume a task set 7~ consisting
of three tasks 7, 72, and 73. Tasks 7, and 73 are mutually non-
preemptive, but both can be pre-empted by task 7;. We further
assume that SU, > SU3. Using Algorithm 1, we compute the
stack addresses as follows:

SA;, =SA5 =0
SA| = max{SU,,SU3} = SU,

Figure 1 shows how EMPRESS positions the tasks’ stacks
in three different scenarios: (i) 7; pre-empts 7, (ii) 7; pre-
empts 73, and (iii) 7; pre-empts neither 7, nor 73. In the
first scenario, the stack of both tasks 7, and 7, are positioned
consecutively, whereas in the second scenario, a small gap of
size SU, —SUj3 between the stacks of tasks 7; and 73 appears.
In scenario three, only task 7; is active. Although the memory
is fragmented in the second and third scenario, the worst-case
memory usage, determined by scenario one, is not altered.

IV. DESCRIPTION OF OUR CASE STUDY

To exemplify the benefits of EMPRESS, we use Pa-
paBench [28] a free real-time benchmark implementing the
control software of an unmanned aerial vehicle (UAV). Pa-
paBench is unique in that it provides a complete implementa-
tion including C-Code and a task-set definition with implicit
deadlines, periods and precedence constraints.

94

A. Benchmark Suite: PapaBench

PapaBench provides 13 tasks statically assigned to two
processors. Due to the static task partitioning to the two pro-
cessors, we treat the 13 tasks as two disjoint benchmarks: T1 to
T5 implement Fly-By-Wire functionality, and tasks T6 to T13
implement an Autopilot. Note that we have taken the notation
from [28] and therefore write T1 instead 7;. Moreover, the
index of tasks in PapaBench does not correspond to the task’s
priority; the benchmark suite does not determine a scheduling
policy but just provides the task-set description. Table I shows
the description and frequency of all 13 tasks. The precedence
constraints are provided in Figure 2.

[Task || Program Description | Freq. | Period |
T1 Receive Radio-Command | 40Hz 25ms
T2 Send Data to MCUO | 40Hz 25ms
T3 Receive MCUOQ values | 20Hz 50ms
T4 Transmit Servos | 20Hz 50ms
T5 Check Failsafe | 20Hz 50ms
T6 Managing Radio orders | 40Hz 25ms
T7 Stabilization | 20Hz 50ms
T8 Send Data to MCU1 20Hz 50ms
T9 Receive GPS Data 4Hz 250ms

T10 Navigation 4Hz 250ms
T11 Altitude Control 4Hz 250ms
T12 Climb Control 4Hz 250ms
T13 Reporting Task | 10Hz 100ms

TABLE I
DESCRIPTION OF THE 13 PAPABENCH TAsKs. UPPER TAsKS 7'l To T'5 IMPLEMENT
FLY-BY-WIRE FUNCTIONALITY, WHEREAS TASKS 76 TO 713 IMPLEMENT AN AUTOPILOT;
SEE [28], TABLE 1 AND 2.

Fly-By-Wire

Autopilot

Fig. 2. Precedence constraints for PapaBench; see [28], Figure 2.

B. Target Architecture: ARMv7

As target architecture for the evaluation and case study, we
have used an ARMv7!. The ARMv7 is a common embedded
architecture, for which we have access to Absint’s Stack
Analyzer [17] and Absint’s timing analysis tools [12] (a3? and
Timing Explorer’), and to which PapaBench has been ported®.

V. REDUCTION OF THE TOTAL STACK USAGES

In this section, we discuss the reduction of the total stack
usage of EMPRESS compared to a non-shared stack imple-
mentation with a dedicated stack region per task. Comparisons
between a shared and a dedicated stack implementation have
been published before various times. We will therefore restrict
the evaluation to our case study only; a discussion about the
general results is provided in this section for the sake of
completeness.

A. Stack Usage Reduction for PapaBench

To evaluate the reduction in the stack size, we first need
to analyze the stack need of our benchmarks. We have an-
alyzed stack usages of PapaBench with Absint’s static stack
analyzer [17], which is used in Industry to detect and prevent
stack overflows. Next, we need to deduct the pre-emption
relation: From Table I and Figure 2, we see that the precedence
and frequencies are not entirely coherent; despite a precedence
from T12 to T7, T7 executes 5 times as often, and despite a
precedence from T6 to T7, T6 has twice the frequency of
T7. The precedence constraints alone therefore do not suffice
to deduct the pre-emption relation. We need in addition the
scheduling policy and configuration, which is not provided by
the description of PapaBench. To this end, we assign static
priorities® based on task frequencies with task indices used to
break ties. The resulting priorities are shown in Table II, the
pre-emption graphs for both task sets in Figure 3.

Fly-By-Wire

Autopilot

Fig. 3. Pre-emption constraints for PapaBench based on the precedence
constraints (Figure 2), task frequencies (Table I) and task priorities (Table II).
A directed edge from Tx to Ty reads as Tx can pre-empt Ty.

! https://developer.arm.com/products/processors/cortex-a/cortex-a7
Zhttps://www.absint.com/ait/index.htm
3https://www.absint.com/timingprofiler/index.htm
“https://github.com/t-crest/patmos-benchmarks/tree/master/PapaBench-0.4
A lower value represents a higher priority.

95

The initial stack addresses for EMPRESS, our predictable
stack sharing method, as computed by Algorithm 1, are shown
in Table II, 4th column. The stack configurations for both
task sets are presented in Figure 4. The total stack usage
for EMPRESS is 144 (Fly-by-wire) and 424 (Autopilot),
compared to 184 and 680 using dedicated stacks for tasks,
respectively. This means a reduction of 21% and 37% of the
stack size and thus of the required memory.

[Task [[Priority [Stack Need (Byte) [Init. Stack pointer |

T1 1 48 96
T2 2 24 96
T3 3 48 48
T4 4 16 0
TS5 5 48 0
T6 1 120 304
T7 2 72 232
T8 3 0 232
T9 5 128 0
T10 6 188 0
T11 7 56 0
T12 8 72 0
T13 4 44 188
TABLE 1T

ASSIGNED PRIORITIES, MAXIMAL STACK USAGE, AND STACK POINTER (PREDICTABLE
STACK SHARING) FOR ALL 13 PAPABENCH BENCHMARKS FOR THE ARMvV7. THE
PROVIDED STACK POINTERS ARE RELATIVE TO A SYSTEM-WIDE STACK POINTER.

————————————— 44
T6
————————————— 304
T7
______ N
e 188
144~ ——r - === - -
T1 i
9 - -- T10
4s LT P
T5 T11 | T12
0 - Tzl - -0

(a) Fly-By-Wire (b) Autopilot

Fig. 4. Stack Pointer for the Predictable Stack Sharing.

B. General Discussion about the Stack Usage Reduction

The reduction in the total stack usage of a shared stack
compared to dedicated stack regions strongly depends on the
assumptions on the system. Estimates that have been published
in related work [10, 6] are therefore only valid under the
assumptions made in these papers.

For fully pre-emptive systems without any precedence con-
straints or resource sharing, the stack usage of both alternatives
is the same: The worst-case assumption for a shared stack,
and hence for EMPRESS, is a fully nested pre-emption of all
tasks at each task’s worst-case stack usage. Fully pre-emptive
systems without precedence constraints or resource sharing,
however, are unrealistic and mostly assumed in academic
papers. We know for instance from [25] and from the Industrial
Challenge® of ECRTS 2017 that task-sets in the automotive

"httpsz//watersZOl 7.inria.fr/challenge/#Challenge17

industry are far from fully pre-emptive, but instead exhibit
a high number of precedence constraints and heavy resource-
sharing. PapaBench, a strongly simplified example of the drone
industry also exhibits more constraints on task pre-emption
than tasks. We therefore consider the 21% and 37% stack
usage reduction of our case study to be on the low-end side.
Furthermore, even fully pre-emptive systems can be adapted,
for instance using non-preemptive regions or fixed-priority
threshold scheduling (FPTS) to reduce the stack usage while
preserving schedulability: Davis et al. [10] report a reduction
in the total stack usage by 75% on average of a shared stack
with systems using between 16 and 32 tasks.

VI. IMPACT ON THE PREDICTABILITY

In this section, we discuss the impact of EMPRESS on
the predictability of an embedded real-time system compared
to a standard shared stack: The difference between the two
is the certainty about the stack pointer. EMPRESS provides
and guarantees a unique stack pointer per task, just like with
dedicated stack areas, whereas a standard shared stack can
only provide a range of potential initial stack addresses.

We discuss the implication of, and support for, unknown
stack pointers in timing analysis tools, examine the number of
potential stack pointers that must be considered, and evaluate
the increased precision of static timing analysis tools due to a
known initial stack pointer.

Since both, dedicated stack areas and EMPRESS guarantee
statically known initial stack pointers, this section provides
an evaluation of dedicated stack region against a shared stack
implementation, in terms of predictability, as well as an eval-
uation of EMPRESS against a shared stack implementation in
terms of predictability.

A. Timing Analysis Tools and Stack Pointer

Precise knowledge about the stack pointer greatly improves
the precision of timing analyses and is a pre-requisite for
various optimizations. With an unknown initial stack pointer,
the memory addresses of each access to a local variable remain
unknown. This has two consequences:

1) Each memory access to a local variable must be consid-

ered a cache miss and thus increases the execution time
bound during the timing analysis. As such accesses to
local variables are common, the impact on the precision
is significant.
Each unknown memory access pollutes the cache and
therefore reduces the precision of the cache analysis for
all accesses. Without knowing the exact cache set to
which a memory access is mapped, the cache analysis
has to assume conservatively that the access maps to
any cache set, which greatly reduces the precision of
the analysis.

2)

The industrial standard for static timing analyses, Absint’s
Worst-Case Execution Time analyzer [12] a3 and Timing
Explorer, require a stack pointer as input to the analysis. If
the user does not provide an initial stack pointer, the analysis
tool guesses a pointer. An incorrect stack pointer may result

96

in an optimistic execution time bound, namely if the guessed
stack pointer leads to a lower execution time than the correct
stack pointer, or it may result in a highly pessimistic bound
if the stack is falsely mapped to a slow memory region with
high memory access times.

An extension to the static cache analysis, the relational
cache analysis [18] has the potential to alleviate the pessimism
due to imprecise memory addresses, but has neither been
extended to the case of unknown stack pointer (it has been
developed for array-accesses within loops), nor has it been
adopted yet by any commercial timing analysis tool.

Optimizations of the task layout [15, 26], i.e., the mapping
of memory blocks to cache sets, also require a known stack
pointer — unless the optimizations are restricted to the instruc-
tion cache only. Similarly, analyses for the cache-related pre-
emption delays (CRPD) [3, 7] of data caches require a known
task layout, and therefore fixed stack pointers. Uncertainty
in the stack pointer lead to unknown memory accesses and
strongly impair the precision of the CRPD.

We note that analyses of and cache optimization for data
caches, even those published by authors of this work [2, 3,
7, 15, 26], implicitly assume known stack pointers, without
discussing this topic any further.

B. Reduction in the Number of potential Stack Pointers

In this section, we discuss for our case study the number of
potential initial stack pointers that must be considered by the
worst-case execution time analysis. For each potential stack
pointer, a new execution time analysis has to be performed
in order to derive a precise and safe bound on the task’s
execution time. In EMPRESS, a task’s initial stack address
is by construction statically determined and does not vary
during runtime. In stark contrast, the variation of initial stack
addresses in case of a standard shared stack may be significant.

To provide an indication of the range of possible stack
pointers, we examine the number of stack pointers for our case
study based on the pre-emption relation and the task’s stack
usages. The range of potential stack pointers for all tasks —
for a standard shared stack — can be deduced directly from
Table 1I. The difference between a standard shared stack and
the predictable shared stack is that we fix the stack pointers
at the worst-case position. As the stack pointers are word-
aligned, we have to adjust the range [0 : max] by dividing by
4 to derive the number of admissible stack pointers.

Task T6 for instance, has the lowest priority in the second
task set (Autopilot) and therefore can only execute if no other
task is currently ready. Therefore, it has exactly one possible
stack pointer, namely 0. Remember that the stack addresses are
relative to a system-wide stack pointer set to 0. T9, however
has 79 (= 236/4) potential initial stack pointers: it may pre-
empt any of the task T6, T7, T8 and T13, potentially with
nested pre-emption at any program point, and hence stack
pointers from 0 to 236 (in steps of 4), or it may execute with
relative initial stack pointer 0, if the processor has been idle
prior to the execution of T9. The very same holds for tasks
T10, T11, and T12.

For the rather simplistic benchmarks from PapaBench, per-
forming up to 79 timing analyses may be feasible, but this is
not a scalable solution. Firstly, the range of initial stack point-
ers increases with the stack usages and the number of tasks in
the system. Secondly, performing a timing analysis may take
several hours or even days depending on the complexity of
both the analyzed code and the target architecture.

C. Increased Predictability due to a known Stack Pointer

Next, we examine the increased predictability due to a sin-
gle, statically known stack pointer as provided by EMPRESS.
To this end, we derive each task’s worst-case execution bound
under two assumptions:

1) Static stack pointer (using the values from Table II), and

2) Range of possible stack pointers (using the range of

values derived above).

The most important difference between these two is that the
cache analysis has to conservatively assume a cache miss for
each access to the stack in the second case. Consequently, the
difference between both cases, fixed stack pointer and a range
of stack pointers, mostly depend on the number of memory
accesses to the cache, and the memory access time, i.e., the
additional delay to acquire data from main memory instead of
from the cache.

Our target architecture ARMv7 can be instantiated with
different cache configurations. We have assumed a standard
configuration with an instruction scratchpad, and a data cache
of size of 2kB, with a 4-way LRU replacement policy, a line
size of 16 bytes and 32 sets.

As the memory access time is most relevant to the results,
we have performed the timing analyses assuming an access
time of 10 and 20 cycles. To derive the worst-case execution
time bounds, we have used Absint’s Timing Profiler for ARM.
In our first experiment, we performed the analysis with the
known static stack pointer, and then assuming a range of values
for the stack accesses. The results are shown in Table III.

access time 10 access time 20
range | static %o range | static %o
T1 3940 3484 13.09 4782 3744 27.72
T2 1092 1010 8.12 1530 1339 14.27
T3 2173 2014 7.89 2905 2527 14.96
T4 1374 1367 0.51 2064 2047 0.83
TS5 755 598 26.25 1055 708 49.01
T6 609 513 18.72 849 633 34.12
T7 2086 1732 20.44 2755 1972 39.71
T8 127 127 0 177 177 0
T9 || 24636 | 18831 30.83 32227 | 19591 64.59
T10 5530 5158 7.21 6957 6145 13.21
T11 12372 | 10540 17.38 15638 | 11609 34.71
T12 6616 6519 1.49 8046 7819 29
T13 2320 1840 26.09 3149 2090 50.66
TABLE III

'WORST-CASE EXECUTION TIME BOUNDS (IN CYCLES) FOR PAPABENCH, ASSUMING A
MEMORY ACCESS TIME OF 10 AND 20 CYCLES. RESULTS FOR A RANGE OF STACK
POINTERS (STANDARD STACK SHARING) AND FOR A KNOWN INITIAL STACK POINTER
(PREDICTABLE STACK SHARING).

We can observe an increased imprecision of the execution
time bound due to the uncertainty in the initial stack pointer,

97

ranging from 0% to 64%, with most values in between 10%
and 20% (average reduction 13.69% and 26.67%). The extent
of the imprecision loosely correlates with the task’s stack
size and the number of stack accesses. For task T9 with the
second highest stack need of 128 bytes, for instance, we see
an increase in the worst-case execution time bound by 30%
for a memory access time of 10 and by 65% for a memory
access time of 20 cycles. In stark contrast, task T4, with a
stack need of only 16 bytes exhibits only a minimal increase
by less than 1%, and task T8, which does not perform any
memory accesses to the stack, shows no difference at all. The
task with the highest stack usage, T10 (188 Bytes) however,
shows a relatively moderate increase of 7% and 13%, only.

The evaluation clearly shows that a statically known initial
stack pointer is fundamental for a precise timing analysis
and hence, for timing verification of the embedded system.
To enable a precise timing analysis, we therefore either have
to resort to dedicated per task stack spaces, at the cost of
increased memory usage, or employ the predictable shared
stack method EMPRESS.

We acknowledge that the results of the evaluation strongly
depend on the selected system configuration and task sets.
Fewer stack accesses, shorter memory access times, or slower
instruction memories for instance, may lead to less accentuated
differences between the execution time bounds with known or
unknown initial stack pointers, although memory access times
of 10 and 20 cycles are already on the low side. Nevertheless,
we consider the impact of known initial stack pointers on the
predictability and precision of timing analyses considerable.
Note that we omit evaluation of the increased predictability
of, for instance, the analysis of cache-related pre-emption
delays or the optimization of the task layout. Due to the lack
of techniques to handle a range of stack pointers instead of
a single statically-known value, we consider predictability a
binary property in these cases. CRPD analysis [2, 3, 7] for
data caches have so far always implicitly assumed dedicated
stack regions per task, and are now also feasible using the
predictable shared stack — with the benefit of a reduced
memory need for the stack.

VII. PREDICTABLE SHARED STACK SUPPORT PROVIDED BY ERIKA

Every possible implementation of a predictable shared stack
needs to take into account the internal implementation of
the context change mechanism and stack allocation of the
specific RTOS in use. In this section, we will analyse two
possible architectures of shared stack implementation, which
have been implemented in two versions (v2 and v3) of the
ERIKA Enterprise Kernel [13].

The main concept that is present in an RTOS allowing a
shared stack is the absence of blocking primitives (this is the
case of the Basic Tasks in the OSEK OS BCC1/BCC2 con-
formance classes, where blocking primitives are not present
and mutexes are handled using the Immediate Priority ceiling
Protocol [29]). When blocking primitives are not allowed,
tasks execute under a run-to-completion semantics (where,
once activated, a task can only be preempted or terminate).

A run-to-completion semantics opens the possibility to
implement a shared stack paradigm inside the RTOS (this
has been in fact implemented by both ERIKA Enterprise in
mono stack configuration and by the RTOS included in the QP
Framework [27]). Basically, tasks are activated every time they
are needed, and when terminating they clean up automatically
their stack (this is done automatically by C compilers in the
epilogue of the C function call implementation); preemption
is implemented by means of interrupt stack frames and by a
scheduler function called at the end of the interrupt handler. As
a side effect, this way of implementing tasks and preemption
has the advantage of lower memory usage, because tasks do
not need to save registers on synchronous context changes
(those initiated by a primitive called by the running task) be-
cause callee-saved registers will be saved automatically by the
compiler prologue of the task body C function. On the other
hand, caller-saved registers will be saved on asynchronous
events (interrupts) only.

In addition to a pure stack sharing implementation as
described above, the OSEK/VDX standard also mandates two
primitives named TerminateTask and ChainTask, which are
responsible for stack unwinding at task termination. Basically
the preempting task, before starting, saves the callee-saved
registers and the current stack pointer thus allowing stack
unwinding at its termination, in a way similar to the POSIX
longjmp primitive.

An implementation of the predictable shared stack under
the assumptions above requires an additional stack saving and
stack pointer modification every time a task is executed, and a
restore of the previous stack pointer at task termination. This,
in ERIKA Enterprise v2, can be done as part of the implemen-
tation of TerminateTask, taking advantage of the pre-existing
stack unwinding, thus incurring a minimal additional overhead
only at task startup.

In addition to that, we note that a complete implementation
of the OSEK/VDX standard requires the support of private
stacks in order to handle extended tasks calling the WaitEvent
synchronization primitive. In order to support that feature,
the implementation proposed in ERIKA Enterprise v2 allowed
the coexistence of shared stacks with private stacks, in a so-
called multi-stack configuration. In this kind of configuration,
each task is statically assigned to one of the available stacks.
Stack sharing therefore happens by default when all basic tasks
are grouped in the same stack by the configuration tool RT-
Druid. Also the predictable shared stack implementation must
be therefore limited only to the basic tasks.

The further need of optimization, joined with the additional
requirements of the AUTOSAR OS memory protection led
the developers of the new ERIKA v3 RTOS to create a
new context change mechanism which, in a single imple-
mentation, is merging the mono-stack, the multi-stack, and
the TerminateTask implementation described above. The
main idea is that, while still maintaining the possibility to
share a stack among tasks, at each context change both the
callee-saved registers and the stack pointer are saved and
considered belonging to the preempted task (in contrast, as

98

noted above, to ERIKA v2 where this information was saved
by the preempting task).

Notably, this new context change mechanism saves and
restores the stack value at each context change. Therefore,
from the point of view of the predictable stack sharing, this
means that it is possible to implement the predictable stack
sharing EMPRESS ar no additional overhead compared to the
current implementation of ERIKA v3, making the technique
appealing for a future integration into the product.

On the applicability of the proposed method to other
RTOSes, we can note that the proposed solution is very
similar to the special case of per-task stacks, where the stack
spaces are overlaid in memory. This means in general that
the user needs to perform two actions. The first action is the
modification of the stack space allocation done by either the
RTOS or by the task configuration, in a way that the various
stacks are overlaid in the proper way; typically the change
is small if the stacks are somehow pre-allocated with static
addresses, or if the implementation allows the specification
of the stack space when creating a task, like it happens with
POSIX pthread attributes. The second action is related to the
need to guarantee that the RTOS tasks will always execute
under a run-to-completion semantics, in order to avoid that
persistent data will stay on the stack while the task is blocked.
This second aspect is guaranteed by construction in ERIKA
and in the QP RTOS (this because of the scheduling algo-
rithm used and because the kernel does not provide blocking
primitives at all), but needs special care with generic RTOSes.
In particular, the run-to-completion behavior can be obtained
by creating/destroyng tasks at each start/end of a job, together
with the guarantee that these tasks will never block. This last
guarantee is the most difficult to obtain, as there is the need
to guarantee that no blocking primitives will be called by the
task or by the library functions called by the task (this includes
for example, on a POSIX system, all the cancellation points),
and there is the need to guarantee that in no case there will
be a preemption due to an arbitrary change of priority in the
task (for example, because the round-robin timeslice has been
consumed by the task, or becasue the task reduced its own
priority). Therefore, although not impossible to implement on
a generic RTOS, we believe that the proposed approach has to
be carefully planned beforehand by the RTOS implementer.

VIII. ReELATED WORK

A shared stack system to reduce memory requirements,
in particular for resource-constrained embedded systems, has
been addressed in many papers [4, 10, 30, 14, 19, 6, 34, 21].

Already in 1991, Baker [4] described that a shared stack
was used in real-time executives for at least 15 years, and
proved that the Stack Resource Policy (SRP) facilitates sharing
of stack space between jobs in a context with mutually exclu-
sive resource sharing. Limited pre-emptive scheduling through
non-preemptive groups [10] or fixed-priority scheduling with
preemption thresholds (FPTS) [32, 30] enable a significant
reduction in memory requirements by using a shared stack.
Non-preemptive groups as well as FPTS distinguish two kinds

of priorities for tasks, a (base) priority m for which a job
of a task competes for the processor upon activation and a
preemption threshold (or dispatch priority) 6 that is at least
equal to the (base) priority, i.e. 7 < 6. A running task 7; can
only be preempted by a task 7; when the priority of 7; is
higher than the preemption threshold of 7}, i.e. m; > 6;. In [9],
it has been demonstrated that for given (base) priorities, there
exists a unique maximum preemption threshold configuration
for which a set of tasks is schedulable. Moreover, in [16]
it has been shown that the maximum preemption threshold
configuration requires the least amount of shared stack. An
algorithm to determine the maximum threshold configura-
tion for given priorities is presented in [30]. Algorithms
to determine the maximum stack usage given a preemption
graph have been described in [19, 6]. An extension to a
multi-processor configuration is described in [14]. Finally, a
heuristic approach to compute priorities for stack optimization
is presented in [34].

Although AUTOSAR/OSEK [1, 29] supports FPTS, it only
supports a restricted version based on so-called internal re-
sources [20]. Unlike FPTS, there no longer exists a maximum
threshold configuration for given priorities for this restricted
version. How to determine the minimal stack usage for AU-
TOSAR/OSEK is described in [21]. It is worth mentioning that
this restriction has been lifted in some specific implementa-
tions of the AUTOSAR standard.

To the best of our knowledge, the combination of a shared
stack and predictability has not been addressed in the literature
before, however, and is the topic of this paper.

IX. CoNcLUSIONS

In this paper, we have presented an Efficient and effective
Method for PREdictable Stack Sharing called EMPRESS. EM-
PRESS statically analyses the worst-case, i.e., highest, stack
pointer of each each task, and guarantees these stack pointers
during runtime. It therefore combines the reduced stack usage
of a shared stack with the predictability of dedicated stack
regions, and hence enables precise timing analysis and system
optimizations.

We have demonstrated these benefits based on a case
study of an unmanned acrial vehicle, PapaBench. EMPRESS
provides a reduction in the total stack usage of up to 37%
compared to an implementation using dedicated stacks per
task, and the worst-case execution time bound could be
reduced by up to 26% on average compared to a standard, i.e.,
non-predictable shared stack. The rather simple concept behind
a predictable shared stack allows us to realize EMPRESS
in existing Real-Time Operating Systems, such as Erika En-
terprise, without additional overhead. Given its simplicity,
ease of support in an existing RTOS, and clear advantages
from a predictability perspective, we believe EMPRESS is
a significant contribution, in particular from an industrial
perspective.

99

Acknowledgements

The research presented in this paper is partially funded by
the NWO Veni Project “The time is now: Timing Verification
for Safety-Critical Multi-Cores”, and by the Eurostars project
E10171 RETINA.

REFERENCES

[1] AUTOSAR release 4.3. 2016. Available: http://www.
autosar.org.

S. Altmeyer, R. I. Davis, and C. Maiza. Cache related
pre-emption aware response time analysis for fixed pri-
ority pre-emptive systems. In Proc. 32" IEEE Interna-
tional Real-Time Systems Symposium (RTSS), pages 261—
271, Dec. 2011.

S. Altmeyer and C. Maiza. Cache-related preemption
delay via useful cache blocks: Survey and redefinition.
Journal of Systems Architecture, 57(7):707-719, August
2011.

T.P. Baker. Stack-based scheduling for realtime pro-
cesses. Journal of Real-Time Systems, 3(1):67-99, April
1991.

R. Barry. FreeRTOS reference manual: API functions
and configuration options. Real Time Engineers Limited,
2009.

M. Bohlin, K. Hénninen, J. Miki-Turja, J. Carlson, and
M. Nolin. Bounding shared-stack usage in systems
with offsets and precedences. In Proc. 20" Euromicro
Conference on Real-Time Systems (ECRTS), pages 276—
285, July 2008.

R.J. Bril, S. Altmeyer, M.M.H.P. van den Heuvel, R.I.
Davis, and M. Behnam. Integrating cache-related pre-
emption delays into analysis of fixed priority scheduling
with pre-emption thresholds. In Proc. 35" IEEE Real-
Time Systems Symposium (RTSS), pages 161-172, Dec.
2014.

K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A. Hen-
zinger, and J. Palsberg. Stack size analysis for interrupt-
driven programs. In Proc. 10" International Symposium
on Static Analysis (SAS), pages 109-126, June 2003.

J. Chen, A. Harji, , and P. Buhr. Solution space for fixed-
priority with preemption threshold. In Proc. 11" IEEE
Real Time and Embedded Technology and Applications
Symposium (RTAS), pages 385-394, March 2005.

R.I. Davis, N. Merriam, and N.J. Tracey. How embedded
applications using an RTOS can stay within on-chip
memory limits. In Proc. Work in Progress and Industrial
Experience Session, 12'* Euromicro Conference on Real-
Time Systems (ECRTS), pages 43-50, June 2000.

C. Duffy, U. Roedig, J. Herbert, and C.J. Sreenan.
Adding preemption to TinyOS. In Proc. 4" Workshop
on Embedded Networked Sensors (EmNets), pages 88—
92, Jan. 2007.

C. Ferdinand and R. Heckmann. aiT: worst case ex-
ecution time prediction by static program analysis. In
Proc. International Federation for Information Process-
ing (IFIP), volume 156, pages 377-384, Aug. 2004.

(2]

(31

(4]

[5]

(6]

(7]

[8]

(91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

P. Gai, E. Bini, G. Lipari, M. Di Natale, and L. Abeni.
Architecture for a portable open source real time kernel
environment. In Proc. 2™ Real-Time Linux Workshop
and Hand’s on Real-Time Linux Tutorial, Nov. 2000.

P. Gai, G. Lipari, and M. Di Natale. Minimizing memory
utilization of real-time task sets in single and multi-
processor systems-on-a-chip. In Proc. 22" IEEE In-
ternational Real-Time Systems Symposium (RTSS), pages
73-83, Dec. 2001.

G. Gebhard and S. Altmeyer. Optimal task placement
to improve cache performance. In Proc. 7" ACM &
IEEE International Conference on Embedded Software
(EMSOFT), pages 259-268, Oct. 2007.

R. Ghattas and A. G. Dean. Preemption threshold
scheduling: Stack optimality, enhancements and analysis.
In Proc. 13" Real Time and Embedded Technology and
Applications Symposium (RTAS), pages 147-157, April
2007.

AbsInt Angewandte Informatik GmbH. Static Stack An-
alyzer. https://www.absint.com/stackanalyzer/index.htm,
2018. [Online; accessed 22-February-2018].

S. Hahn and D. Grund. Relational cache analysis for
static timing analysis. In Proc. 24" Euromicro Con-
ference on Real-Time Systems (ECRTS), pages 102-111,
July 2012.

K. Hénninen, J. Miki-Turja, M. Bohlin, J. Carlson,
and M. Nolin. Determining maximum stack usage in
preemptive shared stack systems. In Proc. 27" IEEE In-
ternational Real-Time Systems Symposium (RTSS), pages
445-453, Dec. 2006.

L. Hatvani and R.J. Bril. Schedulability using native non-
preemptive groups on an AUTOSAR/OSEK platform. In
Proc. 20" IEEE International Symposium on Emerging
Technologies and Factory Automation (ETFA), Sep. 2015.
L. Hatvani and R.J. Bril. Minimizing stack usage for
AUTOSAR/OSEKSs restricted fixed-priority preemption
threshold support. In Proc. 11" IEEE International
Symposium on Industrial Embedded Systems (SIES), June
2016.

D. Kistner and C. Ferdinand. Proving the absence of
stack overflows. In Proc. 33" International Conference
on Computer Safety, Reliability, and Security (SAFE-
COMP), pages 202-213, Sep. 2014.

D. Kleidermacher and M. Griglock. Safety-
critical operating systems. http://www.embedded.
com/design/prototyping-and-development/4023830/
Safety-Critical-Operating-Systems. Accessed: 2017-01-
10.

P. Koopman. A case study of Toyota unintended accel-
eration and software safety, Nov. 2014.

S. Kramer, D. Ziegenbein, and A. Hamann. Real world
automotive benchmark for free. In Proc. 6" International
Workshop on Analysis Tools and Methodologies for Em-
bedded and Real-time Systems (WATERS), July 2015.
W. Lunniss, S. Altmeyer, and R. I. Davis. Optimising
task layout to increase schedulability via reduced cache

100

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

related pre-emption delays. In Proc. 20" ACM Inter-
national Conference on Real-Time and Network Systems
(RTNS), pages 161-170, Oct. 2012.
Quantum Leaps Miro Samek.
machine.com.

F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. De
Michiel. PapaBench: a Free Real-Time Benchmark. In
Proc. 6" International Workshop on Worst-Case Execu-
tion Time Analysis (WCET), July 2006.

OSEK group. OSEK/VDX operating system. Technical
report, February 2005. OSEK OS 2.2.3 available as ISO
Standard 17356-3 2005.

M. Saksena and Y. Wang. Scalable real-time system de-
sign using preemption thresholds. In Proc. 21*" IEEE In-
ternational Real-Time Systems Symposium (RTSS), pages
25-34, Dec. 2000.

Arcticus Systems. http://www.arcticus-systems.se.

Y. Wang and M. Saksena. Scheduling fixed-priority tasks
with pre-emption threshold. In RTCSA, pages 328-38,
Aug. 1999.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, E. Mueller, 1. Puaut, P. Puschner,
J. Staschulat, and P. Stenstrom. The worst-case
execution-time problem - overview of methods and sur-
vey of tools. ACM Transactions on Embedded Computing
Systems, 7(3):36:1-36:53, May 2008.

H. Zeng, M. D. Natale, and Q. Zhu. Minimizing
stack and communication memory usage in real-time
embedded applications. ACM Transactions on Embedded
Computing Systems, 13(5s):149:1-149:25, July 2014.

http://www.state-

