
c© 2019 Tai Sheng Cheng

SCHEDULING SHARED DATA ACQUISITION FOR REAL-TIME DECISION
MAKING

BY

TAI SHENG CHENG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Tarek Abdelzaher

ABSTRACT

This work investigates scheduling policies for the acquisition of possibly overlapping sets of

data items required to make multiple decisions by different deadlines. The work is motivated

by military IoT applications in which a large number of sensors must collect intelligence data

needed to make multiple decisions. For example, data from several cameras in a contested

city might be needed to decide where targets of interest are. This work is based on the

assumption that network bandwidth is limited, creating a significant resource bottleneck

(perhaps between the sensors and the command center where decisions are made). This

might be the case, for example, due to active interference by a determined adversary.

A relieved sub-problem is first discussed with a corresponding optimal algorithm. Then,

an improved heuristic algorithm based on the insights from the optimal algorithm of the

sub-problem is presented. Finally, the new algorithm is evaluated with multiple scheduling

parameters and is compared with previous heuristics, demonstrating an improved perfor-

mance of our solution.

ii

To my family, my friends and my loved ones, for their love and support.

iii

ACKNOWLEDGMENTS

First of all, I would like to thank Professor Tarek Abdelzaher for his guidance over the

past 2 years. He provided me with this interesting topic and gave me a lot of advice during

my work. Without his knowledge, I wouldn’t have achieved what I have accomplished. I

really appreciate this guidance. It has truly been a great journey working with him.

Next, I would like to thank all my colleagues in the lab. I would like to thanks Jinyang Li

for always being the life of the party. We sure had a lot of memories for playing basketball.

I would like to thank Shengzhong Liu for always teasing Jinyang and bringing all the joy to

our group. It would be very different without all the laughter and all the wonderful time we

had. I would like to thank Dongxin Liu for flattering us a lot, making me always feel good

about myself. I’m sure a lot of us feel the same. I would like to thanks Tianshi Wang for

chatting with me whenever I am in the lab. It’s always nice to have someone working with

you (especially when it’s the last weekend before the thesis due date). I would like to thank

Huajie Shao for providing us with all the information (including sharing all the rumors about

people around us). This truly makes the conversation much more interesting. I would like

to thank Dr. Shuochao Yao for providing me with all the refreshing conversation we had.

We will sure grab a drink once in a while in Seattle with Shengzhong joining us. I would like

to thank Yiran Zhao for being the TA of my first class in UIUC. It was really nice to have a

senior whom I could talk to about the group and the ongoing projects. Last but not least, I

would like to thanks Yifan Hao for bringing me into the lab. It has truly been a great time

hanging out with you, skiing, playing video games, basketball, bowling, etc. It’s a pity that

we didn’t take class together since CS424, or else my graduate life would be much easier.

Let’s be sure to hang out sometime after we start working.

I would like to show appreciation to my roommates and friends from Taiwan. I really

appreciate Eli Chien, Hsien Chih Huang and Hsuan Chi Kuo for living together with me.

Thanks to Hsuan Chi Kuo for creating a group of all new incomers to UIUC in the beginning.

My grad life would be so much more boring without the people we know. I would like to

thank Hsien Chih Huang for cooking all the delicious cuisines. In addition, it is really nice

to learn all kinds of trivia and terminologies about our life. I would like to thank Eli Chien

for carrying me on playing basketball and surviv.io. We sure aced the game with 53.5%

of winning rate and an 8 consecutive winning streak. I would like to thank all my college

friends who applied to graduate schools with me. Without you guys, I won’t be who I am

today. I would especially like to show my gratitude to the ones studying together in UIUC.

iv

We sure had a lot of great memories and playing Mahjong together (although Ben eventually

decided to live with his girlfriend instead of me).

I would like to thank Oath for having me as an intern during the summer. It was truly

a wonderful journey working there. We had a lot of fun playing PS4 during working hours

and chatting about the FIFA World Cup. I would also like to thank Microsoft for giving me

the opportunity for a full-time job I’m really desperate to have. With such an offer, I was

able to have such a laid back final year of my student life.

Last but not least, I would like to thank my parents for all the support they have given

me to study abroad. I would like to thank my brother for always bringing me joy during the

days in my grad life. Finally, I would like to thank Claire, for being by my side during my

grad life. The joys we had were definitely beyond description. I hope we both have a great

career after graduation.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Previous Work . 1
1.3 Problem Statement . 2
1.4 Thesis Overview . 2

CHAPTER 2 BACKGROUND AND TASK MODEL 4

CHAPTER 3 AN ILLUSTRATIVE EXAMPLE . 6

CHAPTER 4 SCHEDULE RETRIEVING DATA SHARED BETWEEN DIF-
FERENT DECISION TASKS . 8
4.1 A Relieved Sub-problem . 8
4.2 Optimal Online Scheduling Algorithm for the Sub-problem 8
4.3 A Heuristic Algorithm Multiple Shared Items Scheduling 13

CHAPTER 5 PERFORMANCE EVALUATION . 16
5.1 Different Task Utilization Comparison . 16
5.2 Different Shared Item Load Comparison . 18

CHAPTER 6 RELATED WORK . 23

CHAPTER 7 CONCLUSIONS . 24

REFERENCES . 25

vi

CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Recent directions in military thinking envision a slew of novel IoT services for the battle-

field, collectively termed the Internet of Battlefield Things .1 One key service in that context

is real-time intelligence gathering for decision making. For example, consider a humanitar-

ian operation in a city, where medical aid and supplies need to be delivered in the face of

an active insurgency that impairs security. A set of sensors (e.g., cameras) are deployed

in select locations to search for targets of interest. Since power and thus regular network-

ing infrastructure might be lost, the sensors are equipped with a capability to upload data

wirelessly via a military satellite. An adversary might attempt to impair the efficacy of this

communication by jamming the spectrum used by the satellite, resulting in a severe reduc-

tion in available communication bandwidth. In this scenario, the goal is to collect real-time

information from the cameras, using what bandwidth remains available, to make decisions

on where the different targets are. A big bottleneck exists between the cameras and the

collection point (e.g., a command center) due to satellite jamming.

1.2 PREVIOUS WORK

Past work addressed a simple version of this problem where the sets of data objects

(e.g., pictures) needed to make differnt decisions are non-overlapping [1, 2, 3]. For example,

in order to decide if the target is at location, x, only pictures from location x are needed.

Hence, for different locations, the sets of pictures needed are non-overlapping. Unfortunately,

in most cases, different decisions will need overlapping subsets of intelligence data.

When there is only one decision task to be scheduled, an optimal scheduling policy, the

Least Volatile item First (LVF) has been derived [1, 2]. It states that the data item with the

longest validity interval should be retrieved first. This ensures that retrieved items have the

lowest chance of expiration before a decision is made. Previous work also showed that when

multiple decision tasks exist but with non-overlapping sets of data items, the optimal retrieval

policy is Earliest Deadline or Expiration First - Least Volatile First (EDEF-LVF) [3]. The

key idea is to assign a higher priority to the task that has the smallest value of the minimum

taken across its data item validity expiration times and its deadline. However, the mentioned

results lose optimality if sets of data items needed for different decisions overlap. Intuitively,

1http://foxillinois.com/news/local/25-million-grant-to-develop-internet-of-battlefield-things

1

this is because when data are shared across multiple decisions, some items retrieved for

the first decision will expire before the second is made, unless their retrieval is artificially

delayed, resulting in the need for a new scheduler.

1.3 PROBLEM STATEMENT

This work assumes that each data item has a freshness interval (or validity interval) before

the data item becomes invalid. Whenever a data item becomes stale, the source device can

re-transmit the data. That is, once a source is activated, the sampling period of the source is

the same as the validity interval of the data item. A decision task considers a set of objects

(e.g., evidence) needed for the decision. The challenge lies in retrieving these objects so a

deicision is made while they are fresh and before the decision deadline. Thus, a decision

task is said to be completed successfully if it satisfies two constraints:

• Schedulability constraint : The decision is made before the decision deadline.

• Validity constraint : At the time when the decision is made, all data items are within

their validity interval.

1.4 THESIS OVERVIEW

An scheduling policy was derived for a sub-problem where some of the constraints are

relieved, along with proving its optimality. Next, a heuristic algorithm for scheduling decision

tasks with multiple shared items based on the insights of the previous optimal algorithm of

the sub-problem was proposed.

Previous work [3] proposed simple heuristic algorithms for the problem, where scheduling

decision tasks requires shared items. However, neither properties of these algorithms nor

evaluations of the trade-off of the algorithms were discussed. The contribution of our work

lies in the analysis of such problem where data items are shared. Moreover, based on insights

gained from solving a simpler special case, our new heuristic outperforms those proposed in

the prior work.

The rest of the work is organized as follows. In Chapter 2, the background and describe

the task model is described, followed by an example of such problem in Chapter 3. Chapter 4

illustrates the problem of scheduling decision tasks with shared items. It demonstrates the

optimality properties of a scheduling policy that solves the problem when there is only one

shared item. Finally, a heuristic scheduling policy is proposed for the general problem of

2

multiple decision tasks with shared data items. Chapter 5 evaluates the new algorithms.

The related work is discussed in Chapter 6 and the work is concluded in Chapter 7.

3

CHAPTER 2: BACKGROUND AND TASK MODEL

The overview of our task model is given in this chapter. First of all, a decision task m is a

task that contains a set of data items (or items) Om
1 , ..., O

m
km . In our model, decision task m

is said to be completed (or decision is made) when all the items within the decision task m

are either retrieved or still valid. The validity of a task will be described later in this section.

Moreover, retrieving items of decision tasks is non-preemptible. In other words, once an

item is scheduled, the decision task must completed the retrieval of the current item before

the task can be preempted and another decision task can be scheduled to retrieve items. For

every item Om
i ,∀i ∈ {1, ..., km}, there exists a validity interval, Imi , which is defined as the

freshness of the item. When the item is scheduled to be activated, the sensor samples the

environmental measurements at a period of Imi , which is the same as the validity interval of

item Om
i . Note that an item will only be re-retrieved when the decision task isn’t finished

and the item has passed the validity interval. Upon retrieving the measurement, it takes the

sensor Cm
i cost to transfer the data to the control system. Similarly, the set of items that

is shared by task m and other tasks is defined as Sm
1 , ..., S

m
lm . The validity interval and the

retrieval time of item Sm
i is ImSm

i
. After the system verifies that all the items for decision task

m are still valid, data retrieving of decision task m is concluded. Let tm denote the arriving

time of the decision task. For each of the item Om
i , it is scheduled to deliver the result to the

system at time tmi . Fm and Dm are denoted as the finish time and the deadline of decision

task m, respectively. Therefore, the absolute deadline for decision task m can be computed

as:

ADm = tm +Dm (2.1)

Similarly, the absolute validity expiration time for item Om
i is:

ExpOm
i

= tmi + Imi (2.2)

Finally, a schedule sequence is said to be feasible if the following conditions hold:

i) A decision task has to be completed before the decision deadline, i.e., the schedulability

constraint.

Fm ≤ ADm (2.3)

ii) All items within the decision deadline has to be valid when the decision is made, i.e.,

the validity constraint.

ExpOm
i
≤ Fm (2.4)

4

Table 2.1: Example for Items Required to Decide which Route to Take

Notation Description

K Number of decision tasks
km Number of data items in decision task m
lm Number of shared items in decision task m

Dm Relative deadline of decision task m
tm Arrival time of decision task m
Fm Finish time of the decision task m
Om

i Data item i of decision task m
Cm

i Retrieval time of data item Om
i

Imi Validity window of data item Om
i

tmi Start time of retrieving data item Om
i

Sm
i Shared item i between decision task m and all other tasks

5

CHAPTER 3: AN ILLUSTRATIVE EXAMPLE

(a) The case where S1 has to be re-retrieved

(b) All items are sampled exactly once

Figure 3.1: The example of reusing item S1

This chapater presents an illustrative example to further explain why this problem is

non-trivial and demonstrate that it cannot be solved by the previously proposed solution.

Continuing with our example of collecting intelligence for decision making in a city, imagine

a case where civilians should be evacuated. A route suggestion system inspects cameras and

other sensors along different potential evacuation routes in order to make a decision on the

safest one. However, evacuation route options of different civilians overlap in some segments.

Table 3.1 shows the sensors and cameras required for the evacuation system to determine

whether Route 1 or Route 2 is a better evacuation route, along with the retrieval time and

the validity interval for content of each sensor. Note in particular, that item S1 is shared

across the two routes.

Let us first use algorithm EDEF-LVF, which is proven to be optimal when scheduling

multiple decision tasks without shared items [3]. As shown in Figure 3.1(a), the shared item

S1 will become stale when items for the decision task Route 2 are fetched. Therefore, item

S1 has to be re-retrieved. If the scheduling order is changed as shown in Figure 3.1(b), S1

will still be valid when the items in Route 2 have been retrieved. The problem can be even

harder when multiple decision tasks shared multiple data items.

6

Table 3.1: Example for Items Required to Decide which Route to Take

Route 1 Item Retrieval Time(sec) Duration(sec)

Bridge 1 status sensor (B1) 1 600
Bridge 2 status sensor (B2) 1 600

Camera 1 (C1) 3 30
Camera 2 (C2) 3 30
Camera 3 (C3) 3 30
Sensor 1 (S1) 2 10
Sensor 2 (S2) 2 10

Route 2 Item Retrieval Time(sec) Duration(sec)

Bridge 3 status sensor (B3) 1 600
Bridge 4 status sensor (B4) 1 600

Camera 4 (C4) 3 30
Sensor 3 (S3) 2 10
Sensor 1 (S1) 2 10

7

CHAPTER 4: SCHEDULE RETRIEVING DATA SHARED BETWEEN
DIFFERENT DECISION TASKS

This chapter discusses the problem of scheduling decision tasks with shared items to

pruduce a feasible scheduling sequence.

4.1 A RELIEVED SUB-PROBLEM

To solve the problem, this work begins by solving a sub-problem where all decision task

shared the same item and arrive at the same time. First, the notation of this problem is

provided. Decision task m has arrives at tm and has a relative deadline at Dm. Note that

in the sub-problem, all the arriving time should be the same, denoted as tarrive. That is,

the absolute deadline for task m is tarrive + Dm. There are km items within decision task

m, i.e., Om
1 , ..., O

m
km . Each of the items has a retrieval time Cm

i and a validity interval Imi .

Data item Om
i is said to be retrieved at time tmi . This work assumes that there is only one

shared item between decision task m and other tasks, which is denoted as Sm
1 ; furthermore,

decision task m is assumed to finish retrieving at time Fm. This sub-problem only discusses

the case where all Sm
1 ,∀m ∈ [1, K] are identical.

4.2 OPTIMAL ONLINE SCHEDULING ALGORITHM FOR THE SUB-PROBLEM

To minimize the cost, whether the shared item could be reused after retrieved in the first

decision task to avoid resampling in the second decision task should be investigated. The

example in Chapter 3 provided an insight that in order to reuse a task, the scheduler should

shcedule the item as close to the deadline as possible. That is, it will have the largest

remaining valid window for the next decision task. This work begins by discussing some

correlated properties and then present and evaluate the scheduling algorithm. Although

this part is covered in detail in previous works, only the discussions of the concepts are

presented, while the proofs to calculate the priority of decision tasks are neglected. To begin

with, the following describes the process to prioritize multiple decision tasks. The optimal

algorithm EDEF-LVF states that the highest priority should be assigned to the task with the

smallest value of the minimum of its item validity expiration times and its decision deadline.

The earliest expiration time for decision task m id defined as:

minExp(m, t) (4.1)

8

where t is the current time. That is, the highest priority is given to the task with the smallest

minimum of validity expiration times and deadline, which can be represented as:

min
m=1,...,K

(minExp(m, t), tm +Dm) (4.2)

The above concept is summarized in Theorem 4.1.

Theorem 4.1 If a feasible order exists for a decision task set, the scheduling scheme that

assigns the highest priority to a task with a smaller minimum of item validity expiration

times and deadline can always schedule the task set.

Proof. The theorem is proved as Theorem 2 in our previous work [3].

Next, the algorithm is presented following by the discussion of the optimality of the

algorithm.

Algorithm 4.1

t: the current time
RQ: the ready queue of decision tasks
S: the shared item
IS: the validity interval of S

1: Vshared ← 0
2: if the set of decision task arrives then
3: Decision tasks are added to ready queue RQ in ascending order with respect to their deadline

Dm

4: while RQ is not empty do
5: Task m: the first task in RQ
6: Dequeue Task m from RQ
7: Vshared ← Retrieve(Task m, Vshared)

Procedure Retrieve(Task m, Vshared)
1: new Vshared ← Vshared
2: Fpredicted ← t +

∑
Cm
i − CS

3: if Fpredicted ≤ Vshared then
4: Remove S from Om

5: seq(m)← LV F SEQ(Task m)
6: Retrieve data item in seq(m)
7: if S is retrieved then
8: new Vshared ← t + IS
9: return new Vshared

Algorithm 4.1 implements the optimal online scheduling policy for the relieved sub-

problem. The variable Vshared is used to store the absolute validity expiration time of

item S. The decision task are first sorted in ascending order with respect to their dead-

line Dm. That is, the task with the smallest deadline will be executeed first. Note that

the task with the smallest deadline D is the task with the smallest absolute deadline since

9

Procedure LV F SEQ(Task m)
1: seq ← items Om

1 , ..., Om
km sorted in decending order with respect to Imi

2: if S ∈ seq then
3: S is the kth item in seq
4: Fpredicted ← t +

∑
Cm
i

5: while Fpredicted ≤ tmk+1I
m
k+1 − IS do

6: switch S and Om
k+1

7: k ← k + 1
8: return seq

all tasks have the same arrival time. Once the task is dequeued from RQ, the procedure

Retrieve(Task m, Vshared) is called to retrieve the items for task m.

The procedure Retrieve(Task m, Vshared) retrieves the item of task m. The variable

new Vshared is used as the updated of the absolute validity expiration time for shared item

S. The total computation time required to retrieved all items except for S for task m is

computed first. If the predicted finish time to retrieve all the items t+ Fpredicted is less than

Vshared, the shared item is removed from the task set (Line 2-4). The detail will be discussed

in Lemma 4.1. Next, the scheduling sequence with procedure LV F SEQ(Task m) is com-

puted. The procedure will return the sequence of algorithm LVF [1, 2]. Once the sequence is

computed, the scheduler will start retrieving the items according to the sequence. (Line 5-6)

On the other hand, if the shared item appears in the retrieving sequence and is retrieved,

new Vshared is calculated and updated.

The procedure LV F SEQ(Task m) computes and return the sequence of un-retrieved

items for task m. The sequence is produced by the algorithm LVF [1, 2] and the knowledge

of the shared task. Therefore, the seq is ordered and sorted by the valid window. Consider

the two following scenarios:

• If the sequence seq does not contain the shared item S, the algorithm will return seq.

• If seq contains S, the item has to be scheduled as close to the deadline Dm as possible.

The details will later be presented in Lemma 4.2. This process is done by iteratively

checking if switching with the next item in the schedule violates the validity constraints

(Equation 2.4). Once the shared item cannot be switched with the next item, the

schedule is complete (Line 2-7).

Lemma 4.1 If the predicted finish time for task m is earlier than the absolute validity

expiration time of the shared item S, task m can be made without retrieving S.

Proof. A decision task m is predicted to finish when all items are retrieved. That is, the

predicted finish time is the current time plus the retrieved time of all items. The expected

retrieval without retrieving the shared items, i.e. Fpredicted = t+
∑
Cm

i −CS, is first computed

10

in order to check if the shared item will still be valid until the decision is made. If the shared

item is still valid at Fpredicted, it can safely be assumed that the decision can be made at time

Fpredicted.

Lemma 4.2 If switching the schedule of item Oi with a subsequent item, in terms of schedul-

ing sequence, Oj and does not violate the validity constraint, the absolute validity expiration

time for object Oi becomes larger.

Figure 4.1: The example of switching Oi and Oj

Proof. Let’s consider this example from Figure 4.1. The two cases result in different absolute

validity expiration time for object Oi. In the first case, where Oi is scheduled before Oj, the

absolute validity expiration time is the schedule time t plus the validity window Ii. On the

other hand, if the two items are switched, the absolute validity expiration time of Oi now

becomes t′ + Ii, which is larger than t+ Ii. Thus, the lemma is proved.

Theorem 4.2 If a feasible schedule sequence exists for a decision task set, iteratively switch-

ing the shared item S before violating the validity constraint can produce the largest absolute

validity expiration time for S.

Proof. From Lemma 4.2, it is clear that switching with a subsequent item can produce a

larger absolute validity expiration time. The absolute validity expiration time for S gradually

increases as interatively switching S with the direct subsequent item. The process stops when

switching with the direct subsequent item, denoted as Oa, violates the validity constraint.

11

The constraint is violated because switching results in an earlier absolute validity expiration

time for Oa. It can also be described as (ta − CS) + Ia < D, where the new schedule time

(ta − CS) plus the validity window Ia is earlier than the deadline D. If switching with the

direct subsequent item will result in the violation above, switching with any subsequent will

also result in the violation above. This is because the validity window is less than or equal to

item Oa, which is denoted as Ia− ε. Therefore, (ta−CS) + (Ia− ε) will still be less than the

deadline D. It is proved that switching until S reaches Oa will increase the absolute validity

expiration time of S. Also, no more subsequent items can further be switched. Therefore,

the theorem is proved.

Theorem 4.3 Algorithm 4.1 is optimal in terms of solving the sub-problem described in

Section 4.1.

Proof. Before proving the theorem, consider the previous assumption that items are non-

preemptive once it is scheduled to retrieve. In order to prove the optimality, the optimality

task-wise and item-wise is discussed in the following. When a scheduler is invoked, the

task that has the smallest minimum of validity expiration time is chosen. According to

Theorem 4.1, this method is optimal when there are multiple decision tasks. That is, if a

feasible sequence exists, the method of choosing the smallest minimum validity expiration

time can also produce the feasible sequence. On the other hand, in Line 2-7 in Procedure

LV F SEQ(Task m), if the shared item S exists in the scheduling sequence seq, S is itera-

tively switched towards the deadline of the decision task. From Theorem 4.2, this switching

process will produce the largest absolute validity expiration time for S. In other words, to

prove the procedure is optimal is identical to prove that it produces a sequence where the

total cost of computation is minimized. This is equivalent to finding the sequence where

the times of retrieving S is minimized. Suppose that an optimal sequence seqopt have a

smaller absolute validity expiration time when S is first retrieved comparing to our pro-

duced sequence seqcomp. Whenever S is retrieved in seqopt, S is also retrieved in seqcomp.

This construction of seqcomp can be done because the absolute validity expiration time of S

is larger in seqcomp than in seqopt. Every decision in seqcomp can be made at the same time

in seqopt. That is, this procedure can result in an optimal when scheduling items within

decision tasks. The optimality of both task-wise and item-wise of Algorithm 4.1 is shown.

As a result, this concludes that Algorithm 4.1 is optimal for the problem described in Section

4.1.

12

4.3 A HEURISTIC ALGORITHM MULTIPLE SHARED ITEMS SCHEDULING

The relieved sub-probelm is discussed and a corresponding optimal algorithm is presented.

However, in the real world, different tasks may share different sets of items and tasks may

arrive in different time. The decision task scheduling problem becomes very hard when

preemption happens at item level, where tasks may be preempted when a task with higher

priority arrives. Therefore, a heuristic algorithm that takes advantages of the properties

from Algorithm 4.1 is presented. This work begins by presenting the algorithm and followed

by the description and the design philosophy of the algorithm.

Algorithm 4.2 RVI-LVF

t: the current time
RQ: the ready queue of decision tasks
S: the shared item
IS: the validity interval of S

1: if a new decision task arrives or a task finishes then
2: if a new task n is arriving then
3: tn ← t
4: ADn ← tn + Dn

5: if no task is running then
6: Retrieve(Task n)
7: else
8: task m: the task currently retrieving items
9: if ADm ≤ ADn then

10: Enqueue n to RQ
11: else
12: Enqueue m to RQ
13: Vshared ← Retrieve(Task n, Vshared)
14: else
15: Task m← argminTask m∈RQ(ADm)
16: Dequeue Task m from RQ
17: Retrieve(Task m)

Procedure Retrieve(Task m)
1: Fpredicted ← t +

∑
Cm
i

2: Sm : the lm items shared by m and other decision tasks sorted in decending order with respect
to ImSm

i
3: for i← 1 to lm do
4: if Sm

i is still valid at Fpredicted then
5: Remove Sm

I from Om and Sm

6: else if Sm
i is not shared with any task in RQ then

7: Remove Sm
i from Sm

8: seq(m)← LV F SEQ(Task m)
9: Retrieve data item in seq(m) and remove from Om

i

This algorithm is called Reuse Valid Item - Lease Volatile First(RVI-LVF). RVI-LVF

implements the heuristic online scheduling policy for multiple shared data item acquisition.

The scheduler is invoked whenever a previously scheduled decision task finishes executing or

13

Procedure LV F SEQ(Task m)
1: seq ← items Om

1 , ..., Om
km sorted in decending order with respect to Imi

2: for i← 1 to lm do
3: Sm

i is the kth item in seq
4: while Switch Sm

i and Om
k does not violate validity constraint do

5: Switch Sm
i and Om

k
6: k ← k + 1
7: return seq

when a new decision task arrives. The variable ADn is used to denote the smallest minimum

of item validity expiration times and deadline of task n. It is calculated by Equation 4.2.

When the new decision task n arrives, the three following scenarios are considered:

• If there is no current executing task, ADn will store the absolute deadline of task n.

The procedure Retrieve(Task n, Vshared) will then be executed (Line 5-6).

• If the currently executing task m has a smaller minimum of item validity expiration

times and deadline, the scheduler will mark the absolute deadline of task n and add

task n to the ready queue RQ. Task m will continue to be executed (Line 8-10).

• If the new arriving task n has a smaller minimum of item validity expiration times and

deadline, the scheduler will preempt task m and add task m to the ready queue RQ.

Task n will start retrieving data items (Line 11-13).

If the scheduler is invoked by a finished task, the scheduler will select the task that has the

earliest absolute deadline from the ready queue RQ (Line 14-17).

The procedure Retrieve(Taskm) is called to retrieve the items in order to execute decision

task m. The expected finish time Fpredicted is first calculated to determine whether each of

the shared task Sm
i should be re-retrieved. Note that is is assumed that there are lm items

within Om that is shared with other task sets. It checks whether each of the shared item Sm
i

is still valid at Fpredicted; if so, it will be removed from item sets Om and Sm. On the other

hand, the scheduler check if the item Sm
i is shared with any task in RQ. If not, this means

that the task will not be reused for further scheduling and thus should be removed from the

shared task set Sm
i (Line 3-7). Once the item sequence from procedure LV F SEQ(Taskm)

is acquired, the scheduler retrieves the item according to the sequence and remove the item

from the item list Om
i .

The procedure LV F SEQ(Task m) is where the item sequence for task m is arranged.

In the first step, the items {Om
1 , ..., O

m
km} are sorted in descending order with respect to the

validity window ImI to construct the least volatile first sequence. Next, the scheduler begins

by iteratively switching each shared task with the direct subsequent task. According to

14

Lemma 4.2, this can produce a larger absolute validity expiration time for the shared item

(Line 2-6). Finally, the procedure is done, and the order sequence is returned.

Theorem 4.4 When solving the sub-problem described in secion 4.1, RVI-LVF produces the

optimal scheduling sequence.

Proof. Proving this theorem is equivalent to proving RVI-LVF yields to Algorithm 4.1 when

solving the sub-problem described in secion 4.1. To prove they produce the same scheduling

sequence is the same to prove that they produce the same order in terms of scheduling data

items and decision tasks.

• When scheduling data items, both Algorithm 4.1 and RVI-LVF adopts the idea of LVF,

which is placing the item according to their validity window. The main difference is

that RVI-LVF is designed to deal with multiple shared items. In other words, if there

is only one shared item, e.g., S1 between all decision task, it will also iteratively switch

S1 towards the deadline to provide a larger absolute validity window. Therefore, it

will produce the same item sequence as Algorithm 4.1.

• When a task arrives, both algorithms assign the highest priority to the task with

the smallest minimum item validity expiration time and deadline. According to the

statement above, both algorithms produce the same set of item sequence; therefore, it

is safe to infer that the finish time of the first decision task is the same. By induction

hypothesis, it is assumed that Algorithm 4.1 and RVI-LVF produces the same finish

time for the kth decision task. The ready queue for both algorithms is identical as

they have the exact same absolute time and has finished the same set of decision task.

They both select the task with the highest priority, where these two tasks should be

identical. As shown previously, they will have the identical scheduling sequence and

therefore finish at the same time. Therefore, by showing that all decision task finishes

at the same time, the proof is concluded that RVI-LVF produces the same result as

Algorithm 4.1 when solving the sub-problem.

According to Theorem 4.3, since Algorithm 4.1 is optimal, it is a proved fact that RVI-LVF

is also optimal when solving the sub-problem described in secion 4.1.

15

CHAPTER 5: PERFORMANCE EVALUATION

In this chapter, the algorithm is evaluated by comparing the schedulability of the task

sets to the previously proposed algorithms, i.e. EDEF-LVF and SPECULATION. Since

is is proved that RVI-LVF yileds to Algorithm 4.1 when solving the relieved sub-problem in

Theorem 4.4, only the experiment of Algorithm RVI-LVF is conducted. The chapter begins

by introducing the algorithms that are compare with:

• EDEF-LVF: This is the optimal algorithm for scheduling multiple data item acquisition

tasks without shared item [3]. It assigns the highest priority to the task that has the

smallest minimum validity expiration time and deadline. The data item are retrieved

with respect to their validity window.

• Speculation: This is the heuristic algorithm from EDEF-LVF. Whenever an item is

retrieved, it checks if it was previously retrieved and its expiration time is not earlier

than the deadline for the current task. If so, the item does not have to be retrieved.

In the experiment, the results from multiple dimensions is compared, including the arrival

rate of decision tasks, the toal utilization of a given task set (hereinafter referred to as task

utilization), and the percentage of shared item among all tasks. The task utilization is

defined as:

∑
m

∑
1≤m≤km C

m
i

Dm
, (5.1)

and the load ratio of shared items is defined as:∑
m

Sm∑
m

Om
. (5.2)

5.1 DIFFERENT TASK UTILIZATION COMPARISON

First of all, RVI-LVF is compared with EDEF-LVF and speculation based on different

task utilization. To simulate and evaluate the algorithms, 1,000 synthetic task sets are

generated for every set of task utilization, i.e. (0,0.1], (0.1,0.2],...,(0.9,1], which is shown as

percentage in the x-axis of Figure 5.1. Each task set consists of 10 to 12 tasks and each

task consists of 5 to 10 data items to be acquired. The arrival time of each task is randomly

drawn between [0,400] and [0,800] in order to show the affect of different arrival rate. The

16

relative deadline of each task is randomly assigned between 50 and 100. The cost to retrieve

an item is randomly assigned from 1 to 20. Each data item can be categorized into one of

the three following types:

• Small validity window item: the validity winodw of such items is the deadline of the

task, with some minor deviation incurred

• Medium validity window items: the validity window of such items is randomly gener-

arted from 3 to 5 times of the deadline of the task

• Large validity window items: the validity window of such items is randomly generated

from 10 to 50 times of the deadline of the task

Last but not least, in this experiment, there are 80% of the items are shared with at least

one other task.

Figure 5.1 shows the percentage of schedulable tasks with respect to different scheduling

algorithms. A task is said to be schedulable if a feasible scheduling sequence could be

found and if the task meets its deadline. That is, algorithm RVI-LVF outperforms both

SPECULATION and EDEF-LVF. First of all, the algorithm EDEF-LVF does not take

into account of the fact that items could be shared among different tasks. That is, it

schedules the item to be retrieved regardless of the validity of the item. As a result, there

will be some redundant item retrieved, which leads to a lower schedulability. As for the

heuristic algorithm SPECULATION, it inspects the validity of the item when scheduling

to retrieve the item. However, RVI-LVF has a better schedulability due to the fact that

it schedules the shared items later in the scheduling sequence to provide a larger validity

window for subsequent tasks. In addition, SPECULATION checks the extension of the

validity comparing to the deadline of the task. However, using the deadline as checkpoint

overestimates the required extension of the validity window. In RVI-LVF, a predicted finsih

time for the task is computed. It does not retrieve an item if it has been retrieved and its

validity extends until the predicted finish time.

On the other hand, Figure 5.1 also discussed about the impact of different arrival rate.

To begin with, the execution window of a task is defined as the arrival time to the deadline,

and the remaining execution window as the execution window minus the time interval where

higher priority tasks are executing. In Figure 5.1(a), the arrival time of the tasks are more

dense (higher arrival rate). That is, there will be a lot of everlaps in the execution time

of each tasks. As a result, the scheduability of tasks decreases more drastically comparing

to Figure 5.1(b), where tasks have lower arrival rate. Furthermore, RVI-LVF has a better

improvement comparing to SPECULATION in lower arrival rate. When the tasks have

17

high arrival rate, there will be too much overlaps in the execution window of each task. Even

if RVI-LVF tends to be more aggresive on reusing shared items, the remaining execution

window for subsequent tasks is still too low to finish a task. Therefore, a lower arrival rate

will lead to a larger ramining execution window, therefore giving the advantage of sharing

items.

Furthermore, the CPU utilization of different scheduling algorithms with respect to task

utilization is also compared. In Figure 5.2, it is clear that RVI-LVF has lower CPU utilization

comparing to both EDEF-LVF and SPECULATION. First of all, EDEF-LVF does not take

into account of the shared items, therefore wastes a lot of CPU cost on retrieving items that

are still valid. SPECULATION tends to make passive prediction on the validity of shared

items (uses deadline of the task instead of the predicted finsih time). On the other hand, in

the experiment where tasks have higher arrival rate, as the task utilization increases, the CPU

utilization of SPECULATION and EVI-LVF gradually converge to the CPU utilization

of EDEF-LVF. This is because the remaining execution window of tasks are smaller and

therefore the system could easily be overloaded as the task utilization increases. In contrast,

when the tasks are arriving in a lower arrival rate, the remaining execution window is larger.

That is, the saving of costs on RVI-LVF and SPECULATION is more evident.

5.2 DIFFERENT SHARED ITEM LOAD COMPARISON

In this section, the algorithms performance with respect to different shared item percentage

is compared. Recall that the load of shared item is calculated by Equation (5.2). The setup

to generate such task sets is identical to the procedure described in Section 5.1, only that the

task sets are grouped by the load of shared items, i.e. [0],(0, 0.1],(0.1,0.2]...,(0.9,1], which is

shown in the x-axis of Figure 5.3. The synthetic task sets have a 80% of task utilization.

As shown in Figure 5.3, all three algorithms have the exact same percentage of schedulable

tasks when the load of shared items is 0%. Note that EDEF-LVF is the optimal scheduling

algorithm for scheduling multiple decision tasks without shared items[3]. SPECULATION

and RVI-LVF are 2 heuristic algorithms based on EDEF-LVF. When there are no shared

item, the speculation for not retrieving items are no longer in use. Therefore, when there is

no shared item, all three algorithms have the same schedulability. As the load of shared items

increases, the ratio of schedulable tasks increases in both RVI-LVF and SPECULATION.

However, since EDEF-LVF is ignorant to shared items and the total task utilization remains

the same, the schedulability remains the same for EDEF-LVF in both cases.

On the other hand, Figure 5.3 also displays the percentage difference of schedulable tasks

as shared item load increases in different arrival rate. When the arrival rate is lower, the

18

percentage difference remains approximately the same when the load of shared items is in

the range of [50%,100%]. This is due to the fact that when the arrival rate is lower, the

execution window (discribed in Section 5.1) is larger. As previously discussed, RVI-LVF

speculates the validity of items more aggressive than SPECULATION. When the arrival

rate is lower, the remaining execution window is larger. When the load of shared item is

high enough, the schedulable tasks will start to remain the same. On the contrary, when

the arrival rate is higher, the remaining execution window for each task is smaller. That is,

as the load of shared items increases, the shcedulable tasks will increases faster in RVI-LVF

than SPECULATION.

19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

S
ch

ed
u
la

b
il

it
y
 (

%
)

Task Utilization (%)

EDEF-LVF
SPECULATION

RVI-LVF

(a) The probability of schedulable tasks with high arrival rate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

S
ch

ed
u
la

b
il

it
y
 (

%
)

Task Utilization (%)

EDEF-LVF
SPECULATION

RVI-LVF

(b) The probability of schedulable tasks with low arrival rate

Figure 5.1: The probability of schedulable tasks with respect to different task
utilization and arrival rate

20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

C
P

U
 U

ti
li

z
a
ti

o
n
 (

%
)

Task Utilization (%)

EDEF-LVF
SPECULATION

RVI-LVF

(a) The CPU Utilization of different algorithms with high arrival rate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

C
P

U
 U

ti
li

z
a
ti

o
n
 (

%
)

Task Utilization (%)

EDEF-LVF
SPECULATION

RVI-LVF

(b) The CPU Utilization of different algorithms with low arrival rate

Figure 5.2: The probability of schedulable tasks with respect to different task
utilization and arrival rate

21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ch

ed
u
la

b
il

it
y
 (

%
)

Shared Item Load (%)

EDEF-LVF
SPECULATION

RVI-LVF

(a) The probability of schedulable tasks with high arrival rate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ch

ed
u
la

b
il

it
y
 (

%
)

Shared Item Load (%)

EDEF-LVF
SPECULATION

RVI-LVF

(b) The probability of schedulable tasks with low arrival rate

Figure 5.3: The probability of schedulable tasks with respect to different load
of shared items and arrival rate

22

CHAPTER 6: RELATED WORK

The idea of data freshness can be dated back in a few decades in the work [4]. Since

then, there has been a series of work discussing the topic of real-time database and data

acquisition [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. However, not many of the previous works

consider the model of noramlly-off sensors. In these work, the concept of data freshness is

defined in terms of the whole system instead of one specific data item.

Some of the works focused on working with maintaining freshness for periodic sensors

[8, 5, 6, 16], while others focused on the scheduling of profiling sensors or data item in real-

time database [7, 11]. A similar concept of our task model was proposed in [12]. MARTE is

a model-based data freshness management approach for expressing data freshness require-

ments. However, this task model does not take into consideration of scheduling items with

different deadlines.

Search-based switch and adjustment-based switch was proposed [7] to improve the data

freshness and schedulability, respectively. Nevertheless, our work is more similar to the work

of [5], where both of the technique is to maintain better data freshness. The main difference

is that the objective of [5] is reducing processor workload, while our goal is to improve the

schedulability of given task sets. In terms of scheduling problems, different approaches have

been proposed. Some of the works focused on revising the update period [14, 8, 16]. Other

works focused on the improving the utilization with different scheduling policies [13, 5]. In

the work [17], the author examined in a restricted case wheres Shortest Validity First (SVF),

which is a similar idea to LVF, is the optimal solution.

Recently, a similar task model was proposed [1], along with a similar problem that was

addressed. The decision task in their model collects sensor data items to determine the

best route among multiple options. Each of the retrieved sensor data has a validity interval,

while the decision task has a deadline constraint to satisfy. After this, a series of work [2, 3]

has been published to address the problem further. In [2], it considers the model where

there may be multiple decision tasks, but no analysis or properties provided. Later than,

EDEF-LVF was proposed [3]. It proves the optimality of multiple decision tasks that do

not contain shared data item. Furthermore, it proposed a heuristic algorithm for shared

data item based on EDEF-LVF. However, no analysis on the problem of scheduling multiple

decision tasks with shared items was conducted. Therefore, the main contribution of this

work lies in the analysis of the problem and the proposed heuristic algorithm.

23

CHAPTER 7: CONCLUSIONS

This work focuses on on addressing the problem of data acquisition to meet information

needs of multiple decisions that need overlapping sets of data items. The challenge lies in

the analysis of the problem and providing a non-trivial heuristic algorithm that improves

schedulability while meeting deadlines and data validity constraints. An optimal scheduling

policy, Algorithm 4.1, was proposed to solve a simplified sub-problem. A heuristic scheduling

policy, RVI-LVF was then composed to solve the general problem based on properties and

observations from Algorithm 4.1. Finally, the scheduling policy was evaluated compared to

prior heuristic algorithms. The new algorithm outperforms prior work. The performance

evaluation shows a schedulability improvement of up to 40.3% and 17.2% comparing to

EDEF-LVF and SPECULATION, respectively. Future work will focus on extensions of

the proposed algorithm to accommodate more nuanced network models (such as cases where

multiple different channels exist that can be leveraged in parallel). Extensions may also in-

cludle approximation bounds with respect to optimal performance. Specifically, to date, no

equivalents to utilization bounds, resource augmentation bounds, or capacity augmentation

bounds were derived for the problem addressed in this work. Such bounds would be interest-

ing to derive in future work for different models of the bottlenecked communication channel

(or channels) over which data are collected.

24

REFERENCES

[1] S. Hu, S. Yao, H. Jin, Y. Zhao, Y. Hu, X. Liu, N. Naghibolhosseini, S. Li, A. Kapoor,
W. Dron, L. Su, A. Bar-Noy, P. Szekely, R. Govindan, R. Hobbs, and T. F. Abdelzaher,
“Data acquisition for real-time decision-making under freshness constraints,” in 2015
IEEE Real-Time Systems Symposium, 2015, pp. 185–194.

[2] J. E. Kim, T. Abdelzaher, L. Sha, A. Bar-Noy, R. Hobbs, and W. Dron, “On maximizing
quality of information for the internet of things: A real-time scheduling perspective
(invited paper),” in 2016 IEEE 22nd International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2016, pp. 202–211.

[3] J. E. Kim, T. Abdelzaher, L. Sha, A. Bar-Noy, and R. Hobbs, “Sporadic decision-
centric data scheduling with normally-off sensors,” in 2016 IEEE Real-Time Systems
Symposium (RTSS), 2016, pp. 135–145.

[4] K. Ramamritham, “Real-time databases,” in Distrib Parallel Databases, 1993, pp. 199–
226.

[5] M. Xiong, S. Han, and K.-Y. Lam, “A deferrable scheduling algorithm for real-time
transactions maintaining data freshness,” in 26th IEEE International Real-Time Sys-
tems Symposium (RTSS’05), Dec 2005, pp. 11 pp.–37.

[6] M. Xiong, S. Han, K. Y. Lam, and D. Chen, “Deferrable scheduling for maintaining
real-time data freshness: Algorithms, analysis, and results,” IEEE Transactions on
Computers, vol. 57, no. 7, pp. 952–964, July 2008.

[7] S. Han, D. Chen, M. Xiong, and A. K. Mok, “Online scheduling switch for maintaining
data freshness in flexible real-time systems,” in 2009 30th IEEE Real-Time Systems
Symposium, Dec 2009, pp. 115–124.

[8] K. D. Kang, S. H. Son, and J. A. Stankovic, “Managing deadline miss ratio and sensor
data freshness in real-time databases,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 10, pp. 1200–1216, Oct 2004.

[9] K.-D. Kang, S. H. Son, J. A. Stankovic, and T. F. Abdelzaher, “A qos-sensitive approach
for timeliness and freshness guarantees in real-time databases,” in Proceedings 14th
Euromicro Conference on Real-Time Systems. Euromicro RTS 2002, 2002, pp. 203–
212.

[10] K.-D. Kang, S. H. Son, and J. A. Stankovic, “Star: secure real-time transaction process-
ing with timeliness guarantees,” in 23rd IEEE Real-Time Systems Symposium, 2002.
RTSS 2002., 2002, pp. 303–314.

[11] B. Kao, K.-Y. Lam, B. Adelberg, R. Cheng, and T. Lee, “Maintaining temporal con-
sistency of discrete objects in soft real-time database systems,” IEEE Transactions on
Computers, vol. 52, no. 3, pp. 373–389, March 2003.

25

[12] N. Louati, R. Bouaziz, C. Duvallet, and B. Sadeg, “Managing data freshness
with marte in real-time databases,” in 16th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing (ISORC 2013),
June 2013, pp. 1–6.

[13] T. Gustafsson and J. Hansson, “Data management in real-time systems: a case of on-
demand updates in vehicle control systems,” in Proceedings. RTAS 2004. 10th IEEE
Real-Time and Embedded Technology and Applications Symposium, 2004., May 2004,
pp. 182–191.

[14] T. Gustafsson and J. Hansson, “Dynamic on-demand updating of data in real-time
database systems,” in Proceedings of the 2004 ACM Symposium on Applied
Computing, ser. SAC ’04. New York, NY, USA: ACM, 2004. [Online]. Available:
http://doi.acm.org/10.1145/967900.968074 pp. 846–853.

[15] S.-J. Ho, T.-W. Kuo, and A. K. Mok, “Similarity-based load adjustment for real-time
data-intensive applications,” in Proceedings Real-Time Systems Symposium, Dec 1997,
pp. 144–153.

[16] M. Xiong, Q. Wang, and K. Ramamritham, “On earliest deadline first scheduling for
temporal consistency maintenance,” Real-Time Systems, vol. 40, no. 2, pp. 208–237,
Nov 2008. [Online]. Available: https://doi.org/10.1007/s11241-008-9055-4

[17] M. Xiong and K. Ramamritham, “Deriving deadlines and periods for real-time update
transactions,” IEEE Transactions on Computers, vol. 53, no. 5, pp. 567–583, May 2004.

26

