N
N

N

HAL

open science

Cyclic scheduling of loop-intensive applications on

heterogeneous multiprocessor architectures
Philippe Glanon, Selma Azaiez, Chokri Mraidha

» To cite this version:

Philippe Glanon, Selma Azaiez, Chokri Mraidha. Cyclic scheduling of loop-intensive applications on
heterogeneous multiprocessor architectures. RTCSA 2020 - TEEE 26th International Conference on
Embedded and Real-Time Computing Systems and Applications, Aug 2020, On line event, South
Korea. pp.1-10, 10.1109/RTCSA50079.2020.9203667 . cea-04485112

HAL 1d: cea-04485112
https://cea.hal.science/cea-04485112

Submitted on 1 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://cea.hal.science/cea-04485112
https://hal.archives-ouvertes.fr

Cyclic Scheduling of Loop-Intensive Applications
on Heterogeneous Multiprocessor Architectures

Philippe Glanon
CEA, List
91191 Gif-sur-yvette, France
philippe.glanon@cea.fr

Abstract—This paper tackles the scheduling of loop-intensive
applications modeled by synchronous dataflow graphs (SDFGs)
on heterogeneous multiprocessor architectures under resource
and communication constraints. Scheduling an application graph
on multiprocessor architectures under resource constraints is a
well-known NP-hard problem widely addressed in the previous
decades with the goal of optimizing different performance met-
rics such as latency, memory allocations, energy consumption,
throughput, etc. In this paper, we focus on the study of cyclic
scheduling strategies and specifically the software pipelined
schedules of SDFGs under the resource and communication
constraints of heterogeneous multiprocessor architectures and we
made two major contributions. The first contribution is an integer
linear programming (ILP) model for the exact resolution of the
scheduling problem and the second contribution is a time-efficient
heuristic that generates scheduling solutions close to the optimal
solutions generated with our ILP model.

Index Terms—Cyclic scheduling, software pipelining, syn-
chronous dataflow graphs, heterogeneous multiprocessor archi-
tectures, throughput, cyber-physical systems.

[. INTRODUCTION

Cyber-physical systems are increasingly used nowadays in
a wide range of application fields to address many technical
challenges. A cyber-physical system is a networked system
that integrates multiple processing elements, each interacting
with the other ones through digital networks to sense and con-
trol physical processes [6]. Many cyber-physical systems can
be described as a feedback control structure like that sketched
in Fig. la. This sketch consists of sensors, actuators and a
computing system. The sensors acquire data from a physical
plant, which can include human operators, mechanical parts,
biological or chemical processes. The data acquired by the
sensors are sent to the computing system through a logic
network. The computing system is actually a heterogeneous
multiprocessor system that consists of different types of pro-
cessing units (PUs) —which can be central processing units,
graphical processing units, field-Programmable gate arrays or
even a device combining these PUs—, each offering a specific
performance to process the data acquired by the sensors and to
run software control applications that command the actuators.

A key aspect in the design of a cyber-physical system (CPS)
is the software deployment through which the scheduling and
mapping of software programs on heterogeneous multiproces-
sor architectures (HMAs) are created. In this context, many pa-

978-1-7281-4403-0/20/$31.00 ©2020 IEEE

Selma Azaiez
CEA, List
91191 Gif-sur-yvette, France
selma.azaiez@cea.fr

Chokri Mraidha
CEA, List
91191 Gif-sur-yvette, France
chokri.mraidha@cea.fr

rameters can be considered to find a deployment that achieves
maximal performance for CPS. These parameters include for
instance, the number of PUs available on the HMAs, the
worst case execution times of software programs on each
PU and the inter-PUs communication costs. In addition to
these parameters, loops also need to be considered. Actually,
loops being the most time-critical parts of many software
applications, the performance achievable by a CPS application
depends on the optimal execution of loop structures embedded
in the software programs. Hence, to provide performance
guarantee for CPS applications, there is a need of developing
a scheduling framework that can be used to explore and
to exploit the parallelism embedded in the repetitive pattern
of loops structures under the resource and communications
constraints of HMAs. For this purpose, synchronous dataflow
graphs (SDFGs) can be used. SDFG is a class of dataflow
model of computations [7] widely used to describe and analyze
the behaviour and performance of loop-intensive applications
such as streaming applications, automated control applications,
etc. A SDFG is a directed graph that consists of a finite
set of nodes (called actors) and a finite set of arcs (called
channels or first-in first-out buffers). Actors are used to model
computations in a loop-intensive program while channels are
used to model the exchange of data between the computations.
In order to execute and analyze the performance achievable by
a SDFG, static scheduling strategies are usually applied. Static
schedules for dataflow graphs can be classified into self-timed
schedules (also called as soon as possible schedules) and peri-
odic schedules. In a self-timed schedule, the instances of actors
are executed as soon as possible the required data are available
while in a periodic schedule, the instances of actors are
executed cyclically according to a fixed time period. Self-timed
schedules are known as scheduling strategies that achieve
optimal performance for SDFGs. However, they are more
difficult to implement than periodic schedules. A common
way to get around the implementation complexity of self-timed
schedules is the implementation of software pipelined (SWP)
schedules [1], [11]. Actually, SWP schedules are a subclass
of periodic scheduling strategies that also achieve optimal
performance for dataflow graphs. These schedules are easier
to implement than self-timed schedules although complex to
determine under resource constraints and/or communication
constraints. Actually, resource-constrained SWP scheduling is

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

Platform

j0| Actuators

Heterogeneous Computing Systems

—
Sensors P. P
2. 3
Communication link

Physical
Plant

(a) A cyber-physical system architecture

a difficult problem whose complexity is NP-hard [11]. When
communication constraints are further considered, the problem
is NP-hard in the strong even for an unlimited number of
resources. This paper tackles the SWP scheduling problem
for SDFGs under the resource and communication constraints
of HMAs with the goal of optimizing throughput. The paper
makes two major contributions. The first contribution is an
integer linear program (ILP) to characterize and compute the
SWP schedules that give maximum throughput for SDFGs
under the resource and communication constraints of HMAs
and our second contribution is a time-efficient scheduling
heuristic that generates SWP scheduling solutions close to the
optimal ones generated with our ILP model.

The paper is organized as follows. Section II, presents
background and basic definitions. Section III describes our
ILP model for the scheduling problem. Section IV presents our
scheduling heuristic. Experiments and discussion are described
in section V. Related works are presented in section V and
conclusions are made in section VI.

II. BACKGROUND

In this section, we present some basic definitions and
notations that will be used throughout the paper. Let us denote
by N the set of positive integers, by N* the set of strictly
positive integers, by Q7 the set of rationals, by Q** the set of
strictly positive rationals, by [0, q) the set of positive integers
between 0 and ¢ — 1 where ¢ € N* and by [m,n] the set of
positive integers between m and n where m,n € N.

A. Application Model

Definition I1.1 (SDFG). A SDFG is a multi-rate dependency
graph Gsg¢ = (V,E,P,C, M) where V is a finite set of
nodes called actors. E C V? is a finite set of arcs called
channels. P = {p;; € N*| e = (4,j) € E} is the set of
production rates determined by the function p : E — N* that
associates a production rate p;; with each channel e = (i, j) €
E. C ={c;; e N*| e= (4,j) € E} is the set of consumption
rates determined by the function c : E — N* that associates
a consumption rate c;; with each channel e = (i,j) € E.
My = {m;; € N| e = (i,7) € E} is the set of initial markings
determined by the function m : E — N that associates an
initial marking (i.e an initial number of data tokens) m;; with
each channel e = (i,j) € E.

(b) A SDFG model
Fig. 1. Running Example

Communication
costs matrix (I')

Computation
costs matrix (A)

AlB|c]|D Pi[P,|Ps
Pl1]3]2]3 Pl o0
P,l5[2[1]2 P,l1]o0]2
P,[3]1]6]1 P,| 1

(c) Costs Matrices

Execution semantic. Let Gy4¢ = (V, E, P,C, My) be a SDFG
and let us denote the execution instances of actors in terms of
firings. An actor j € V can be fired if and only if the initial
marking of each of its incoming channels is greater or equal to
the consumption rate. When an actor fires, it consumes a fixed
number of tokens —which is predetermined in design time
—from each of its incoming channels, and it produces a fixed
number of tokens on each of its outgoing channels. Actors of a
SDFG can be specified as stateful or stateless. A stateful actor
is an actor whose firings are executed in a sequential order
while a stateless actor is an actor whose firings could execute
in parallel across different processing units (PUs). These types
of actors respectively enable to specify pipeline and the data
parallelisms in many loop-intensive applications. A stateful
actor is often described as a node with a self-loop channel,
where the channel consists of a fixed number of tokens that
represents the distance separating the successive firings of the
stateful actor. Fig. 1b depicts the SDFG of a loop-intensive
program intended to be executed on the PUs of the archi-
tecture shown in Fig. 1a. This model consists of four actors
(A, B,C, D), each describing a control instruction. Actors A,
B and D are stateful actors and C is a stateless actor. All of
these actors are connected by a set of channels, each describing
the flows of data exchanged between the control instructions,
and some containing an initial number of tokens describing the
distance separating the successive firings of connected actors.
When deploying this model on a multiprocessor architecture,
data parallelism can be exploited by mapping and scheduling
the firings of the actor C on different PUs. At the same time,
pipeline parallelism can be exploited by scheduling the firings
of a stateful actor on different PUs in such a way that the
successive executions of these firings can overlap. Alongside
with data and pipeline parallelisms, task parallelism can also
be exploited by executing the firings of actors B and C' on
different PUs. In order to generalize the scheduling approaches
proposed in this paper, we consider SDFG structures that
consist of stateful and stateless actors.

Consistency and Liveness. In order to guarantee the exis-
tence of a static schedule for a SDFG, consistency [7] and
liveness [2] are two properties that are commonly studied.
A SDFG G4t = (V, E, P,C, M) is said consistent if there
exists a function ¢ : V' — N* such that for every channel

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

e = (4,j) € E, pij X ¢; = c;j X ¢;. The solutions of these
balance equations determine the granularity ¢; € N* of each
actor ¢ € V, where the granularity of an actor corresponds to
the minimal number of firings (i.e activations) required for this
actor to achieve a single stable iteration' of G sqr. Moreover,
Gsqr is said live if and only if each actor in the SDFG can
be activated infinitely often with a bounded number of tokens
without deadlocks. Liveness checking is a complex problem
widely addressed in the literature of SDFG and for which there
exist many algorithms. Since this problem is out of the scope
of this paper, we assume that every SDFG we consider is live.
The SDFG of Fig. 1b is consistent and live and the granularity
of each actor is given by ga=2, q¢p=1, qc=4, qp=2.

B. Architecture Model

Let us consider an loop-intensive application described as
consistent and live SDFG G4 = (V,E, P,C, M) and let
Ghma be the HMA intended to run this application. Gp g is
defined as a tuple (R, A,T") where:

o R is a finite set of heterogeneous PUs, each connecting
with the other ones through logic communication links,
which enable parallel data transmission.

o A is a matrix of size |R| x |V| that specifies the compu-
tation costs A;, where A,; is the worst-case execution
time of a single firing of an actor s € V on a PU z € R.

o T'is a matrix of size |R| x |R| that specifies the commu-
nication costs I'zy, where I'yy is the worst-case delay to
transmit a single token of data from z to y. Note that if
z =y then 'y, = 0 otherwise I'5y # 0.

Fig. 1c illustrates the computation and communication cost

matrices associated with the SDFG and the HMA of our
running example.

C. Scheduling and Throughput

Let Goqr = (V, E, P, C, My) be a consistent and live SDFG
and let us assume that G4 consists of both stateless and
stateful actors. Let us denote by g¢; and ¢; respectively the
granularity and the execution times of any actor ¢ € V, by i,
the k*" firing of actor 4 and by Dij, Msj, Cij Tespectively the
production rate, the initial marking and the consumption rate
of a channel e = (i,j) € E.

Definition IL.2. A schedule of Ggy is a function o : NxV —
Q™ that associates a starting time o (k, i) with every firing iy.

Definition I1.3 (SWP schedules [1]). Let A € QT*. A schedule
o of Gsqr is said software pipelined with period X if for every
actor i € V the following set of equations hold:

ok+mnxgqii) =olk,i)+n-A Vke[0,¢),VneN 1)
where o(k + n x g;,i) is the starting time of the k** firing

of actor 7 in the n*" iteration of G4 and o (k,1) is the time
at which this firing must be scheduled to start in the schedule

1An iteration of a SDFG is an execution sequence that brings back the
graph to its initial state.

o. To simplify mathematical notations in the rest of the paper,
let us replace the notation o(k + n x ¢;,%) by o(n, k,).

Proposition I1.1 (Admissible SWP Schedules [1]). Let o be a
SWP schedule. If o is admissible for G g5, then the following
set of precedence constraints must be hold:

1 e ATl ST, S
o', ,5) > o ([& Xgj +¥) x ey +1—my P13 + 6,
Dij ¥)
Ve = (i,j) € E, Vn' €N, VK’ €[0,q;),Vl € [1, c55].

Since Ggq4r is consistent, then for every channel e = (3,5) €
E, the following equality is fulfilled: p;; X g; = c;; X g;. Using
this equality, Eq. (2) can be rewritten as:

a(nlvklyj) 2 U(’V"’/ X q; +
Pij

Ve = (i,j) € E, Vn' €N, VK’ € [0,q;),Vl € [1, cj5].
3

Simplifying further, Eq. (3) can be rewritten in the form:

o(n',K,j) > o(n,k,i) + &, Ye = (i,j) € E,Vn’ € N,VK’ € [0,g;).

)
where:

K X cij +1—mij — pij
Dij

n=n'+|—x|

= ” Vi € [1, cij)

k= [k' X Cij +1—mi; —pij
Pij

Actually Eq. (4) is a set of precedence constraints, each
characterizing the dependency relation induced by any channel
e = (i,7) € E between a pair of dependent firings (i, jx/) in
any admissible SWP scheduling of G 4.
Throughput and Iteration Period. Let o be a SWP schedule
of period A for G,qr. The throughput S achievable by a
schedule o of G is defined as the average number of stable
iterations of G 44y initiated per time unit in this schedule. More
formally, 3 is given by:

—‘ mod g;, VI € [1,c¢;4]

B=+ ()

III. ILP FORMULATION

In this section, we present our ILP model to perform the
SWP scheduling of SDFGs on HMAs. Our model consists of
different constraints separated into cyclicity, resource, com-
munication and precedence constraints. We consider as inputs
a SDFG G. = (V,E,P,C,Mp) and a HMA Gime =
(R,A,T) and as objective function, the period A\ achievable
by a SWP schedule o of Gs4r. By Eq. 5, the throughput 3
achievable by G4 in the schedule o is proportional to the
period A of this schedule. Hence, a schedule that minimizes A,
maximizes implicitly the throughput. The scheduling entities
considered are the firings of actors within Gs4y. For the rest of
the section, let g; be the natural granularity of an actor ¢ € V.

Cyclicity constraints. In order to ensure that each firing of
each actor is executed periodically with a period A our ILP
model incorporates the set of cyclicity constraints that must
be fulfilled by any SWP schedules ¢. These constraints are
expressed by Eq. (1). Since o(n,k,7) = o(k + n X ¢;,1),

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

we reformulate Eq. (1) and we get the following cyclicity
constraints:

o(n,k,i) =o(k,i)+n-A, VieV,Vk€[0,¢),Vn €N 6)

Resource constraints. When scheduling Gggr on Grma, We
need to ensure that each firing of each actor is assigned exactly
to one PU. In order to formulate these constraints, we define a
0 —1 integer variable w; ; such that, w; x ; = 1 implies that
the k%" firing of actor i is assigned to the PU z and Wz ki =0
otherwise. Using this variable, we formulate the following set
of resource constraints which ensure that each firing of each
actor is assigned to a single PU:

Z Wy, ki = 1

Vx€R

Vi€V, Vk € [0,q) 7

Since Goqr consists of stateless actors whose firings may
be executed in parallel and/or stateful actors whose firings
may be pipelined, we need to ensure that the execution of
independent firings of actors cannot overlap on a same PU. For
this purpose, we formulate the following set of inequalities:

U(nv ka i) + Azi = U(nli k/:j) S M(l — Wy ki * w:t,k:',j)

or

(0, K,5) + Daj — o(n, ki) < ML~ W s -waprg) O

Vn,n' € N,Vi,j € V,Vk € [0,¢;), Yk’ € [0,q;),Vz € R
Actually, Eq. (8) is a set of non-linear disjunctive constraints
which assert that two firings assigned to the same PU cannot
be executed at the same time on this PU. In these constraints
we use M, a big integer value such that the constraints hold
only for the firings assigned to the same computing unit, i.e
Wz ki = Wgk; = 1. The disjunctive constraints described
by Eq. (8) could be linearized in two steps. First, we replace
M(1 — wg ;- W k) bY M(2 — wg ki — We ;) and then
Eq. (8) becomes:

o(n, k,i) + Agi — U(nlv klvj) <M(2- Wy, ki — wm,k’,j)

T
o(n' k', 3) + Dgj — U(Z,kvi) S M2 —wg ki — We,rt,j)
Vn,n' € N,Vi,j € V,Vk € [0,q;),Vk' € [0,9;),YVz € R

)]

Second, we introduce another 0 — 1 integer variable dg ; x’ ;
such that dj; 1/ ; = 1 implies that the kth firing of actor 3 is
scheduled before the k't firing of actor j and dj ;k/ ; = O
otherwise. Now, using the variable dj, ; 1 ; the set of disjunc-
tive constraints described by Eq. (9) could be linearized and
rewritten as:

o(n,k,i) + Dgi —o(n', k', §) < M(2 — wg ki — Wa,k;,5)+

M(1 —dp,ip,5)
o(n, ki) + Dgi —o(n/, k', j) < M2 — wg g, 5 — W kj 5t

i,k 5
Vn)nl eEN,Vi,j € V,Vk € [07111')7\7]‘7' € [01 QJ))V'T €ER

(10)
Simplifying further, equation (10) becomes:
U(na ka l) =+ A:m - 0(71.’, k’aj) S M(3 — Wy, k,i — Wy k!5
i,/
a(nl: kl:j) + A:l:j - O'(TL, k7 ’L) S M(2 — Wg ki — Wy k!, (11)
dii k')

vn,n' € N,Vi,j € V,Vk € [0,¢;),VKk' € [0,q;),Vz € R

Eq. (11) is actually a set of linear constraints that enforces a
ILP solver to schedule the k** firing of actor i before the &/t

firing of actor j when d ;4 ; = 1 or to schedule k" firing
of actor j before the kth firing of actor ¢ when ik =1

Communication and precedence constraints. In order to
ensure that our ILP model can generate admissible SWP
schedules, we should incorporate the precedence constraints
induced by every channel of Gs4r. As shown previously, Eq.
4 characterizes the set of precedence constraints that must be
fulfilled by any admissible SWP schedule of Gqr. Actually,
the constraints expressed by Eq. 4 are constructed by assuming
that the computation cost of every firing of an actor ¢ is
equal to §; and there is no communication cost between a
pair of dependent firings. However, regarding the description
of Ghma, if a channel e = (4,j) € E induces a dependency
relation between two firings i and ji which are assigned
respectively to a PU z € R and a PU y € R with x # y, there
exists a non-zero communication cost between these firings.
In order to consider these costs in our ILP formulation, we
reformulate the precedence constraints described by Eq. 4 and
we get the following set of precedence constraints:
J(nl) k’vj) 2> 0'(71,, kvi) + E Ags X We ki T Z E Ty X
VZER VZERVYER 12)

W, k,i X wz,k’,jy Ve = (1!.7) € E,an 2 N,Vkl € [quj)

where:

n=n’+lix I'k'XCij+l—mij—p1;j
Pij

- ” Vi € [1,c45]

/ o — P
k— [k X cij +1—my, Pza" mod g;, VI € [1, ci;]
Pij
Actually, Eq. 12 is a set of non-linear constraints, each char-
acterizing the dependency relation imposed by each channel
e = (4,j) € E in cach stable iteration of G4y on Gprq. These
constraints could be linearized and rewritten as follows:
o', k',j) > o(n, ki) + Agi - We ki + Tay - (W kit
13)
wy k. — 1), Ve = (4,7) € E,vn' € N,Vk' € [0,¢;)
In order to justify the equivalence between the constraints
described by equations (12) and (13), let us consider a channel
e = (i,j) € E and let iy and jir be two firings such that
the execution of 7; precedes the execution of ji/. Since each

firing is assigned exactly to a single PU (ie. 3> wyr; =
VzER

Y wypy; = 1), the sums u = Y Ay - wek; and v =
VzER

Y. 3 Tay - wak, - wy,; contain only one term different
Vze RVYER
from zero. In fact, if iy is assigned to z* € R and ji is

assigned to y* € R, then we can write Wy~ k; = Wy= k' j = 1,
U = Agri, V= Dguye = Dgmye (Wer ki + Wer pr,j — 1) and
thus, the constraints described by equations (12) and (13) can
be rewritten as follows:

o(n',k,j) 2 o(n,k,i) +u+v, Ve=(i,j) € E,

vn' € N,Vk' € [0, ;) (14

which shows the equivalence between equations (12) and (13).

To summarize, the constraints of our ILP model are given by
equations (6), (7), (11) and (13) and the objective function is \.
For any SDFG and HMA, this ILP model can be instantiated

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

(o] 1 2 ? 4 5 6 7 8 ? 11 12 13 14 115 16 17 18 19 20

H H H

P;| A A C A A c A A c

P, C C C C C C C C C

P; B D D B D D B D D
Iteration O

Iteration 1
Iteration 2

Fig. 2. An optimal scheduling solution obtained by our ILP formulation for the SDFG and the HMA of the running example.

and solved using the ILP solver of CPLEX2, a well known-
industrial solver that are very useful for solving complex
optimization problem. Considering the SDFG of our running
example (refer to figure 1b) and the architecture presented in
Fig. 1a, an optimal scheduling solution returned by the ILP
solver of CPLEX is that depicted in figure 2, where A* = 6.
In this schedule, one can note that each firing of each actor is
executed periodically according to the period A*. Moreover,
one can note that this schedule exploit data parallelism since
some firings of the stateless actor C' can be executed in parallel
across different PUs.

IV. SCHEDULING HEURISTIC

In the general case, when a given SDFG instance induces
a large number of cyclicity and dependency constraints, the
time to find an optimal scheduling solution with an ILP
solver can be exponential because of the resources constraints
of the ILP model. Therefore, there is a need of designing
a scheduling heuristic (with a reasonable time complexity)
that may generate scheduling solutions close to the optimal
solutions. In this section, we present our heuristic (HCS) for
solving the scheduling and optimization problem formulated
in section III. HCS is a decomposed SWP scheduling heuristic
inspired from the heuristic of Gasperoni and Schwielgelshohn
[4], one of the first decomposed SWP scheduling algorithm for
scheduling cyclic dataflow graphs under resource constraints.
Actually, decomposed SWP scheduling is an approach that
consists in separating the SWP scheduling problem of dataflow
graphs under resource constraints into two sub-problems; the
first to satisfy the dependency constraints of the graphs and
the second to satisfy resource constraints. In this section, we
review the heuristic of Gasperoni and Schwielgelshohn that
we denote by GS, and then, we present our heuristic.

A. Overview of the heuristic GS

Let stdf = (V, E, My, d) be a timed homogeneous SDFG
i.e. a timed SDFG where the production and consumption rates
of actors are all equal to 1 where V is the set of actors, F is
the set of channels, M is the set of initial marking and o is a
function that associates a latency with each actor ¢ € V. Now,
let us consider a multiprocessor architecture with p identical
PUs for wadf , where p is a finite number (p # oo) and the
inter-PU communication costs are negligible. The main idea
of GS is the following. Assume that we have an optimal SWP
schedule o of period A\, for wadf without considering the

2https://www.ibm.com/analytics/cplex-optimizer

Algorithm 1: GS Heuristic

Input: A timed homogeneous dataflow graph
Ghsar = (V, E, My, §), a multiprocessor architecture
with p identical PUs.
Output: A valid SWP schedule o of Gﬁwdf over T iterations.
/] Step 1: Schedule the graph wadf Jor unlimited resources.
Compute an optimal schedule o, of period A for G}wdf and
let s;° be the starting time of the first activation of a node
1 € V in the schedule oo;
/] Step 2: Construct the acyclic dependency graph Gaag
Gadg + wadf;
foreach channel e = (i,j) € E do
if (s5° mod Ao < $5° mod Ao + 6;) then
| delete the channel e from Gaag;
end
end
/] Step 3: Schedule G o4y under resource constraints
8 Compute a list schedule o, of Gaq44 for the p identical PUs
and let A be the length of o, and o4(i) be the starting time of
an actor 7 € V in this schedule;
/I Step 4: Compute a valid SWP schedule of GY, sdf under
resource constraints
9 foreach actori €V do
10 for n < 7T do

=

N AU A WN

oo}

1 a(n,i):oa(i)+(n—|— U\;D - A
12 end

13 end

14 return o;

resource constraints of the architecture —i.e. a SWP schedule
with p = co—and that we want to deduce a SWP schedule
of period X for G, 4 under resource constraints —i.e. a SWP
schedule with p # co—. A way of building the schedule o is
to keep the structure of the schedule o, and to reorganize the
execution of actors within this latter schedule in such a way as
to find the period A that meet both the resource constraints of
the architecture and the precedence constraints of G}wdf. The
heuristic GS proceeds in four steps. Each of these steps are
described in Algorithm 1. In the first step, the schedule o, is
built for an infinite number of PUs. Since this schedule is not
constrained by the number of resources, it can be determined
in a polynomial-time [4]. In the second step, some dependency
information from the schedule o, are used to delete some
channels within wadf in such a way as to obtain an acyclic
graph Goq4 which contains only direct precedence arcs (i.e.
arcs without tokens). A list scheduler is then used in the third
step to determine the schedule o, of G444 on the p PUs, where
p # oo. Finally, in the fourth step, a SWP ¢ of G}asdf under
resource constraints is deduced from the schedules o, and 0.

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: HCS-Heterogeneous Cyclic Scheduling

Algorithm 3: HAS-Heterogeneous Acyclic Scheduling

Illpllt: Gadf = (V; E, M(),P, C), Ghsdf = (V’El, M(’J),
Ghma = (R, A7 P)
Output: A SWP schedule o of Grsar over T iterations.
// Step 1: Compute an initial schedule
Set Grsap into a timed homogeneous graph G'}wdf and
calculate an optimal SWP schedule oo, of period Ao for
Gﬁsdf and let s7” be the starting time of the first activation of
a node ix € V' in the schedule o ;
/I Step 2: Construct the acyclic dependency graph Ggaaq
Gadg < Ghasar;
foreach arc e = (ir, jx') in Gagg do
if (s57, mod A < 8, mod Aso + 05,,) then
| delete arc e from Gaqg;
end
end
// Step 3: List scheduling of Gaqg on Ghma
8 Use Algorithm 3 to calculate a schedule o, of Goqg under the
resource and communication constraints of on Gpa-;
/I Step 4: SWP scheduling of Gsgr on Grma
9 A+ 0
10 foreach node i, € V' do
1 Let succ(iy,) be the set of successors of 4 in the graph
Ghsap, AFT (i) be the actual finishing time of i, in the
schedule o, and proc(i;) be the processing unit on
which 4, is mapped to in the schedule og;

-

N A s W

12 foreach j,, € succ(iy) do

13 if ()\ < AFT(Zk) + Fp'r‘oc('ik)p'roc(jk,)) then
14 | A AFT(“C) I Fproc(ik)proc(jk,);

15 end

16 end

17 end

18 foreach node i, € V' do

19 for n < 7T do

20 | o(n,ik) = oalix) +n- A
21 end

22 end

23 return o,

The correctness of GS can be found in [4].

B. Description of the heuristic HCS

Let Gsqr = (V, E, My, P,C) be a consistent, live and non-
timed SDFG and let G, = (R, A,T) be the architecture on
which G4 is intended to be deployed.

The heuristic HCS shares the same idea with the heuristic
GS. However, the main difference between these heuristics is
that HCS accommodates both the resource and communication
constraints of heterogeneous multiprocessor architectures to
schedule SDFG. Before presenting HCS, we first convert G 44y
into an equivalent homogeneous SDFG G4 = (V', E', M}).
The construction of Greqr = (V', E’, My) is performed with
the algorithm of de Groote et al. [8], which generates for any
consistent SDFG, an equivalent homogeneous representation
(also called linear constraint graph). Actually, V' is a set of
nodes %, where 4 € V and k € [1, ¢;], g; being the granularity
of actor ¢. E' is the set of arcs between these firings and My is
a function, that associates with each arc e’ = (¢;,j,/) € F/,
an initial number of tokens. Fig. 3a depicts the equivalent
homogeneous graph obtained for the SDFG of our running
example.

Input: an acyclic dependency graph Ggaqy, a HMA
Ghma = (Ry A) F)
Output: A list schedule of o, of lenght A
// Phase 1: prioritizing
Compute the scheduling rank of each node i, € V' and
generate a scheduling list, where nodes are sorted by
increasing order of scheduling ranks;
// Phase 2: mapping
while the scheduling list is not empty do
Select the first node i from the list;
foreach z € R do
Compute EFT(x,ix) using an insertion-based
scheduling policy;

-

wm oA W N

end
Get the PU z that minimizes the value of EFT and map the
node ix on x;

N

end
return the schedule o, obtained ;

e o

TABLE I
SCHEDULING LIST FOR THE ACYCLIC DEPENDENCY GRAPH OF FIG. 3C

% A A [Ci [Ca | B [Cs [Ca] D1 | D2
Tank(ig) | 0 | 7 | 7 | 7 | 14 | 14 | 14 | 19 | 24

HCS takes as inputs Gsgf, Ghsqfs Ghma and it outputs a
SWP schedule of Gpsqr under resource and communication
constraints. The heuristic consists of four steps (refer to
Algorithm 2):

Step 1. In this step, the graph G},.gf is firstly set into a timed
homogeneous graph Gﬁsdf = (V',E', M{,J), where ¢ is a
function that associates with every node i € V', a time cost

d;, such that:

By, = AT 5. FmEE (15)

where AT** is the worst delay to process a firing actor i
on the architecture Gy,,, and I'™%* is the maximum inter-
PU communication delay. Fig. 3b illustrates the graph G% daf
for our running example, where for any value of k the
time costs of nodes are given by d4,=7, dp,=5, dc, =8, and
dp,=5. Secondly, an initial SWP schedule o, is calculated.
Actually, this schedule does not satisfy neither the resource
constraints nor the communication of Gp,4, however it gives
some interesting information about the dependency relations
between the nodes of G,44¢. Fig. 3d shows the schedule o, of
period Ao, = 17 for the graph G qf Of our running example.

Step 2. The execution pattern of o, is used to delete some
arcs in Gp4qp in such a way as to obtain an acyclic dependency
graph Ggq4. The arc deletion strategy used in HCS is the
same than that of the heuristic GS (see Algorithm 1). Using
this strategy, every arc with tokens in Gpsqr Will not be
considered in G,qg4. Fig. 3c illustrates the acyclic dependency
graph obtained for our running example.

Step 3. The acyclic graph Gg,4y is scheduled under the
resource and communication constraints of Gp,,,. In order
to achieve this, we have designed a list scheduling algorithm
denoted by HAS (algorithm 3), where HAS stands for hete-
rogeneous acyclic scheduling. HAS takes as inputs the graph
Gadg, the architecture model G, and it outputs a schedule

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

® (=D

(a) Homogeneous representation Gpsaf
of the SDFG depicted in Fig.1b.

(b) Timed homogeneous graph Gf, sdf-

(c) Acyclic dependency graph Gaqg-

012 34 56 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
T T S | (I T T T T T B T | R S O N | I T T Y T I S Y I | T T M M 1
| L O O |||||||I! T rr L I | I I A I I | rrrrvrr
' 1 |
I A A P A A ':l A A |l
G R Ve
[A 1 [A L . G
[1 F 4 F 3 a2 % i 1 [!
A G R R, G S)
[T T S O T T T A R N T I EE]
SEERE RN R RN = 1288 ! ERERREE T
[S T T A T A S A A C [A A C . Voo
RERERERRRARES i - ERRERRERNE : 3 402 607 8
T A A A A By R R R A O B, [T T A T O A T T A T 1
SRR D D RN P : P
I O I R O A A S S O i 2 I D, D,] Pi{A | A & HE
Iteration 0 P clclc ¥
oo
Iteration 1 2 1 4 —
Iteration 2 PS Bl Dl

(d) An optimal SWP schedule o

of Gz sdf without resource and communication constraints.

(e) List Schedule of G444 under resource
and communication constraints of Gpmaq.

0 2 3 4 5 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

j 1 ! 1 b

P A Al G I Y 7 Y Pl [ala] o

P, cfielie; Lo CEE P aElE P

Ps B, Dy | B i £ D]
Iteration O Iteration 1 Iteration 2

(f) SWP schedule o of G},547 under the resource and communication constraints of Gpymq-

Fig. 3. Illustration of HCS Heuristic for the running example.

0q of Ggagg 0n Gpypq. This scheduling algorithm consists of
a prioritizing phase and a mapping phase.
o Prioritizing Phase. This phase requires the scheduling

« Mapping Phase. Nodes are selected from the scheduling
list by increasing order of the ranking and each node is
mapped on the PU of Gpp, that minimizes its earliest

rank (i.e. the priority) of each node of G,qy to be
calculated firstly. The scheduling rank of a node i, € V'
is calculated by a recursive function rank given by:
e {rcmk(]k,) + 6jk’}

Tk

max

rank(ix) =
jk,E pred

(16)
where pred(i,) is the set of immediate predecessors of
i), For every node without predecessors, rank(i,) is set
to zero. Secondly, a scheduling list is generated by sorting
the nodes by increasing order of scheduling ranks. Tie-
breaking is performed randomly to sort the nodes with
equal ranks. It can easily be shown that the increasing
order of scheduling ranks provides a topological order
of the nodes, which is a linear order that preserves the
dependency relations. Table I gives the scheduling list of
the acyclic graph (G.q4) depicted in Fig. 3c on the HMA
of the running example. As it can be noted, nodes within
this list are sorted by increasing order of ranks and this
order preserves the dependency constraints of Ggqg.

finishing time (EFT). To map a selected node on a
selected PU, we use an insertion-based scheduling policy
that tries to insert if possible the node in an earliest idle
time slot of the PU (i.e an idle time interval between two
already scheduled nodes on this PU) while ensuring the
preservation of precedence relations. Let EFT'(z, i) be
the earliest finishing time of the node ¢; on the PU z:

EFT(z,i}) = max{avail(z), ready(z, i) } + Agi an

where avail(z) is the earliest time at which the PU z
is available to execute a new node and ready(z,ix) is
the instant at which the node ¢; can be processed on the
resource z. The value of ready(z,ix) is given by:

ready(z, 1)) = max {AFT(jk,) + I"moc(j;C)Z} (18)

d € pred(iy)
where pred(i,) is the set of direct predecessors of the
node i, € V', AFT(j,,) is the actual finishing time of
the node j,, and proc(j,,) gives the PU on which the

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I
BENCHMARKS CHARACTERISTICS

Benchmarks Description Number of Actors | Stateful actors
bitonicSort | Recursive implementation of the bitonic sorting network 61 7
fft Fast Fourier Transform kernel 17 2
filterBank A filter bank to perform multi-rate signal processing 53 6
radar Radar Array Front-End 54 6
tde Time delay equalization 42 5
TABLE III
RESULTS OF AVERAGE SOLVING TIMES (SEC) OF HCS VERSUS ILP SOLVER
Benchmarks NP=2 NP=4 NP=8 NP=16
- HCS ILP HCS ILP HCS ILP HCS ILP
bitonicSort 581 | 776.72 15.97 | 3391.98 34.13 | 9017.86 114.05 00
fft 3.44 | 323.29 10.98 | 1798.13 21.13 | 6123.16 64.61 18765.57
filterBank 5.62 | 747.08 15.18 | 3065.29 32.66 | 8656.55 99.08 00
radar 5.76 | 756.65 15.11 | 3168.76 33.25 | 8659.23 102.23 00
tde 5.12 | 685.64 14.01 | 2891.86 28.75 | 7745.71 82.24 00

node j,, is mapped to. For nodes without predecessors,
ready(z,i;) is set to zero.

Fig. 3e depicts the schedule obtained with HAS by considering
the acyclic graph shown in Fig. 3c and the HMA of our
running example. The length of this schedule is equal to 8.

Step 4. A valid SWP schedule o of period A for Gpeqr is
derived under the resource and communication constraints of
Ghma- In order to derive this schedule, we first calculate the
period A with the information provided by the o, and the
communication matrix I'. Actually, A is the minimum time
required to process both the computations and communications
of every actor in a single iteration of Gpsqr. Using this
period and the equation o(n,i;) = 0q(ix) + 1 - A, we
derive the schedule o which respect both resource, precedence,
communication and cyclicity constraints. Fig. 3f depicts a valid
SWP schedule returned by HCS for the SDFG presented in
Fig. 1b considering the costs matrices presented in Fig. lc.
In this schedule, a new iteration of the SDFG occurs every 9
time units (i.e A = 9).

V. EXPERIMENTS AND DISCUSSION

In order to evaluate the performance of HCS heuristic, we
performed a broad range of experiments. Experiments were
performed with the application benchmarks of Streamlt [9].
We chose Streamlt benchmarks because they provide a good
representation of many loop-intensive applications. A brief
description of the chosen benchmarks is given in Table II.
These benchmarks are streaming applications that embed data,
task and pipeline parallelisms. A detailed description of the
benchmarks can be found in [9]. We set the number of stateful
actors for each benchmark to approximately 10% of the total
number of actors. In order to generate heterogeneous multi-
processor architecture for the benchmarks, we have adapted
the Streamlt compiler with a function that takes as inputs
five parameters (NP, HFS, HFC, MCC, MIPCC) and outputs
asymmetric computation and communication cost matrices
as described in Fig. lc. The parameter NP stands for the

number of PUs on a given architecture. HFS and HFC stand
respectively for the heterogeneity factor for PUs speed and the
heterogeneity factor for PUs communication. A high percent-
age of HFS implies high difference in computation costs for
the PUs and a high percentage of HFC implies high difference
in communication costs. MCC and MIPCC stand respectively
for the mean computation cost of the input SDFG instance and
the mean inter-PUs communication cost. In order to generate
the computation cost matrix, the generation function selects
randomly a mean computation cost A; of every actor 4 from
an uniform distribution in the range of 0 to 0.2 x MCC
and then, the computation cost of every actor on every PU
is randomly selected from an uniform distribution of range
A; x (1— HTFS)S Ay <A X (1+ HTFS) Replacing MCC,
HFS, Ay, A, respectively by MIPC, HFC, I',,,, f‘zy in this
distribution, we generate the communication cost matrix. By
definition, we set I'y,, = Ty, for each pair (z,y) of PUs and
whether z is equal to y, we set the value of I'z, to 0. The
following sets were considered for the experiments: NP={2,
4, 8, 16}, HFS={0.5, 1, 1.5, 2}, HFC={0.1, 0.75, 1.25, 2},
MCC={15, 30, 60} and MIPCC={10, 25, 40}. Experiments
were performed on a PC Intel(R) core TM i7-7600U running
at 2.80GHz with 16GB of RAM. In order to calculate an exact
scheduling solution for a given benchmark, we have used the
ILP solver of CPLEX 12.5.0 and OPL script language. In order
to generate the equivalent homogeneous representation of each
SDFG model, the transformation technique of de Groote et al.
[8] was implemented.

A. Evaluation Metrics

Our experiments are based on the following metrics:

« Solving Time: the time to find a scheduling solution.

e Bound Gap (BG): this metric is the average ratio be-
tween the scheduling solutions obtained with HCS and
the ILP solver of CPLEX. It enables to evaluate how far
the throughput of schedules returned by the heuristic HCS
is from the throughput of schedules generated with the
ILP solver. The value of BG is given by:

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

Average BG (%)

e
e e

bitonicSort ft filterBank radar tde bitonicSort fit

WNP=2 W NP=4 mNP=8

(a) Minimum values of BG

Fig. 4.

mNP=2 ®NP=4 =NP=8

(b) Average values of BG

Maximum BG (%)

et e et et e e

filterBank radar tde bitonicSort fft filterBank radar tde

ENP=2 WNP=4 mNP=8

(c) Maximum values of BG

Results of minimum, average and maximum BG for different values of NP

Average Speedu
Average Speedu

filterBank

bitonicSort radar tde bitonicSort

W HFS=0,5

(a) Speedup for different values of HFS

WHFS=1 WHFS=15 @ HFS=2

WHFC=0,1 WHFC=0.75 WHFC=125

(b) Speedup for different values of HFC

°
2

Average Spe:

filterBank

radar tde radar tde

filterBank

HFC=2 WNP=2 mNP=4 EmNP=8 © NP=16

(c) Speedup for different values of NP

Fig. 5. Results of average speedup for different values of HFS, HFC, NP

Ahes — A
— hcs cplex % 100
Acplem

BG 19)
where Apcs and Agpler are respectively the periods of
scheduling solutions obtained with HCS and CPLEX. A
low percentage of BG means that the scheduling solution
obtained with HCS is very close to the solution obtained
with the ILP solver. Conversely, a high percentage of BG
implies that the solution obtained with HCS is suboptimal
compared to that obtained with the ILP solver.

o Speedup. Speedup is defined as the sequential execution
time of a SDFG divided by the latency (7) of this graph,
where 7 is the amount of time required to execute all
the firings of every actor in each stable iteration of the
graph. To calculate the sequential execution time of a
SDFG, we assign the firings of every actor to the single
PU that minimizes the cumulative computation costs and
we characterize the speedup by the following equation:

> @ X Agi)
ev

T

min[
TER ~;

Speedup = (20)

B. Performance Results

In order to evaluate the timing performance of the heuristic
HCS, we compared the solving times of the ILP solver with the
solving times of the heuristic HCS. Since We have limited the
running time of CPLEX to 8 hours. Table. III plots the results
of the average solving times for our benchmarks. The ILP
solver was able to find a scheduling solution for all multipro-
cessor architectures except for the 16-PUs architectures, where
oo means that the solver fails to find a scheduling solution
within 8 hours. Conversely, the scalability of HCS is easily
visible and in some cases HCS is approximately 265 X faster
than the ILP solver.

In order to measure the throughput performance of schedu-
ling solutions returned by the heuristic HCS, we studied the
variations of BG for the benchmarks according to different
values of NP. Fig. 4 plots the results of minimum, average
and maximum values of BG. As it can be observed, the
average values of BG decrease as the values of NP increase.
This means that HCS performs better for a large number
of PUs and more the number of PUs is greater, more the
scheduling solutions returned by HCS are getting closer to
those returned by CPLEX. Moreover, for all the benchmarks,
it can be observed that the minimum and maximum values of
BG respectively vary approximately in the range of 22% to
28% and the range of 31% to 36% as when as the value of NP
increases. This means that the scheduling solutions returned by
HCS are getting closer to the solutions returned by CPLEX
in the range of 72% to 78% in the best case and 64% to
69% in the worst case. Actually, these results characterize
the performance bounds of HCS in terms of throughput
achievement for the different benchmarks considered.

Now, if we want to characterize the performance of the
heuristic HCS with respect to hardware features, we should
study the variations of speedup for different types of hetero-
geneous multiprocessor architectures. For this purpose, we set
the parameter NP to 4 and we evaluate the speedup ofthe
heuristic with respect to different values of HFS and HFC and,
we set the parameters HFS and HFC respectively to 1.5 and
1.25 and we evaluate the speedup of HCS for different values
of NP. The results of speedup are shown in Fig. 5. It can be
observed in Fig. 5a and Fig. 5b respectively that, the speedup
of HCS gradually decreases when the values of HFS and
HFC are increased. The interpretation of these results is that,
whether there is a high variability in the computation and inter-

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

PUs communication costs, the latency of scheduling solutions
returned by HCS is higher than the sequential execution time
of the application graphs and parallelism is less exploited by
the heuristic. At the same time, it can be noted for the highest
values of HFS and HFC that, the speedup of the heuristic is
greater than or equal to 1. This means that, if we take a higher
risk to increase the value of HFS and HFC, we will certainly
loose parallelism but, there is a guarantee that the latency
of scheduling solutions returned by the heuristic can not be
worse than the sequential execution time of the application
graphs. Moreover, Fig. Sc, it can be observed that the average
speedup of all the benchmarks increases as the values of NP is
increased. Based on these results, we can clearly state that the
number of PUs on a given architecture, has a great impact on
the performance achievable by the heuristic HCS and the more
greater is the number of PUs, the better is the performance of
the heuristic.

VI. RELATED WORKS

Resource-constrained SWP scheduling of loop-intensive
program is a problem that has been extensively studied during
the past decades. A variety of techniques have been proposed
in the literature to tackle this scheduling problem. Feautrier
[3] and Govindarajan et al. [S] have proposed discrete-time
ILP formulations for solving the resource-constrained SWP
scheduling of loop-intensive programs. These ILP formula-
tions hold both for architectures with homogeneous resources
and those with heterogeneous resources. However, none of
the proposed ILP models consider communication constraints,
which are inherent to the SWP scheduling problem tackled by
this paper. Moreover, in their ILP formulations, Feautrier [3]
and Govindarajan et al. [5] assumed that the loop-intensive
programs are described with homogeneous SDFGs, which
are particular cases of SDFG where the production and
consumption rate of actors are equal to 1. Recently, Udupa
et al. [1] have proposed an ILP formulation to tackle the
resource-constrained SWP scheduling problem of SDFGs on
multiprocessor architectures with graphical processing units
(GPUs). Although this ILP formulation operates directly on
SDFGs and hold both the architectures with homogeneous
or heterogeneous GPUs, it does not consider communication
constraints. In this paper, we have proposed a new ILP
formulation for the SWP scheduling problem of loop-intensive
programs. Our ILP formulation directly on SDFGs and it
accommodates both resource and communication constraints
while optimizing throughput. To the best of our knowledge,
there is no work in the current literature that proposes such an
ILP formulation. Lam [11], Gasperoni and Schwielgelshohn
[4] and Robert et al. [10] have introduced SWP scheduling
heuristics, to derive resource-constrained SWP schedules for
homogeneous SDFGs that may contain cyclic dependencies.
Although these heuristics are guaranteed, none of them con-
sider neither architectures with heterogeneous resources, nor
with communication constraints. Our heuristic (HCS) shares
the same idea than the heuristic of Gasperoni and Schwiel-

gelshohn. However, contrary to this heuristic, our heuristic
deals with any type of SDFGs and it accommodates both

the resource and communication constraints of heterogeneous
multiprocessor architectures to derive SWP schedules.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an ILP formulation and a
cyclic scheduling heuristic (HCS) to tackle the SWP schedul-
ing problem of SDFGs on heterogeneous multiprocessor ar-
chitectures under resource and communication constraints,
with the goal of optimizing throughput. Our ILP formulation
operates on SDFGs instance and it accommodates task, data
and pipeline parallelisms. Experiments made with StreamlIt
application benchmarks show interesting performance results
for the heuristic HCS. Indeed, the heuristic is ~ 265 x faster
than CPLEX solver and it was able to generate scheduling
solutions close to the scheduling solutions returned by CPLEX
within a range of ~ 72% to 78% in the best case and ~ 64%
to 69% in the worst case. As future work, we would like to
minimize the ratio between the scheduling solutions returned
by the heuristic HCS and the scheduling solutions returned by
CPLEX (i.e the values of BG). For this purpose, there is a need
of minimizing the period of the scheduling solutions returned
by the heuristic HCS. To achieve this goal, a possible research
direction would be to investigate new prioritizing strategies
for the list scheduling algorithm (i.e. Algorithm 3), that could
minimize the length of schedules returned by this algorithm.

REFERENCES

[1]1 A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software
Pipelined Execution of Stream Programs on GPUs. In CGO, pages 200-
209, 2009, IEEE computer Society.

[2] A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. D. Theelen, M. R.
Mousavi and S. Stuijk. Liveness and Boundedness of Synchronous Data
Flow Graphs, 2006 Formal Methods in Computer Aided Design, San
Jose, CA, 2006, pp. 68-75.

[3] Paul Feautrier. Fine-grain scheduling under resource constraints. In Lan-
guages and Compilers or Parallel Computing , number 892 in Lectures
Notes in Computer Science, pages 1-15.Springer Verlag, 1994.

[4] E. Gasperoni and U. Schwielgelshohn, Generating Close to Optimum
Loop-Schedules on Parallel Processors, Parallel Processing Letters, 4(4),
1994, pp. 391-403.

[5] R. Govindarajan, E. R. Altman, and G. R. Gao, Minimizing Reg-
ister Requirements Under Resource-constrained Rate-optimal Software
Pipelining, in MICRO 27: Proc. of the 27th annual Intl. Symp. on
Microarchitecture, 1994, pp. 8594

[6] E. A.Lee, ”Cyber Physical Systems: Design Challenges,” 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), Orlando, FL, 2008, pp. 363-369.

[7]1 E. A. Lee and D. G. Messerschmitt, ”Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing,” in IEEE Transactions
on Computers, vol. C-36, no. 1, pp. 24-35, Jan. 1987.

[8] R. de Groote, J. Kuper, H. Broersma and G. J. M. Smit, "Max-Plus
Algebraic Throughput Analysis of Synchronous Dataflow Graphs,” 2012
38th Euromicro Conference on Software Engineering and Advanced Ap-
plications, Cesme, Izmir, 2012, pp. 29-38, doi: 10.1109/SEAA.2012.20.

[9]1 W. Thies, M. Karczmarek, and S. P. Amarasinghe. 2002. StreamIt: A lan-
guage for streaming applications. In Proceedings of the 11th International
Conference on Compiler Construction (CC’02). Springer, London, UK,
179-196.

[10] Y. Robert, A. Darte and P. Calland, ’Circuit Retiming Applied to De-
composed Software Pipelining” in IEEE Transactions on Parallel & Dis-
tributed Systems, vol. 9, no. 01, pp. 24-35, 1998. doi: 10.1109/71.655240

[11] M. Lam, "Software pipelining: An effective scheduling technique for
VLIW machines”, In Proceedings of the ACM SIGPLAN 88 Conference
on Programming Language Design and Implementation (PLDI 88), July
1988 pages 318-328.

Authorized licensed use limited to: CEA. Downloaded on March 01,2024 at 12:21:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

