
Scheduling Real-time Deep Learning Services as
Imprecise Computations

Shuochao Yao∗, Yifan Hao†, Yiran Zhao‡, Huajie Shao∗, Dongxin Liu∗,
Shengzhong Liu∗, Tianshi Wang∗, Jinyang Li∗, Tarek Abdelzaher∗

University of Illinois at Urbana-Champaign∗, VMware† , Pinterest‡

Email: {syao9, yifanh5, zhao97, hshao5, dongxin3, sl29, tianshi3, jinyang7, zaher}@illinois.edu

Abstract—The paper presents an efficient real-time scheduling
algorithm for intelligent real-time edge services, defined as those
that perform machine intelligence tasks, such as voice recog-
nition, LIDAR processing, or machine vision, on behalf of local
embedded devices that are themselves unable to support extensive
computations. The work contributes to a recent direction in
real-time computing that develops scheduling algorithms for
machine intelligence tasks with anytime predicition. We show
that deep neural network workflows can be cast as imprecise
computations, each with a mandatory part and (several) optional
parts whose execution utility depends on input data. The goal of
the real-time scheduler is to maximize average accuracy of deep
neural network outputs, while meeting task deadlines, thanks to
opportunistic shedding of the least necessary optional parts. The
work is motivated by the proliferation of increasingly ubiquitous
but resource-constrained embedded devices (for applications
ranging from autonomous cars to the Internet of Things) and
the desire to develop services that endow them with intelligence.
Experiments on recent GPU hardware and a state of the art deep
neural network for machine vision illustrate that our scheme can
increase the overall accuracy by 10% ∼ 20%, while incurring
(nearly) no deadline misses.

I. INTRODUCTION

This paper develops a scheduling algorithm for deep neural
network tasks that maximizes result accuracy while meeting
task deadlines. The work observes that modern machine intel-
ligence workflows (specifically, deep neural networks) can be
formulated as imprecise computations [1] with a mandatory
part followed by multiple optional ones. The utility of ex-
ecuting the optional components is input-data-dependent. We
implement deep learning workflows as imprecise computations
that (i) estimate the improvement in result quality attainable
from executing the optional parts, and (ii) shed unnecessary
parts as needed to meet deadlines. The algorithm significantly
improves the ability of the underlying platform to deliver
accurate results, while meeting deadline constraints.

This work is motivated by new applications such as au-
tonomous cars [2], drones [3], and smart IoT objects [4],
[5] that rely on increasingly sophisticated sensors to maintain
awareness of their environment and perform various detection,
recognition, and localization tasks. These tasks typically need
a GPU to process the largely parallel sensor data. For example,
modern cameras might offer around 1 million pixels per frame
and LIDARs will generate up to 10 million 3D points per
frame. A single embedded platform, such as an autononous
car or a drone will typically have multiple such sensors.

Endowing individual sensors with GPUs becomes expensive.
A better architecture might offload the data from sensors to
a local computationally more capable node over a sufficiently
fast local communication fabric (e.g., today, a gigabit switch
costs less than $50). We call such a node, the edge server.
Instances of such an architecture recently emerged [6]–[8] to
support a variety of real-time applications [9]–[11]. The recent
NVIDIA AGX platform line-up is one example of today’s
GPU-enabled nodes designed to be the edge server in such
an architecture (NVIDIA AGX is specifically marketed as
the “brain” node supporting autonomous driving [12]). These
applications motivate exploration of real-time support (e.g.,
scheduling policies) for AI tasks running on the edge server
node.

Recent directions in real-time support for machine intelli-
gence investigated real-time properties of leading AI platforms
(such as the NVIDIA TX1, TX2, and Xavier) [13]–[15],
discussed neural network approximations (via hyper-parameter
tuning) to tune computation to platform capabilities [16]–[18],
and investigated alternative GPU-based implementations of
neural networks that offer real-time guarantees [15], as well
as modes of interactions with GPUs to improve timeliness,
throughput, and accuracy of neural network workflows [12],
[15]. Techniques to reduce communication cost in offloading
machine intelligence have also been proposed [19], [20].

This work differs from the state of the art in two respects.
First, of the current real-time systems literature, to the authors’
knowledge, we are the first to consider a deep neural network
model that offers mandatory and optional parts. We thus
complement existing approaches (that consider per-layer ap-
proximations [16] and code optimizations [12], [15]), offering
a new degree of customization freedom. Second, we are the
first to consider the dependence of the utility of optional parts
on the characteristics of input data. Specifically, we propose a
novel utility metric, based on probability of output correctness
(that we call confidence), and show that this metric can be
predicted on (input) instance-by-instance basis, using a recent
technique in deep learning [21]. As a consequence, our work
enables the implementation of a near-optimal algorithm for AI
confidence maximization subject to schedulability constraints.

The rest of this paper is organized as follows. Section II-C
introduces the technical details of the scheduling model. We
describe system implementation in Section III. The evaluation
is presented in Section IV. We introduce related work in

ar
X

iv
:2

01
1.

01
11

2v
1

 [
cs

.L
G

]
 2

 N
ov

 2
02

0

Section V and conclude in Section VI.

II. NEURAL NETWORKS AS IMPRECISE COMPUTATIONS

In this section, we review relevant fundamentals of neu-
ral networks, present a model of neural network tasks that
breaks them into mandatory and optional stages, and intro-
duce a near-optimal approximation algorithm for accuracy-
maximizing scheduling of these stages, based on a simple
dynamic programming formulation and a fully polynomial
time approximation scheme.

A. Neural Networks Background

Consider a platform that runs deep neural network tasks
to support intelligent real-time applications. Deep neural net-
works have a layered structure. External inputs, such as images
or sound clips, are applied to the first layer. The output of
one layer is then input to the next. A layer can be thought
of as a collection of computations (called nodes), that can
be performed in parallel, each computing a different feature
over the layer’s input data. The number of such nodes (called
the size of the layer) is the dimensionality of the feature
space. Note how inputs to a layer are themselves features
computed by the previous layer. Thus, as more layers are
stacked, each subsequent layer’s features are computed in
progressively more complex spaces, as its inputs constitute
outputs of more layers of prior processing. The last layer,
called the output layer, can directly compute a classification
result based on its (already very complex) input feature space.
The total number of layers is called neural network depth.
On a GPU, it is convenient to keep the size of each layer of
the deep neural network the same, allowing parallel layer-by-
layer execution of nodes on GPU cores. Layer size can be
configured such that all GPU cores are utilized.

Now consider, for example, a network that processes images
to detect the presence of various objects, such as humans,
cars, or buildings. More complex images need more complex
feature computations, and hence more layers to produce a
correct classification; a picture of an empty blue sky will need
far fewer layers to yield a high quality classification result
compared to complex cluttered images. The needed neural net-
work depth is therefore data-dependent. Hence, the scheduled
depth of neural network processing becomes an interesting
scheduling parameter (besides end-to-end deadlines). Since
task complexity is data dependent, this parameter is not known
a priori.

A related challenge lies in the lack of well-defined output
utility metrics and utility functions to serve as a foundation for
deciding on the best neural network depth. Indeed, quantifi-
cation of utility has always been a challenge in most research
aiming at optimizing application-perceived quality metrics.
In this paper, we propose accuracy of results as the utility
measure. We call this metric, confidence (in correctness). Note
that, this metric is largely generalizable, regardless of what the
results are used for, since it is always desirable to have accurate
outputs. It is also trivial to extend this metric to weighted
accuracy, for example, if some tasks are more important

than others. This property makes accuracy maximization a
widely applicable contribution across a variety of machine
learning algorithms and applications. This utility function can
be computed using solutions proposed in recent literature that
estimate probabilistic confidence in output correctness of deep
learning systems (e.g., confidence in correctness of classifier
output) [21], [22].

In this section, we introduce the task model and a corre-
sponding scheduling algorithm, based on imprecise compu-
tations, that maximizes utility across the task set subject to
schedulability constraints.

B. Anytime Neural Network

We consider a model, where requests for executing machine
intelligence tasks (such as identifying and classifying obstacles
in an image) arrive in an event-driven fashion. For example,
if requests are triggered by events such as motion detection
(e.g., by a sensor in a smart space) or obstacle detection (e.g.,
due to LIDAR reflections), triggering a more complex object
identification task.

Normally, tasks will be dispatched on a GPU. In this
paper, we assume that no GPU sharing occurs. Hence, only
one task executes on the GPU at a time. This simplifying
assumption is consistent with our ability to configure neural
network layer size to match the available number of cores,
and allows the work to remain independent of proprietary
algorithms that might be implemented within the GPU to
handle task sharing. Future extensions of this work can relax
this assumptions by considering GPU pipelining/sharing [12],
GPU clusters [23], and GPU heterogeneity [15]. The execution
of multiple consecutive layers constitutes a stage. Individual
stages cannot be preempted. A stage cannot begin to execute
until its predecessor is complete. A scheduler maintains a
queue, deciding which stage of which task to pass to the GPU
next.

At time, t, let the set of tasks that have arrived but have not
yet completed be denoted by J (t), where |J (t)| = N(t) is
the number of tasks. For each task, Ji ∈ J (t), let the number
of stages in the corresponding neural network be Li. We call
the l-th stage, Jil. Hence, we can express Ji as the set Ji =
{Jil | l = 1, · · · , Li}, J l′

i as the set {Jil | l = 1, · · · , l′}. Let
the absolute deadline of a task Ji be di; and let the worst-
case execution time of a stage, Jil, be pil. In our system,
since most of the processing occurs on the GPU, we are able
to ignore the part of the processing that occurs on the CPU. In
an architecture where data copying is fast, the CPU part tends
to be a small constant that can simply be subtracted from the
end-to-end deadline and ignored. Thus, our execution time is
approximated by the GPU execution time including any time
the GPS spends copying data from and to the CPU. We find
it useful to also define the cumulative sum of execution times
of the first L stages of a task (for any L ≤ Li). Let that
sum for a task, Ji, be denoted by PL

i =
∑L

l=1 pil. Similarly,
let the finish time of the L-th stage, JiL, be FL

i , and let the
reward achieved for running the first L stages of a task Ji
by the deadline (i.e., with FL

i ≤ di) be denoted by RL
i . No

reward is derived from the execution of stages that miss the
task deadline.

Algorithm 1 Dynamic programming algorithm
1: Inputs: request index to start, k
2: for i ∈ [k − 1, · · · , N] do
3: for r ∈ [1, · · · , bNRc∆] do
4: if r > biRc∆ then
5: S(i + 1, r) = S(i, r); P (i + 1, r) = P (i, r); continue
6: end if
7: Update S(i + 1, r) and P (i + 1, r) with (1) and (2).
8: end for
9: end for

The purpose of the scheduler is to decide on the number
of stages (called depth, li, to execute for every current task,
Ji, such that the total reward,

∑N
i=1R

li
i is maximized, subject

to the schedulability constraint F li
i ≤ di. If dropping entire

tasks is disallowed, we further constrain the problem to state
that at least li ≥ ωi stages be executed of each task, Ji. We
then call stages, {Jil : 1 ≤ l ≤ ωi} the mandatory part of the
task, and call stages {Jil : ωi < l ≤ li}, optional. Unfortu-
nately, scheduling with deadlines and rewards is NP-complete.
Therefore, we propose a fully polynomial time approximation
scheme, taking EDF as the underlying scheduling policy.

Note that, as argued above, the scheduled resource is the
GPU, not the CPU. By EDF, we therefore mean that tasks
(or, more accurately, individual stages of tasks) are sent from
the CPU to the GPU in EDF manner. When preemption
is required, it can be performed on stage boundaries. In
principle, EDF is suboptimal when non-preemptive regions
are involved (because a stage that executes on the GPU cannot
be preempted). We find, however, that execution of individual
stages in practice takes roughly comparable times. Thus, the
worst-case amount of non-preemption per task (which is the
execution time of one stage) is roughly the same for all tasks.
This amount can simply be subtracted from the end-to-end
task deadline upfront and preemptive schedulability conditions
used on the resulting deadlines. Since the subtracted amount is
roughly the same for all tasks, the order of deadlines remains
the same, and EDF remains (approximately) optimal.

In the rest of this paper, when we mention task dead-
lines, we shall implicitly refer to deadlines computed after
the adjustments above have been performed. That is to say,
deadlines that result after (i) the estimated amount of CPU
processing and (ii) the amount of GPU non-preemption have
been subtracted from the original value.

C. Near Optimal Depth Assignment and Stage Scheduling

Let us quantize the reward function, such that all rewards
{RL

i } are measured in multiple of some basic increment ∆.
For simplicity, we denote bRL

i /∆c as bRL
i c∆. This quantiza-

tion introduces errors but reduces the problem size of our stage
scheduling algorithm. In this subsection, we will introduce and
analyze such tradeoff between efficiency and optimality.

Without loss of generality, assume that tasks, at time t, are
indexed according to their absolute deadlines, {di}, such that

d1 ≤ d2 ≤ ... ≤ dN . Choosing the right depth, li, for each task
(and hence the right reward, Rli

i) can be cast as a dynamic
programming problem. Let R be the largest reward we can
achieve from a single task, i.e., R = max{Rli

i }. We can
thus upper bound the total reward of N tasks with N · R.
The dynamic programming formulation maintains the two-
dimensional table of subproblems, where one dimension rep-
resents the number of considered tasks, i.e., i ∈ {1, · · · , N},
and the other represents quantized total rewards, i.e., r ∈
{∆, 2∆, · · · ,∆bNRc∆}. Each cell in the table is the solution
to a subproblem, S(i, r), that represents optimally selecting the
depth for the top i tasks (who have the top-i earliest absolute
deadlines, according to our indexing), that attains exactly r
cumulative reward in total and takes up the least amount of
execution time possible. For the notational simplicity, we let
P (i, r) be the corresponding least amount of execution time
used by the top m tasks that achieve exactly r cumulative
reward, with a value of ∞ to denote no such solution.

For the first row (i = 1) are simply the utility function of
the task, J1. If given P l

1 ≤ d1, we will initialize S(1, Rl
1)

and P (1, Rl
1) to J l

1 and P l
1 respectively with all other cells in

S(1, r) and P (1, r) being ∅ and ∞ respectively. Since task
indexes are sorted in increasing order of deadlines, under EDF,
a task with a higher index will execute after tasks with lower
indexes. Hence, for subsequent rows, the following recursive
relation applies for columns 1 through biRc∆, where ∆·biRc∆
is the largest possible quantized total cumulative reward for
executing first i tasks. For simplicity, we denote r−∆ ·

⌊
Rl

i

⌋
∆

as r̄li,

S(i+1, r) =

arg min

l∈{ωi+1,··· ,Li+1}

{
P l
i+1 + P

(
i, r̄li+1

)
, P (i, r)

}
,

if P l
i+1 + P

(
i, r̄li+1

)
≤ di+1

∅,
otherwise

(1)

P (i+1, r) =

min

l∈{ωi+1,··· ,Li+1}

{
P l
i+1 + P

(
i, r̄li+1

)
, P (i, r)

}
,

if P l
i+1 + P

(
i, r̄li+1

)
≤ di+1

∞,
otherwise

(2)
The dynamic programming algorithm using the recursive re-

lationship in Equations (1) and (2) is illustrated in Algorithm 1,
where k is the starting task index for the current dynamic table
update. Namely, when a task Jk arrives whose deadline is dk,
existing table rows for tasks with deadlines d < dk stay the
same. Table rows for tasks with deadlines d ≥ dk (including
the new arrival) need to be (re)computed.

Sorting task indexes by deadline, given an updated table,
the optimal solution starts with the cell S(N, rf), where N
is the task with the largest deadline that arrived and have not
yet finished, and rf is the quantized time corresponding to
the absolute deadline of that task. The value l∗N in that cell
is the optimal depth for task JN . The recursive step is as
follows: After determining the optimal depth, l∗i , for task i,

from cell S(i, r), we visit cell S
(
i− 1, r −∆ ·

⌊
R

l∗i
i

⌋
∆

)
, and

decrement i (until we reach J1).
Intuitively speaking, Algorithm 1 can achieve the near

optimal solution as the reward quantization step ∆ approaches
0. By defining ∆ = εR/N and scaling the quantization step
with respect to ε, we will be able to get a solution that is at
least (1− ε) of the optimal one.

Theorem 1: : With ∆ = εR/N , Algorithm 1 is a (1 − ε)
approximation of the optimal task stage scheduling.

Proof 1: : Let OPT be the solution to our task stage
scheduling problem. Since we have a quantized version with
the solution S proposed by Algorithm 1, we can achieve a
trivial claim that:∑

J l
i∈S

∆ ·
⌊
Rl

i

⌋
∆
≥

∑
J l

i∈OPT

∆ ·
⌊
Rl

i

⌋
∆

(3)

From the left-hand side of (3), it is obvious to see that∑
J l

i∈S

Rl
i ≥

∑
J l

i∈S

∆ ·
⌊
Rl

i

⌋
∆

(4)

Recall that ∆ = εR/N , and we let the total cumulative reward
of optimal scheduling policy be ROPT . From the right-hand
side of (3), ∑

J l
i∈OPT

∆ ·
⌊
Rl

i

⌋
∆
≥ ∆

∑
J l

i∈OPT

Rl
i

∆
− 1

≥
∑
J l

i∈OPT

Rl
i −N ·∆

≥
∑
J l

i∈OPT

Rl
i − εR

≥ (1− ε)ROPT

(5)

Combining (3) (4), and (5), we can arrive at the following
conclusion. ∑

J l
i∈S

Rl
i ≥ (1− ε)ROPT (6)

D. Predicting Utility of Future Stages

It remains to comment on how utility is computed. Recent
work [8] proposed a technique for computing confidence in
correctness of deep learning outputs. It groups neural network
layers into a small number of stages (of multiple layers each).
At the end of each stage, a thin softmax function layer is
attached to compute a classification at selected internal layers.
The output of the classifier is a vector of class probabilities,
where the largest probability is called the classification confi-
dence; the probability that the class selected by the classifier is
correct. Accurate confidence estimation was discussed in sev-
eral recent publications [21], [24]–[26]. We choose the model
described in [8] (in its Section II) for utility estimation. The
model estimates, for each task Ji, a confidence in correctness
of output of the current stage, say, Li, which is a probabilistic
value, RLi

i , between 0 and 1.
To estimate utility of future stages, several heuristics are

empirically compared in this paper. These heuristics are:

• Maximum increase: Assume that the next stage will in-
crease the utility from RLi

i to 1. Hence, RLi+1
i = 1. This

approach favors tasks with the lowest current confidence,
since they promise the most increase in utility if executed
further.

• Exponential increase: Assume that the next stage will
reduce distance to 1 in half. Hence, RLi+1

i = RLi
i +

0.5(1 − RLi
i). This, as we show in the evaluation later,

is the most accurate approximation of utility functions of
deep learning systems implemented as imprecise compu-
tations.

• Linear increase: Assume that the next stage will continue
to improve utility linearly. Hence, RLi+1

i = min(1, RLi
i ·

PLi+1
i /PLi

i).

E. Updating Depth Assignment

In principle, the above heuristics can be used to compute the
utility of each future stage of a task once its first (mandatory)
stage has been executed. In practice, however, it is useful to
revisit estimated utility of future stages upon the execution of
each new stage of the task. This may result in a problem if
the updated estimates change, rendering the original (thought-
to-be-optimal) schedule suboptimal. It is easy to show that,
if the updated future utility of a stage (of the current task)
becomes larger, our previous depth assignment still preserves
optimality, since it means we did the right thing running that
task. Otherwise, if the updated utility is lower, it might be we
are running a suboptimal task and may need to reconsider.
In other words, a recalculation of optimal depth assignment
is in order. Recalculating the depth assignment with dynamic
programming is too cumbersome. Since the current task is
always the one with the shortest deadline under EDF, we
would have to re-calculate the optimal depth for all subsequent
tasks if using dynamic programming. We therefore employ
a greedy heuristic instead. The heuristic tries to replace the
remaining stages in J1 (the current task) with the stages in
other tasks that can achieve higher cumulative reward. Assume
that the remaining stages in J1 are from depth l1 +1 to l∗1 , and
l∗i is the previous optimal depth selection for task Ji. Thus:

l̂∗i = arg max
i∈{2,··· ,N}

l∈{l∗i +1,··· ,Li}

Rl
i −R

l∗i
i

s.t.
l∑

l=l∗i

pil ≤
l∗1∑

l′=l1+1

p1l′

(7)

If Rl̂∗i
i − R

l∗i
i > R

l∗1
1 − R

l1
1 , we replace the depth assignment

of J l1
1 with J l̂∗i

i . Otherwise, we follow the original depth
selection.

III. IMPLEMENTATION

We implemented a user space scheduling framework RT-
DeepIoT to verify the effectiveness of our imprecise computa-
tion model at scheduling neural network tasks. Implementing
the scheduler in user space is clearly a disadvantage, as
it increases scheduling overhead. We opted for this design

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Conv Layer

Classi�er Classi�er Classi�er

+ + + + + + + + +

Fig. 1: An illustration of three-stage ResNet.

Trained with Con�dence Calibration

...
...

Stage 1 Stage 2 Stage 3

Classi�er Classi�er Classi�er

Dynamic Con�dence/Utility Estimation

Stage 1 Stage 2 Stage 3

Classi�er Classi�er Classi�er

Stage 1 Stage 2 Stage 3

Classi�er Classi�er Classi�er

Stage

Pr
ed

ic
tio

n
Co

n�
de

nc
e

Stage

Pr
ed

ic
tio

n
Co

n�
de

nc
e

Stage

Pr
ed

ic
tio

n
Co

n�
de

nc
e

Sc
he

du
lin

g
A

lg
or

ith
m

Dynamic Con�dence/Utility Estimation

Dynamic Con�dence/Utility Estimation

Fig. 2: System architecture of RTDeepIoT scheduling framework
implementation.

decision to simplify experimentation. In essence, the resulting
performance becomes a worst-case bound. A more efficient
implementation (beyond the scope of this paper) can only
make performance better. Having said so, one should also note
that a user space implementation has its own advantages. First,
it makes the work compatible with many popular operating
systems, since no changes are done to the OS scheduler.
Second, it facilitates the exploitation of widely deployed deep
learning libraries and applications. Specifically, we integrate
our scheduler with TensorFlow [27]. TensorFlow libraries
interface internally with GPU APIs, offering the application
developer only high-level control of what to process. Our
scheduler sits on top of that exported interface, leaving the
underlying machine learning libraries in tact. Finally, since
utility of future stages may need to be recomputed (upon each
stage execution), and since this re-computation is based on
returned application-level (confidence) results, the system is
already executing in user space when these results become
available. The user space is thus a natural place for making
the decision on what to run next, as otherwise a system call
would be needed anyway to pass the results to a kernel-
level scheduler, thus reducing savings. An assessment of
performance-savings with a kernel-level scheduler is delegated
to future work.

A. Application Workload & Benchmark

The reemergence of deep learning leads to the impressive
achievements in computer vision. Vision-based object recog-
nition, labelling objects in a picture, becomes one of the
most canonical real-world applications of neural networks.
Object recognition also serves as an important building block
in many intelligent system, including autonomous vehicles.

We therefore choose object recognition as the application
workload in this paper.

In order to verify the efficacy of our neural network stage
scheduling framework, we build a proof-of-concept prototypes
of object classification service based on the state-of-the-art
residual neural networks (ResNet) [28], which are trained and
evaluated on CIFAR-10 and ImageNet datasets respectively.
Such stage-wise design can be easily applicable to other neural
network architectures for computer vision applications [29].

An alternative might have been to evaluate our framework
with data sets from the domain of autonomous vehicles or
human activity recognition. We opted to keep the scope of
the evaluation limited because the used neural networks need
to be retrained (to offer mandatory and optional components)
for every new application domain we evaluate. Standard pre-
trained neural networks generate final outputs only. Instead,
in our model, we must train the network to generate both
the intermediate results after each stage, and the confidence
estimates in these intermendiate results. We thus caveat our
evaluation by the fact that it was done on vision-based (object
classification) tasks only. While we do not have a reason to
believe that other data sets would yield substantially differ-
ent trends, we do not explore other applications and nueral
network types in this paper.

In the rest of the evaluation, we divide the number of
layers in ResNet uniformly into three stages. As shown in
Figure 1, a stage contain multiple layers. At the end of
each stage, a simple softmax classifier is appended, using
the end-of-stage aggregated features for classification. When
the execution of a stage finished, it will output a tuple in
the form (predicted value, confidence). Predicted value is the
classification result from the current stage, specifying the most
likely classification. Confidence describes the likelihood that
this classification is correct. For example, a picture can be
classified as a cat, dog, or cow, with probabilities 0.6, 0.3,
and 0.1, respectively. The classification result is then (“cat”,
0.6).

B. System Architecture

The system architecture of RTDeepIoT scheduling frame-
work is illustrated in Figure 2. The objective of RTDeepIoT
framework is to provide an abstraction of real-time neural
network execution for service requests.

The scheduler is invoked upon the occurrence of one of
two event types. First, when an object detection service issues
a new task request, it sends the absolute deadline and input
image to the RTDeepIoT framework through a REST API.

Once RTDeepIoT receives the request, the schedule is updated
to include (at least) the arrived task’s mandatory part. The
current depth assignment is updated for all tasks according
to Algorithm 1. Second, when the previous execution of a
neural network stage has finished, RTDeepIoT updates the
corresponding task utility prediction according to the newly
acquired confidence. The depth selection is updated according
to the greedy heuristics (7). Finally, once a task finishes all
its scheduled stages up to the assigned depth or once its
deadline is missed, RTDeepIoT returns the latest available
inference result back and removes all related information from
the scheduling table.

IV. EVALUATION

In this section, we evaluate the proposed scheduling frame-
work on object detection tasks with two real-world benchmark
datasets; CIFAR-10 that consists of 10000 test images of 10
classes, and ImageNet that consists of 50000 test images of
1000 classes. Each test image is an object detection service
request. The requests arrive in a random but configureable
order to evaluate the effectiveness of proposed scheduling sys-
tem under diverse workload patterns. There are K concurrent
clients that generate service requests. Within a time interval,
each request comes with a relative deadline and a random
image selected from the shuffled test dataset. The relative
deadline is drawn from a uniform distribution described by
two parameters: a maximum relative deadline, Du, and a
minimum relative deadline, Dl. The stage execution times for
service requests are known from prior profiling. Specifically,
the worst-case execution time of each neural network stage is
measured from the server 10,000 times using training data. We
calculate the upper bound of a 99% confidence interval and
use it as the worst-case execution time in our evaluation. Per
our imprecise computation model, the scheduling algorithm
may decide to run only some subset of the stages by the
deadline. We consider a request to have failed to meet its
deadline if none of its computation stages are executed before
the deadline. The image classification result from the last
executed stage of a request (before its deadline) is used as
the final inference result.

The edge server that runs the scheduling framework and the
object detection service has an Intel i7-4770 CPU, with 32 GB
memory and NVIDIA TITAN X Pascal GPU. The evaluation is
performed under Ubuntu 16.04 with kernel version 4.13. The
residual neural network for object detection is implemented
on TensorFlow 1.14.0, achieving the state-of-the-art testing
accuracy on two datasets when having no timing constraints.
Note that, the GPU chosen in this evaluation is quite com-
putationally advanced by today’s standards. However, since
IoT applications that require intelligent edge services may take
some time to become commonplace, it is likely that the chosen
GPU will be more representative of a midrange system by that
time.

In the following subsections, we will evaluate our RT-
DeepIoT real-time scheduling framework from different per-
spectives and microbenchmarks, including utility curve predic-

tion, stage scheduling for utility maximization, system hyper-
parameter tuning, and system overhead.

A. Utility Curve Prediction

One key insight of our proposed imprecise computation
model for neural networks is that the utility of optional parts
(i.e., the estimated correctness probability of their outputs)
depends on the characteristics of input data. In Section II-D,
we proposed several heuristics for estimating the utility of
future stages.

In the following experiments, we set the number of con-
current clients K to 20; the minimum relative deadline Dl is
0.01s; the maximum relative deadline Du is 0.3s and 0.8s
for CIFAR10 and ImageNet, respectively. In addition, we
define the time quantization step, ∆, to be 0.1, which will
be discussed in detail in Section IV-C.

To understand the impact of predicted utility curves on
scheduler performance, we evaluate our utility-maximizing
scheduling using the three simple heuristic utility estimation
methods mentioned in Section II-D, and compare them with
the optimal (but unrealizable) “oracle” policy that knows
exactly the computed confidence (i.e., utility) of each stage
ahead of time. (To implement the oracle, we simply run each
test image through all stages ahead of time, record confidence
computed at each stage, and give that information to the
oracle before the actual experiment starts.) All algorithms are
summarized as follows:

1) RTDeepIoT-Exp: during utility prediction, assumes that
the next stage will reduce distance to 1 in half. Hence,
Rli+1

i = Rli
i + 0.5 · (1−Rli

i).
2) RTDeepIoT-Max: assumes that the next stage will in-

crease the utility from Rli
i to 1. Hence, Rli+1

i = 1.
3) RTDeepIoT-Lin: assumes that the next stage will continue

to improve utility linearly. Hence, Rli+1
i = min(1, Rli

i ·
P li+1
i /P li

i).
4) RTDeepIoT-OPT: knows exactly the computed confi-

dence after each stage beforehand.
Evaluation results are illustrated in Figure 3 - 5. With all

these workload patterns, RTDeepIoT-Exp is almost always the
best-performing algorithm, other than the optimal RTDeepIoT-
OPT. The experiment shows that in order to estimate utility of
future stages of deep learning (vision) workloads, we can use
the exponential increase function. In the rest of the evaluation
section, unless stated otherwise, the exponentially increasing
utility function is assumed. When compared with the optimal
policy that knows the computed confidence after each stage
beforehand, RTDeepIoT-Exp has comparable accuracy, being
within 2% from optimal most of the time.

B. Stage Scheduling for Utility Maximization

In this subsection, we evaluate the main objective of the
RTDeepIoT framework; namely, maximizing cumulative util-
ity of tasks. The following schedulers are compared:

1) RTDeepIoT: the scheduling algorithm proposed in Sec-
tion II-C. In this subsection, the scheduling algorithm

10 12 14 16 18 20 22 24 26 28 30
65

70

75

80

85

90

Number of Emulated Threads

A
cc

u
ra

cy
 (

%
)

RTDeepIoT−OPT

RTDeepIoT−Exp

RTDeepIoT−Lin

RTDeepIoT−Max

(a) The accuracy with CIFAR10.

10 12 14 16 18 20 22 24 26 28 30
60

65

70

75

80

Number of Emulated Threads

A
cc

u
ra

cy
 (

%
)

RTDeepIoT−OPT

RTDeepIoT−Exp

RTDeepIoT−Lin

RTDeepIoT−Max

(b) The accuracy with ImageNet.
Fig. 3: Accuracy under K concurrent clients on CIFAR10 and

ImageNet.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
65

70

75

80

85

90

Maximum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT−OPT

RTDeepIoT−Exp

RTDeepIoT−Lin

RTDeepIoT−Max

(a) The accuracy with CIFAR10.

0.4 0.5 0.6 0.7 0.8 0.9 1
66

68

70

72

74

76

78

Maximum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT−OPT

RTDeepIoT−Exp

RTDeepIoT−Lin

RTDeepIoT−Max

(b) The accuracy with ImageNet.
Fig. 4: Accuracy under different maximum relative deadlines Du

on CIFAR10 and ImageNet.

0.005 0.01 0.015 0.02 0.025 0.03
77

78

79

80

81

82

83

Minimum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT−OPT

RTDeepIoT−Exp

RTDeepIoT−Lin

RTDeepIoT−Max

(a) The accuracy with CIFAR10.

0.005 0.01 0.015 0.02 0.025 0.03
66

68

70

72

74

76

78

Minimum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT−OPT

RTDeepIoT−Exp

RTDeepIoT−Lin

RTDeepIoT−Max

(b) The accuracy with ImageNet.
Fig. 5: Accuracy under different minimum relative deadlines Dl on

CIFAR10 and ImageNet.
uses the exponential increase heuristic for utility predic-
tion, which can achieve the near optimal utility maximiza-
tion scheduling as discussed in Section IV-A. Similarly,
we define the quantization step of reward, ∆, to be 0.1.
We will discuss the impact of quantization time step in
Section IV-C.

2) EDF: the traditional earliest deadline first algorithm.
EDF only takes deadline constraints into consideration
without considering maximizing overall utility. An at-
tentive reader might remember that our GPU scheduling
has limited preemption since individual stage execution
cannot be interrupted. In Section II-B, we explained that
accounting for the non-preemptible part (by subtracting
one stage execution time from the end-to-end deadline)
retains the order of deadlines of different tasks, which is
why EDF remains a viable real-time baseline.

3) LCF: the algorithm is called Least Confidence First,
which picks the task with the least confidence. When two
tasks have the same confidence, LCF will pick the one
having an earlier deadline.

4) RR: a stage-level round-robin scheduling algorithm. The
scheduler will select a stage to run among all existing
tasks in a round-robin manner. RR implicitly takes the
confidence into consideration by picking the task with
the least executed stages.

In all the following experiments, we evaluate these backend
scheduling algorithms with two metrics, accuracy and deadline
miss rate. If a service request cannot finish a single stage of the
neural network before its deadline, that service request misses
its deadline. First, we evaluate these scheduling algorithms
with an increasing number of concurrent clients K. Larger K
means more concurrent tasks will exist on average, leading
to a intensity test for all backend schedulers. The average
classification accuracy and deadline miss rates on CIFAR10
and ImageNet benchmarks are illustrated in Figure 6 and 7
respectively. RDeepIoT clearly outperforms all other sched-
ulers with a large margin. By modeling deep learning tasks as
imprecise computation models, RTDeepIoT is able to achieve
both high classification accuracy (high service quality) and
low deadline miss rate (high service responsiveness) at the
same time under workloads with diverse intensity. The EDF
scheduling algorithm has a suboptimal performance, because
it fails to take utility into consideration. The EDF scheduler
does not attempt to stop task execution prematurely (because
it does not check if a good-enough answer has already been
computed). It therefore imposes a higher load on the system,
leading to low schedulability. EDF is known to do poorly
under overload. By picking the task with the shortest deadline
next, it always favors tasks that are more likely to miss their
deadline. The LCF and RR schedulers achieve a lower deadline
miss rate. However, by having to cut off tasks in a utility-
insensitive manner (as they reach deadlines), they still result
in inferior accuracy.

All schedulers fails to provide good performance given
an intensive workload. Note that, for our scheduler, deadline
misses refer to images where no neural network stage got
to execute. One can interpret them as images dropped by
admission control (in that our utility-maximizing scheduler
decided not to execute them).

Lastly, we evaluate backend schedulers by changing the
maximum and minimum relative deadlines. Reducing the max-
imum and minimum relative deadlines causes tighter timing

10 12 14 16 18 20 22 24 26 28 30
50

60

70

80

90

Number of Emulated Threads

A
cc

u
ra

cy
 (

%
)

RTDeepIoT

LCF

EDF

RR

(a) The accuracy with CIFAR10.

10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

Number of Emulated Threads

D
ea

d
li

n
e

M
is

s
R

a
te

 (
%

)

RTDeepIoT

LCF

EDF

RR

(b) The deadline miss rate with CIFAR10.
Fig. 6: The performance under K concurrent clients on CIFAR10.

10 12 14 16 18 20 22 24 26 28 30
50

55

60

65

70

75

80

Number of Emulated Threads

A
cc

u
ra

cy
 (

%
)

RTDeepIoT

LCF

EDF

RR

(a) The accuracy with ImageNet.

10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

Number of Emulated Threads

D
ea

d
li

n
e

M
is

s
R

a
te

 (
%

)

RTDeepIoT

LCF

EDF

RR

(b) The deadline miss rate with ImageNet.
Fig. 7: The performance under K concurrent clients on ImageNet.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
50

60

70

80

90

Maximum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT

LCF

EDF

RR

(a) The accuracy with CIFAR10.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

Maximum Relative Deadline (s)

D
ea

d
li

n
e

M
is

s
R

a
te

 (
%

)

RTDeepIoT

LCF

EDF

RR

(b) The miss rate with CIFAR10.
Fig. 8: The performance under different maximum relative

deadlines Du on CIFAR10.
constraints for scheduling. Results are shown in Figure 8 - 11.
RTDeepIoT remains the best scheduler that achieves both high
accuracy and low deadline miss rate. As shown in Figure 8,
tighter timing constraints can have a larger impact on EDF
that schedules entire tasks, not individual stages.

0.4 0.5 0.6 0.7 0.8 0.9 1
55

60

65

70

75

80

Maximum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT

LCF

EDF

RR

(a) The accuracy with ImageNet.

0.4 0.5 0.6 0.7 0.8 0.9 1
55

60

65

70

75

80

Maximum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT

LCF

EDF

RR

(b) The deadline miss rate with ImageNet.
Fig. 9: The performance under different maximum relative

deadlines Du on ImageNet.

0.005 0.01 0.015 0.02 0.025 0.03
65

70

75

80

85

Minimum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT

LCF

EDF

RR

(a) The accuracy with CIFAR10.

0.005 0.01 0.015 0.02 0.025 0.03
0

2

4

6

8

10

12

Minimum Relative Deadline (s)

D
ea

d
li

n
e

M
is

s
R

a
te

 (
%

)

RTDeepIoT

LCF

EDF

RR

(b) The deadline miss rate with CIFAR10.
Fig. 10: The performance under different minimum relative

deadlines Dl on CIFAR10.

0.005 0.01 0.015 0.02 0.025 0.03
55

60

65

70

75

80

Minimum Relative Deadline (s)

A
cc

u
ra

cy
 (

%
)

RTDeepIoT

LCF

EDF

RR

(a) The accuracy with ImageNet.

0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

2

2.5

3

Minimum Relative Deadline (s)

D
ea

d
li

n
e

M
is

s
R

a
te

 (
%

)

RTDeepIoT

LCF

EDF

RR

(b) The deadline miss rate with ImageNet.
Fig. 11: The performance under different minimum relative

deadlines Dl on ImageNet.
C. Hyper-parameter Tuning

In our scheduling algorithm, there exists a hyper-parameter
∆ that controls the reward quantization step. In this subsection,
we will investigate the impact of hyper-parameter ∆ on final
classification accuracy. We set all parameters concerning about

10−4 10−3 10−2 10−1 1
30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

∆

(a) The accuracy on CIFAR10.

10−4 10−3 10−2 10−1 1
20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

∆

(b) The accuracy on ImageNet.
Fig. 12: The performance with a quantization reward step, ∆.

10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

O
v

e
r
h

e
a

d
 (

%
)

Number of Emulated Threads

(a) The overhead on CIFAR10.

10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

O
v

e
r
h

e
a

d
 (

%
)

Number of Emulated Threads

(b) The overhead on ImageNet.
Fig. 13: The overhead with different service request threads K on

CIFAR10 and ImageNet.
workload patterns to be default values.

Evaluation results on CIFAR10 and ImageNet are illustrated
Figure 12. Hyper-parameter ∆ has similar behaviors on both
datasets. Theoretically speaking, smaller reward step ∆ leads
to a fine-grained scheduling policy with better cumulative
utility (i.e., high accuracy). However, smaller ∆ also leads
to higher time complexity of the scheduling algorithm, which
can use up the time and resource for neural network execution,
leading to worst cumulative utility (i.e., low accuracy) and
high deadline missing rate. Therefore, there exists a tradeoff
in deciding hyper-parameter ∆. From these experiments, we
can see that ∆ = 0.1 is a good choice for ∆ in practice.

D. System Overhead

In this subsection, we evaluate the overhead of our schedul-
ing framework. Since the framework contains a dynamic pro-
gramming algorithm and a fast-updating greedy heuristics. We
need to make sure these two modules do not impose significant
overhead. The overhead is estimated as the averaged percent-
age of total time consumed by each service request except for
the neural network execution time. Similarly, we evaluate the

overhead under diverse workload patterns. We adopt the same
default value settings as mentioned in Section IV-A.

As shown in Figure 13, we measure the overhead of
scheduling by changing the number of service request threads
K. The overhead of scheduling algorithm is between 0.5% and
6% in all these types of workloads. The reader is reminder
that this overhead is for an un-optimized user-space imple-
mentation. Some reductions may be possible, by moving the
scheduler to the kernel.

V. RELATED WORK

Our paper develops a real-time scheduler for a service
motivated by machine intelligence needs of IoT applications.
A body of scheduling algorithms that comes close to ours are
those that support approximate computing. A prime example
of approximate computing in the real time research community
is the literature on imprecise computations. The work trades
off result quality versus computation time [30]–[34]. Our work
resembles imprecise computations in that we use intermedi-
ate results from a prematurely terminated real-time process.
The work assumes processes to be monotone, and propose
an indicator for the quality of the imprecise results. More
recently [32], imprecise computation models were proposed
where the scheduler decides on the execution of an optional
section of processes by taking deadlines and required QoS
into consideration. Our work extends this concept to a novel
application domain.

The QoS optimization and management have also been
heavily addressed in real-time literature. Rajkumar et al.
presented an analytical model for QoS management in systems
with multiple constraints [35], [36]. Lee et al. extended the
QoS management analysis with the discrete and non-concave
utility functions [37]. Abdelzaher et al. proposed a real-time
QoS negotiation model for maximizing system utility with
guaranteed performance [38]. Curescu et al. presented a QoS
optimization scheme for mobile networks [39]. Koliver et al.
designed a fuzzy-control approach for QoS adaptation [40].
In this paper, we adapt the utility optimization framework
specifically to the execution of deep neural network tasks.
Moreover, our scheduler has been integrated with Tensor Flow;
a library for deep learning systems [27]. This makes it the
first real-time scheduler implementing imprecise computations
and utility maximization in the context of a mainstream deep
learning software framework.

VI. CONCLUSION

This paper presented a novel scheduler, based on imprecise
computations, suitable for edge services that simple devices
(with sensing capabilities) offload their “machine intelligence”
to. We focused on deep learning as the state of the art enabler
of machine intelligence. We show that the resulting schedules
improve the average quality of results by allocating computing
resources where they offer the best improvement in accuracy.
The service is currently being extended to other deep learning
libraries (besides machine vision) to offer rich support for deep
intelligence as a (real-time) service.

REFERENCES

[1] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

[2] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar, “Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-driving
car,” in Proceedings of the ACM/IEEE 4th international conference on
cyber-physical systems, 2013, pp. 31–40.

[3] B. D. Song, J. Kim, and J. R. Morrison, “Towards real time scheduling
for persistent uav service: A rolling horizon milp approach, rhta and the
stah heuristic,” in 2014 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 2014, pp. 506–515.

[4] H. Kopetz, “Internet of things,” in Real-time systems. Springer, 2011,
pp. 307–323.

[5] J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, pp. 3–9, 2014.

[6] S. Li, D. Liu, C. Xiang, J. Liu, Y. Ling, T. Liao, and L. Liang, “Fitcnn: A
cloud-assisted lightweight convolutional neural network framework for
mobile devices,” in 2017 IEEE 23rd International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA).
IEEE, 2017, pp. 1–6.

[7] M.-H. Cheng, Q. Sun, and C.-H. Tu, “An adaptive computation frame-
work of distributed deep learning models for internet-of-things applica-
tions,” in 2018 IEEE 24th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE, 2018,
pp. 85–91.

[8] T. Abdelzaher, S. Yao, Y. Hao, Y. Zhao, A. Piao, H. Shao, D. Liu, S. Liu,
S. Hu, D. Weerakoon, K. Jayarajah, and A. Misra, “Eugene: Towards
deep intelligence as a service,” in In Proc. 39th IEEE International
Conference on Distributed Computing Systems (ICDCS), Dallas, TX,
July 2019.

[9] M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun, “Deeppicar: A
low-cost deep neural network-based autonomous car,” in 2018 IEEE
24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, 2018, pp. 11–21.

[10] K. Mikami, Y. Chen, J. Nakazawa, Y. Iida, Y. Kishimoto, and Y. Oya,
“Deepcounter: Using deep learning to count garbage bags,” in 2018
IEEE 24th International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA). IEEE, 2018, pp. 1–10.

[11] P.-C. Huang and A. K. Mok, “A case study of cyber-physical system
design: Autonomous pick-and-place robot,” in 2018 IEEE 24th Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2018, pp. 22–31.

[12] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson, and J.-
M. Frahm, “Re-thinking cnn frameworks for time-sensitive autonomous-
driving applications: Addressing an industrial challenge,” in 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2019, pp. 305–317.

[13] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang, “An evaluation of the nvidia tx1 for supporting
real-time computer-vision workloads,” in 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2017, pp. 353–364.

[14] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and
F. D. Smith, “Avoiding pitfalls when using nvidia gpus for real-time
tasks in autonomous systems,” in 30th Euromicro Conference on Real-
Time Systems (ECRTS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

[15] R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.
Cazorla, “Generating and exploiting deep learning variants to increase
heterogeneous resource utilization in the nvidia xavier,” in 31st Euromi-
cro Conference on Real-Time Systems (ECRTS 2019), 2019.

[16] S. Bateni and C. Liu, “Apnet: Approximation-aware real-time neural
network,” in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2018, pp. 67–79.

[17] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “Deepiot:
Compressing deep neural network structures for sensing systems with a
compressor-critic framework,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 2017.

[18] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher,
“Fastdeepiot: Towards understanding and optimizing neural network
execution time on mobile and embedded devices,” in Proceedings of
the 16th ACM Conference on Embedded Networked Sensor Systems,
2018, pp. 278–291.

[19] Y. Ikeda, Y. Yanagisawa, Y. Kishino, S. Mizutani, Y. Shirai, T. Suyama,
K. Matsumura, and H. Noma, “Reduction of communication cost for
edge-heavy sensor using divided cnn,” in 2018 IEEE 24th International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA). IEEE, 2018, pp. 244–245.

[20] A. E. Eshratifar and M. Pedram, “Energy and performance efficient
computation offloading for deep neural networks in a mobile cloud
computing environment,” in Proceedings of the 2018 on Great Lakes
Symposium on VLSI. ACM, 2018, pp. 111–116.

[21] S. Yao, Y. Zhao, H. Shao, A. Zhang, C. Zhang, S. Li, and T. Abdelzaher,
“Rdeepsense: Reliable deep mobile computing models with uncertainty
estimations,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 1, no. 4, p. 173, 2018.

[22] S. Yao, Y. Zhao, H. Shao, C. Zhang, A. Zhang, D. Liu, S. Liu, L. Su,
and T. Abdelzaher, “Apdeepsense: Deep learning uncertainty estimation
without the pain for iot applications,” in 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2018,
pp. 334–343.

[23] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee, W. Xiao, and
F. Yang, “Multi-tenant gpu clusters for deep learning workloads: Anal-
ysis and implications,” Technical report, Microsoft Research, 2018.
https://www. microsoft. com/en . . . , Tech. Rep., 2018.

[24] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, 2016, pp. 1050–1059.

[25] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” arXiv preprint
arXiv:1612.01474, 2016.

[26] S. Yao, Y. Zhao, A. Zhang, S. Hu, H. Shao, C. Zhang, S. Lu, and
T. Abdelzaher, “Deep learning for the internet of things,” Computer,
vol. 51, no. 5, pp. 32–41, May 2018.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[29] H. Hu, D. Dey, M. Hebert, and J. A. Bagnell, “Anytime neural network:
a versatile trade-off between computation and accuracy,” 2018.

[30] J.-Y. Chung and K.-J. Lin, “Scheduling periodic jobs using imprecise
results,” 1987.

[31] J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C. shi Yu, J.-Y. Chung,
and W. Zhao, “Algorithms for scheduling imprecise computations,”
Computer, vol. 24, pp. 58–68, 1991.

[32] J.-M. Chen, W.-C. Lu, W.-K. Shih, and M.-C. Tang, “Imprecise com-
putations with deferred optional tasks,” J. Inf. Sci. Eng., vol. 25, pp.
185–200, 2009.

[33] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and management
of qos in real-time databases supporting imprecise computations,” IEEE
Transactions on Computers, vol. 55, pp. 304–319, 2006.

[34] W. Feng and J. W. S. Liu, “An extended imprecise computation model
for time-constrained speech processing and generation,” 1993.

[35] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource allo-
cation model for qos management,” in Real-Time Systems Symposium,
1997. Proceedings., The 18th IEEE. IEEE, 1997, pp. 298–307.

[36] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek, “Practical
solutions for qos-based resource allocation problems,” in Real-Time
Systems Symposium, 1998. Proceedings. The 19th IEEE. IEEE, 1998,
pp. 296–306.

[37] C. Lee, J. Lehoezky, R. Rajkumar, and D. Siewiorek, “On quality of
service optimization with discrete qos options,” in Proceedings of the
Fifth IEEE Real-Time Technology and Applications Symposium. IEEE,
1999, pp. 276–286.

[38] T. Atdelzater, E. M. Atkins, and K. G. Shin, “Qos negotiation in real-
time systems and its application to automated flight control,” IEEE
Transactions on Computers, vol. 49, no. 11, pp. 1170–1183, 2000.

[39] C. Curescu and S. Nadjm-Tehrani, “Time-aware utility-based qos op-
timization,” in Real-Time Systems, 2003. Proceedings. 15th Euromicro
Conference on. IEEE, 2003, pp. 83–92.

[40] C. Koliver, K. Nahrstedt, J.-M. Farines, J. da Silva Fraga, and S. A.
Sandri, “Specification, mapping and control for qos adaptation,” Real-
Time Systems, vol. 23, no. 1-2, pp. 143–174, 2002.

	I Introduction
	II Neural Networks as Imprecise Computations
	II-A Neural Networks Background
	II-B Anytime Neural Network
	II-C Near Optimal Depth Assignment and Stage Scheduling
	II-D Predicting Utility of Future Stages
	II-E Updating Depth Assignment

	III Implementation
	III-A Application Workload & Benchmark
	III-B System Architecture

	IV Evaluation
	IV-A Utility Curve Prediction
	IV-B Stage Scheduling for Utility Maximization
	IV-C Hyper-parameter Tuning
	IV-D System Overhead

	V Related Work
	VI Conclusion
	References

