
ar
X

iv
:2

10
8.

13
87

1v
1

 [
cs

.D
C

]
 3

1
A

ug
 2

02
1

Building Time-Triggered Schedules for typed-DAG

Tasks with alternative implementations

Houssam-Eddine Zahaf∗, Nicola Capodeici+

∗Université de Nantes, LS2N, France
+Unimore university, HiPeRT Lab, Italy

Abstract— Hard real-time systems like image processing, au-
tonomous driving, etc. require an increasing need of computa-
tional power that classical multi-core platforms can not provide,
to fulfill with their timing constraints. Heterogeneous Instruction
Set Architecture (ISA) platforms allow accelerating real-time
workloads on application-specific cores (e.g. GPU, DSP, ASICs)
etc. and are suitable for these applications. In addition, these
platforms provide larger design choices as a given functionnality
can be implemented onto several types of compute elements.

HPC-DAG (Heterogeneous Parallel Directed Acyclic Graph)
task model has been recently proposed to capture real-time
workload execution on heterogeneous platforms. It expresses the
ISA heterogeneity, and some specific characteristics of hardware
accelerators, as the absence of preemption or costly preemption,
alternative implementations and on-line conditional execution.

In this paper, we propose a time-table scheduling approach
to allocate and schedule a set of HPC-DAG tasks onto a set of
heterogeneous cores, by the mean Integer Linear Programming
(ILP). Our design allows to handle heterogeniety of resources,
on-line execution costs, and a faster solving time, by exploring
gradually the design space.

Index Terms—Real-time partitioning, heterogeneous architec-
ture, unrelated, preemption, time-table.

I. INTRODUCTION

Cyber-physical embedded systems are increasingly complex

and demand more and more powerful computational hardware

platforms. COTS1 vendors provide hardware platforms featur-

ing multi-core CPU hosts with a number hardware accelerators,

in order to support timing constraints of complex real-time

applications with machine learning and image processing

software modules.

Typically, these platforms feature different ISA architec-

tures, and different characteristics for the different cores. For

example, the Jetson AGX platform features 8 CPU with ARM

V8, Volta GPU (Graphical Processing Unit), a Deep Learn-

ing Accelerators (DLA), a Programmable Vision Accelerator

(PVA). The differences between the different types of cores

include not only ISA, but as well as the task scheduling, i.e.

CPU can be usually scheduled with preemptive scheduling

approaches where preemption costs can be negligible, while

recent GPUs enable preemptive scheduling but with very

variable costs2, while when a workloads starts executing on

DLA or PVA, the latter can not be preempted.

[Houssam : Some bla bla about how good it is to express al-

ternative, and conditionals]. [Houssam : Say that it is complex

1Commercial Off The Shielf
2The cost varies from some micro-seconds to couple of milliseconds.

to make non-time consuming ILPs to solve the conditional

problem, therefore they are not considered in this paper]

When it comes to scheduling, there are two major ap-

proaches for designing and scheduling HPC-DAGs onto hetero-

geneous cores : time-triggered and event-based approaches. In

event-triggered systems, tasks are scheduled as a consequence

of events i.e. task activation, deadlines, priority, etc. therefore

the schedule is not necessarily known before run-time [1]. In

contrast time-triggered systems, the system designer precom-

pute/or totally compute in offline static execution schedule, i.e.

time windows, for every job of every task during the whole

system lifetime. Time-triggered and event-based approaches

are incomparable as each exhibit advantages and disadvantages

with respect to each other.

In contrast to our previous work in which we focus on

event-based schedulers, this paper presents a time-triggered

scheduler for a set of HPC-DAG tasks onto a heterogeneous

multicore platform.

Contributions.:

1) Formulation of the problem using several ILP

2) Accelerating the analysis

3) taking into account heterogeneity

4) Adding partitioning

5) Adding global scheduling

6) taking into account preemption costs

II. SYSTEM MODEL

A. Architecture model

A heterogeneous architecture is modeled as a set of execu-

tion engines Arch = {e1, e2, . . . , em}. An execution engine

is characterized by 1) its execution capabilities, (e.g. its

Instruction Set Architecture), specified by the engine’s tag, and

2) its scheduling policy. An engine’s tag tag(ei) indicates the

ability of a processor to execute dedicated tasks.

As an example, a Xavier based platform such as the NVIDIA

pegasus, can be modeled using 16 engines for a total of five

different engine tags: 8 CPUs, 2 dGPUs, 2 iGPUs, 2 DLAs

and 2 PVAs.

Tags express the heterogeneity of modern processor archi-

tecture: an engine tagged by dGPU (discrete GPU) or iGPU

(integrated GPU) is designed to efficiently run generic GPU

kernels, whereas engines with DLA tags are designed to run

deep learning inference tasks. A deep learning task can be

implemented and compiled to run on any engine, including

CPUs and GPUs, however its execution behavior will be

1

http://arxiv.org/abs/2108.13871v1

different, and its execution time will probably be lower when

running on DLAs.

Therefore, we allow the designer to compile the same task

on different alternative engines with different trade-offs in

terms of performance and resource utilization, so to widen the

space of possible solutions. As we will see in the next section,

the HPC-DAG model supports alternative implementations of

the same code.

In this paper, we consider time triggered scheduling. For

every engine we build a schedule table, that dictates the

scheduling at run-time.

B. The HPC-DAG task model

A task is a Directed Acyclic Graph (DAG), characterized by

a tuple τ = {T,D,N , E}, where: T is the period (exact inter-

arrival time between two consecutive activation of task τ); D

is the relative deadline; The set of all the nodes is denoted by

N
An edge e(ni, nj) ∈ E models a precedence constraint (and

related communication) between node ni and node nj . The set

of immediate predecessors of a node nj , denoted by pred(nj),
is the set of all nodes ni such that there exists an edge (ni, nj).
The set of predecessors of a node nj is the set of all nodes

for which there exist a path toward nj . If a node has no

predecessor, it is a source node of the graph. In our model

we allow a graph to have several source nodes. In the same

way we define the set of immediate successors of node nj ,

denoted by succ(nj), as the set of all nodes nk such that

there exists an edge (nj , nk), and the set of successors of nj

as the set of nodes for which there is a path from nj . If a

node has no successors, it is a sink node of the graph, and we

allow a graph to have several sink nodes.

A node ni can be a sub-task or an alternative node. A sub-

task v ∈ V is the basic computation unit. It represents a block

of code to be executed by one of the engines of the architecture.

A sub-task is characterized by:

• A tag tag(v) which represents the engines where it is

eligible to execute. A sub-task can only be allocated onto

an engine with the same tag;

• A worst-case execution time C(v) when executing the

sub-task on the corresponding engine processor.

• P(v) Maximum number of preemptions allowed for sub-

task v.

• cost(v) : The cost to split (preempt) task v

An alternative node a ∈ A represents alternative implemen-

tations of parts of the graph/task. During the configuration

phase, our methodology selects one between many possible

alternative implementations of the program by selecting only

one of the outgoing edges of a and removing (part of) the paths

starting from the other edges for a given job. This can be useful

when modeling sub-tasks than can be executed on different

engines with different execution costs. The selected edge may

differ from an activation to another according the system state

when the job is executed, in contrast to our previous work [1]

where the same alternative configuration is selected during the

system lifetime.

An alternative nodes always has at least 2 outgoing edges,

so they cannot be sinks.

Example 1. Consider the DAG task described in Figure 1a.

Each sub-task node is labeled by the sub-task id and engine tag.

An Alternative node are denoted by square boxes. The black

boxes denotes corresponding junction nodes for alternatives.

vCPU1

vCPU2

A F

vdGPU3

vdGPU3

vDLA
4 vdGPU5

vCPU8

vDLA
6

vdGPU7

(a)

vCPU1

vCPU2

vCPU2 vCPU8

vDLA
6

vdGPU7

(b)

Fig. 1: Task specification and concrete tasks

Sub-tasks vCPU1 and vCPU2 are the sources (entry points) of

the DAG. vCPU1 , vCPU2 are marked by the CPU tag and can

run concurrently: during the off-line analysis they may be

allocated to the same or to different engines in a consecutive

or parallel time windows. Sub-task vDLA
4 has an outgoing edge

to vdGPU5 , thus sub-task vdCPU5 cannot start its execution before

sub-task vDLA
4 has completed. Sub-tasks vCPU1 and vCPU2 have

each one outgoing edge to the alternative node A. Thus, τ can

continue the execution either:

1) by following vdGPU3 and then vDLA
4 ,vdGPU5 and finishing

its instance on vCPU8 ;

2) or by following a dummy node (denoted as dashed)

to execute in parallel vDLA
6 or vdGPU7 , and finishing its

instance on vCPU8 .

The two patterns are alternative ways to execute the same

functionalities at different costs. Figure 1b represents one of

the possible executions of task τ , where during the analysis, al-

ternative execution pattern (vdGPU
3 , vDLA

4 , vdGPU
5) has been

dropped.

We consider a periodic task model, therefore parameter T

represents the exact inter-arrival time between two instances of

the same concrete task. When an instance of a task is activated

at time t, all source sub-tasks are simultaneously activated. All

subsequent sub-tasks are activated upon completion of their

predecessors, and sink sub-tasks must all complete no later

than time t + D. We assume constrained deadline tasks, that

is D ≤ T.

III. TIME TABLE CONSTRUCTION USING ILP

In this section, we describe how the time table for the

HPC-DAG can be constructed. We consider both global and

partitioned approaches. In the partitioned approach a sub-

task is allocated to a given core during the system lifetime.

Therefore, all execution time-windows of every job of a given

sub-task are reserved on the same core, while in the global

approach, different time intervals of the same job might be

executed on different cores.

An optimal solution requires to assign every time unit from

0 to the hyper-period, on every core to a job or to idle.

2

Algorithm 1 Time-Table construction using ILPs

1: Input: Taskset T , Architecture A, Method : GLOBAL or

PARTITIONED
2: Output: Time Table requirement task τ∗

3: it=0

4: while (not stop and not feasible) do

5: nb int = 2it

6: build variables(nb it);
7: build objective();

8: build sufficiency constraints();

9: build per proc overlapping constraints();
10: build per job overlapping constraints();

11: build finish before migrate constraints();

12: build precedance constraints();
13: build non migration constraints();

14: if (METHOD == PARTITIONED) then

15: build partitioning constraints();

16: end if

17: feasible = solve();

18: if (feasible) then

19: save time table

20: return SUCCESS;

21: end if

22: it+=1

23: update stop condition(stop)

24: end while

25: return FAIL

Therefore, the design space to explore is large, and finding

an optimal solution is an extremely time consuming operation.

In this work, we explore the design space gradually. Rather

than assigning processor time to jobs, we assign execution

intervals to core.

Our approach selects a number of intervals per sub-task

and increases it at each iteration. This allows to explore each

iteration it explores a subset of the design space instead of

exploring the whole design space at once, as described in

Algorithm 1.

Our algorithm computes first the maximal possible number

of intervals (nb it) per job as nb it = 2it, where it denotes

the iteration number starting from 0. Further, it iteratively

increments it by 1. At each iteration, our algorithm builds

an ILP and invokes the CPLEX solver.

If the ILP solver founds a feasible solution (i.e. a feasible

schedule) our algorithm stops on success, otherwise the sys-

tem increases the number of intervals, and iteratively build and

solve a new ILP with new variable list. When the maximum

number if intervals is reached for every sub-task, and no

feasible solution is found, the system aborts on fail. In the

rest of this section, we describe how every ILP is built.

[Houssam : I need to think about if the algorithm is optimal

or not? (doubt not)]

A. Building variables

At each iteration it is incremented and the number of

intervals per sub-task changes. Hence, the first step to build

our ILP is to define the variables list.

Our algorithm selects the number of intervals per sub-task

at iteration it as nb it(v) = max{nb it,P(v)}. Therefore,

sub-tasks that are executing onto a non-preemptive engine,

nb it(v) is set to 1. For the sub-tasks executing on in a

fully preemptive engine, the number of intervals is not defined

in prior, nb it(v) is set to the maximum between nb it and

the sub-task worst case execution time. In the first iteration,

every job must execute into a exactly one interval (i.e. non-

preemptively), even those that are fully preemptive as it = 0.

For every interval, two variables are defined : s and f to

denote starting and finishing times respectively.

For every task, for every sub-task, for every job, for every

interval, for every core, we generate f and s variables. There-

fore, every variable is characterized by 5 indexes such that

si,j,k,l,m (respectively fi,j,k,l,m) denotes the starting time

(respectively finishing time) of the lth interval of the kth job

of sub-task vi,j which is executing on core m. These variables

and the relative constraints are generated only for cores where

a given sub-task is allowed to execute, i.e. a sub-task that is

meant to run on a GPU have no intervals defined CPU cores.

Variables si,j,k,l,m and fi,j,k,l,m are bounded by the task

activation, and task deadlines.

Therefore:

k · Ti ≤ si,j,k,l,m ≤ fi,j,k,l,m ≤ k · Ti + Di (1)

When a job execution is split to several intervals, its

execution time is inflated by a penalty cost.

The procedure build variables (Line 6) allows to build the

variables and updates the task execution time as follows:

C(v)′ = C(v) + nb it(v) ∗ cost(v)

B. Objective function

Once the list of variables are defined, our algorithm pro-

ceeds to build the objective function to maximize the slack for

each job. Therefore, the objective function is set to maximize

the differences between finishing and starting time for every

interval, as follows :

Maximize

n
∑

i=1

|Vi|
∑

j=1

H/Ti
∑

k=1

nb it(vi,j)
∑

l=1

M(tag(vi,j))

∑

m=1

fi,j,k,l,m − si,j,k,l,m

(2)

Where :

• n : is the number of task in the system

• |Vi| The number of sub-tasks of task τi
• H/Ti The number of jobs between 0 and H the hyper

period for task τi
• nb it(vi,j) The number of intervals in the current itera-

tion, computed in the previous step.

• M (tag(vi,j)) The indexes of cores having the same tag as

the current job.

3

C. Precedance constraints

To enforce the respect of precedance constraints, it is

sufficient to express that the successors of a any sub-task, can

start before it ends. In other words, any sub-task starting time

must be greater to all its immediate predecessors finishing

time. For sub-task vi,j , multiple constraints can be generated

as follows:

∀k ∈ {0, · · · ,
H

Ti
}, ∀l ∈ nb it(vi,j), ∀m ∈ M tag(vi,j)

∀vi,j′ ∈ succ(vi,j), ∀l′ ∈ nb it(vi,j′), ∀m′ ∈ M tag(vi,j′)

fi,j,k,l,m ≤ si,j′,k,l′,m′

(3)

This constraints must be generated for every job, for every

sub-task in every task. Please notice that these constraints are

generated between successors within the same task instance

(same k).

The precedance constraints between the different instances

are enforced by the variables s and f bounds generated in

variables building step.

D. Interval sufficiency constraints

After enforcing precedance constraints, we need to ensure

that every job of every sub-task will receive sufficiently proces-

sor time to execute for its worst case execution time, including

the costs of splitting the task (preemption). Therefore, the sum

of interval lengths for every instance, must be larger than

the job worst case execution time, as defined in following

equation:

∀i, ∀j, ∀k,
∑

l

∑

m

fi,j,k,l,m − si,j,k,l,m ≥ C(vi,j)
′

E. Overlapping constraints

At this stage, only the constraints to ensure a single task

execution have been defined. However, we need to ensure that

the different tasks executing on the same cores have a correct

behavior. Therefore, it is required that the the same processor

is not allocated to different jobs at the same time and that

the same job does not have reserved intervals on different

cores at the same time. We call these constraints overlapping

constraints.

First, we show how an o overlapping constraint can be

expressed for intervals [s, f] and [s′, f′] ,i.e :

[s, f] ∩ [s′, f′] = ∅

In Figure 2, we presents two scenarios scenarios where two

interval [s, f] and [s′, f′] overlap. Overlapping can be partial i.e.

only a part of the interval is shared as in Sub-figure (a) or a

total inclusion Sub-Figure (b).

In Figure 3, we present the only two cases to check that an

overlapping is prohibited. Indeed, The first is interval should

either finish before the first one or start after the second one

as it is defined in Equation (4).

f2

s1 f1

s2

(a)

f2

s1 f1

s2

(b)

Fig. 2: Example of overlapping

f2

s1 f1

s2

(a)

f2

s1 f1

s2

(b)

Fig. 3: Example of valid intervals

f ≤ s′ or f′ ≤ s (4)

Equation (4) ensures that two intervals do not overlap, but

need to be linearized.

We start first by linearizing the inequality f1 ≤ s2 as follows

:

{

f −Mx1 − s′ ≤ 0
f +M−Mx1 − s′ ≥ 0

(5)

Where M is a very big number and x1 is a binary variable

that the solver sets to 1 if f ≤ s′.

Similarly, f′ ≤ s is linearized as follows:

{

f′ −Mx1 − s ≤ 0
f′ +M−Mx1 − s ≥ 0

(6)

As an interval can not be on the left and on the right at the

same time, we enforce that only one situation is selected by :

x1 + x2 = 1 (7)

Now that we presented how two intervals can be enforced

to not overlap. We describe now how overlapping constraints

are generated. As described earlier, two types of overlapping

4

must be prohibited : (i) those on the same core, and (ii) those

of the same job.

For the overlapping intervals of the same core, the con-

straints in Equation (5), (6), (7) must be generated of every

couple of intervals allocated to the same core having the same

index of processor (index m in the variables name) as in the

following equation :

∀k,

∀i, ∀i′, ∀j, ∀j′, ∀m, ∀m′, ∀l, ∀l′ (8)

[si,j,k,l,m, fi,j,k,l,m]∩[si,j,k,l,m, fi,j,k,l′,m′] = ∅

For the overlapping intervals of the same job, the constraints

in Equation (5), (6), (7) must be generated for every couple

of intervals of the job, i.e. having the same task, sub-task and

job index (i.e. the same i, j, k in the variables name) as in the

following equation :

∀i, ∀j, ∀k, ∀m′, ∀m, ∀l, ∀l′, [si,j,k,l,m, fi,j,k,l,m] ∩ [si,j,k,l,m, fi,j,k,l′,m′] = ∅
(9)

The core overlapping intervals constraints must be generated

only when considering the global approach. Indeed, in the

partitioned approach the same task will be always allocated

on the same core, therefore the job overlapping constraints

are sufficient as tasks are forced to be allocated to the same

core, therefore can not have non-empty intervals in the more

than one core as it will be shown in the next section.

F. Partitioning constraints

At design time, one may allocate a sub-task to a particular

core. To enforce sub-task allocation without modifying the

design of the ILP, we ensure that only the intervals of the sub-

task on the allocation core can have positive lengths, while the

length of all intervals on the other cores have a length equal

to zero.

Therefore, for all intervals of a given sub-task vi,j on a core

k, we define an allocation variable ai,j,m. ai,j,m is equal to 1,

if the interval length is strictly greater than zero, i.e:

ai,j,m =

{

1, if∃k, l,m such fi,j,k,l,m > si,j,k,l,m
0 Otherwise

(10)

Equation (10) is linearized as follows :

fi,j,k,l,m −M · ai,j,m − si,j,k,l,m ≤ 0 (11)

fi,j,k,l,m + (1− ai,j,m)M − si,j,k,l,m ≥ 0 (12)

Please notice that the same variable ai,j,m is defined for all

intervals of the same sub-task and on the same core, therefore

the same variable ai,j,m is used for all intervals having the

processor index (i.e. k).

Further, we enforce that only a single variable is set equal

to one :

∀i, j,m
∑

ai,j,l,m = 1;

G. Handling alternative nodes

IV. ACCELERATING RESOLUTION

REFERENCES

[1] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, G. Lipari, and
M. Bertogna, “The hpc-dag task model for heterogeneous real-time
systems,” IEEE Transactions on Computers, pp. 1–1, 2020.

5

	I Introduction
	II System model
	II-A Architecture model
	II-B The HPC-DAG task model

	III Time table construction using ILP
	III-A Building variables
	III-B Objective function
	III-C Precedance constraints
	III-D Interval sufficiency constraints
	III-E Overlapping constraints
	III-F Partitioning constraints
	III-G Handling alternative nodes

	IV Accelerating resolution
	References

