
This is the accepted version of 10.1109/RTCSA55878.2022.00031. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Using Trace Data for Run-Time Optimization of
Parallel Execution in Real-Time Multi-Core Systems

Florian Schade, Timo Sandmann, Jürgen Becker
Institut fuer Technik der Informationsverarbeitung (ITIV)

Karlsruhe Institute of Technology
Karlsruhe, Germany

{schade, sandmann, becker}@kit.edu

Henrik Theiling
SYSGO GmbH

Klein-Winternheim, Germany
hth@sysgo.com

Abstract—In recent years, multi-core processors are becoming
more and more common in embedded systems, offering higher
performance than single-core processors and thereby enabling
both computationally intensive embedded applications as well as
the space-, weight-, and energy-efficient integration of software
components. However, real-time applications, for which meeting
certain deadlines must be guaranteed, do not profit as much from
this transition. This is mainly due to interference between the pro-
cessing cores of commercial-off-the-shelf multi-core processors at
shared resources, hampering the predictability of task execution
times. An effective approach to avoid this is running the critical
tasks exclusively on one core while pausing execution on all
other cores. This, however, reduces the overall system efficiency
since parallel execution potential remains unused. In this work
we present a novel approach to managing shared and exclusive
execution in such systems. By on-line observation of the critical
task progress via the on-chip trace infrastructure, we reduce the
time of exclusive execution when it is safely possible and thereby
increase the overall system efficiency. Using trace information
allows for early detection of parallelization potential and does
not require modifications to the critical application, which helps
avoiding re-certification of the critical application. We present an
implementation on a heterogeneous multi-processor system-on-
chip using a state-of-the-art hypervisor for critical systems and
evaluate its performance. Our results indicate that a performance
gain of 37% to 41% over approaches focused on exclusive
execution can be reached in low-interference situations.

Index Terms—Multicore processing, Real-time systems, Con-
currency control, Timing isolation, Worst-case execution time

I. INTRODUCTION

The amount and complexity of functionality implemented in
embedded systems such as automotive E/E architectures and
avionics control systems has increased rapidly over the recent
years. At the same time, a trend of consolidating embedded
processing units has emerged, leading to the integration of
formerly distributed functionality in few powerful processing
platforms to help reduce space, weight, and power consump-
tion. This is enabled by the availability of powerful multi-
core processors and heterogeneous Systems-on-Chips (SoC).
With this trend, however, the issue of integrating functionality
of different criticality became apparent. In mixed-criticality
systems, where low- and high-criticality functionality is imple-
mented on the same processing platform, sufficient isolation
needs to be put in place to guarantee freedom from interference
between these components as demanded by safety standards.

In the resulting software architectures, this isolation is often
achieved by embedded hypervisors, which control software
access to platform resources in a certifiable manner. Here,
relevant resources include memory, peripherals, and CPU
cores.

In the avionics domain, the ARINC 653 standard [1] defines
a real-time operating system (RTOS) interface to facilitate
the Integrated Modular Avionics (IMA) concept, targeting this
integration of functionality on a single execution hardware. Its
concepts are supported by a variety of industrial hypervisors
such as PikeOS [2] or XtratuM [3]. These hypervisors use
TDMA scheduling approaches to ensure temporal isolation
of software in different partitions. A periodic sequence of
fixed-length time windows are defined for each core, to which
partitions are mapped for execution.

In embedded systems found in the automotive, avionics,
or industrial domain, real-time control functionality is mainly
implemented in the form of periodic tasks. In each period, they
process input data and output their results either by controlling
actuators or forwarding information to other tasks. For critical
functionality, it needs to be ensured that every processing
iteration finishes before a defined deadline. During system
design this means that sufficient processing resources need
to be reserved for the task. For non-real-time tasks this is not
necessary since late or missing task results are acceptable and
do not negatively affect the system in an intolerable way.

To ensure that critical tasks finish in time, their worst-case
execution time (WCET) needs to be determined. While this
is considered a solved problem for single-core processors, it
poses a major challenge in multi-core systems [4]. This is
due to interference between applications running on parallel
cores, caused by contending access to shared resources. One
prominent example is the memory infrastructure, including
shared caches and memory controllers. Due to high cache
miss penalties, shared cache line evictions caused by one
application can cause significant delays in applications running
on a parallel core. Since the delay caused by interference
on a resource heavily depends on the behavior and timing
of the contending applications, detailed knowledge on the
applications and their execution would be necessary to calcu-
late a tightly-bound WCET for parallel applications running
on multi-core processors. Therefore, in practice, critical tasks

https://doi.org/10.1109/RTCSA55878.2022.00031


are often scheduled exclusively on multi-core processors by
disabling parallel cores for a time window matching the
WCET of the critical task and thereby avoiding interference.

In this work, we present a novel approach to scheduling
mixed-criticality systems on hypervisor-managed multi-core
processors with TDMA scheduling. The concept increases
the parallel execution of critical tasks and non-critical best-
effort tasks by monitoring the critical task progress at run-time
using CPU trace data, switching to exclusive execution only if
meeting the deadline is at risk. It requires no prior knowledge
on the non-critical tasks and critical tasks do not need to be
modified.

II. RELATED WORK

The integration of mixed-criticality functionality in multi-
core processors has been subject to intensive research [5], [6].
Interference between cores, caused by contending access to
shared resources, poses major challenges in the development
of real-time and safety-critical systems. In [6], Maiza et
al. summarize that the memory bus is considered the main
source of inter-core interference. Since interference can lead to
significant slowdown in task execution [7], a multitude of ap-
proaches have since been proposed, ranging from interference-
aware execution models over tracking and bounding shared
resource access to hardware measures to reduce interference.

Considering interference bounding in hypervisor-partitioned
multi-core systems, Nowotsch et al. [8] present a mechanism
that limits shared resource access by guest applications and
evaluate it on the P4080 multi-core processor. The hypervisor
is extended by a monitor keeping track of each process’s
accesses to the shared system network-on-chip. When a pro-
cess exceeds its budget, it is suspended until the budget is
replenished.

Other approaches focus on temporarily suspending task
execution on parallel cores to facilitate the completion of
critical tasks without interference. Lara et al. [9] propose the
use of a dedicated hardware module to detect the start and
end of the critical task execution. Aligned to its deadline, it
ensures that a time window equal to the single-core WCET
of the critical task is available for exclusive execution. This is
realized by disabling other cores’ access to the memory bus.
When the critical task finishes before its WCET, it switches
back to shared operation.

Freitag et al. [10] propose a more detailed monitoring
and control approach considering the critical task progress at
run-time. This progress is determined by a pattern matching
approach on performance counter signal curves, called Finger-
printing. By comparing signal samples to pre-recorded model
samples, the slowdown of a critical task is determined. A
hardware module external to the multi-core processor imple-
ments the monitoring functionality and throttles execution on
the other cores as necessary. Several approaches for throttling
are proposed and compared concerning their performance.
While the idea presented in [10] is related to our work, we
propose a different way of tracking the critical task progress.

Fig. 1. Exemplary control flow of a critical task

We investigate the use of trace data generated by the on-
chip tracing subsystem, which allows for direct detection of
decisions taken at conditional branch instructions. This yields
information on the critical task progress and its current path
within its control flow, which can be exploited for obtaining
information on the remaining execution time and thereby for
early parallel execution.

III. INTERFERENCE CONTROL USING TRACE DATA

A. Systems under Consideration

In this work we consider embedded software systems
where tasks of different real-time criticality are executed on
a single multi-core processor as found in commercial-of-
the-shelf (COTS) SoCs. We assume that there are periodic
critical tasks which implement real-time functionality. These
tasks are characterized by their period interval p, their start
time ts at which they start their execution, and deadline
td before which they need to complete in each period. We
assume that critical tasks can be analyzed to obtain a WCET
for single-core execution on the target processor while all
other cores are idle (exclusive execution). Furthermore, as
depicted in Figure 1, we assume that there are multiple walks
across a critical task’s control flow graph (CFG), starting from
the first instruction executed in an iteration (S) to the last
instruction in the final vertex E. We assume that among these
walks some differ significantly in execution time. Therefore,
a set B of conditional branch instructions with significant
influence on the overall execution time of the task can be
identified. Each conditional branch instruction b ∈ B leads
to two execution alternatives (decisions), for which the partial
WCETs Wb,F and Wb,N can be determined. They equal the
remaining worst-case execution time when starting from the
first instruction following b, assuming that the conditional
branch was followed (F ) or not followed (N ).

While we assume that there is only one critical task sched-
uled at the same time on the processor, there can be any
number of non-critical best-effort tasks scheduled in parallel
on the other cores. Best-effort tasks are not subject to real-
time requirements and may be interrupted at any time without
affecting critical system functionality. Besides this, we assume
that there is no prior knowledge on these tasks.

B. Goal and System Overview

Based on the assumptions described in Section III-A, the
presented approach aims to increase the overall system perfor-



mance by maximizing the use of parallelism in the multi-core
processor. We assume that in the average case maximizing the
time available for the parallel execution of tasks will lead to a
higher system performance since more computational work
can be done. Therefore, we attempt to maximize the time
during which critical and best-effort tasks run in parallel. At
the same time, the approach must guarantee that critical tasks
meet their deadlines in every iteration.

Figure 2 shows the main components of the proposed
system. Critical tasks and best-effort tasks are running on
an application multi-core processor managed by a hypervisor.
The hypervisor enforces resource access constraints to pro-
vide isolation between the tasks. With respect to scheduling,
it implements a TDMA-based cyclic schedule. External to
the application processor runs an execution controller. It is
synchronized with the hypervisor scheduler and controls best-
effort task execution on the hypervisor while the critical task
is running. To do so, it determines the progress of the critical
task by extracting information on branch decisions from trace
data emitted by the application processor. It keeps track of the
remaining worst-case execution time of the critical task and
ensures that slowdown introduced by the best-effort tasks does
not lead to deadline misses.

C. Scheduling Approach

The proposed scheduling approach requires a detailed anal-
ysis of the critical task. Besides the overall WCET Wtotal,
conditional branch instructions which significantly influence
the task execution time need to be identified for monitoring.
As indicated in Section III-A, for each of the identified branch
instructions b ∈ B, the partial WCETs Wb,F and Wb,N have
to be determined and configured in the execution monitor.

When configuring the hypervisor schedule, the critical task
is assigned a time window W = {c, s,D} on one CPU core.
It is characterized by the CPU core c, the offset s within
the hyperperiod, i.e., the scheduling frame, and its duration
D. The time window is aligned with the critical task offset
and deadline so that ts = s and td = s + D. To guarantee
completion of the critical task, the time window duration D
needs to be chosen so that D ≥ Wtotal. We suggest that it
is extended by Dslack to allow for some slowdown due to
interference. This results in D = Wtotal +Dslack.

At run-time, the hypervisor enforces the schedule as config-
ured. At the start of the critical task time window in iteration i,
at ts,i, the critical task is scheduled on its assigned CPU core.

Hypervisor

Critical task

Execution Controller

Scheduling
Control

Sync

Trace Config

Trace Data

Trace
UnitApplication Processor

Best-effort
Tasks

Fig. 2. System component overview

Core 1..n

Core 0

Fig. 3. Scheduling approach. The critical time window is highlighted in gray,
critical task execution is indicated by stripes, best-effort task execution by
dashes.

Best-effort tasks are executed on the remaining cores. This is
referred to as parallel execution. A synchronization event is
communicated to the execution controller, which then starts
its control functionality and tracks the elapsed time as well
as the critical task progress. It calculates the moment tx,i at
which the system will have to switch to exclusive execution:

tx,i ← td,i −Wtotal (1)

Reserving a timespan that equals the task’s WCET before its
deadline for exclusive execution ensures that the critical task
will finish in time.

As the critical task proceeds, the execution monitor contin-
uously monitors the incoming trace data. When a conditional
branch instruction bj ∈ B is passed, trace data indicates the
branch decision dj,i ∈ {F,N}, i.e., which path was taken.
This information is used to update tx,i based on the remaining
WCET for the path taken:

tx,i ← td,i −Wbj ,dj,i
(2)

When tx,i is reached, the execution monitor triggers the
hypervisor to switch to exclusive execution mode. The critical
task is still monitored so that it is possible to switch back to
shared mode in case that tx,i is postponed back to the future.

When the execution monitor detects that the critical ap-
plication has finished, it also switches the system to shared
execution, allowing best-effort applications to run for the
remaining part of the time window.

Figure 3 visualizes the proposed approach: At ts,i, the
critical application execution starts. However, due to interfer-
ence, it is slowed down (indicated by half striped filling). At
tx,i, the system switches to exclusive execution, preventing
interference and allowing the critical task to run at single-
core performance. When observed branch decisions lead to a
reduction of the remaining WCET, tx,i is postponed. When the
critical task ends at te,i, best-effort tasks are enabled again.

D. Rationale

The delay caused by interfering tasks running in parallel
largely depends on the task behavior. Typically, memory-
intensive tasks can be expected to cause more interference
than CPU-intensive tasks. Thus, best-effort applications shall
be enabled to run in parallel as long as their effect on the
critical task does not endanger meeting the deadline. Since no
prior knowledge on the best-effort task is available, its effects
on the critical task need to be determined by measurement at
run-time.



Using branch information for progress monitoring allows for
the early detection of changes in the critical task’s remaining
run-time. This is in contrast to conservative approaches which
enforce exclusive execution for (1) the whole duration of the
critical task execution or for (2) a duration matching its WCET.
When a branch decision at runtime leads to a reduction of the
execution time by ∆t, in conservative approaches of type (1),
this will lead to a gain in best-effort execution time of ∆t,
since the best-effort tasks will be scheduled as soon as the
critical task finishes. For approaches of type (2), this will not
influence best-effort execution time at all.

In the proposed concept, the early detection of a reduction
in critical task remaining (worst-case) execution time is used
to allow for early parallel execution. Early parallel execution
is further supported by defining an appropriate Dslack since
this prevents the system from switching to exclusive operation
at the beginning of the critical time window. In case of
low interference between the critical and best-effort tasks,
parallel execution of a best-effort task will barely increase
the execution time of the critical task. At the same time, it
allows for best-effort workload to be processed. With early
parallel execution, this allows for achieving a gain in best-
effort execution time that is greater than ∆t and thereby
enhancing the overall system performance.

In an optimal case, branch monitoring is laid out in a way
that leads to frequent postponing of tx,i so that for low-
interference scenarios tx,i always lies in the future, leaving
the system in shared execution mode.

The proposed approach postpones tx,i only after critical task
progress was observed. Thereby, it is ensured that a sufficient
phase of exclusive execution can be realized before the critical
task deadline. Even in cases of high interference this ensures
that the deadline will be met. Furthermore, the trace subsystem
is not required to fulfill real-time requirements in order to give
critical task real-time guarantees, since trace system latencies
will only delay postponing tx,i.

IV. IMPLEMENTATION ON COTS HARDWARE

A. System overview

The concept was implemented on the ZCU102 Zynq Ultra-
Scale+ MPSoC evaluation board [11]. The SoC includes an
Application Processing Unit (APU) comprising 4 Cortex-A53
processing cores, a Real-time Processing Unit (RPU) including
a dual-core Cortex-R5 processor, as well as programmable
logic, among other components. It features an ARM CoreSight
tracing subsystem which supports instruction tracing on the
processing cores. With regards to the memory infrastructure,
the APU provides separate 32 kB L1 caches for instructions
and data for each core as well as a 1MB shared L2 cache
with 64B line length. The RPU comprises 128 kB of tightly
coupled memory which can be used for predictable instruction
execution and load/store timing. Components in the SoC are
connected via AXI interconnects. A DDR controller interfaces
4 GB DDR4 RAM located on the evaluation board.

An overview on the implementation is given in Figure 4.
The APU is used as application processor, hosting the PikeOS

Execution
Mgmt. Driver

Critical Task Best-effort
Tasks

PikeOS

Core 0 Core 1..3

APU

PikeOS
Scheduler

RPU

Execution
Controller

CoreSight Trace Infrastructure

ETFAPU Core 0 ETM

Sync IPI

Mode IPI

Blocker Task

read()

PikeOS
Configuration

Execution Controller
Configuration

schedule

configures

Fig. 4. Implementation of the trace-data-based execution control concept. SoC
components are highlighted in blue, commercially available software in green,
concept-specific implementations in white and application-defined artifacts in
orange. Trace data is indicated using dashed lines.

embedded hypervisor. Critical and best-effort tasks are im-
plemented in separate PikeOS partitions which are mapped
to a cyclic TDMA schedule. The critical task is mapped to
core 0, best-effort tasks can be be mapped to the other cores.
The PikeOS kernel is extended by an execution management
driver which can inhibit application processing on cores 1
through 3 using blocker tasks, thereby realizing exclusive
execution. The execution controller is implemented as a bare-
metal application running on the RPU. It communicates to
PikeOS via inter-processor interrupts (IPI) and interfaces the
platform’s trace subsystem. The trace subsystem is configured
to forward trace data generated by the APU core 0 Embedded
Trace Macrocell (ETM) into an Embedded Trace FIFO (ETF)
for buffering, which is polled periodically by the execution
monitor.

B. PikeOS

PikeOS is a hypervisor and operating system for embedded
real-time systems that is certifiable up to the highest safety
levels. It enforces separation of applications and guest OSs
both in the space and the time domain, using a concept of
partitions. In the PikeOS configuration, tasks are assigned to
resource partitions. Resource partitions are logical containers,
for which access limitations to system resources such as mem-
ory and peripherals can be configured and are then enforced
by the hypervisor’s separation kernel. With regard to CPU
scheduling, the concept of time partitions and time windows
is used. A time window represents a period of time during
which only threads of resource partitions which are mapped
to the time window are allowed to be executed. A sequence of
time windows for each core forms a scheduling frame, which
is repeated periodically by the scheduler.

In our implementation the critical task is mapped to one
resource partition (critical partition), while best-effort tasks
are mapped to one or multiple other partitions to facilitate
isolation. The critical partition is mapped to a time window



on core 0 (critical time window) while the other partitions
are mapped to other cores. Time windows are defined so that
initially the best-effort partitions are active in parallel to the
critical partition. This configures the hypervisor for parallel
execution.

To realize exclusive execution we make use of the prioritiza-
tion mechanism in the PikeOS scheduler. To prevent best-effort
task execution, a blocker thread is started on each core. It is
assigned a higher priority than the maximum priority config-
ured for the best-effort resource partition threads. Thereby, the
blocker thread can be used to control other thread’s execution
on the core by switching between running and blocking thread
state. When the blocker thread runs, it prevents other threads
from running on the core. When it blocks, lower-priority
threads are scheduled. While running, the blocker thread spins
on a wait-for-interrupt instruction in user space to put the CPU
in low-power mode and not cause interference itself.

To prevent best-effort tasks from influencing the blocker
thread, blocker threads are placed in a separate resource
partition. This resource partition is mapped to time partition 0,
which is intended for service tasks and always eligible to run.

In the PikeOS kernel space, an execution management
driver module controls the execution of all blocker threads.
It provides a read() function that uses the PikeOS kernel
service API to put the calling thread into blocked mode.
When an inter-processor interrupt (IPI) is received, the driver
identifies whether shared or exclusive execution is requested
and wakes the corresponding blocker threads as necessary.

C. Execution Monitoring and Control Application

The execution controller application running on the RPU
implements the trace-data-based critical task progress monitor-
ing, derives tx,i and notifies the execution management driver
when a mode change is necessary.

Its configuration comprises the task deadline, its total
WCET, final code block instruction address, and trace-specific
information such as the trace context ID. Monitored branch
instructions are stored in a tree structure, each element com-
prising a branch instruction address filter, Wb,N , Wb,F , as well
as a list of branches to monitor once a branch is passed.

When configuring the execution control application, care
must be taken that the processing latency of the implemented
control system is considered when it comes to switching
to exclusive execution. This delay includes IPI latencies for
synchronization and mode change notification as well as
latencies for timer interrupt handling and issuing of the mode
change notification. In addition, the latency for IPI handling
and blocker thread activation in PikeOS needs to be considered
as well as slowdown in critical task execution caused by
cache line evictions before the switch. These delays can be
deducted from the configured deadline or added to the branch-
specific remaining WCET values to ensure a sufficiently early
switchover to exclusive operation.

The execution controller synchronizes with the PikeOS
scheduler at the beginning of each critical time window and
then starts a hardware timer as a local time reference. As

Fig. 5. Evaluation task structure. Circles indicate CFG blocks, bi identifies
the branch instruction located at the end of the CFG block.

described in Section III-C, it then calculates tx,i and programs
a timer interrupt. When this interrupt occurs, it notifies the
PikeOS kernel module by IPI to switch to exclusive execution.
After synchronization, the application configures the trace
infrastructure to emit trace data when relevant conditional
branch instructions are processed. Here, instruction address
filter modules provided by CoreSight Embedded Trace Macro-
cells are used to limit trace generation to relevant instruction
address ranges, which reduces the trace data processing load.
By polling the ETF buffer, trace data is then received and
parsed. When relevant branch decision information is received,
a new tx,i is calculated, the timer interrupt is updated, and
the trace infrastructure filters reconfigured as necessary. When
appropriate, the execution mode switch is triggered. In parallel,
the trace hardware is configured to indicate when the final code
block is reached, indicating the end of the critical task. When
this is detected, a mode switch back to shared execution is
triggered.

V. EVALUATION

In this section, we present a first evaluation of our concept.
We investigate the performance of the proposed scheduling
approach for various interference scenarios and measure the
gain in system performance over conservative approaches. For
this evaluation we consider system performance to be the
processing rate of best-effort workload while the critical task
completes in all iterations before its deadline.

The evaluation setup is based on the implementation de-
scribed in Section IV. Two application tasks are present in
the system: A critical task is executed periodically during the
critical time window in the hypervisor schedule. It contains
several conditional branch instructions which represent de-
cisions made on input data (cf. Figure 5), resulting in four
possible execution paths through the application. Between
these branch instructions, it executes a pre-defined number of
iterations of a worker function. Next to it, a best-effort task
runs continuously whenever it is scheduled by the hypervisor.
It also loops on a worker function that processes a pre-defined
amount of workload. One iteration of the worker function is
referred to as a work package. In addition, the task keeps track
of the number of work packages processed.

In order to simulate different interference situations and
account for CPU- and memory-intensive applications, multiple
worker function implementations were created. To simulate
low-interference processing, a CPU-intensive worker function
was created, mainly executing arithmetic operations by calcu-
lating the square root of random numbers. A memory-intensive



0% 25% 50% 75% 100%

Best-effort Task memory intensity

0%

50%

100%

C
ri

ti
ca

l 
T

as
k
 m

em
o
ry

 i
n
te

n
si

ty

1.10

1.07

0.89

0.85

0.79 0.79

1.39

1.39

1.41

1.39 1.39 1.39

0.68

1.37

0.60

0.6

0.8

1

1.2

1.4

Fig. 6. System performance gain based on memory intensity of the critical
and best-effort tasks

worker function writes and reads a sequential memory range
of 1MB with a 64B stride. Based on preliminary experiments
on the hardware platform, this function causes significant
interference and thereby slowdown when executed on multiple
cores in parallel. This becomes clear considering that the
parameters match the L2 cache size and line length. To
simulate mixed workloads, a worker function implementation
was created that randomly executes single work packages of
the CPU- and memory-intensive worker function. One work
package was tuned to take approx. 1ms of execution time
during exclusive operation.

Based on these tasks and worker function implementations,
different system configurations were evaluated, which are
characterized by different memory intensity of the tasks. For
each critical task configuration, the overall WCET as well
as partial WCETs were determined. This was done experi-
mentally on the target platform by measuring the maximum
execution time of 500 iterations in exclusive execution mode,
determining the maximum (partial) run-time and adding a
margin of 5%. Based on this, the hypervisor schedule was
defined. The critical time window was defined on core 0 and
its duration set to Wtotal. For the low-interference critical task
(0% memory intensity), this led to duration of 140ms, while
the other implementations led to 141ms. In parallel, on core 1,
a best-effort time window of the same duration was defined,
while the other cores were not used.

As a reference, we implemented a more conservative
scheduling approach where the critical task is executed ex-
clusively for its complete run-time (cf. type (1) described in
Section III-D). This is achieved by assigning both the critical
and best-effort task to the same time partition on core 0 while
setting the critical task to a higher priority. Thereby, as soon
as the critical task finishes, the best-effort task is executed for
the rest of the time window.

Table I shows the number of best-effort work packages
processed over 80 schedule iterations (20 per path) for the
presented setup. The resulting gain factors with respect to
the reference implementation are plotted in Figure 6. The
measurements indicate that the proposed approach leads to a
significant gain in system performance as long as the memory
intensity of either one of the contending applications is low.
As long as one task is purely CPU-intensive, a gain of 37% to

41% could be observed. With increasing memory intensity of
both tasks, this gain decreases. At 50% memory workload in
the critical task and 25% in the best-effort task, the gain is still
10%. However, as soon as both the critical task and best-effort
task exceed 50% memory-intensive workload, the proposed
approach shows a negative gain, leading to a performance loss
of up to 40% at 100% memory workload.

This loss in performance is to be expected since we em-
ployed worker tasks that maximize L2 cache usage in their
memory-intensive phase. When such tasks contend for mem-
ory resources, this leads to a high number of L2 cache misses,
resulting in RAM accesses. Since RAM access latencies
exceed L2 cache access latencies by a large factor, this leads
to an extensive slowdown of the task execution. Typically, this
can even lead to parallel execution times exceeding sequential
execution of the tasks. Yet, for all measured scenarios, the
proposed approach and the priority-based approach achieved
meeting the deadline in all measurements.

VI. DISCUSSION

Our evaluation shows that the proposed approach success-
fully increases parallel execution in the system compared to a
conservative approach. The resulting effect on the overall sys-
tem efficiency therefore heavily depends on the nature of the
applications running in parallel. As long as little interference
is caused between the tasks, a significant gain in processing
performance can be expected. This is the case when either the
critical task or the best-effort tasks mostly access core-local re-
sources. When both tasks make intensive use of limited shared
resources such as shared caches or RAM, significant delays
can be observed. While not explicitly evaluated in this work,
this may also be the case when contending for peripherals and
other shared system components. To ensure that best-effort
tasks cannot cause critical task deadline misses by locking
system components beyond the control of the hypervisor,
system designers need to make sure that access to such re-
sources is limited appropriately. In cases of heavy interference,
scheduling approaches realizing exclusive execution for the
run-time of the critical tasks can lead to better performance due
to sequential execution of the high-interference workload. This
is a well-known phenomenon inherent to parallel execution
of such tasks on COTS multi-core processors. As identified
in [7], the execution time of tasks under heavy interference
can be multiple times slower compared to their execution time
when running exclusively. In that case, sequential execution
leads to an earlier completion of the two tasks. One possible
approach to reduce this interference is the application of cache
management techniques such as cache coloring.

At maximum interference, the proposed approach still en-
sures that the critical task deadline is met. While priority-
based approaches lead to significantly higher best-effort task
performance in this case, our results indicate that the proposed
approach still achieves approx. 44% of the workload that
would be achieved at minimum interference, that is, for a
CPU-intensive critical task. In comparison, the safe approach
of completely disabling other CPU cores for the full duration



TABLE I
BEST-EFFORT WORK PACKAGES PROCESSED OVER 80 SCHEDULE ITERATIONS

BASED ON CRITICAL TASK (CT) AND BEST-EFFORT TASK (BT) MEMORY INTENSITY

BT memory intensity Proposed approach Priority-based scheduling
CT 0% CT 50% CT 100% CT 0% CT 50% CT 100%

0% 7361 7522 7739 5294 5417 5475
25% 7549 6025 5873 5430 5462 5501
50% 7749 5008 4793 5576 5601 5647
75% 7996 4547 3967 5734 5764 5819
100% 6319 3669 2805 4622 4644 4677

of the critical time window, i.e., critical task WCET, would
result in no best-effort task progress during that time window.

While the presented implementation manages a single crit-
ical task, the concept can be applied to any number of critical
tasks as long as they are scheduled sequentially. Parallel exe-
cution of critical tasks is not supported, since the concept relies
on disabling parallel tasks to achieve single-core performance.

The proposed approach holds the potential to increase
system performance on the application processor. However,
its overhead needs to be considered as well. In the current
implementation, a second CPU is needed for trace data pro-
cessing and execution control. In the future, this software could
be ported to an RTOS to enable the parallel execution of
other tasks. Since the timely execution of the critical tasks
depends on the correctness and timing of the execution control
application, however, this needs to be done carefully. Alter-
natively, the execution controller could be implemented as a
reconfigurable hardware module on the FPGA within the SoC,
potentially reducing the reaction latency to incoming trace data
and thereby further enhancing the system performance.

VII. CONCLUSION

Targeting mixed-criticality systems implemented on SoCs,
comprising both real-time and best-effort applications, we
proposed a novel, dynamic approach to scheduling such sys-
tems efficiently by exploiting parallelization opportunities that
cannot be identified by static analysis. An execution controller
is proposed which monitors the critical task at run-time and
controls the parallel execution of best-effort tasks on neighbor-
ing CPU cores based on the critical task’s progress. Leveraging
the trace infrastructure of modern SoCs as well as partial
WCET information obtained at design-time, the execution
controller ensures that the critical task deadline is always met
while parallel execution potential is used early. In doing so,
the critical task does not need to be augmented, avoiding re-
certification. An evaluation using tasks of varying interference
intensity confirms this and shows that an efficiency gain of
37% to 41% can be achieved for low-interference tasks in
dual-core operation, compared to a priority-based sequential
scheduling approach. For high-interference tasks contending
for resources, we identify that parallel execution can lead to
major slowdown, resulting in sequential execution to be more
efficient. Therefore, next steps include further evaluation of
the proposed concept using real-world applications and further

theoretical application scenarios. To ease integration with
larger system designs, the integration of the execution monitor
software with an RTOS can be investigated. Finally, the trade-
off between a hypervisor-internal and external implementation
of execution monitor functionality needs to be investigated,
considering both performance and safety aspects.

ACKNOWLEDGMENT

This work was funded within the EMDRIVE project by the
German Federal Ministry of Education and Research (BMBF)
under grant number 16ME0454. The authors are responsible
for the contents of this publication.

REFERENCES

[1] P. J. Prisaznuk, “ARINC 653 role in Integrated Modular Avionics
(IMA),” in 2008 IEEE/AIAA 27th Digital Avionics Systems Conference,
2008.

[2] R. Kaiser and S. Wagner, “Evolution of the PikeOS microkernel,” in
First International Workshop on Microkernels for Embedded Systems,
vol. 50, 2007.

[3] M. Masmano, I. Ripoll, A. Crespo, and J. J. Metge, “XtratuM: a
Hypervisor for Safety Critical Embedded Systems,” in In: Proceedings
of the 11th Real-Time Linux Workshop, 2009.

[4] S. Wegener, “Towards Multicore WCET Analysis,” in 17th International
Workshop on Worst-Case Execution Time Analysis (WCET 2017), ser.
OpenAccess Series in Informatics (OASIcs), J. Reineke, Ed., vol. 57.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017, pp. 7:1–7:12.

[5] A. Burns and R. I. Davis, Mixed Criticality Systems - A Review
(13th Edition, February 2022), Feb 2022. [Online]. Available:
https://eprints.whiterose.ac.uk/183619/

[6] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I.
Davis, “A Survey of Timing Verification Techniques for Multi-Core
Real-Time Systems,” ACM Comput. Surv., vol. 52, no. 3, Jun 2019.
[Online]. Available: https://doi.org/10.1145/3323212

[7] J. Nowotsch and M. Paulitsch, “Leveraging Multi-core Computing
Architectures in Avionics,” in 2012 Ninth European Dependable Com-
puting Conference, 2012, pp. 132–143.

[8] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core Interference-Sensitive WCET Analysis Lever-
aging Runtime Resource Capacity Enforcement,” in 2014 26th Euromi-
cro Conference on Real-Time Systems, 2014, pp. 109–118.

[9] E. Lara, G. Debon, R. Goerl, P. Villa, D. Schramm, L. B. Poehls, and
F. Vargas, “A New Approach to Guarantee Critical Task Schedulability
in TDMA-Based Bus Access of Multicore Architecture,” in 2019 IEEE
Latin American Test Symposium (LATS), 2019.

[10] J. Freitag, S. Uhrig, and T. Ungerer, “Virtual Timing Isolation for
Mixed-Criticality Systems,” in 30th Euromicro Conference on Real-
Time Systems (ECRTS 2018), ser. Leibniz International Proceedings in
Informatics (LIPIcs), S. Altmeyer, Ed., vol. 106. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp. 13:1–
13:23.

[11] Xilinx, “Zynq UltraScale+ Device - Technical Reference Manual,” Dec
2020. [Online]. Available: https://docs.xilinx.com/v/u/en-US/ug1085-
zynq-ultrascale-trm

https://eprints.whiterose.ac.uk/183619/
https://doi.org/10.1145/3323212
https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm
https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm

	Introduction
	Related Work
	Interference Control using Trace Data
	Systems under Consideration
	Goal and System Overview
	Scheduling Approach
	Rationale

	Implementation on COTS Hardware
	System overview
	PikeOS
	Execution Monitoring and Control Application

	Evaluation
	Discussion
	Conclusion
	References

