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Abstract—We present RETA (Relative Timing Analysis), a
differential timing analysis technique to verify the impact of
an update on the execution time of embedded software. Tim-
ing analysis is computationally expensive and labor intensive.
Software updates render repeating the analysis from scratch a
waste of resources and time, because their impact is inherently
confined. To determine this boundary, in RETA we apply a
slicing procedure that identifies all relevant code segments and
a statement categorization that determines how to analyze each
such line of code. We adapt a subset of RETA for integration
into aiT, an industrial timing analysis tool, and also develop a
complete implementation in a tool called DELTA. Based on staple
benchmarks and realistic code updates from official repositories,
we test the accuracy by analyzing the worst-case execution time
(WCET) before and after an update, comparing the measures
with the use of the unmodified aiT as well as real executions
on embedded hardware. DELTA returns WCET information that
ranges from exactly the WCET of real hardware to 148% of
the new version’s measured WCET. With the same benchmarks,
the unmodified AIT estimates are 112% and 149% of the
actual executions; therefore, even when DELTA is pessimistic, an
industry-strength tool such as AIT cannot do better. Crucially,
we also show that RETA decreases aiT’s analysis time by 45%
and its memory consumption by 8.9%, whereas removing RETA
from DELTA, effectively rendering it a regular timing analysis
tool, increases its analysis time by 27%.

Index Terms—Software updates, timing analysis, embedded
systems, software verification.

I. INTRODUCTION

In embedded applications, timing properties are crucial to
ensure correctness. Application requirements dictate the timing
properties, yet applications typically execute atop hardware
with limited resources, which impacts the ability to meet
real-time deadlines. Missing deadlines may compromise the
application’s safety properties.

Consider the analysis of worst-case execution time
(WCET) [1], often carried out based on a model of the
program. The model may include paths in the code that are
actually executed during application runs, and paths that are
infeasible in the actual program but considered feasible in
the model. As a result, existing techniques and corresponding
tools return over-approximations of the actual WCET. The
over-approximation is useful in many respects anyways. For
example, it can be used to determine schedulability since a
system that is schedulable with the over-approximated WCET
is schedulable also with the actual WCET.

Problem. As codebases undergo evolution and maintenance,
ensuring that timing properties are retained after code updates
is key to enabling robust development processes [2]. Software
updates usually modify a small proportion of the code. For
example, 75.2% of commits to the gcc compiler, which has
millions of lines of code, change less than 47 lines [3].

Existing analysis techniques are oblivious to evolution and
maintenance of existing codebases. Their application to soft-
ware updates is the same as with the original program: the
code must be analyzed in its entirety, which is computation-
ally expensive and labor intensive. The latter issue is acute:
developers are to provide essential information about the code,
such as loop bounds, that may be germane to code sections
outside of their expertise, such as hardware drivers. The effort
required is marked even if the effects of the modification on
the timing behavior are small or even nonexistent.
Differential timing analysis. Instead of re-analyzing the entire
program to provide absolute timing information, we isolate the
effect of updates on the software’s timing behavior and only
provide differential timing information. We argue that this is
sufficient in many settings. For example, most updates apply
urgent bug and security fixes rather than global performance
optimizations [4]. It is sufficient for these cases to provide
a guarantee that performance is no worse, or is worse by a
small enough amount, than the original program. Differential
timing analysis can provide a guarantee that the new version’s
performance meets a specific performance target relative to
the old version, or demonstrate that this is not the case. To
that end, differential timing analysis is computationally less
expensive and does not require as much developer effort as
with existing techniques.

Thinking that performing differential timing analysis merely
amounts to identifying the lines of codes that change from
one version to another is in a way naive. A small code change
may, in principle, bear devastating effects on the overall timing
behavior. For example, say an update modifies the value of an
integer variable in an assignment. No other code is modified,
hence the net execution time of the changed instructions
remains the same. The variable is used elsewhere in the code
to determine the number of iterations in several nested for
loops. The overall increase in execution time is multiplicative
in the number of nested loops even though the instructions
inside the loops have not changed.
RETA. We develop a differential timing analysis technique
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called RETA (Relative Timing Analysis), described in Sec. IV.
RETA incorporates a slicing procedure that generates a re-
duced program with only the lines of code that impact the
timing behavior. In the example above, RETA would identify
both (and only) the change in the assignment and the nested
loops. Only these lines of code must be analyzed; therefore, the
computational requirements and developer effort are greatly
reduced. RETA further categorizes each statement in the sliced
program according to how it impacts the change in execution
time across program versions. The statement’s contribution to
the change in execution time differs based on the categories.

RETA returns timing information relative to the execution
time of the original version of the code. An example of
RETA’s output is that the new version is between X and Y
time units faster than the old version. The timing information
derived from the original version of the software may be com-
bined with RETA’s output to obtain global timing information.
Practice. DELTA (Disassembly Level Timing Approximation)
is a proof-of-concept semi-automatic implementation of
RETA, described in Sec. V. DELTA disassembles the program
binaries and uses a regular diff tool to find differences at
the level of assembly code. Then, the slicing procedure is
applied to identify the relevant code segments. DELTA targets
microcontroller units (MCUs) of the Cortex M* series, which
are often deployed in embedded systems such as nanosatellites
and mobile robots. The output of the slicing procedure is an-
alyzed based on the execution times of individual instructions
obtained from the ARM M* reference documentation [5].

We also adapt a subset of RETA to aiT [6], an industry-
strength WCET analysis tool, to enable it to analyze updates
differentially provided they meet specific conditions. We call
this AIT-RETA. As the implementation is only partial, these
conditions are significantly more restrictive than DELTA’s.
Results. We consider staple embedded benchmarks and actual
updates to the respective codebases, taken from their official
code repositories. We compare the outcome of the analysis
obtained with DELTA with those of AIT-RETA, the unmodified
aiT, and real executions on a NUCLEO-L432KC development
board equipped with an STM32L432KC MCU [7].

Our results, reported in Sec. VI, show that, for example,
WCET information returned by DELTA ranges from exactly the
WCET observed on real hardware to 148% of that. In the same
benchmark, AIT measures a 12% and 149% higher WCET;
DELTA is thus either more accurate or similarly pessimistic
than AIT. On the other hand, the (partial) implementation
of RETA in AIT reduces the analysis time and memory
consumption by 45% and 8.9%, respectively.

Before moving on to the technical matter, Sec. II presents
a brief survey of related efforts and necessary concepts to
understand the rest of the paper.

II. BACKGROUND AND RELATED WORK

Our work belongs to the field of static deterministic timing
analysis [8]. These approaches are pessimistic by nature. As
mentioned, when computing WCET, the lack of run-time
information may guide the analysis to consider certain states as

reachable, when they are not. Program models are combined
with device models representing the target platforms. These
models are also generally pessimistic to maintain safety,
for example, when representing the behavior of caches and
speculative executions. These features produce estimates that
may be significantly worse than the actual values [9].

Differential timing analysis and RETA intersect the existing
literature in many ways. We provide next a brief account of
the works we deem close to ours.

A. Update Analysis

The idea of analyzing code changes per se, rather than
analyzing entire programs, is applied to various problems.

Differential symbolic execution is a technique that utilizes
differences in a program to characterize specific behavioral
differences or verify behavioral equivalence [10]. The mo-
tivations are similar to our work, in that regular symbolic
execution does not consider that updates typically modify a
small portion of the code [10]. In contrast to our work, differ-
ential symbolic execution does not verify timing properties, but
rather functional equivalence, meaning that the input-output
relations are retained across both versions

A related technique is regression verification, which verifies
program equivalence as an alternative to verifying functional
correctness [11]. The rationale is that the verifier no longer
needs to know the properties that the program must meet, but
rather only checks that the updated program meets the same
properties as the original one. Program equivalence again holds
when the input-output relations are identical between the two
versions. Every sorting algorithm is equivalent according to
this definition. However, different sorting algorithms (and their
implementations) are not equivalent from a timing perspective,
which differential timing analysis can instead verify.

B. Implicit Path Enumeration

Static deterministic timing analysis is normally performed
using implicit path enumeration [1].

First, micro-architecture analysis builds a control flow graph
(CFG) of the program [12]. Nodes represent basic blocks;
edges represent jumps from one basic block to another. For
each node, a WCET is computed. Next, data flow analysis uses
the CFG to determine feasible paths and loop bounds [12]. In
doing so, it generates program functionality constraints that
define bounds on the values of variables using both variable
definitions and branching conditions. An optimization problem
is then solved to maximize the total WCET subject to program
functionality constraints [12].

Fig. 1 shows an example representing a while loop. Node 1
ends with a conditional jump: if variable x is less than 5
then the execution jumps to node 2, otherwise it continues
to node 3. Node 2 ends with an unconditional jump to node
1, represented by an edge from node 2 to node 1. The while
loop repeats until the variable x is 5 or larger.

Data-flow analysis obtains loop bounds by analyzing the
possible values of a variable, with knowledge of the code
inside each node. Let x be a positive integer or zero at the



x≥5

Node 1 

Node 3

x<5 Node 2 
x=x+1

Fig. 1: The CFG of a while loop.

start. Let the code in node 2 increment x by one. The analysis
places a constraint on the maximum number of times node 1
executes, which in this case is six times, and would occur when
x starts with 0. In Fig. 1, this occurs when node 1 executes six
times, node 2 executes five times, and node 3 executes once.

C. Abstract Interpretation

Abstract interpretation is a technique for safely approx-
imating the behavior of programs [13]. It obtains abstract
semantics by performing an abstraction of the concrete values.
For example, interval abstraction represents a variable’s values
with an interval defined between minimum and maximum
values. To apply this abstraction safely, the abstract interval
must contain all values the concrete variable may be assigned.
For example, if the value of a concrete variable x is in a
set {1, 7, 42}, then a safe interval abstraction is the integer
range [1,42]. The abstraction is less precise than the concrete
semantics, in that it includes values that the concrete variable
cannot take, such as 3 or 11 in this example.

Abstract interpretation is used when analyzing the program
with concrete values is not feasible. Interval analysis, for
example, allows one to use interval arithmetic to establish
constraints on the values of different variables without the
need to analyze every possible concrete value. Additionally,
computing a minimum and maximum value for a variable is
usually less expensive than computing all possible values.

Abstract interpretation is used in WCET analysis to compute
the values a variable may have, which aids in finding loop
bounds [14] and in determining the reachability of code.

D. Program Slicing

Program slicing is a technique to reduce a program into
only the instructions that have an effect on the semantics
of interest [15]. For example, if we want to determine a
variable’s possible values, then the corresponding program
slice only includes instructions that influence the variable’s
values in some way. The variable at hand is known as the
slicing criterion. The dependency is transitive, meaning that if
the slicing criterion is influenced by a variable x, and variable
x is influenced by variable y, then the slicing criterion is
influenced by variable y. This approach is known as backward
slicing [16] because the analysis moves backwards to find the
statements that influence the value of our slicing criterion.

The opposite approach is forward slicing [16]. Forward
slicing moves in the forward direction to find the statements
whose variables depend on the value of the slicing criterion.
This dependency is also transitive. The forward slice can be

used to determine how a change in the value of the slicing
criterion propagates through the rest of the program.

III. TRADITIONAL TIMING ANALYSIS EXAMPLE

We attempt to conduct an analysis of Hackflight [17], an
open-source drone autopilot, using aiT. We note the challenges
associated with using traditional WCET analysis for embedded
software.

Hackflight is an open-source drone autopilot. A drone
autopilot controls a drone by obtaining data from sensors,
such as the current orientation, and uses it along with the
pilot’s inputs to move the drone in a particular orientation
and speed. A drone autopilot typically does so using a PID
(proportional-integral-derivative) controller which attempts to
reduce the error between the pilots inputs (intended orientation
and speed) and the drone’s actual orientation and speed.

Hackflight has about 4000 lines of code, which makes it sig-
nificantly smaller than other autopilots such as Ardupilot [18].
A typical Ardupilot binary is on the order of megabytes,
whereas a Hackflight binary is on the order of tens of
kilobytes.

We choose to analyze Hackflight because of its small size,
which informs us on how existing WCET techniques scale to
real-world embedded software.

We conduct a WCET analysis of Hackflight. We specifically
analyze Hackflight’s main control loop. A single iteration of
Hackflight’s main loop obtains pilot inputs by reading data
from a radio receiver, obtains data from sensors, and runs
a PID control algorithm to find appropriate motor power
magnitudes to achieve the orientation specified by the pilot.

We find that conducting a WCET analysis of an embedded
program is difficult even with sophisticated and mature tools.
We conduct the WCET analysis using aiT.

We find that analyzing the entire program requires us to
provide a significant amount of necessary information. Some
of the information we provide include:

• Loop bounds (which cannot always be determined auto-
matically).

• Branch instructions where the target is an address in a
register (most notably used by virtual functions in C++
and function pointers).

• Access timing for different memory regions.
• Measured/Documented execution times for input/output

from sensors.
Some information may be extremely difficult for developers

to provide especially information about external libraries, such
as hardware drivers. Some of the loop bounds we must provide
to aiT are bounds for loops used in hardware libraries such
as timers, I2C, and C++ functions such as malloc r and
memcpy.

As we demonstrate in Sec. IV, we can identify the timing
impact that a code change has on other sections, and use this
to compute the change in execution time as a result of an
update. Doing so requires significantly less computational and
user effort than traditional timing analysis, since an update
usually only affects a small proportion of the code.
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Fig. 2: Timing analysis of software updates with RETA.

IV. RELATIVE TIMING ANALYSIS

RETA (Relative Timing Analysis) is our take at differential
timing analysis. RETA returns the change in execution time
from the original to an updated version of a software, given
the same program inputs. If this figure is a positive value, then
the updated version is slower than the original version; if it is
negative, then the updated version is faster. We explain next
the requirements that must be met for RETA to be applicable,
as well as the analysis procedures at its core.

A. Requirements

RETA requirements are largely the same as most timing
analysis techniques and tools.

RETA must operate at the level closest to actual program
execution, that is, with assembly code. Working at source
code level would mislead the estimates due to compiler
optimizations [19]. To apply the slicing procedure we describe
next, branches or jumps must have statically-known targets or
the user must provide the target. We also require the line-by-
line differences between the two program versions. Equivalent
lines must also be provided, where two equivalent lines have a
one to one mapping and are semantically equivalent. Existing
differencing algorithms [20] can determine this information.

The execution times of each instruction must be known,
for example, in terms of clock cycles, including instructions
accessing peripherals. These may be obtained from data sheets
or measured on the hardware. If exact timing information is not
available, at least a lower- and upper-bound must be available.

We target single-core platforms, which are commonly em-
ployed in embedded systems such as closed-loop control
equipments, mobile robots, and nanosatellites [21], [22]. The
interleaving between different cores in multicore systems
would make it difficult to reason about the effect of specific
instructions, since the time of instruction execution must
also be considered. We also consider instructions to execute
sequentially, and therefore do not incorporate out-of-order
execution, which may result in different execution times than
a sequential model.

B. Analysis

We provide an overview of the analysis procedure, with
Fig. 2 serving as a road-map. We illustrate a concrete example
in Sec. V when this procedure is concretely applied to example
code using our DELTA implementation.

The procedure takes as input the code differences deter-
mined by a regular differencing algorithm. We call every

such instruction as δ instruction. We slice both program ver-
sions forward from every δ instruction to determine the later
instructions that are possibly affected. For each conditional
instruction in the forward slice, we slice the corresponding
program version backward to obtain complete information on
their truth values. The combination of forward and backward
slices for a given version of the code, over all δ instructions,
includes instructions that either i) are different between pro-
gram versions, ii) whose execution is possibly impacted by
code changes, or iii) concur to determine execution paths that
might change because of code changes.

The two program slices, one for the original program and
one for the updated program, determine the instructions of
interest to compute the time difference. Different types of
instructions contribute differently to estimating this difference.
We categorize each instruction in a slice as:

1) CatA: sequential execution, that is, instructions that do
not split the program flow.

2) CatB: branching points, that is, instructions that do split
the program flow; in a CFG, these instructions appear
last in a node that has two or more outgoing edges:

a) CatBa are conditional instructions that do not cause
a natural loop, that is, there is no path in the CFG
that returns to the same instruction.

b) CatBb are conditional instructions that cause a
natural loop, represented in a CFG as a circular
path that eventually returns to the same instruction.

Each category requires a different analysis, as exemplified in
Sec. V, that determines the instruction’s individual contribution
to the time difference, which may be negative or positive. The
final execution time difference is the (arithmetic) sum of the
individual contributions.

Fig. 3 demonstrates a more detailed procedure for RETA
that highlights the steps that must be taken for specific
instruction categories as well. The figure is color coded to
highlight key steps. The slicing procedure is in yellow. The
statement categorization procedure is in blue, and green.
Blue corresponds to Category A and green corresponds to
Categories Ba and Bb. The final step of the procedure is
purple.

V. DELTA

DELTA (Disassembly Level Timing Approximation) is an
implementation of RETA that targets ARM Cortex M4F mi-
crocontrollers. The M4F is the lowest-power microcontroller
of the Cortex M* family that is also equipped with a hardware
FPU. This makes it applicable to embedded systems that are
both energy constrained but also require computing power, as
in low-level robot controllers [23].

We provide here essential information on the implementa-
tion of DELTA. Next, we walk the reader through a complete
example of differential timing analysis. We provide the reader
with an additional example that covers a special case. We
conclude with a discussion of the factors affecting the accuracy
of DELTA.
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Fig. 3: Extended RETA procedure

A. Implementation Highlights

The analysis requires the ELF file (Executable and Linkable
Format) of the original and the updated software. We convert
both to assembly code for the target architecture using the
objdump tool included within the ARM GNU toolchain [24]
for ARM Cortex M* microcontrollers. The assembly code
of the original program is compared to that of the updated
program using the differencing tool included within Visual
Studio Code to identify code differences and equivalent lines.

We conduct the slicing procedure using a mixture of
programmer-provided slicing information and the slicing tool
included within Ghidra, a reverse engineering tool [25]. Ghidra
decompiles the assembly code to C code on a function level.
As a result, program slicing within Ghidra only slices inside
a function (intraprocedural slicing), rather than throughout the
entire codebase (interprocedural slicing).

Once the slices are obtained, loop bounds and variable
domains are determined using data-flow analysis if necessary,
or based on programmer-provided knowledge. Backward slic-
ing may not be necessary if loop bounds are programmer-
provided. The execution times of individual instructions are
obtained from the ARM M4 reference manual [5].

Programmers participate in the slicing procedure. The au-
tomated part of the slicing procedure uses Ghidra to slice on
a decompiled version of the program binary. However, since
Ghidra does not slice across different decompiled functions,
the programmer must provide where in the binary the slicing
procedure should continue. Programmers also need to perform
the dataflow analysis required to compute loop bounds and
determine reachability. Alternatively, they can provide loop
bounds based on application-level knowledge for loops found
in the forward slice.

B. Example Analysis

Consider the assembly code in Fig. 4a. We are to find
the execution time difference caused by fixing an incorrect
multiplication routine, which used the add instruction instead
of the mul on line 2. The update fixes the bug.

The differencing tool indicates that the only difference
between the two programs is in line 2.
Slicing. We apply the slicing procedure explained in Sec. IV
to Fig. 4a. First we compute the forward slice with slicing
criterion set to line 2. The resulting program slice, shown
in Fig. 4b, includes all later instructions impacted, directly or
indirectly, by a change in register r0. For example, it includes
the computation of a new value for r3, as in line 18. The
slice also includes conditional instructions on lines 13 and 14,
which means we need the slice to include the taken and not
taken paths. Lines 21 and 22 are also conditional instructions
and a similar reasoning applies there.

Next, we perform a backward slice of either program
version with the slicing criterions set to the conditional in-
structions possibly included in the forward slice. We set the
slicing criterions to lines 13, 14, 21, and 22. Lines 21 and 22
determine which of lines 23 and 24 are executed. The resulting
backward slice is in Fig. 4c. We find that r1 and r5 do not
determine the outcome of either conditional instruction, and
r3 only affects the conditional instruction at line 23 and 24,
starting from the values it is assigned at lines 15 and 16.

The final sliced program, shown in Fig. 4d, combines the
forward and backward slices and is the input to the catego-
rization we discuss next. For brevity, we do not discuss the
categories for all instructions in Fig. 4d but instead concentrate
on illustrative examples for given categories.
CatA. The first instruction of the main label is a push



1 multiply:
2 V1� add r0, r0, r1

V2� mul r0, r1, r0
3  bx lr
4 main:
5  push {r3, r4, r5, lr}
6  movs r4, #0
7  movs r5, #10
8 .L3�
9  mov r1, r5
10  mov r0, r4
11  bl multiply
12  adds r4, r4, #1
13  cmp r0, #99
14  ble .L3
15  movw r3, #26215
16  movt r3, 26214
17  smull r3, r2, r3, r0
18  asrs r3, r0, #31
19  rsb r3, r3, r2, asr #2
20  add r3, r3, r3, lsl #2
21  cmp r0, r3, lsl #1
22  ite ne
23  movne r0, #1
24  moveq r0, #0
25  pop {r3, r4, r5, pc}

(a) An update fixes an
incorrect multiplication
routine.

1 multiply:
2 V1� add r0, r0, r1

V2� mul r0, r1, r0
3  bx lr
4 ��main:
5  ��push {r3, r4, r5, lr}
6  ��movs r4, #0
7  ��movs r5, #10
8 .L3�
9  ��mov r1, r5

10  ��mov r0, r4
11  bl multiply
12  ��adds r4, r4, #1
13  cmp r0, #99
14  ble .L3
15  ��movw r3, #26215
16  ��movt r3, 26214
17  smull r3, r2, r3, r0
18  asrs r3, r0, #31
19  rsb r3, r3, r2, asr #2
20  add r3, r3, r3, lsl #2
21  cmp r0, r3, lsl #1
22  ite ne
23  movne r0, #1
24  moveq r0, #0
25  ��pop {r3, r4, r5, pc}

(b) Forward slice of the
code in Fig. 4a; the slicing
criterion is the update
in line 2.

1 multiply:
2 V1� add r0, r0, r1

V2� mul r0, r1, r0
3  bx lr
4 main:
5  push {r3, r4, r5, lr}
6  movs r4, #0
7  ��movs r5, #10
8 .L3�
9  ��mov r1, r5
10  mov r0, r4
11  bl multiply
12  adds r4, r4, #1
13  cmp r0, #99
14  ble .L3
15  movw r3, #26215
16  movt r3, 26214
17  smull r3, r2, r3, r0
18  asrs r3, r0, #31
19  rsb r3, r3, r2, asr #2
20  add r3, r3, r3, lsl #2
21  cmp r0, r3, lsl #1
22  ite ne
23  movne r0, #1
24  moveq r0, #0
25  ��pop {r3, r4, r5, pc}

(c) Backward slice of
Fig. 4a driven by conditional
instructions of the
forward slice.

1 multiply:
2 V1� add r0, r0, r1

V2� mul r0, r1, r0
3  bx lr
4 main:
5  push {r3, r4, r5, lr}
6  movs r4, #0
7  ��movs r5, #10
8 .L3�
9  ��mov r1, r5

10  mov r0, r4
11  bl multiply
12  adds r4, r4, #1
13  cmp r0, #99
14  ble .L3
15  movw r3, #26215
16  movt r3, 26214
17  smull r3, r2, r3, r0
18  asrs r3, r0, #31
19  rsb r3, r3, r2, asr #2
20  add r3, r3, r3, lsl #2
21  cmp r0, r3, lsl #1
22  ite ne
23  movne r0, #1
24  moveq r0, #0
25  ��pop {r3, r4, r5, pc}

(d) Combining forward and
backward slices in Fig. 4b and
Fig. 4c for categorization.

Fig. 4: Assembly code at different stages of the slicing procedure. Commented lines do not belong to a specific slice.

instruction (line 5). This instruction does not split the control
flow of the program and therefore, its effect on timing is solely
due to its own execution time: it belongs to CatA as described
in Sec. IV. Since the instruction is the same in both versions
and on equivalent lines, it has no impact.

A more interesting example is the only instruction the
programmer changes in the updated program, found in line
2. This instruction changes from an add to a mul instruction.
Since each of those two exists in one version but not the other,
they impact the execution time difference if they have different
execution times. Instructions that only appear in the original
version bear a negative contribution, whereas instructions that
only appear in the updated version bear a positive contribution.
In ARM M4 microcontrollers, both add and mul take one
cycle. Their relative contributions cancel each other out.
CatBa. Consider the conditional instructions on lines 21
and 22. These instructions split the control flow depending
on the value of the register(s) being compared. Therefore, the
update may introduce new behaviors here. We can determine
whether this is the case through data-flow analysis.

For illustration’s sake, we consider the source code equiva-
lent to Fig. 4a, shown in Fig. 5, to discuss the use of data-flow
analysis in this example. The conditional instruction in line 13
of Fig. 5 evaluates to false when the result of the multiply
function is a multiple of 10 and true otherwise. We do not
yet know when the loop terminates, so we can assume it may
terminate at any non-negative value of i for now. Using data-
flow analysis, we find that the update makes the true case
impossible, since the output of the multiply function must
be a multiple of 10.

We infer that the update makes the true condition of
the conditional instruction more restrictive, that is, the set of
possible values for variable result that return true for
the conditional instruction in the updated version is smaller

1 int multiply(int x, int y){
2     return x�y; �� V1
3     return x�y; �� V2
4 }
5
6 int main(void){
7     int result = 0;
8     int error = 0;
9     for(int i = 0;  result < 100; i��){

10         result = multiply(i, 10);
11     }
12
13     if(result % 10 �� 0) return 1;
14     else return 0; 
15 }

Fig. 5: Source code for Fig. 4a.

than the same set in the original version. We can then exclude
the true branch from the analysis since we know that no
new possible values of result exist and therefore, no new
behavior is introduced. This property holds provided that the
domains of all variables in the updated version are more
restrictive or equal to the original version’s.

Conversely, the update made the false condition of the
conditional instruction strictly less restrictive. This is because
the domain of result in the updated version is strictly larger,
that is, it includes additional values not present in the original
version’s domain. For example, if the loop terminates when i
is 5, the value of result differs between both versions. The
updated version evaluates to false while the original version
does not. Therefore, there are values that evaluate to false
in the new version, but not in the original one.

As a result, there may exist new behaviors. To understand
that, we only need to analyze the values present in the updated
version’s variable domain but not the old version’s. Values
present in both do not result in new behaviors. Only analyzing
new values significantly decreases the required analysis when
compared with traditional timing analysis, which always needs



to analyze all possible values. Since both paths (lines 23 and
24) only have a single instruction with identical execution
time, there is no contribution to timing difference.
CatBb. Consider the branching instruction on line 14. This
is part of a loop, since the code in lines 8-14 repeats while
r0 is less than or equal to 99. Therefore, a change in how
multiply computes its output may affect the number of loop
iterations, which changes the execution time. We investigate
this with data-flow analysis, again using source code for
easier illustration. With variable i in Fig. 5 initialized to 0,
in the original version the loop terminates after 90 iterations.
Therefore, the maximum number of loop iterations is 90. In
the updated version, the loop terminates once i reaches 10,
which happens after 10 iterations.

We compute the execution time of a single loop iteration
from the assembly code of Fig. 4a. Each iteration requires 17
cycles in both versions of the software. In the original version,
the loop executes 90 times. Its contribution to differential
timing analysis is negative and amounts to the product of
each iteration’s execution time and the number of executions,
leading to a (negative) contribution of 1530 cycles. In the
updated version, the loop executes 10 times. Its contribution to
differential timing analysis is now positive and amounts to 170
cycles total, as per the previous reasoning. The execution time
difference is then -1360 cycles, that is, the update improved
the loop’s performance by 1360 cycles.

Note how the domain of variable i in Fig. 5 changes from
[0,90] to [0,10]. Every value of i that is possible in the updated
version is possible in the original version, and therefore no new
behavior is introduced. If the domain of the updated version
had been larger than the original version, we would also check
whether i is involved in conditional instructions after the loop
terminates. The slicing procedure would identify these cases.
Summing up. Through the analysis of the assembly code of
Fig. 4a, we discover that i) the lines the programmer changes
in the updated version bear no contribution to the timing
difference, ii) the conditional instructions on lines 21-24 retain
the original execution times also after the update, iii) the loop
in lines 8-14 changes the number of iterations, which reduces
the loop execution times by 1360 cycles, and iv) all other
instructions have identical timing contribution across both
versions. Then we conclude that the execution time difference
is -1360 cycles, which means the update made the program as
a whole 1360 cycles faster. This is a reasonable result because
the number of loop iterations has decreased by a factor of nine
and each iteration is fairly small at only six instructions.

C. Addition of new conditional statements

Fig. 6 demonstrates a more complex example where the
update adds an extra conditional statement, which corresponds
to adding an extra node in the CFG, along with any necessary
edges. We demonstrate the old CFG in Fig. 8 and the new
CFG in Fig. 9. We highlight the added/removed nodes/edges
in red. The update requires the addition of one node and three
edges, and the removal of one edge.

1 int main_v1(void){
2     unsigned int x;
3     volatile unsigned int y;
4     if(y �� 0) x = 3;
5     else x = 7;
6     return x;
7 }
8
9 int main_v2(void){

10     unsigned int x;
11     volatile unsigned int y, z;
12     if(y��0) {
13         x = 3;
14         if(z �� 0) x = 14;
15     }
16     else x = 7;
17     return x;
18 }

Fig. 6: Category Ba exam-
ple where the CFG graph is
changed through the addition
of a new node and edges

1 int x_check(void){
2     unsigned int x = main();
3     if(x < 10) x��;
4     else x=x/10;
5     return x;
6 }

Fig. 7: A function that uses
the output of Fig. 6 in an if
statement

The differences on the assembly code level are the follow-
ing: version 1 uses two conditional move instructions to set x
to either 3 or 7 depending on whether the condition y == 0
is satisfied or not. Version 2 has a branching instruction that
can allow program to take the y!=0 path, which sets x to 7.
If the y==0 path is taken, version 2 uses a conditional move
instruction to set x to either 3 or 14 depending on whether the
condition z == 0 is satisfied or not.

The slicing procedure yields that the changes impact all
conditional statements because on the assembly code level, the
first control flow split is implemented differently (a conditional
move in version 1 and conditional branch in version 2). To
compute the execution time difference, we compute the exe-
cution time of the added statements, and subtract the execution
time of the removed statements. Since we have multiple newly
added paths, we determine the difference from the longest
path, i.e., the path that results in the largest execution time
difference.

We also need to check the variable domains using data-
flow analysis. For example, in Fig. 8, x may be set to 3 or
7, but in Fig. 9, x may be set to 3, 7 or 14. Therefore, there
is one additional possible value. We must analyze whether
setting x to 14 introduces new paths that were not accessible
in the old version, and if so, we must analyze their effect
on the execution time. This depends on where the value of
x and hence the return value of the function is used. If we
assume this to be the entire program, then no new behavior is
introduced.

If the return value of the function is used, then that usage
will appear in the sliced program. In Fig. 7, we demonstrate
an example of a second function that uses the return value of
Fig. 6. It is used in an if statement, and determines where
an addition or division is performed. The division is only
reachable if the return value is 10 or greater. Since possible
values of x before the update were 3 or 7, the division would
not be reachable, but since the update introduces an additional
possible value of 14, the division is now reachable. Division
is slower than addition. Therefore, at specific inputs, there is
an execution time difference due to an alternative path being



y!=0

y==0

unsigned int x;
volatile unsigned int y;

x=7;

x=3;

return x;

Fig. 8: CFG for old version of category Ba example. The
removed edge is highlighted in red.

y!=0

y==0

unsigned int x;
volatile unsigned int y, z;

x=7;

z==0

z!=0

x=3;

return x;

x=14;

Fig. 9: CFG for new version of category Ba example that adds
a node and 3 edges, highlighted in red.

taken. The inputs are when x is set to 14, which is when y and
z are set to 0. In the old version, z does not exist and when
y is set to 0, x is set to 3 and addition is performed. In the
new version, division is performed. The extra execution time
of division must be computed to find its contribution towards
the execution time difference specifically for the case when y
and z are set to 0.

D. Accuracy

Three aspects are key when reasoning on the accuracy of the
information returned by differential timing analysis in DELTA.
Variable timings. Many computing cores feature instructions
with variable execution times, including the ARM Cortex M4F
core we consider [5]. This is not an issue in traditional timing
analysis because using the upper bounds provides a safe over-
approximation nonetheless. For example, by using the upper-
bound execution times, the computed WCET is guaranteed to
be as large or larger than the actual WCET.

When performing differential timing analysis, however, fur-
ther care must be taken. When computing the change in execu-
tion time, over-approximating both the speed-up of removing
instructions and the slow-down of adding instructions does not
necessarily provide a safe over-approximation of the actual
execution time difference, but rather something in between
that does not suffice to provide robust guarantees on the timing
behavior of the updated software.

To address this issue, whenever instructions with variable
execution times are involved, differential timing analysis must
provide two outcomes. We determine the pessimistic execution
time difference using the maximum slow-down, which is an
over-approximation, and the minimum speed-up, which is an
under-approximation. Likewise, we determine the optimistic

execution time difference using the minimum slow-down and
the maximum speed-up.

The pessimistic outcome provides a guarantee on the worst-
case performance degradation caused by the update. It can
guarantee that a performance target is met, and therefore that
the update is safe to deploy from a timing perspective. It is
analogous to WCET in traditional timing analysis. The opti-
mistic outcome provides the best-case performance improve-
ment due to the update, which is useful during development.
If the optimistic difference is smaller than the target speed-up,
then the target is guaranteed to not be met yet, and therefore
performance optimizations should continue. It is analogous
to the best-case execution time in traditional timing analysis.
The two measures, taken together, indicate the interval the
execution time difference falls within.

For a fixed execution time difference, the original WCET
can be obtained by applying the analysis backwards, that is, by
subtracting the execution time difference from the new WCET.
However, if the same procedure is applied with optimistic
and pessimistic execution time differences, then the original
WCET computed is also an interval. Therefore, the original
WCET cannot be obtained again, but the original WCET is
guaranteed to lie in the computed interval.
Sources of inaccuracy. DELTA does not account for caches,
pipelines, wait states, and branch prediction. The lack of cache
analysis can significantly degrade results for systems with
large caches. Hardware features such as speculative execution
are also not taken into account, and may lead to inaccurate
results for systems where these play a major role.

Since DELTA assumes sequential execution, asynchronous
events such as interrupts are difficult to analyze. Static timing
analysis in general is unsuitable for software with interrupts
since they can trigger at any point in the program. DELTA is
still useful with interrupts, however, because if the interrupt
service routine is modified, DELTA can identify the corre-
sponding change in execution time, and therefore the impact
each interrupt trigger bears on the timing.

DELTA only uses the ARM M4 reference manual as a source
of information on the instruction execution times [5]. For in-
structions with variable execution times, DELTA also assumes
that instructions that are not in the sliced program have the
same execution time across both versions. Therefore, they
cancel each other out. This likely holds for most instructions
but may be violated by instructions that have high spatial or
temporal locality to instructions in the sliced program, as the
behavior of caches and pipelines may affect their execution
times.

These sources of inaccuracy are not a property of RETA,
but instead of our specific DELTA implementation. Many of
the issues are well-researched topics nonetheless. For example,
analysis techniques exist on caches [26] and pipelines [27].
Most of these techniques may be integrated in DELTA, whereas
here we focus on demonstrating the essential ideas behind
RETA: the slicing and categorization procedures.

Due to spatial and temporal locality, changes in the cache
behavior are likely to be restricted to instructions that either



execute shortly before or after the instructions affected by
the update, or instructions that access data regions nearby to
those accessed by instructions affected by the update. Based
on this observation, some form of differential analysis can be
developed to obtain instructions for which the cache behavior
differs between two versions. However, doing so would depend
heavily on cache placement and replacement policies, and on
the cache size and layout.
Peripherals. Instructions that enable interactions with external
peripherals, such as sensors using serial interfaces or motors
using pulse-width modulation, are inherently difficult to reason
about in time. DELTA can be combined with time measure-
ments obtained by profiling the actual executions on hardware
to support these configurations, with a few caveats.

First, one needs to isolate the relevant code blocks and make
sure the time to execute the block must either be independent
of the rest of the program, or the dependency must be known.
In case there is a dependency, all possible execution times
for the code block must be measured to establish an execution
time interval. Additionally, the effects of the code block on the
domains of the processor’s registers after its execution must
be known to guarantee that it does not affect timing elsewhere.

If these conditions are met, then the code block can be
replaced with a single artificial instruction with the measured
execution time(s). This instruction should replicate any change
to register domains that the actual execution of the relevant
code block would perform. For example, a code block that
reads the value of the sensor and writes it to a register should
be replaced with an artificial instruction that writes a value
within a specific interval to the same register.

VI. EVALUATION

Our evaluation is three-pronged. Sec. VI-A introduces the
benchmarks we consider. Sec. VI-B compares the execution
time differences computed using DELTA with those measured
on real hardware, providing an assessment of absolute ac-
curacy of the differential timing estimates. Sec. VI-C com-
pares WCET estimates of updated programs using DELTA
and AIT [6], offering a relative accuracy assessment against
existing tools. In Sec. VI-D, we investigate the improvements
in computational effort due to using RETA in either DELTA
or AIT-RETA. We conclude the evaluation in Sec. VI-E with
a note on scalability. Our results lead to five key conclusions:

1) in all benchmarks but one, the estimates returned by
DELTA are safe compared to real hardware executions,
and oftentimes quite close to the latter in absolute value;

2) WCET information returned by DELTA ranges from
exactly the WCET observed on real hardware to 148%
of the new version’s measured WCET;

3) in the same benchmark as point 2), aiT measures a 12%
and 149% higher WCET: DELTA is thus either more
accurate or similarly pessimistic compared with aiT;

4) the (partial) implementation of RETA in aiT reduces
the analysis time and memory consumption by 45% and
8.9%, respectively;

5) removing RETA from DELTA, effectively reducing the
latter to operate as a regular timing analysis tool, in-
creases its computational complexity by 27%.

A. Benchmarks

We analyze five programs. We choose the programs as key
examples of embedded software and to test RETA against
different code structures and various updates.
Matrix multiplication. Matrix multiplication is a common
operation in image analysis, digital signal processing, and
control systems [28], while serving as a base micro-benchmark
for our evaluation. We consider two separate updates, both
marginally impacting the source code. One update adds an
operation in the multiplication procedure: scaling the matrix
elements by a factor of 2. The other update increases the sizes
of the input matrices from 32x32 to 64x64.
Sorting. We update a sort program that sorts a list of 5000
elements, changing from bubble sort to insertion sort. In
this case, the update changes most of the original code. The
execution time of a sorting algorithm depends on the size and
ordering of the input list. Bubble sort and insertion sort have
their worst-case execution time when the list is sorted in the
reverse order, and the best-case execution time when the list
is already sorted in the correct order [29]. We compute the
execution time difference when updating the program from
bubble sort to insertion sort both when the input is a reverse
sorted list and an already sorted list.

Updating the sorting algorithm is an update where func-
tional equivalence between the two versions is retained, that
is, the two versions have the same input-output relations,
but where the implementations are different. Performance
optimizations that retain functional equivalence are common
in resource-constrained devices.
Proximity detection. We implement a proximity detection
functionality, as used in mobile robotics [30], that uses a time-
of-flight ranging sensor (VL53L1X [31]) to manipulate an
LED based on the distance from the sensor to the nearest
object. The original version of the program turns an LED on
if the object is within 50 centimeters, and off otherwise. The
updated version brightens the LED as the object moves closer
and darkens it as the object moves further. We compute the
execution time differences between the two versions of the
program to find the timing impact of incorporating finer LED
control, thus modifying about 13% of the original source code.
Fast Fourier transform. We use ArduinoFFT [32], an existing
fast Fourier transform implementation, to estimate the fre-
quency of a simulated 1000 Hz fictitious signal. To utilize the
FPU on the target MCU, we adjust the library beforehand to
use single-precision floating point numbers instead of double.
Increasing the number of samples used to compute the Fourier
representation improves accuracy but increases the execution
time. The original version of the program uses 64 samples,
whereas the updated version uses 1024 samples. This requires
changes to about 1.3% of the original source code.
Hackflight. Hackflight is an existing low-level flight controller
for aerial drones [17]. We consider an actual update performed



on the Hackflight codebase that adjusts the trim for the yaw
inputs [33], retrieved from the Hackflight GitHub repository.
It is a realistic update within the embedded software domain.
Yaw represents the angle at which the drone is pointing
towards. The trim is a fixed value added to the controller’s set-
point to shift its value by a specific offset, and is commonly
used to counteract drone drift. To facilitate the analysis, we
use constant sensor inputs.

B. Accuracy

We determine the accuracy of the execution time difference
computed with DELTA compared with real hardware.
Setup. We use DELTA to determine the execution time dif-
ferences between the two program versions. Next, we run
each program version on a NUCLEO-L432KC development
board [7], equipped with an ARM M4F MCU, and measure the
execution time using the Data Watchpoint and Trace (DWT)
module. This module is included in some ARM Cortex-M
MCU and counts the number of execution cycles. By reading
the count prior to, and after a section of code we determine
how many cycles that section of code required. We capture
500 samples for each benchmark.
Results. Tab. I shows the results. Hardware execution figures
are intervals because we observe different execution times
across the 500 measurements. DELTA’s results are intervals
because variations in the execution time of instructions intro-
duce the need for pessimistic and optimistic execution time
differences, as explained in Sec. V-D.

For DELTA to provide a safe estimate of the execution time
difference, all possible hardware execution times must fall
within the DELTA estimated interval. The update that adds a
scaling factor is the only case where this does not happen.
This is because the optimistic and pessimistic differences
computed by DELTA are identical; however, the time observed
on real hardware varies between four cycles. As explained
in Sec. V-D, our analysis excludes cache and pipeline effects,
which may result in varying execution times. A variation of
four cycles out of 30+K cycles is less than 0.02%, and hence
bears a very limited impact overall. Instead, when doubling
the matrix dimensions, all possible hardware execution times
are comprised within the DELTA estimated interval.

As for the sorting benchmark, the hardware execution times
completely fall within DELTA’s estimates. The latter provide
further useful insights, such as determining that moving from
bubble sort to insertion sort is guaranteed to improve per-
formance for reverse sorted arrays and guaranteed to worsen
performance for already sorted arrays. It also provides defini-
tive bounds on the performance degradation. Based on this, a
developer may decide that the improvement in execution time
for the reverse sorted case, which is guaranteed to be of at least
149 million cycles, is worth the performance degradation for
sorted arrays, which is guaranteed to be at most 59983 cycles.

Hardware execution times for the other three benchmarks:
proximity detection, FFT, and Hackflight also completely fall
within DELTA’s estimates, making the output of the latter a

safe approximation. Note how applying DELTA for the prox-
imity detection and FFT benchmarks involves the technique
explained in Sec. V-D to integrate hardware measurements. In
the former, we experimentally measure the time to read from a
sensor and to execute the AnalogWrite routine. In the latter, we
experimentally measure the time to execute the cosf routine for
every possible input used in the benchmark because explicitly
analyzing this routine would require intimate knowledge on
recursive numerical algorithms.

C. Worst-case Execution Times

We test DELTA when estimating WCET after a code update,
compared with ground truth information obtained from real
hardware executions and WCET estimations provided by AIT.
Setup. As DELTA does not provide absolute WCET informa-
tion, we proceed in three steps. First, we measure the largest
observed execution time on real hardware for the new version,
with the same setup as Sec. VI-B. This represents ground
truth information. Second, we measure the largest observed
execution time on the hardware for the original version; we
use this as a baseline to add the pessimistic execution time
difference computed by DELTA, ultimately computing the
WCET of the new version. This is how a developer would
normally operate when using DELTA. Third, we obtain the
WCET using AIT, that is, how a developer would operate in
the absence of DELTA.
Results. Fig. 10 shows the results. In one of the matrix
multiplication benchmarks, depicted in Fig. 10a, the WCET
computed by DELTA is very close to the new version’s
measured execution time. The WCET obtained by AIT is way
more (and unnecessarily) pessimistic. Fig. 10b, instead show-
ing the results for the other matrix multiplication benchmark,
indicates that the WCET computed by DELTA is almost the
same as the one computed through AIT. They are both more
pessimistic than the new version’s measured execution time.
Tab. I demonstrates that the range of possible execution times
computed with DELTA is large in this case. As a result, we
see a larger degree of pessimism in the WCET information we
obtain from DELTA when compared with Fig. 10a. Regardless,
DELTA has a similar degree of pessimism as AIT.

The results of the sorting benchmarks are shown in Fig. 10c
and Fig. 10d. Fig. 10d differs from prior figures in that the
execution time difference computed by DELTA is negative.
This means that the new versions takes less time than the
old version. Therefore, Fig. 10d includes an additional bar in
yellow to indicate the sum of the measured execution of the
original version (blue bar) and the negative execution time
difference (orange bar). The yellow bar is the WCET of the
new version. Both charts demonstrate that the WCET obtained
by DELTA is close to the measured WCET of the updated
version. AIT is again more (and unnecessarily) pessimistic.
This is due to AIT assuming the longest path is always taken in
each loop iteration in the sorting algorithms, whereas DELTA
uses information about when and how often a specific path is
taken given the order of the input list.



TABLE I: Execution time differences for various benchmarks obtained through hardware execution and DELTA.

Updates Hardware Execution (Cycles) DELTA (Cycles)
Adding a 2x scaling factor to 32x32 matrix multiplication 32765 to 32769 32768
Doubling the inputs of matrix multiplication 1,896,974 to 1,896,989 1,731,744 to 2,926,944
Switching from bubble sort to insertion sort on an already sorted array 29970 to 30093 4991 to 59983
Switching from bubble sort to insertion sort on a reverse sorted array -162,596,596 to -162,595,489 -324,975,018 to -149,980,015
Proximity detector adjusting LED’s brightness 1552 to 1579 1534 to 1588
Changing the FFT’s samples from 64 to 1024 398,068 to 399,488 355,495 to 410,381
Adjusting trim for yaw inputs in Hackflight 0 -24 to 24
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(a) Matrix multiplication and 2x
scaling of two 32x32 matrices.
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(b) Matrix multiplication of
two 64x64 matrices.
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(c) Insertion sort of an already
sorted array of 5000 elements.
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(d) Insertion sort of a reverse
sorted array of 5000 elements.
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(e) Adjusting LED brightness depending
on distance from ranging sensor.
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(f) Performing an FFT of a sine wave
to find its frequency using 1024 samples.
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(g) Hackflight’s control loop in the
disarmed state.

Fig. 10: Worst-case execution times for various benchmarks obtained through three techniques.

The results of the proximity detection benchmark is shown
in Fig. 10e. AIT’s result involves a measurement-based com-
ponent due to the measurement of the SensorRead and
AnalogWrite functions. The latter is incorporated into DELTA’s
difference from Tab. I as mentioned earlier. All three WCETs
are close to each other. In comparison with the measured one,
DELTA’s and AIT’s are 7 and 13 cycles larger respectively.

Finally, Both Fig. 10f and Fig. 10g demonstrate that
DELTA’s WCET estimates are closer to the hardware execu-
tion’s than to AIT. In particular, Hackflight includes a loop that
cycles through the PID controllers in sequence. AIT assumes
that the most time-consuming controller is run in each iteration
of the loop, which contributes to a very pessimistic WCET
estimate. As for FFT, the difference between AIT and DELTA
is likely caused by the overly pessimistic choices of the paths

taken when estimating the WCET.

D. Computational Effort

To complete our evaluation, we investigate the impact of
differential timing analysis on computational effort, comparing
RETA with traditional timing analysis.
Setup. We provide three different views on computational
effort. First, we compare the processing time and peak memory
consumption incurred by the regular AIT with that of AIT-
RETA, that is, a version of AIT we customize to use parts of
the differential timing analysis technique of RETA. We recall
that as the implementation of AIT-RETA is only partial, it
cannot process arbitrary updates.

We use an Intel Core i7-1065G7 running version 22.10 of
AIT on Windows 11 Pro for these experiments.
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(a) Adding matrix multiplication
and 2x scaling.
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(b) Adding 2x scaling factor.

Fig. 11: Computational complexity.

We also compare the computational complexity of DELTA
with and without RETA. As hinted earlier, removing RETA
from DELTA effectively makes the latter operate as a tra-
ditional timing analysis tool. Based on knowledge of the
different steps in RETA and the number of times a given
piece of information is used in the analysis, we estimate the
computational complexity of DELTA as

CC = 4 ∗ (A+B) + 3 ∗D + 3 ∗ F + 5 ∗G, (1)

where A is the number of instructions inside loops whose
loop bounds changed, B is the number of removed/added
instructions inside loops whose loop bounds remained the
same, D is the number of removed/added instructions outside
loops, F is the the number of lines included in the forward
slice, and G is the the number of lines included in the
backward slice.

Differently, when we remove RETA from DELTA, hence
the entire program is analyzed regardless, we estimate the
computational complexity as

CC = 4 ∗X + 3 ∗ Y + 5 ∗ Z, (2)

where X refers to the number of instructions inside loops, Y
refers to the number of instructions outside loops, and Z refers
to the lines included in the backward slice of all conditional
statements, which is used anyways for dataflow analysis.

To make AIT-RETA applicable, we analyze a program
that originally contains a single code block performing the
multiplication of two 32x32 matrices. In a first test, the added
code block multiplies two other matrices and scales the result
matrix’s values by 2x. In the second test, the added code block
just scales a matrix’s values by 2x.
Results. Fig. 11 summarizes the results. Fig. 11a demonstrates
that in comparison with AIT, AIT-RETA’s analysis time
and peak memory consumption decrease by 45% and 8.9%
respectively. Employing RETA in DELTA also results in a
27% reduction of the latter’s computational complexity. In
the case of Fig. 11b, the added code block is smaller than
the existing code block. AIT-RETA’s analysis time and peak
memory consumption decrease by 92% and 76% respectively.

The use of RETA in DELTA also results in a 49% reduction
in its complexity.

It is interesting to observe that the improvement due to the
use of RETA is generally smaller in DELTA than AIT-RETA.
This is caused by the extra overhead of the slicing procedure,
not used in AIT-RETA. This overhead partly overweighs the
benefits of differential timing analysis, yet is necessary for
DELTA to be able to analyze a significantly larger set of
updates than AIT-RETA.

E. Scalability

A prior study of 43 programs demonstrates that backward
and forward slices take an average of 0.18 seconds for pro-
grams with 23,421 lines of code, on average [34]. Even for the
most complex program in the study, which has 93,309 lines
of code, around 6 million vertices, and 29 million edges in its
CFG, the average time per slice was 2.7 seconds. Determining
whether an instruction belongs to CatA or CatB is trivial.
Differentiating between CatBa and CatBb is more challenging
since we must identify whether the instruction leads to a
natural loop. A loop detection algorithm that takes the CFG as
input has approximately linear time complexity [35]. Building
the CFG from assembly code also has linear time complexity
provided all branches have known targets [36], which is a
requirement we specify in Sec. IV-A.

The slicing procedure does not return the minimal program
enabling timing analysis. Computing this program requires
additional iterations, impacting scalability. We choose the
specific slicing procedure as a tradeoff between the size of the
resulting program and the computational complexity required
to determine the slice.

VII. CONCLUSION

We presented RETA, a differential timing analysis tech-
nique that uses program slicing, statement categorization, and
dataflow analysis to estimate the impact of an update on
the execution time of embedded software. We developed an
implementation of RETA called DELTA for ARM M4 MCUs
and customized the existing AIT tool to incorporate a subset
of the RETA procedures. We demonstrated that the timing
estimates provided by DELTA are oftentimes in line with
actual measurements from real hardware and that the WCET
estimates of DELTA range from exactly the WCET of real
hardware to 148% of the new version’s measured WCET. In
the same setting, the unmodified AIT estimates are 112% and
149% of the actual executions; therefore, DELTA is either more
accurate or as pessimist as an industry-strength tool such as
AIT, while requiring a much lower computational effort.
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