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Abstract—Integrating workloads with differing criticality lev-
els presents a formidable challenge in achieving the stringent
spatial and temporal isolation requirements imposed by safety-
critical standards such as ISO26262. The shift towards high-
performance multicore platforms has been posing increasing
issues to the so-called mixed-criticality systems (MCS) due to the
reciprocal interference created by consolidated subsystems vying
for access to shared (microarchitectural) resources (e.g., caches,
bus interconnect, memory controller). The research community
has acknowledged all these challenges. Thus, several techniques,
such as cache partitioning and memory throttling, have been
proposed to mitigate such interference; however, these techniques
have some drawbacks and limitations that impact performance,
memory footprint, and availability. In this work, we look from
a different perspective. Departing from the observation that
safety-critical workloads are typically event- and thus interrupt-
driven, we mask ”colored” interrupts based on the Quality of
Service (QoS) assessment, providing fine-grain control to mitigate
interference on critical workloads without entirely suspending
non-critical workloads. We propose the so-called IRQ coloring
technique. We implement and evaluate the IRQ Coloring on a ref-
erence high-performance multicore platform, i.e., Xilinx ZCU102.
Results demonstrate negligible performance overhead, i.e., <
1% for a 100 microseconds period, and reasonable throughput
guarantees for medium-critical workloads. We argue that the
IRQ coloring technique presents predictability and intermediate
guarantees advantages compared to state-of-art mechanisms.

Index Terms—IRQ coloring, Interference, Interrupts, Mixed-
Criticality Systems, Virtualization, Arm.

I. INTRODUCTION

Mixed-criticality Systems (MCS) are embedded and/or real-
time systems that consolidate workloads with two or more
distinct criticality levels (e.g., safety-critical and non-safety-
critical) [1]–[4]. There are two conflicting requirements in the
design of such systems. One relates to the safety guarantees
regarding real-time, predictability, and freedom from interfer-
ence (FFI). The other relates to the need to integrate an ever-
growing number of rich functionalities for connectivity and
visualization due to the increasing digitalization [1], [2], [5].
For instance, it is common to see in modern cars network-
connected infotainment systems deployed alongside safety-
critical control systems (e.g., anti-lock braking system) [6],
while certification requirements (e.g., ISO26262) requiring FFI
guarantees in consolidated workloads from different Automo-
tive Safety Integrity Levels (ASIL) levels.

To cope with this conflicting set of requirements, embedded
industries have been resorting to modern high-performance
multicore computing platforms endowed with powerful clus-
ters of CPUs, optimized memory hierarchies, and a plethora of
application-specific processing units (e.g., GPU, TPU, NPU,
FPGA) [3], [7]. Notwithstanding, it is widely recognized that
this exponential complexity and consolidation on multicore
platforms have been posing serious challenges for the cer-
tification of MCS, due to the level of unpredictability and
undesired delays [8]–[10] generated by contention at the
microarchitectural level, e.g., Last-Level Cache (LLC), bus
interconnect, and the main memory (DRAM controller).

Interrupts and interrupt-driven workloads further exacer-
bate this lack of predictability and FFI [11]. Interrupts are
(mostly) asynchronous events; thus, they tend to constantly
divert the execution flow from the main application logic
toward interrupt handlers. Interrupt handlers typically have a
completely different code locality, inherently exacerbating the
use of shared microarchitectural elements due to the expected
LLC misses and concurrent accesses to main memory. In a
pessimistic scenario, it is reasonable to assume that Denial-
of-Service (DoS) attacks [12] can be constructed with a storm
of interrupts triggered, for example, by a bug on a device
driver or a malfunction in a particular hardware device.

All these problems are not exotic for the research commu-
nity. In fact, the real-time system community have acknowl-
edged the issue for quite long time and proposed a set of
techniques to minimize such interference. Prominent examples
include cache (bank) coloring [13]–[15], DRAM bank coloring
[16], memory throttling [14], [17], [18], and I/O regulation
[19], [20]. Despite the recognized efforts, existing mechanisms
are not perfect in terms of effectiveness and present limitations
that impacts performance, memory footprint, and availability.
Interestingly, none work focused on interrupts and interrupt-
driven workloads as a potential vector steaming interference.

In this work, we propose and reinforce IRQ coloring1 as
a novel technique to address interrupt-generated interference
and mitigate the effect of cascading failures when FFI can-
not be completely guaranteed. The core concept consists of

1We pioneered the IRQ coloring concept in our previous workshop paper
[21]; however, (i) the conceptual design was highly simplistic, (ii) the imple-
mentation was a minimalist proof-of-concept (tied to the simplistic design),
and (iii) the evaluation was very limited and in a synthetic environment
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Fig. 1. Empirical evidence of interrupt-generated interference. Overview of the setup consisting of one Linux VM running on a single CPU in parallel with
a baremetal running on 1, 2, or 3 CPUs (left). Relative performance impact results (right).

deactivating (or deferring) ”colored” interrupts if the QoS
of critical workloads drops below a specific threshold. By
selectively masking interrupts based on the online QoS assess-
ment, we provide fine-grained control to mitigate interference
on critical workloads without entirely suspending non-critical
workloads, i.e., we offer the so-called intermediate guarantees.
We implemented and evaluated the IRQ Coloring on a real
modern Arm high-performance multi-core platform (Xilinx
ZCU102) running a static partitioning hypervisor (Bao [4]) and
multiple Virtual Machine (VM)s. Results for multiple system
configurations (i.e., dual and quad-VMs) demonstrated neg-
ligible overhead (1%) and reasonable throughput guarantees
for medium-critical workloads. We acknowledge predictability
and intermediate guarantees advantages compared to state-of-
art techniques such as cache coloring and memory throttling.

In summary, with this paper, we make the following con-
tributions: (i) we provide clear evidence about the impact
of interrupt-generated interference supported by empirical
experiments with a widely-used benchmark suite (Section
II); (ii) we describe the overall IRQ coloring design, system
architecture, and formalization (Section III); (iii) we discuss
the implementation of the technique on a Xilinx ZCU102
platform (Section III); and (iv) we conduct an extensive
evaluation with microbenchmark and benchmark assessment
for multiple system configurations (Section V). Huawei has
already submitted a patent application.

II. PROBLEM AND MOTIVATION

Interrupts play a pivotal role in MCS, ensuring efficient
and timely execution of tasks, especially for safety-critical
workloads. When an interrupt occurs (excluding the low-
level intricacies of the interrupt entry process), the CPU’s
execution is redirected to the designated interrupt handler that
subsequently runs the event-specific code segment. Interrupts
serve the dual purpose of notifying the CPU about incoming
events and allowing it to effectively utilize its resources by
eliminating the need for continuous polling. Furthermore,
interrupts facilitate prompt handling of critical events, such
as sensor inputs or actuator commands, ensuring that high-
priority tasks are executed within their required deadlines. In
safety-critical systems, these benefits, i.e., resource utilization
efficiency and real-time responsiveness, are vital for both en-
hancing the system’s performance and preventing catastrophic

consequences, as seen in applications such as anti-lock braking
systems in automotive designs.
Problem: Interrupt-generated interference. While servicing
an interrupt, the CPU deviates from the main execution path
to the corresponding interrupt handler. Such diversion typically
translates to an entirely different code locality that inherently
generates traffic on the microarchitectural shared resources
(i.e., excepted LLC misses lead to subsequent main memory
accesses). Therefore, interrupts can effectively introduce in-
terference on a system and, in some corner cases, lead to a
DoS attack due to a storm of interrupts originating from, for
example, a buggy device driver or a faulty hardware device.
Evidence: Results from MiBench Automotive Benchmark. To
provide sufficient evidence about the interference generated by
interrupt handling, we mounted a synthetic use case to conduct
some specific experiments. The setup encompasses the Bao
hypervisor and two virtual machines (VMs): (i) the first VM
employs a Linux-based system running a selected benchmark
retrieved from the MiBench automotive suite [22]; (ii) the
second VM runs a custom baremetal application specifically
tailored to pollute the LLC. This synthetic application continu-
ously writes to a buffer the same size as the LLC. At the same
time, its execution is interrupted by a custom hardware module
deployed on the FPGA that activates different workloads
that write to another segment of the buffer, contributing to
creating interference on the shared LLC. We have designed
four configurations of the experiment, where the first VM has
assigned one CPU, and the custom baremetal is assigned with
one, two, or three CPUs, representing the desired level of
interference (interf1, interf2, and interf3, respectively). Figure
1 depicts the collected results corresponding to the relative
performance of the observed benchmark (i.e., the Linux-based
VM). The results represent three performance degradation
levels resulting from the generated interference. On the bottom
side of the spectrum, bitcount-large and susans-large have
a negligible impact (around 1.02x), while qsort-small and
susanc-small have an impact on the execution time of 1.67x
to 3.36x, respectively.

III. IRQ COLORING

The IRQ Coloring technique dictates that Interrupt (IRQ)s
assigned to workloads (e.g., VMs) are classified according
to a specific criticality level and enabled/disabled based on
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Fig. 2. Overview of the IRQ Coloring. On the left, it shows the profiling of workloads of different VMs to specify the configuration file. The middle illustrates
the DTT: the input is the configuration file, and the first output is the configuration map; the configuration map can then be tuned to produce the final artifacts
for the RTM. On the right, it shows the RTM, which receives the artifacts generated by the DTT and enforces IRQ Coloring at runtime.

the overall system’s performance. The fundamental idea is to
selectively deactivate or defer IRQs of non-critical VMs if
the QoS of critical VMs drops below a specific threshold.
By selectively masking IRQs based on the online assessment
of the QoS of critical workloads, it is expected that overall
interference from non-critical VMs to critical VMs is mitigated
without entirely suspending less critical VMs.

The design goals include: (i) guaranteeing near-native QoS
on higher criticality VMs, (ii) maintaining intermediate execu-
tion of lower criticality VMs (intermediate states under specific
degradation modes), and (iii) minimizing the performance
impact imposed by the overall mechanism. To achieve these
three goals, we have conceived a system with two major
artifacts, with the bulk of the logic performed at design time.
Figure 2 presents the high-level system view, encompassing
the IRQ Coloring Design-Time Tool (DTT) and the IRQ
Coloring Run-Time Mechanism (RTM).

0. Pre-processing IRQ Coloring. The IRQ DTT requires
profiling each interrupt-driven workload to estimate the Worst-
Case Execution Time (WCET) by providing information about
execution time and microarchitectural events, such as caches
and bus accesses 0 . Different techniques can be employed
to profile VMs’ workload, including (i) profiling, (ii) static
analysis, (iii) timing analysis, and (iv) model-based analysis.
Therefore, the IRQ Coloring DTT is agnostic to the profiling
technique, allowing developers to choose a different solution.

1. IRQ Coloring Design-Time Tool (IRQ DTT). Based on
the established workload profile and assigned IRQs, along
with the specification of VM criticality 1 , the IRQ Coloring
DTT produces a configuration table (representing the masking
map to be applied in each degradation mode) 2 that can be
optimized by the user to meet different safety specifications
3 . The DTT then leverages the configuration map 4 to

create artifacts that feed the IRQ RTM 5 , at the hypervisor
level 6 . These artifacts include masking maps for each
degradation mode and a logical equation that defines which
degradation mode should be applied.
2. IRQ Coloring Run-Time Mechanism (IRQ RTM). The IRQ
RTM mainly collects specific metrics from the hardware per-
formance counters, i.e., Performance Monitor Unit (PMU), and
based on the artifacts produced by the IRQ DTT, selectively
disables IRQs based on the performance of each VM. The
mechanism consists of three stages: (i) calculating the QoS
of each VM; (ii) decoding the calculated QoS (i.e., creating
a 2-bit representation of the QoS value); and (iii) applying
the control logic equation. This sequential process selects the
appropriate degradation mode to be applied to the system,
which leverages the masking maps generated by the DTT to
disable different sets of interrupts and reduce interference.

A. System Architecture

Our solution for mitigating interference in a system with
coexisting VMs involves modifying the interrupt controller
routing system (hypervisor level), leveraging the IRQ Coloring
RTM to mask interrupts for VMs. The Generic Interrupt
Controller (GIC) manages interrupt routing, consisting of two
primary components: the distributor and the Central Processing
Unit (CPU) interfaces. The distributor routes injected inter-
rupts, while the CPU interfaces connect each core to the
distributor. The IRQ Coloring RTM operates between both
components, as shown in Figure 4, and is responsible for
masking specific IRQs. By masking interrupts assigned to
different VMs, it is possible to mitigate interference generated
by coexisting VMs with varying levels of criticality.

In this paper, we specifically focus on the interference
generated by interrupt-driven workloads rather than the inner
interference resulting from the contention at the GIC level. We
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also assume that the workload running on each VM consists
of a set of applications controlled by different interrupts.
Therefore, masking an interrupt would result in suspending
a particular application.

B. IRQ Coloring Formalization

The GIC is responsible for managing and forwarding the
IRQs generated (either by software or hardware) to the re-
spective VMs2 to which they are assigned. In this sense, each
IRQ propagated to a given VM (VMi) is identified by a unique
index (k) - depicted in Figure 4 - with the following rules:

0 < i < M (1a)

0 < k < N (1b)

where M is the max number of VM and N is the max
number of interrups assigned to a given VM.

Each VM is associated with a vector (P̂ ) that contains a
set of parameters (e.g., number of cache accesses) that allows
to calculate the effect of the interference of a given set of
events on a given VM (eVMi

). Such effect is calculated by
combining the interferences that affect the target VM and each
interference is due to the corresponding interference parameter
as outlined in Equation 2.

eVMi
=fi(I0V Mi

(P̂0V Mi
),

I1V Mi
(P̂1V Mi

), ..., INV Mi
(P̂NV Mi

))
(2)

For each interrupt routed to a given VM, an IRQ index
(IRQk) is defined, which corresponds to the tuple composed
of the physical PIN associated with the interrupt and the
identifier of the VM that manages such interrupt, in which:

• P̂jV Mi
is the value of the j-th parameter that influences

the i-th VM;
• IjV M

(.) is the function that calculates the interference
caused by the j-th parameter on the i-th VM;

• fi(.) is the function that combines the different type of
interferences that affect the i-th VM.

At run-time, the hypervisor monitors the performance of the
different VMs. If the hypervisor detects any degradation in the
higher criticality VMs, it switches to a degraded state. To mit-
igate the interference generated by interrupt-driven workloads

2Although the overall IRQ Coloring technique description and formalization
assume underlying virtualization support, all the concepts are generalizable for
other system configurations, mainly when there is a single Operating System
(OS) instance.

... ... ...

...

Set of IRQs Assigned to VM1

Fig. 4. IRQ Coloring RTM interrupt injection formalization

the hypervisor masks the IRQs that have the higher impact on
the degradation effect (eVMi

). If the monitored parameters of
the target VM continue to indicate non-negligible interference,
the hypervisor progressively masks the IRQs associated with
a lower degradation effect. When the hypervisor restores the
status of the target VM, it progressively unmasks the IRQs
starting from the IRQs associated with the lowest degradation
effect. In other words, the IRQs are restored in reverse order
from the previous points. The hypervisor follows this approach
until all IRQs have been unmasked and the target VM has been
fully restored to its previous state.

C. IRQ Coloring RTM

The IRQ Coloring RTM introduces the concept of QoS
awareness, i.e., the performance of each VM will be evaluated
and used to determine the next degradation mode to be applied
to the system. To achieve this, operation tables will be created
at design time using Karnaugh maps. These tables will enable
the DTT to generate the control equation that the hypervisor
will use to select the next stage to be applied. To ensure a
modular design that can be easily modified and adapted for
different setups, we have defined three stages of operation:

• Stage 0 - Calculate the QoS for each VM
• Stage 1 - Decode the QoS for each VM
• Stage 2 - Calculate the next degradation mode
The IRQ coloring technique is applied based on the prin-

ciple that the hypervisor is interrupted periodically at a fixed
time interval. During this synchronous event, each VM calcu-
lates its performance. The high-criticality VM (e.g., ASIL-
D) then uses this performance data to determine the new
degradation mode to be implemented in the system. A detailed
description of the process is provided in Algorithm 1.
Stage 0 - ComputeQoS(). In order to determine the per-
formance of each VM, we leveraged a weighted average of
microarchitectural events P̂ , such as the number of cache
access and bus access cycles, as the function fi(.) (different
optimization techniques can be used). This computation takes
into account the ratio between the actual number of accesses
and the expected number of accesses, which is the number
of accesses that would occur without interference during a
given time interval. The reference values for these events and
the weights used in the calculation of the weighted average
should be defined by the DTT. The output of this computation,
referred to as qos, is a value between 0 and 100 that represents
the performance of the VM.
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Stage 1 - DecodeQoS(). Once the QoS value of a VM has been
calculated, it needs to be mapped to a representation that can
be used in the control equation. This is achieved by applying
the following mapping criteria:

∀qos ∈]100, 75], cf = T0

∀qos ∈]75, 50], cf = T1

∀qos ∈]50, 25], cf = T2

∀qos ∈]25, 0], cf = T3

(3)

This method allows the definition of a 2-bit representation
cf of the QoS value for a specific VM. The global control
register for the IRQ Coloring RTM is the result of the
aggregation of control flags associated with each VM.
Stage 2 - ComputeDM(). The computation of the next degra-
dation mode - deg mode - relies on the global control register
calculated by the different VMs and the control equation
implemented at the hypervisor level. In Stages 0 and 1, all
VMs compute the RTM logic in parallel, but not in Stage
2. Since the calculations in Stage 2 rely on the previous
stages, performing the very same computation per VM is
unnecessary. Instead, the higher criticality VM calculates the
next degradation mode, which is then applied to the system.

Algorithm 1 IRQ Coloring RTM
1: function RTM TIMER HANDLER
2: for i = 1 to M do
3: if SIL(i) ̸= QM then
4: qos← ComputeQoS(P̂ )
5: cf ← DecodeQoS(qos)
6: if SIL(i) = D then
7: deg mode← ComputeDM(cf)
8: MaskIRQs(deg mode)
9: end if

10: end if
11: end for
12: RescheduleTimer
13: end function

D. IRQ Coloring ”Toy” Example

Figure 5 provides an illustrative example of the IRQ Color-
ing inner works. The setup comprises four VMs, with one
representing a highly critical system (ASIL-D), two others
simulating intermediate critical systems (ASIL-C and ASIL-
B), and a non-critical system (QM). At the initial instant (T0-
T1), four interrupts are assigned to each intermediate and
lower criticality VM, and one interrupt is assigned to the
higher criticality system, all of which are active.

After a given time interval, the hypervisor collects a series
of events (P̂ ) that enable the computation of the QoS of
each VM, which allows calculating the effect of interference
(eVMi ). Based on this value, the degradation mode is updated,
masking two interruptions of the lower criticality VM. How-
ever, applying this degradation mode alone is insufficient to
guarantee the requirements of the most critical VMs. Thus, the
degradation mode is updated after another time period(T2).
This process repeats until a fail-safe mode is reached (T4-
T5), which involves suspending all non-critical VMs. Once the
requirements of the most critical VM (ASIL-D) are satisfied,
the interrupts of the medium and low critical VMs become
active again. However, it’s important to note that this process
must be carried out progressively, as explained earlier.

IV. IMPLEMENTATION

Hardware Implementation We implemented and deployed the
IRQ Coloring RTM on a Xilinx ZCU102 board featuring
an Ultrascale+ ZU7EV SoC. The system has a quad-core
Arm Cortex-A53 processor operating at 1.2GHz. CPUs have
separate 32KiB L1 instruction and data caches and a shared
1MiB L2 cache. The cluster features the GIC-400 (GICv2).
Nevertheless, it is possible to port the IRQ Coloring to a
newer version of GIC, such as GICv3, since most of the IRQ
Coloring RTM’s functionality relies on the GICD, which is
also available in GICv3. However, some changes may be nec-
essary as although the ISENABLER and ICENABLER
registers exist in both GICv2 and GICv3, there are subtle
differences in their register layout and functionality.



Software Implementation The implementation of the IRQ
Coloring RTM consists of a thin layer of software that sits
between the distributor and the CPU interfaces, built on top of
the Bao hypervisor. The RTM uses two hardware components
to track the performance of VMs and employs a time-based
control system. The first component is the PMU of each CPU,
which collects specific metrics to assess the QoS of each VM.
The second component is the Generic Timer, which provides
a time reference for the system and controls interrupt masking
based on the established IRQ Coloring policy. To implement
the IRQ Coloring, we assume a 1-1 mapping of virtual to
physical CPUs. Therefore, each PMU collects the microarchi-
tectural events of a single VM. PMU events, accessed via the
MRS and MSR instructions, are used to compute the stages
of the IRQ Coloring RTM. Once the computation is complete,
all VMs mask the corresponding IRQs by manipulating the
ISENABLER and ICENABLER registers from the GIC
to set and clear interrupts.

The configurability of the IRQ Coloring RTM is crucial for
its effectiveness, adaptability, and scalability. Thus, it is key to
provide an easy-to-configure interface; however, the configura-
tion process is not limited to the interface, as the IRQ Coloring
masking policy also plays a vital role in ensuring proper
distribution of interrupts among the VMs. The masking policy
must be carefully configured, taking into account the varying
performance requirements of the VMs, to ensure that critical
interrupts are not delayed or lost. Moreover, the IRQ Coloring
mechanism offers configurability in several hyperparameters.
These include (i) the actuation period, which determines the
frequency of actuation of the mechanism, (ii) the weight
assigned to each PMU event, and (iii) the expected behavior
of each VM (e.g., the optimal number of cache misses that
match the native execution of the VM). While the fine-tuning
of these parameters can further enhance the mechanism’s
effectiveness in mitigating interference, the incorrect definition
of these parameters, on the other hand, can lead to an incorrect
actuation of the IRQ Coloring RTM. In order to refine the
IRQ Coloring parameters, it is imperative to use a profiling
tool that (i) enables the selection of microarchitectural events
that better reflects the characteristics of the applications under
consideration, (ii) as well as suggests the appropriate value for
each reference parameter.

V. EVALUATION

In this section we describe the evaluation setup and present
and discuss the evaluation results.

A. Methodology

Evaluation Setup. To assess the effectiveness of the IRQ
Coloring RTM, the evaluation comprises two different use
cases. The first use case involves two VM, each assigned
one CPU. The first VM runs on a Linux OS and executes
various suites of the Mibench benchmark. The second VM is
intended for memory-intensive applications and aims to create
contention at the last-level cache and system bus. This VM
comprises four tasks, each triggered by a different interrupt

generated by a hardware module deployed on the PL of the
ZCU102. The second use case expands the evaluation to
four VM - 1 CPU assigned to each VM. The critical VM
runs a synthetic application that mimics the behavior of the
MiBench Benchmark3, while the other three run memory-
intensive applications. The objective is to measure the im-
pact of increased number of irq-driven workloads on the
performance of the higher criticality VMs and, in parallel,
understand the intermediate guarantees of the IRQ Coloring
RTM mechanism on the medium criticality VMs.
VM Workload. In our assessment of the IRQ Coloring RTM,
we employed the well-established MiBench Automotive and
Industrial Control System (AICS) Suite in the critical VM.
This subset includes three of the most memory-intensive
benchmarks, namely qsort, susan corners, and susan edges
(Figure 1). We chose these benchmarks based on the observed
profiling, i.e., these benchmarks are more susceptible to inter-
ference arising from cache and memory contention. In order
to create interference among the VM (VMs), we deployed a
baremetal application that continuously writes into a buffer
equivalent in size to the last-level cache (LLC) (i.e., 1 MiB).
Each VM is assigned four distinct interrupts, each of which
activates a workload that writes to different segments of the
buffer. To assess the impact of different workloads on the
system’s performance, we divided the buffer into four sections:
a 512KiB partition (equivalent to 50% of the LLC), a 256KiB
partition (equivalent to 25% of the LLC), and two partitions
of 128KiB each (equivalent to 12.5% of the LLC).
Measurement Tools. We use the Arm PMU to collect mi-
croarchitectural events to profile the benchmark execution.
The chosen events comprise the number of L2 cache accesses
and the number of bus accesses. Additionally, we leverage
the ”perf” tool on the Linux operating system to measure the
execution time of each benchmark.
IRQ Coloring RTM Configuration. To ensure the optimal
performance of the IRQ Coloring RTM in mitigating interrupt
interference, we made the following assumptions during our
evaluation:

1) The weights assigned to each microarchitectural event
are equally distributed (50/50).

2) The IRQ Coloring RTM is sampled at a frequency of
10% of the benchmark execution time to avoid the risk
of aliasing due to the Nyquist-Shannon sampling theo-
rem [23], [24] while capturing sufficient information.

3) The interrupt masking on intermediate and non-critical
VMs is based on the profile of each task, and the mask-

3The evaluation was conducted targeting an (emulated) automotive use case,
using Erika3 to set up the evaluation environment. At the time of this writing,
we could not find a fully functional Mibench AICS Suite port for Erika3
RTOS. Thus, we could not use the original Mibench AICS Suite, which
is ready-to-use for Linux. Therefore, an adaptation of the benchmark was
required to make it compatible with Erika3. To achieve this, we performed a
benchmark profiling process by collecting microarchitectural events, such as
L2 cache accesses and bus accesses, during the execution of each benchmark.
Based on this profiling, we reconstructed the benchmark so that the application
would perform load and store operations to replicate the behavior of the
original benchmark. We called this suite the ”Synthetic Mibench AICS Suite”.



TABLE I
SETUP CONFIGURATIONS AND MASKED INTERRUPTS FOR EACH DEGRADATION MODE (THREE DIFFERENT SETUP CONFIGURATIONS). EACH ROW

REPRESENTS A DIFFERENT DEGRADATION MODE, AND EACH COLUMN CORRESPONDS TO THE INTERRUPT STATE FOR A SPECIFIC SETUP CONFIGURATION.

ASIL-D ASIL-C ASIL-B QM
IRQ IRQ 0 IRQ 1 IRQ 2 IRQ 3 IRQ 0 IRQ 1 IRQ 2 IRQ 3 IRQ 0 IRQ 1 IRQ 2 IRQ 3

Dual-VM

Degradation Mode 0
Degradation Mode 1
Degradation Mode 2
Fail-Safe Strategy

Quad-VM
Setup 1

Degradation Mode 0
Degradation Mode 1
Degradation Mode 2
Fail-Safe Strategy

Quad-VM
Setup 2

Degradation Mode 0
Degradation Mode 1
Degradation Mode 2
Fail-Safe Strategy

Enabled IRQ Masked IRQ N.A. IRQ
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Fig. 6. Microbenchmark results for the IRQ Coloring RTM: average and
worst-case execution times for the different measuring points identified in
Table II.
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Fig. 7. IRQ Coloring RTM: performance overhead vs. actuation period

ing maps applied to each setup used in the Evaluation
section are presented in Table I.

B. IRQ Coloring RTM Microbenchmark

Figure 6 illustrates the IRQ Coloring RTM microbench-
mark, which comprises the seven measuring points detailed
in Table II. The first measuring point corresponds to the
”PMU Sampling”, which represents the time taken by the
processor to collect performance data using the PMU. The
next two measuring points correspond to different stages of the
mechanism, with Stage 0 encompassing the QoS computation
for each VM and Stage 1 corresponding to the decoding of
the QoS value. The next three measuring points correspond

TABLE II
DESCRIPTION OF MICRO-OPERATIONS (MEASURING POINTS) OF THE IRQ

COLORING RTM

Measuring
Point Description

1 Time taken by the RTM for the PMU sampling.

2 Time taken by the RTM to calculate the QoS for each VM
based on the collected PMU values (from previous stage).

3 Time taken by the RTM to decode the VM QoS values.

4 Time taken by the RTM to synchronize all VMs before
processing / selecting the next degradation mode.

5 Time taken by the RTM to run the control logic responsible
for computing the next degradation mode.

6 Time taken by the RTM to update reference values for the
next degradation mode.

7 Time taken by the RTM for interrupt masking operation per
the mapping for the next degradation mode.

to Stage 2, which involves different VMs synchronization,
reference update, and interrupt masking operations. These
stages are key for the IRQ Coloring RTM overall performance,
and any inefficiencies or delays at this stage can significantly
impact the overall system’s performance. The profiling results
of the IRQ Coloring RTM indicate that the mechanism’s
average execution time is 0.365 microseconds. However, due
to the need to synchronize the different VMs, the maximum
execution time observed is 0.782 microseconds. To put this
into perspective, if the actuation period is 10 microseconds,
the expected performance impact is 7.81%. In fact, the perfor-
mance impact becomes negligible for sampling periods above
100 microseconds, resulting in a performance impact value
below 0.8%, as depicted in Figure 7. Therefore, sampling the
system at a frequency of 10 kHz would not have a significant
performance impact.

C. Results with Mibench Benchmaks - Dual-VM

We start by assessing the impact of interference mitigation
on the high-criticality VM. The setup consists of two VMs
running atop of hypervisor: (i) a Linux-based VM running the
MiBench AICS Suite and (ii) a low-criticality (e.g., ASIL-QM)
running a synthetic benchmark to create contention at the LLC.
The evaluation process consists of comparing the execution of
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Fig. 8. Dual-VM: performance degradation for the Mibench AICS under interference, cache coloring, and IRQ coloring

the MiBench AICS Suite benchmarks for six different system
configurations: (i) solo benchmark execution (solo); (ii) solo
benchmark execution with cache coloring enabled (solo+cc);
(iii) solo benchmark execution with IRQ coloring enabled
(solo+irqc); (iv) benchmark execution under interference (in-
terf); (v) benchmark execution under interference with cache
coloring enabled (interf+cc); and (vi) benchmark execution
under interference with IRQ coloring enabled (interf+irqc).

Interference Mitigation Effect. The average results for 1000
runs are presented in Figure 8, and they are normalized to
the native execution, where higher values indicate poorer
performance. The empirical results demonstrate that memory-
intensive applications, such as susan-c small, susan-e small,
and q-sort small, can be significantly impacted by over 65%
due to contention arising from the sharing of microarchitec-
tural resources like the LLC and system bus. In the worst-case
scenario, which is susan-c small, the execution time increases
from 1.53ms to 3.27ms (2.13x when compared to the native
execution). However, using interference mitigation techniques
such as cache partitioning can help reduce the interference
effect. By allocating 50% of the LLC to each VM, cache
partitioning can significantly reduce interference and decrease
the relative performance overhead to 1.62x for susan-c small,
which is the most memory-intensive application, reducing the
execution time to 2.48ms.

Furthermore, empirical results show that IRQ coloring is
generally more effective in mitigating interference than the
cache coloring technique, especially when the interference
is very high, e.g., susan-c small, where the performance
degradation is reduced from 2.13x to 1.02x, reducing the
execution time from 3.27ms to 1.57ms. However, there are
three cases where IRQ coloring is not as effective as cache
coloring, i.e., basicmath-large, bitcount-small, and qsort-large.
We investigated and we concluded that it is related to two ma-
jor factors: (i) the profile of the benchmark, i.e., no memory-
intensive and small execution time (few milliseconds); (ii) the
weights of the control equation, i.e., 50-50, where the real
benchmark has considerable more cache accesses than bus
accesses (90-10).

Performance Impact. Leveraging techniques such as cache
coloring can effectively reduce interference on multicore plat-
forms. However, it is important to note that the performance
degradation resulting from employing cache coloring due to
LLC fragmentation is not negligible. For the susan-c small
benchmark using cache coloring incurs an impact of 1.32x,
increasing the execution time from 1.53ms to 2.02ms. In
contrast, the IRQ coloring technique for the solo case has a
near-negligible overhead (≤ 1.01x). Only for the qsort-small
and susanc-small benchmarks is the overhead near 1.02x-
1.03x, which in the case of the susanc-small results in an
increase in the execution time from 1.53ms to 1.57ms. Overall,
this results from the reduced execution time, as discussed in
Section V.B.

D. Results with Mibench Benchmaks - Quad-VM

We will now focus on evaluating the intermediate guarantees
offered by the IRQ Coloring mechanism. Many interference
mitigation techniques on multicore platforms, such as memory
throttling, rely on suspending a CPU, which halts its activity
along with the corresponding VM. IRQ Coloring aims at
providing intermediate guarantees to medium-critical VMs by
gradually reducing their workload to minimize interference
with higher-critical VMs. To gather evidence on the interme-
diate guarantees provided by IRQ Coloring, we deployed two
different systems, each with four VMs. During a 10-second
period, we ran the workloads of each VM and counted the
number of times each task was completed. With that, we
compute the availability of each VM based on the number of
completed tasks. For each setup, we assessed the throughput of
each VM by collecting their execution alone with the different
active tasks (solo), their execution over interference with the
four VMs (interf), and the interference scenario with IRQ
Coloring (interf+irqc).
Setup 1. The first setup encompasses four VMs, each assigned
to one CPU. This setup emulates a realistic automotive use
case, with ASIL-D and ASIL-C VMs running Erika RTOS
and automotive-related benchmarks. In this case, due to the
absence of baremetal support from the original MiBench AICS
Suite, we ran the synthetic MiBench Suite. The ASIL-B and
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Fig. 9. Assessment of intermediate guarantees in Quad-VM setup: comparison of relative throughput (y-axis) for each task across different VMs (ASIL) and
benchmarks

QM VMs intended to emulate memory-intensive applications
and create contention at the last-level cache and system bus.
These VMs comprise four tasks, each triggered by a different
interrupt generated by a hardware module deployed on the PL
of the ZCU102. Figure 9-(a) presents the workload bandwidth
for the high-criticality VM, i.e., ASIL-D VM, and intermediate
VMs, i.e., ASIL-C VM and ASIL-B VM. It is worth noting
that no workload is completely stopped for both ASIL-C and
ASIL-B VMs. For the ASIL-D and ASIL-C VMs, we highlight
the additional bandwidth for both workloads (benchmarks)
compared to the scenario under interference.
Setup 2. The second setup is an extension of Setup 1, designed
to expand the workload of the ASIL-C VM. ASIL-D and
ASIL-C VMs run Erika RTOS and the (synthetic) MiBench
Suite. In this case, ASIL-C VM runs four benchmarks instead
of two. The ASIL-B and QM VMs still consist of four
tasks, each triggered by a different interrupt generated by
the hardware module. Figure 9-(b) presents the workload
bandwidth for the high-criticality VM, i.e., ASIL-D VM, and
intermediate VMs, i.e., ASIL-C VM and ASIL-B VM. It is
worth noting that, compared to the results of Figure 9-(a), the
increased workload in the ASIL-C VM leads to a scenario
where one of the benchmarks (susanc-small) presents less
bandwidth than the scenario under interference.

VI. DISCUSSION

IRQ Coloring RTM QoS Calculation. The RTM calculates the
QoS of each VM by taking a weighted average of only two
microarchitectural events: L2 cache accesses and bus access
cycles. However, it is vital to understand the optimal weight of
each event for better control logic, as observed in the evalua-
tion of benchmarks. Adding other microarchitectural events
to the control equation logic may impact the performance
overhead and interference mitigation effectiveness; thus, it
would be interesting to perform such a study in the near future.
Furthermore, another potential optimization would be the use
of a static look-up table calculated by the IRQ DTT instead
of a weighted sum in the control logic.
IRQ Coloring RTM QoS Reference Values. The IRQ Coloring
RTM QoS reference values are static and unique (single) per
VM. However, workload behavior can change significantly
during execution (as we observe while reconstructing the
synthetic MiBench AICS Suite). To address this, having a

vector of reference values per VM per execution period
would be beneficial. This means having multiple reference
values per QoS element per workload period; however, this
poses additional challenges in synchronization. Investigating
the impact of vector length on performance overhead and
intermediate guarantees would also be interesting.
IRQ Coloring RTM Actuation Period. The IRQ Coloring
RTM Actuation Period is crucial for performance overhead
and interference mitigation effectiveness, which affects inter-
mediate guarantees. To determine the actuation period, we
considered the benchmark profile and interference mitigation
effectiveness from the preliminary set of experiments. To be
conservative, we set the actuation period ten times smaller
than the execution period of the smallest application of the
most critical VM, following the Nyquist-Shannon sampling
theorem. However, this period may not be optimal for inter-
mediate VMs when the high-criticality VM is idle. Dynamic
set options for the RTM actuation period should be explored.
Portability of IRQ Coloring. IRQ Coloring is implemented
for Armv8-A platforms. However, it can be adapted to other
platforms, including new Arm real-time processors (Cortex-
R52) and RISC-V application processors (e.g., CVA6). Eval-
uating the effectiveness of the technique on these platforms
would be valuable, especially for Cortex-R52, which lacks
hardware primitives for cache partitioning, and for RISC-V,
which presents hardware-software co-design opportunities.

VII. RELATED WORK

Several memory interference mitigation mechanisms have
been put forth by the real-time research community. Those
COTS-applicable mainly focus on shared LLC or DRAM bank
partitioning, regulating memory bandwidth, or co-scheduling.
Although mainly designed for OSs, these techniques have
also been applied in hypervisors, but none leverage interrupt
masking to achieve their end-goals.
Cache Partitioning. Cache partitioning [25] consists of as-
signing subsets of the LLC to a specific workload and can
be implemented in two main ways. Cache locking requires
hardware assistance to restrict the eviction of selected cache
lines, while cache coloring leverages virtual page number
and cache index overlap to partition cache sets. Colored
Lockdown [26] combines coloring and locking. Other works
have proposed dynamic re-coloring schemes [27]–[29]. Cache



coloring has been implemented in several hypervisors such as
Bao [4], Jailhouse [13], and XVisor [14].
DRAM Bank Partitioning This technique leverages the par-
allelism in DRAM bank access to avoid contention among
different workloads. PALLOC [16] proposes an OS-level
DRAM bank-aware memory allocator to avoid bank sharing
among cores. In [13], authors combine DRAM bank and cache
coloring into a single allocator at the hypervisor level. Similar
ideas have been transposed to low-end microcontrollers [30].
Memory Bandwidth Regulation. By limiting the memory
bandwidth of partitions, one can ensure bandwidth guarantees
for higher-criticality workloads. Memguard [31] throttles cores
based on a memory bandwidth budget allocation, using perfor-
mance monitoring counters to measure memory accesses and
trigger the mechanism. In [14], authors apply Memguard at the
hypervisor level, and Crespo et al. [32] follow a similar line
by applying control theory to implement a feedback control
scheme. Others have analyzed the efficacy of QoS regulators
in minimizing IO-originated DRAM contention [19], [33].
Co-scheduling. The main insight of this approach is to co-
schedule workloads in such a way that minimizes interference.
RT-Gang [34] proposes a novel gang-scheduling policy com-
bined with memory bandwidth regulation. The PRedictable
Execution Model (PREM) [35] divides tasks into memory
access and compute phases and co-schedules them accordingly
so that the former do not overlap for critical workloads. Kloda
et al. [13] apply this idea at the hypervisor level.

VIII. CONCLUSION

In this paper, we presented the design, implementation,
and evaluation of IRQ coloring. This mechanism aims to
minimize interrupt-generated interference and provide inter-
mediate guarantees for medium-criticality workloads. The core
concept consists of deactivating ”colored” interrupts if the
QoS of critical workloads drops below a specific threshold.
The prototype was evaluated on a high-performance multicore
platform (Xilinx ZCU102). Results demonstrated negligible
performance overhead, i.e., < 1% for a sampling period
of 100 microseconds, and reasonable throughput guarantees
for medium-critical workloads. We believe that IRQ coloring
is orthogonal to other state-of-art techniques, presents pre-
dictability and intermediate guarantees advantages, and can
be implemented in the new generation of real-time Arm
processors (e.g., Cortex-R52).
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