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Ruggero Donida Labati, Angelo Genovese, Enrique Muñoz, Vincenzo Piuri, Fabio Scotti, and Gianluca Sforza

Abstract—Oriented Strand Board (OSB) is a kind of engi-
neered wood particle board widely adopted in manufacturing,
construction and logistics. The production of OSB panels requires
rectangular-shaped wood strands of specific size, arranged in
layers to form the so-called “mattress” (mat) and bonded together
with glue. The structural properties of the panel rely directly on
the layer forming. In particular, the size distribution – namely
granulometry – of the strands should fulfill standard measures
to reach the mechanical properties expected from the panel. Off-
line granulometry of particle materials is the most commonly
procedure used to evaluate the production process, but it is
prone to several drawbacks owing to the manual intervention of
human operators. Vision-based systems, instead, allow for per-
forming granulometric analyses in an automatic and contactless
manner. We propose a computer vision approach to estimate the
granulometry of wood strands. The designed framework analyzes
images of a mat of strands placed over a moving conveyor belt,
and provides useful information and measurements to enhance
the production of OSB panels. Because of the very large amount
of wood strands on the mat, particle-overlapping is frequent and
represents a main issue for measurement algorithms. In order to
overcome this problem, our framework joins image processing
and computational intelligence methods, such as edge detection
and fuzzy color clustering. We tested the framework with real
and synthetic images, useful to variate the conditions of the
material’s shape. The obtained results demonstrate the ability
of our approach to evaluate the granulometry of the strands in
real conditions, and robustness against the simulated variations
of the production process.

Index Terms—Oriented Strand Boards, Particle image analysis,
Granulometry, Fuzzy clustering.

I. INTRODUCTION

Engineered wood board is a product manufactured from

wood strands or other kinds of wood fibers, bonded together

with glue to form a large and efficient composite product.

Thanks to its mechanical properties, weight, versatility and

excellent quality/price ratio, Oriented Strand Board (OSB) is a

kind of engineered wood board widely adopted in manufactur-

ing, construction and logistics. This panel is typically uniform,

does not have internal gap and voids, and is water-resistant.

OSB production is now advancing towards lightweight panels

at lower cost and reduced environmental impact. This is

possible thanks to the use of the upper part of the tree –

commonly neglected – as well as different types of recycled

wood [1], [2], and also the reduced use of glue.

The production of OSBs employs rectangular-shaped wood

strands of predetermined dimensions, arranged in three layers
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or more to form the so-called “mattress” (mat), and bonded

together with glue under pressure and heat [3]. During mat

forming, for the outer layers the machine aligns the strands

parallel to the direction of the production line. For the core

layer instead, the strands often smaller have random orien-

tation. The manufacturer has to check the specific orientation

and size of the strands on each layer in order to guarantee the

desired mechanical properties of the panel. Also, an optimal

strand measurement allows for lowering the amount of needed

glue, thus reducing the panel cost and the environmental

impact [4]. Hence, it is of capital importance to provide

suitable tools for evaluating the size distribution in the granular

composition of the panel, namely its granulometry.

Nowadays, it is still common to perform off-line gran-

ulometric analyses using vibrating sifters that mechanically

classify particle samples. The final granulometric measurement

comes by weighing the obtained partitions. This process has

some drawbacks: the analysis is time consuming and the

measurement lacks of a standard accuracy, because human

operators can differently or incorrectly apply the measure-

ment procedures. A possibility to avoid the aforementioned

problems is to employ vision-based systems to estimate the

granulometry of the wood strands in a region of interest

captured by the camera. Following this approach, it is possible

to perform the measurements in a fully automatic way and

without contact. This kind of systems can operate in two

ways: working on samples extracted from the production line

(spin-off approach) or directly on the production line (in-line

approach). In the latter case, typically a camera placed above

the surface of a conveyor belt acquires images of the particles.

This setup is simple and effective, but its main drawback is the

great amount of overlapped particles in the images acquired.

An alternative but more complex setup is necessary to capture

free-falling particles [5]: in this way it is possible to avoid

potential particle-overlapping, but other problems can appear,

such as motion blur, poor focus quality and uncontrolled three-

dimensional orientation of the particles.

Along with assessing the quality of a wood particle panel

during the production [6], [7], machine vision is applicable

also for quality assessment of the final product, such as in

automatic visual inspection of the panel’s surface for defect

detection [8], [9].

This work presents a framework for the in-line visual

monitoring of the mat layers in different measuring points

of the production line. The proposed framework performs a

granulometry estimation of the strands on the mat, which is

useful to improve the mechanical properties of the final OSB

panel and to reduce the amount of employed glue.
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This paper presents a threefold contribution:

• We designed the first computer vision approach for eval-

uating the granulometry of a very large amount of wood

strands.

• Our method uses innovative clustering and post-

processing methods.

• We tested our method using both real and synthetic

images, useful to simulate several conditions of test.

The paper is organized as follows: Section II describes the

state of the art related to computer vision techniques for granu-

lometric analysis. Section III presents the proposed framework

for granulometric evaluation, and Section IV describes the

tests conducted and the obtained results. Finally, Section V

proposes the main conclusions and the future research.

II. RELATED WORK

Studies examining the distribution of shape and size in gran-

ular composite materials strongly relate it to the characteristics

of the final products [10]. This happens in the wood panel

production [6] as well as in many other industrial applications,

like pharmacy [11], papermaking [12] or mining [13]. The

analysis of particle distribution allows for detecting problems

that occurred in production, like bias in the working point of

the machines, wearing of the tools, wrong or poor quality in

the basic materials [6].

The application of granulometric analysis based on vision

systems started more than 30 years ago [14]. However, the

market does not offer a general solution yet, because of the

alternating success of the proposed solutions [13]. Typically,

vision-based systems employ a single camera and follow a

two-step process in order to estimate the size distribution of the

objects present in the image. The first step is image segmen-

tation, to locate the depicted objects; the second step consists

in evaluating and aggregating the properties of the identified

objects to estimate their size distribution. In order to obtain

high confidence on the obtained results, it is important to

measure as many objects as possible [6]. Testing and validation

of the designed algorithms represent two main issues in image-

based granulometry. The solution proposed in [15] attempts

to tackle this problem, introducing an environment for the

supervised generation of synthetic image databases containing

realistic particle distributions for testing the algorithms.

A great variety of research and industrial applications ex-

ploit the two-step approach described. Research in biology

considers the granulometric analysis to test the health of hu-

man tissue/cells, for instance by applying successive structural

openings of the segmented image [16] [17] or multiresolution

texture analysis [18]. Further, this approach is efficacious in

the mining industry to characterize the shape distribution of

the extracted materials. Employed techniques ranges from

edge detection to mathematical morphology [19], watershed,

area boundary [20], and the analysis of images captured

under different light conditions [21]. Two-step granulometric

analysis is useful also for the classification of powders: the

paper [22] proposes clustering to automatically characterize

the properties of the powder, and the work in [23] uses

classical image processing to characterize morphology and

size distribution of wood dust particles [23].

Segmentation represents the most important source of esti-

mation errors in unconstrained setups [24], especially when the

particles overlap or the illumination is not correct. In addition,

the segmentation of a complex and densely populated scene is

typically a computationally intensive task and subject to errors.

To avoid the segmentation step, the work presented in [25] uses

the Fourier analysis and scale-space decomposition to estimate

the granulometry of rocks, while the work in [26] combines

Fourier analysis and mathematical morphology. More recently,

the work in [27] used morphological opening operations to

estimate the granulometry of aquaculture fish feed pellets,

and the paper [24] proposed neural networks to classify the

extracted set of features in a general acquisition setup.

Another approach to granulometric analysis employs more

complex setups to generate 3D models of the particles. In the

paper industry for instance, the work in [12] makes use of

3D laser scanners to detect the surface of wood chips, used

for making wood-pulp. Also, the works in [13], [28] take

advantage of the same technology to measure rock fragments.

From a different perspective, the work in [29] studied rock

granulometry using stereophotogrammetry, demonstrating its

capability to obtain more precise measurements than tradi-

tional 2D approaches. However, in the case of OSBs, the

particles employed are very thin (strands are less than 1mm

thick typically), which make it difficult an improvement of the

granulometry results using additional 3D information.

With regard to the granulometric analysis of wood particles,

the paper [30] introduces one of the first studies in the field,

using statistical evaluation of dimensional features extracted

from images of ring-cut flakes to categorize the strands into

two quality classes. More recently, [7] analyzed the influence

of temperature on the quality of wood particles. The analysis

exploits the shape features extracted from grayscale images

of the strands acquired using a CCD camera and two light

sources.

III. A FRAMEWORK FOR ESTIMATING PARTICLE SIZE

DISTRIBUTIONS IN WOOD PARTICLES

This work focuses on the in-line visual inspection of the

strands of a raw OSB mat from single images, introduc-

ing a framework for the automatic analysis of particle size

distribution in different measuring points of the line. The

process to obtain the granulometric information exploits the

traditional two-step approach: first, segmenting the image to

locate as many strands as possible; then, measuring the strands

and aggregating the measurements. Aggregated results makes

it easier the interpretation of the measurements. The most

challenging step is segmentation; in fact, estimating the strand

size distribution in images of OSB mats poses some important

image processing challenges:

• Due to the particular shape of the strands having one

side particularly elongated, images tend to present many

occlusions that visually interrupt the edges of the whole

strands.

• Most of the strands present very similar colors, making

it difficult to differentiate them.

To obtain more reliable measurements of the strands, we

consider the lightest parts of the image to segment. Basically,



Fig. 1. Blocks partitioning schema used to perform the segmentation: small
blocks favor the retrieval of smaller objects and large blocks the retrieval of
bigger strands.

these regions depict the strands located on the surface of the

mat, which tend to present less occlusions because the strands

are not shaded or covered by other strands. Our method adopts

fuzzy color clustering to locate the lightest parts of the image.

To maximize the number of segmented strands and increase

the estimation accuracy, our method partitions the image into n
blocks Bi, i = 1, . . . , n. The method considers blocks of three

different sizes. Figure 1 presents the partition. This partition

aims at catching objects (strands) at different levels of detail,

following the rationale that smaller strands fall into smaller

blocks, and larger strands fall into larger blocks. These blocks

present many inter-overlaps that permit to detect the strands

that fall in the borders of other blocks. Fusing the information

extracted by each block gives the size distribution of the

strands, as described below.

For each block Bi, the segmentation process involves the

following steps:

1) Application of a Laplacian filter to highlight edges and

favor the separation of the strands. The resulting image

is Li = Bi + k[∇2(Bi)], where ∇2(Bi) is the Laplacian

of image Bi, and k = 1 or k = −1 depending on the

derivative implementation.

2) Histogram equalization for contrast enhancement. The

output image is Hi.

3) Edge subtraction. The method uses Canny algorithm [31]

to detect and dilate the edges, obtaining Ei. In particular,

the edges are dilated using a circular kernel of one pixel

of radius and successively subtracted from the original

image. The result of this step is Si = Hi −Ei. This step

helps the clustering algorithm to differentiate strands that

are close together and share similar colors.

4) Application of Fuzzy C-Means (FCM) [32] clustering

algorithm to the RGB components of Si. The FCM

algorithm is based on the minimization of the following

objective function:

Fm =
n∑

i=1

C∑

c=1

uf
ic ‖ xi − vc ‖

2,

where f indicates the “fuzziness” of clustering, n the

number of pixels, uic is the degree of membership of

the pixel xi to the c-th cluster, vc is the center of

the c-th cluster. We empirically selected three clusters.

Among the three clusters obtained, the one presenting

the lightest color is chosen as output. In this way, most

of the background can be eliminated from the image and

segmenting the strands on top of the mat becomes easier.

The final output of this step is an image that represents

the degree of membership of each pixel to the lightest

cluster, Ti.

5) Binarization of Ti using Otsu’s algorithm to calculate the

threshold [33], the results is Oi.

6) Elimination of the connected components in Oi that do

not correspond to strands, obtaining Gi. In particular, the

method discards each component CCj , j = 1, · · · ,m,

where m is the total number of connected components,

whose shape is much different from that expected from

a OSB’s wood strand. The following four tests determine

if a connected component CCj is discarded:

• CCj is eliminated if A(CCj) < 0.3 ×
maxl=1,··· ,m(A(CCl)), where A(CCj) represents

the area of CCj . This test eliminates the smallest

connected components, which generally correspond

to noise.

• CCj is discarded if M(CCj)/m(CCj) < 2, where

M(CCj) and m(CCj) represent the major and mi-

nor axis of CCj . The basis for this test is the fact

that the majority of the strands are much longer than

wider.

• CCj is eliminated if |P (CCj) −
IP (CCj)|/max(P (CCj), IP (CCj) > 0.5, where

P (CCj) is the perimeter of CCj and IP (CCj)
is the ideal perimeter of a rectangle with long and

short sides equal to M(CCj) and m(CCj). The

reason that justifies this test is that the majority of

strands have a rectangular shape.

• CCj is eliminated if |A(CCj) −
IA(CCj)|/max(A(CCj), IA(CCj) > 0.5, where

A(CCj) is the area of CCj and IA(CCj) is the

ideal area of a rectangle with long and short sides

equal to M(CCj) and m(CCj). The reason that

justifies this test is that the majority of strands have

a rectangular shape.

To aggregate all the results obtained for the different blocks,

the final output is calculated as ORi=1,··· ,n(Gi). In this

process, partitioning the input image into blocks of different

sizes has the positive effect of enabling the detection of both

small and big strands.

Once the segmentation is completed, the major and minor

axes of every particle in the segmentation mask are measured.

The real size of each strand (in mm) is calculated considering

the ratio between the given resolution of the camera and the

metric reference acquired on the mat. Individual results are

finally aggregated in a histogram, representing the estimate of

the strand size distribution, which is the output of the proposed

framework. The bins used for calculating the histograms have

been chosen in compliance with the productive procedures.
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Fig. 2. Examples of the images used in the tests. Images in the first column are
from the real mat, respectively from dataset Small (a) Medium (c) and Big (e).
We selected these datasets of images to test the opposite granulometry ranges
of one layer in operative conditions. We carefully processed them manually,
to identify and measure the real length of the strands and to produce a ground
truth for checking on the designed algorithms. Relevant for segmentation is the
fact that color hues appear to be almost uniform across the strands. Moreover,
shadows and different illuminating apparatus can cause sensible differences in
the color of the strands. Second column presents synthetic images respectively

from datasets Ŝmall, ̂Medium and B̂ig with simulated size distributions.
These images are useful to test the correctness of the method on all the size
parameters of the strands, as well as to realize images of critical conditions
of functioning difficult to acquire in-line.

IV. EXPERIMENTS

This section analyzes the performance of the proposed

framework, tested with both real and synthetic images of

resolution 1600×1200 pixels. Fig. 2 shows some examples of

these images. We used a DFK 23G274 The Imaging Sourcer

camera to acquire real images. The GigE interface of this

camera guarantees that the acquisition point can be located

far from the image processing server, a usual requirement in

real productive environments. We generated synthetic images

using different normal distributions of the strand size. In order

to intuitively assess the validity of the obtained results, we

aggregated the performed measurements using histograms and

the related quartiles.

A. Tests using real images

This section analyzes the results obtained by processing

images captured from a real mat. We collected three datasets

corresponding to three different granulometry conditions re-

vealed by the production system. The datasets, consisting of

10 images each, contain respectively:

• mainly small strands, namely Small dataset (Fig. 2a).

• mainly big strands, namely Big dataset (Fig. 2c).

• a mixture of small and big strands, namely Medium

dataset, as referred to the average size of the strands in

the image (Fig. 2e).

Fig. 3 presents the histograms for the major and minor axes

of the strands extracted from the three datasets. To assess the

ability of our framework in distinguishing between different

strand distributions, we carried out a statistical study using

Student’s t-test. The study consisted in a pairwise comparison

of the quartiles, considering each quartile for every couple of

distributions. The results indicated significant statistical differ-

ences with α = 0.02 in all cases, except for the comparison

of the 2nd quartile between images in the Small and Medium

datasets. This illustrates the capability of the framework of

detecting significant changes in the strand particles size, being

comparable to the job that would be made by a human expert

who visually inspects the mat of wood strands moving in-line.

Hence, the framework fulfills the requirements and purpose

that motivated its development.

B. Tests using synthetic images

This section evaluates the performance of the framework

using synthetic images. The purpose of this study is to test the

robustness and accuracy of the system against variations in the

materials. This kind of study is not feasible in real conditions,

where the shape of the strands cannot be controlled. Besides

that, synthetic images only enable to perform an in-depth

analysis of the relationship between superficial strands and the

unknown size distribution of the mat layers under the surface.

The synthetic image generation allows the control of different

parameters with high precision, like the size of the major and

minor axes, or the chromatic palettes, for simulating different

ambient lights and non-uniform lighting. Fig. 2(b,d,f) shows

examples of images used in these tests.

We tested our framework using three synthetic datasets, built

on different normal distributions of the size of the strands,

namely Ŝmall, M̂edium and B̂ig datasets. To simulate the

distributions of small, medium and big sized strands, we chose

the mean and the standard deviation accordingly for each

distribution. Each rectangle picked its color randomly from a

color palette extracted from a real image. Each dataset contains

100 images. Table I presents the obtained results. The table

indicates the measurements of the major and minor axes of

the strands given by the proposed method, and the actual

values of the generated strands. These values show that our

method is capable to detect changes in the size distribution

with satisfactory accuracy. We performed Student’s t-test on

the synthetic data, as with the real images. The statistical test

assessed the effectiveness of our framework in distinguishing

between different strand distributions.

V. CONCLUSIONS AND FUTURE WORK

This work presented a vision-based framework for the

granulometric estimation of wood particle-size distributions.

Our framework can contribute to enhance the production of
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Fig. 3. Assessment of granulometric estimation in real images of the mat. The figure shows histograms of the major and minor axes of the strands. Histograms
(a,d) present the results of the proposed method for an image of dataset Small, histograms (b,e) for an image of dataset Medium, and histograms (c,f) for an
image of dataset Big. The results show how, as the proportion of big strands in the image increases, the proposed method detects a lower number of strands
with a small minor and major axis, and a higher number of strands with a big minor and major axis. Q2 indicates the 2nd quartile of the distribution measured
by the proposed method (standard deviation subscript).

TABLE I
ASSESSMENT OF GRANULOMETRIC ESTIMATION IN SYNTHETIC IMAGES

Major axis Minor axis

Q1 Q2 Q3 Q1 Q2 Q3

Ŝmall
AD 50.90.36 71.00.44 94.20.49 10.40.08 14.60.07 18.80.08
PM 52.03.76 71.75.35 97.56.47 12.11.04 16.41.08 21.31.28

̂Medium
AD 64.80.32 82.90.32 102.10.37 14.10.06 17.50.06 20.90.07
PM 58.44.03 79.45.33 105.16.74 14.30.79 18.40.84 22.91.20

B̂ig
AD 86.60.26 100.10.23 113.60.26 17.30.05 20.00.04 22.70.05
PM 66.85.03 94.26.15 119.86.41 16.80.85 20.70.94 24.61.32

Note: AD stands for Actual Dimensions and PM stands for Proposed Method. The

table reports both the mean values and their std deviations (subscript), which indicate

the average differences between the AD and PM quartiles (values in mm).

OSB panels, by improving the mechanical properties of the

panels and reducing the used glue.

The proposed framework employs an innovative image pro-

cessing approach, based on the segmentation of image parti-

tions through an optimized algorithm of fuzzy color clustering.

The approach is especially adapted to the characteristics of the

application, and it demonstrated its ability to detect a trend in

the granulometry of the strands. Discovering such a trend is

helpful to prevent deviations from the optimal operating point

of the factory and consequently favor the quality of the panels.

Future works are foreseen on the following research lines:

• The detection of strand fragments incorrectly identified

as whole strands, which may subsequently be further

improved to yield more realistic final results.

• The reconstruction of the strands divided into pieces for

possible occlusions, which could help in performing more

accurate granulometric analysis.

• The study of a measurement method that avoids seg-

mentation, which could complement the obtained results

and make the system more robust against changes in the

ambient conditions.
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