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ABSTRACT
Flood is causing devastating damages every year all over the
world. One way to improve the readiness of stakeholders (res-
cue authorities, policy makers, and communities) is by pro-
viding flood extent maps promptly after the disaster, prefer-
ably in an automated way and with a minimum number of
satellite imagery to reduce costs. The web application devel-
oped in this paper aims to address this problem by mapping
the flood extent automatically from SAR images.

This web application is portable since it runs on the in-
ternet browser, and allows to perform the classification of
the flooding in an automated fashion. Another strong point
is the rapidity of the processing: the whole processing time
was around 3 to 5 minutes for a subset of 20 million pixels.
The inundation map returned by our algorithm was validated
against vector files mapped by the United Nations Institute for
Training and Research (UNITAR) for the same flood event.

Regarding the dataset needed in this study, a pair of a pre-
flood SAR image and an optical image of the same area were
used to build a training dataset of water and non-water classes.
The learning phase is immediately followed by the classifica-
tion of the post-flood SAR image into a binary flood map.
The web application described in this paper was built with
open-source Python libraries which are backed by large com-
munities (Django, Scikit-learn among others). The flood map
was eventually displayed on OpenStreetMap maps provided
by Mapbox.

Index Terms— Geographic Information System (GIS),
Flood extent mapping, Supervised classification, Synthetic
Aperture Radar (SAR)

1. INTRODUCTION

1.1. Introduction

Climate change is causing a hike in the Earth temperature,
and manifests itself in the fact that 2016 was the warmest
year breaking the record set by the two years before it, while
2017 ranked at the third position overall and as the warmest
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among years that were not affected by the El Niño meteoro-
logical phenomenon [1]. The warming of the Earth increases
the quantity of water evaporated, which makes the consequent
rainfall more intense and contributes to the risk of flooding.
At the same time, the situation is exacerbated since warm air
tends to hold more moisture. In fact, a 1°C increase in the
atmosphere temperature leads to 7% more water accumulated
[2].

Synthetic Aperture Radars (SAR), being active sensors,
have the ability to observe the Earth surface regardless of the
weather and the time of acquisition. That is why they are
more practical than optical satellites for monitoring floods,
which occur usually during cloudy conditions. Furthermore,
the constellations of Sentinel-1 SAR satellites and Sentinel-
2 optical satellites providing revisit-times of 6 and 5 days
respectively on the one hand, and the open-data policy of
ESA’s (European Space Agency) Copernicus Programme on
the other, open up new possibilities to deal with Earth obser-
vation problems, like the mapping of flooding.

In 2017, more than 60% of the loss of lives caused by nat-
ural disasters all over the world were due to inundations [3].
One way satellite imagery can support decision makers and
communities in increasing the preparedness, is through flood
extent maps. The web application discussed in this paper ad-
dresses the same issue tackled by an online service featured in
the literature [4], which is to provide response authorities and
stakeholders with a map of the extent of flooding promptly
following the disaster. However, the flood mapping service
proposed in [4] was designed to operate internally on com-
mercial TerraSAR-X images available to the DLR (German
Aerospace Center), and therefore it did not take advantage of
the freely-available datasets from Sentinel-1 and Sentinel-2,
as is the case with the process described in this study.

2. METHODOLOGY

The web application discussed in this paper was developed in
Python using the Django Web framework. The chart in Figure
3 illustrates the steps implemented in this web application,
which are explained in more detail in the sections below.



2.1. Preprocessing

The Sentinel-2 optical image was atmospherically corrected
to eliminate the effect of the atmosphere. This operation
was carried out using the Sen2Cor SNAP plugin (Sentinel
Application Platform) to calculate the surface reflectance and
is necessary before any classification is initiated. During
the atmospheric correction, the Top-Of-Atmosphere Level-
1C Sentinel-2 product given as input is transformed into a
Bottom-Of-Atmosphere Level-2A one.

As for the pre-flood and post-flood SAR images, the
preprocessing consists of a calibration to σ0, a Terrain-
Correction with the freely-available Shuttle Radar Topog-
raphy Mission (SRTM) Digital Elevation Model (DEM), a
filtering of the speckle using the Gamma-Map filter, and fi-
nally a conversion to Decibels (dB). All of these operations
were implemented with the SNAP API for Python.

The SRTM DEM, which is automatically downloaded
by SNAP during the terrain-correction, has a resolution of
around 30m (1 arc-second). The terrain-correction allows to
reduce the inherent geometric distortions in radar imagery,
and is required before the collocation of the pre-flood SAR
image with the optical one. This DEM was chosen due to
not having a free high-resolution DEM, although it has a
resolution slightly coarser (30m) compared to the SAR im-
ages (20m). Regardless of the resolution of the DEM, the
orthorectified SAR images are resampled using the bilinear
interpolation to the same pixel spacing as the input Sentinel-1
products (10m).

The speckle noise present mainly in SAR images is
caused by signals returning from adjacent and heteroge-
nous scatterers on the ground, which are summed into the
same pixel cell [5]. This type of noise can lead to wrongly-
classified pixels, and thus the SAR images have to be speckle-
filtered before any processing is performed. The filtering of
the speckle was carried out with a 5x5 pixels Gamma-MAP
filter, which according to [6] achieves satisfying results in a
reasonable time.

2.2. Building the training dataset

Briefly, the training dataset for water and land classes was
generated by implementing the following operations with
NumPy (a Python library which makes it easy to deal with
matrices, e.g. images):

Firstly, the preprocessed pre-flood SAR image and the op-
tical image acquired in dry conditions were collocated. Then,
the NDVI was calculated from the red and the near-infrared
bands of the Sentinel-2 image by applying the following for-
mula:

NDV I =
NIR−Red

NIR+Red
(1)

The water mask can be subsequently extracted by thresh-
olding the NDVI using a water threshold found in the litera-

ture, as shown in the formula below [7]:

Class =

{
Water, if NDV I ≤ −0.11

Land, otherwise
(2)

This threshold cannot be directly employed to map the
floodwater on an optical image most of the time for lack of
cloud-free products during the inundation.

The water threshold in Equation 2 (NDV I = −0.11)
was validated on three different Sentinel-2 optical images of
the same studied region in Myanmar. These images were ac-
quired during the hot season in the same month as the pre-
flood SAR image (March), in 2016, 2017, and 2018, with very
little or no cloud coverage: 4%, 2%, and 0 %, respectively. It
can be appreciated visually from the NDVIs calculated from
these three images (Figure 1), that the water from the main
river and other wetlands nearby appearing in black, display
the lowest values in the NDVI. This is also confirmed by the
histograms in Figure 2, where it can be deduced that the val-
ues around the smallest mode (on the left of the histogram)
represent the water. The NDVI thresholds shown in red on
the histograms allow to easily isolate water from the rest of
the land cover in the three cases. Moreover, one strength to
note after experimenting on the Sentinel-2 image acquired in
2016 is that the clouds and their shadows appearing in dark
gray on the NDVI image (Figure 1-a) were not classified as
water (Figure 1-b) by this empirical threshold.

The pixels in the preprocessed pre-flood SAR image that
do not belong to the water class were filtered out from the lat-
ter product, with a simple multiplication with the water mask.
The logical negation of the water mask gives the land mask,
and the exact same operation is performed again but with the
land mask to extract the land pixels from the SAR image:

TrainingWater = PreSAR ·WaterMask

TrainingLand = PreSAR ·WaterMask
(3)

2.3. Classification of the post-flood SAR image

The flood was mapped with the Multi-Layer Perceptron
(MLP) classifier, which is already implemented in scikit-
learn, a machine learning library written in Python. The
neural network classifier has only one hidden layer with ten
neurons in it.

The flood extent mapping algorithm employed in this
study relies on a pixel-based classifier which, as opposed to
object-based ones, does not take into account the spatial and
textural context. Object-based classification was used in the
context of flood mapping from SAR images in multiple stud-
ies, particularly in [8]. The main shortcoming of pixel-based
classifiers is the noisy nature of the resulting flood map, since
each pixel is categorized individually without taking into
account the surrounding pixels’ classes. However, the object-
based classification commonly used in the literature is based
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Fig. 1. The Normalized Difference Vegetation Index (NDVI)
calculated from Sentinel-2 optical images acquired on the (a)
19 March 2016 (c) 14 March 2017 (e) 04 March 2018 - and
the water masks obtained by thresholding the previous NDVIs
respectively for the (b) 19 March 2016 (d) 14 March 2017 (f)
04 March 2018.

on the eCognition commercial software, as opposed to the
open-source libraries utilized in this paper. More importantly,
in the case of the object-based segmentation, it is followed

(a) (b)

(c)

Fig. 2. Histograms of the NDVIs calculated from the
Sentinel-2 images acquired on the (a) 19 March 2016 (c) 14
March 2017 (e) 04 March 2018. The vertical red line in the
histogram is where the empirical threshold is located (NDVI
= -0.11).

by a classification which required the user to step in to set
a few scale and thresholds parameters [8], while the web
application developed in this paper aims to work in a fully-
unsupervised mode which is more adequate for emergency
situations.

2.4. Rendering of the flood map

GeoServer is an open-source software that allows to serve
maps, and georeferenced rasters and vectors using protocols
such as WMS (Web Map Service). The post-flood SAR and
the flood map rasters were rendered on Mapbox maps.

3. CASE STUDY AND DATASET

3.1. Case study

The area under study is located in the north of the city of
Mawlamyine in southeastern Myanmar (Burma), where the
Salween River overflowed its banks on August 2015 during
the monsoon season. The flooding occured during the months
of July and August 2015, and affected most of the states of
Myanmar. Certain states were severely ravaged, and a million
of people were forced out of their homes while more than a
hundred casualties were reported [9]. The flood extent was
mapped on a subset of a Sentinel-1 image taken north of the



Fig. 3. Flowchart of the flood mapping web application.

mouth of the Salween (Thanlwin) River, where it flows into
the Indian Ocean.

3.2. Dataset

No optical image from Sentinel-2 was available at the time
of the flooding since Sentinel-2 was not launched till June
2015, and did not deliver its first image on the Sentinel Hub
till the end of 2015 after its commissioning phase. A Sentinel-
2 image was chosen instead of a Landsat-8 one thanks to its
higher resolution (i.e. 10m instead of 30m), which will be

helpful when extracting the water from the NDVI. The opti-
cal Sentinel-2 image used in this paper (Figure 4-c) was taken
in the same season as the pre-flood SAR image (Hot season),
to avoid having water bodies appearing on the optical image
when they are dry on the pre-flood SAR image. This is highly
likely to happen if the optical image is taken during the Rainy
season or the Cool season whereas the pre-flood SAR image is
acquired during the Hot season. Moreover, there is a delay of
three years in the dates of acquisitions between the pre-flood
Sentinel-1 SAR image (March 2015) and the optical Sentinel-
2 image (March 2018), because it was the only image virtu-
ally cloud-free and in the same month. The presence of clouds
over water bodies is normally not a problem for SAR sensors
which can see through them. However, because of the way the
water mask is extracted in our case, patches of clouds mask-
ing water would cause these pixels to appear in the land mask
instead of the water mask, and thus be wrongly-categorized
with the land class in the training dataset retrieved from the
pre-flood SAR image.

The pre-flood (Figure 4-a) and the post-flood (Figure 4-b)
SAR images were acquired by Sentinel-1 in the exact same
configuration in March 2015 and August 2015, respectively.
Both SAR products were captured in the Interferometric Wide
Swath (IW) mode with 20m-resolution. The two images are
both VV-polarized and were distributed in the multi-looked
Ground Range Detected format (GRD).

4. RESULTS

No ground truth was available to validate our results. The
flood map (Figure 4-d) was therefore compared to the one ob-
tained from the same Sentinel-1 dataset by the United Nations
Institute for Training and Research (UNITAR) [10]. The val-
idation dataset is available as a shapefile vector which was
therefore rasterized and clipped with the QGIS software to
focus only on the area of interest, prior to the pixel to pixel
comparison with the resulting flood map. The commission
and omission errors for both the water and land classes as
well as the overall accuracy of the classification relatively to
the latter ground truth, are shown in Table 1. The flood map-
ping method utilized allowed to reach a high accuracy in the
order of over 90% on the studied Myanmar dataset.

After a visual assessment, it can be easily noted that
mountain shadows were misclassified as water on the flood
map. This explains the commission error in the flood class
(6.97% in Table 1) which was caused by the similar dark
backscatter signature of shadow. As for the omission error
for the same flood class (6.09% in Table 1), it is possible that
it was caused by the missed classification of the water under
the vegetation, due to the medium wavelength of the C-band
sensor which cannot penetrate deep enough in the canopies.

In addition to the previous assessment metrics, the area
affected by the flooding was measured in Km2 by counting
the number of pixels detected as water on both the flood map
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Fig. 4. Subset of the Salween River on (a) the pre-flood
Sentinel-1 SAR image (15 March 2015) (b) the post-flood
Sentinel-1 SAR image (06 August 2015) (c) the Sentinel-2
optical image (04 March 2018) (d) the resulting flood map
obtained by the MLP classifier.

obtained and the ground truth, and multiplying these two to-
tals each time by the area of a single pixel (10m × 10m for
Sentinel-1 GRD images). The two calculated areas (Table 2)
were compared to confirm the overestimation of the flooding
expressed by the previous commission error (6.97% in Table
1).

4.1. Results on TerraSAR-X images

In order to test the capabilities of this flood mapping web ap-
plication on X-band products, the dataset for the inundation in
Tewkesbury (south-west of England) in July 2007 was chosen
to validate this paper’s algorithm. This flood event was cap-
tured by TerraSAR-X in the 3m-resolution Stripmap mode,
and was extensively studied in the literature about flood map-
ping from SAR images [8]. This TerraSAR-X image as well
as a cloud-free Sentinel-2 captured in the same season but
in 2016, went through the same preprocessing as the Myan-
mar dataset. The classifier used in this case was the Stochas-
tic Gradient Descent (SGD) because its results were assessed
visually to be more accurate than those obtained with the

Commission
error

Omission
error

Overall ac-
curacy

Non-flood 2.92% 3.36%
95.76%

Flood 6.97% 6.09%

Table 1. The commission and omission errors for the flood
and non-flood classes and the overall accuracy of the clas-
sification with the MLP classifier on Myanmar 2015 dataset
[11].

Area

Flood map 674.29 Km2

Ground truth 667.97 Km2

Table 2. Area that suffered from the flooding in Km2 on the
obtained flood map and on the ground truth.

Multi-Layer Perceptron (MLP) used on the previous Myan-
mar dataset. It should also be noted that to get rid of the noisy
nature of the flood map which could create False Positives, a
post-processing was performed to remove from the flood map
all the polygons having a number of pixels below an arbitrary
threshold (1000 pixels).

The post-flood SAR image as well as the resulting flood
map are shown in Figure 5. As can be seen from the results re-
ported in Table 3, the precision reached is not too far from the
80% agreement with the ground truth surveyed by the UK En-
vironment Agency using airborne photography on the day of
the disaster. One drawback is the high number of missed de-
tections (42.72% in Table 3). However, this can be explained
by the fact that the SAR satellite imagery was acquired a few
days after the validation dataset was collected, and a potential
water withdrawal cannot be excluded.

5. CONCLUSION

The web application developed in this paper was helpful in
delineating the extent of the flooding, and managed to reach
an accurate classification of the SAR image in a reasonable
time (3-5 minutes for the whole process: the preprocessing,
the training, and the classification, on a subset of 4000x5000
pixels). Another advantage to note is the fact that the whole
process is automatic, which makes it useful to assist response
authorities and the communities to be proactive and prepared
for potential disasters in the future in flood-prone areas.

Among future improvements, one preprocessing step re-
quired to precede the classification is the generation of a mask
of shadows from the DEM, which represents areas where the
flood cannot be detected on the SAR image, because the pres-
ence of water there does not affect the backscatter [12]. Also
as a future work, the algorithm developed in [13] to give an



(a) (b)

Fig. 5. (a) The post-flood TerraSAR-X image of the flood
in Tewkesbury (25 July 2007) (b) The flood extent map ob-
tained.

Commission
error

Omission
error

Overall ac-
curacy

Non-flood 28.27% 0.75%
79.19%

Flood 1.41% 42.72%

Table 3. The commission and omission errors for the flood
and non-flood classes and the overall accuracy of the classi-
fication with the SGD classifier on Tewkesbury 2007 dataset
[11].

estimation of the depth of the flooding near a building of in-
terest will be integrated in this web application. Finally, the
threshold used to extract the water mask from the NDVI will
need to be validated against optical images from other regions
in the world, where a different land cover might require this
threshold to be adjusted accordingly.
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