Abstract:
The efficiency of solid oxide fuel cells (SOFCs) and lithium-ion batteries (LIBs) can be significantly improved by optimizing the microstructure of their porous electrode...Show MoreMetadata
Abstract:
The efficiency of solid oxide fuel cells (SOFCs) and lithium-ion batteries (LIBs) can be significantly improved by optimizing the microstructure of their porous electrodes. Thanks to novel fabrication techniques, such as 3D printing and additive manufacturing, innovative structural features can be produced in order to improve the electrochemical performance beyond what the current homogeneous microstructures can do. In this study, by means of physically-based modelling, we show how the insertion of dense ion-conducting pillars in SOFC anodes and the grading of the particle size and porosity in LIB positive electrodes can enhance the efficiency of electrochemical energy conversion and energy storage. The paper is intended to showcase the potential of such novel electrode architectures and to demonstrate how modelling can provide useful design indications to guide the optimization of the new generation of electrochemical energy systems.
Published in: 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI)
Date of Conference: 09-12 September 2019
Date Added to IEEE Xplore: 11 November 2019
ISBN Information: