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Abstract—Emerging Multiprocessor System-on-Chip (MPSoC)
platforms, featuring asymmetric multi-processing (AMP), are
becoming the underlying tool to develop real-time embedded
mixed-criticality systems. These type of systems are key enablers
for the emerging Industry 4.0 and Industrial Internet of Things
revolution. Virtualization technologies can even more boost the
opportunities brought by MPSoCs, providing unique isolation
and flexibility features in next generation embedded devices.
However, the management of hardware accelerators, such as real-
time processing units (RPUs) available on today’s MPSoCs, is
still an open challenge. In this paper, we propose a virtualization-
based architectural solution to RPU sharing in modern MPSoCs.
The aim is to isolate the execution on RPUs of many tasks
offloaded by several different VMs running on traditional ap-
plication processors on the same chip. The practical implications
of such architecture are discussed in the context of a case study
regarding the real-time plasma vertical stabilization control in
the ITER1 experimental fusion power plant.

Index Terms—Mixed Criticality, Real-Time virtualization, MP-
SoC, Real-time Processing Unit, Fusion engineering

I. INTRODUCTION

High level of integration in system on chip is made pos-
sible by the development of increasingly advanced hardware
production technologies. This explains the possibility to im-
plement heterogeneous components on a single piece of sili-
con, making the emerging Multi-Processor Systems on Chip
(MPSoCs) [1] capable of guaranteeing performance, scalabil-
ity, programmability, and reconfigurability requirements that
are simply out of reach for traditional Programmable Logic
Controllers (PLCs) used in industrial environments.

As an example, the Xilnx’s MPSoC named Zynq® Ul-
traScale+™ is a widely used MPSoC [2], providing 64-bit
processor scalability while combining real-time control with
soft and hard engines for graphics, video, waveform, and
packet processing. This is made possible due to the presence of
numerous hardware components and heterogeneous processor
units on the same hardware, such as Application Processing
Units (APUs, e.g., quad-core ARM Cortex-A5), Real-Time
Processing Units (RPUs, e.g., dual-core ARM Cortex-R5F),
re-configurable hardware (e.g., 16nm FinFET+ Programmable
Logic), and Graphical Processing Units (GPUs, such as, ARM
Mali-400MP2).

1ITER is a Nuclear Facility INB-174. The views and opinions expressed
herein do not necessarily reflect those of the ITER Organization.

On the software side, virtualization is a key technology to
get the most from recent MPSoCs. While virtualization has
revolutionized general-purpose computing and cloud applica-
tions in the past decade [3], ensuring the reduction of operation
costs, server consolidation, flexible system configuration and
elastic resource provisioning, the adoption of virtualization
approaches in embedded systems has been considered only
in recent years.

Traditionally, the pain of virtualization in the embedded
space was caused by the lack of appropriate hardware re-
sources to make the solution easy to implement while pro-
viding satisfactory performance. The ARMv8 architecture,
included in new MPSoCs, such as the above-mentioned Zynq
UltraScale+, enables true hardware accelerated virtualization
to alleviate implementation problems.

There are many reasons for using virtualization technologies
on an MPSoC. First, the hypervisor (or Virtual Machine
Monitor, VMM) can carefully manage the system loading
providing processors to remain as fully loaded as possible for
performance and timeliness specifications. That is a common
challenge for embedded systems but is not easy to achieve
it without the supervision work of an hypervisor, that can
assign spare resources to new virtual machines (VMs), without
affecting the ones already deployed. In addition, hypervisors
can help to streamline application development and operation,
making it possible to apply the same technologies and know-
how of typical cloud computing setups to embedded systems.
Finally, virtualization improves fault-tolerance trough trans-
parend redundancy. During the execution of a critical task
run by a real-time operating system (RTOS), the hypervisor
can monitor the system detecting failures and can then either
restart the RTOS or start up a passive or active back-up in-
stance, to minimize or eliminate downtime of critical services.

A relevant challenge in this context is the need for isolation
and partitioning. Isolation requirements are imposed by in-
dustrial safety standards, to make virtualized environments not
interfere each other while running simultaneously on the same
board. This is in line with the concept of Mixed-Criticality
System (MCS) [4], enabling to run hard real time (and safety-
critical) tasks together with compute intensive non-real-time
(and non-critical) tasks on the same physical hardware.

While virtualization solutions are available to realize MCSes
on standard embedded boards, i.e., based on symmetric multi-



processing (SMP) (such as, ARM Cortex-A), the advent of
MPSoCs exacerbate isolation issues. Suffice to think about
the use of shared and heterogeneous hardware accelerators,
i.e., RPUs, GPUs, and the programmable logic. In other
terms, it is still unclear how multiple VMs, running on
APUs, can simultaneously and transparently use accelerators,
without interfering each other. In this direction, first attempts
to virtualize the programmable logic or the communication
between processors are emerging in hypervisors, as we discuss
in section II. However, to the best of our knowledge, no
solutions to date are available regarding the sharing of RPUs
among multiple running VMs, while facing isolation problems.
So, if two VMs are willing to (simultaneously) offload real-
time processing to the RPUs, the resulting behavior can be
unpredictable, without the proper coordination and abstraction
provided by the hypervisor.

In this paper, we propose an architectural solution to
this problem, based on the use of the Xen hypervisor and
OpenAMP, a framework for the communication among
heterogeneous processors. The basic idea is to intercept, at
hypervisor level, the requests for RPU usage coming from
VMs hosted on the APUs, and transparently orchestrate them
via OpenAMP. On the RPU side, we envision the use of
an RTOS to run the OpenAMP counterpart of the real-time
hypervisor and orchestrate real-time tasks. We reason about
possible implications regarding to the use of MPSoCs,
hypervisors, and RPUs, in large-scale real-time processing
infrastructures in the compelling scenario of nuclear fusion
power real-time control of the ITER tokamak. In particular,
we deal with the use case of plasma vertical stabilization
control, which requires to run multiple control loops, with
different criticality levels, on the same hardware.

The rest of the paper is organized as follows. In section II we
reiview the state of the art regarding the use of virtualization
technologies in MPSoCs. Section III describes the proposed
architectural solution, whereas Section IV presents the ITER
case study. Conclusive remarks are provided in Section V.

II. RELATED WORK

The recent trend of using virtualization on embedded
systems and Internet of Things has seen a proliferation of
solutions. These depend on the particular domain-specific con-
straints and, in most cases, cannot rely on solutions born for
cloud environments. Hence, either completely new platforms
have been proposed, or existing ones have been completely
re-targeted to the new scenario. Despite these efforts, only a
few solutions are looking into the opportunity provided by
MPSoCs.

An example is Xen, one of the most adopted open-source
hypervisors in cloud computing environments, recently ported
to Xilinx’s MPSoCs [2]. Xen is an open-source type-1 or
bare-metal hypervisor, which makes it possible to run many
instances of an operating system or indeed different operating
systems in parallel on a single machine (or host). Xen is the
only type-1 hypervisor that is available as open source, and it

is used as the basis for several different commercial and open-
source applications. In proof of this, Amazon Web Services
alone runs million Xen instances. While Xen’s traditional
architecture has been x86-compatible, recent hosts develop-
ment has made it a robust solution on ARM architectures as
well. Xen takes full advantage of ARMv8’s underlying virtu-
alization hardware, and provides support to ARM’s memory
management and partitioning. Recent Xen versions include
the Real-Time Deferrable Server (RTDS) scheduler, to provide
guaranteed CPU capacity to guest VMs [5]. Also, Xen includes
the support for integrating Programmable Logic devices, such
as FPGA cards [6], making it possible to share the same
hardware device across multiple VMs. However, this solution
is only available for server machines in cloud environments.
In addition, no support is still available in XEN to share RPUs
in an asymmetric multiprocessing environment.

Another example is represented by hypervisors specifically
targeting embedded systems, such as Jailhouse [7]. It is a
partitioning hypervisor, based on Linux, with a strong focus
on isolation guarantees to VMs, which are called cells in the
Jailhouse jargon. A cell can be seen as a strongly isolated
domain, with its own static split of CPU, memory, I/O de-
vices, etc. Regarding MPSoCs, Jailhouse provides support to
access FPGA-based accelerators from cells, using a framework
called OpenAMP [8], which includes mechanisms, such as
Remoteproc and RPMsg (see next section for more details),
to enable the communication between asymmetric cores in
a multiprocessing environment. Despite these efforts, also
Jailhouse does not explicitly address the problem of RPU
sharing.

III. THE PROPOSED ARCHITECTURAL SOLUTION

The aim of our research is to investigate how RPUs re-
sources can be transparently shared between VMs that run
over APUs, using the underlying hypervisor. A typical scenario
would be the presence of two (or more) VMs, willing to
offload real-time computation on the RPU. On classical Linux-
based deploys, the user would simply send commands to the
RPU, expecting results in due time and assuming to be the
only ”client” of the RPU. The question is: if more VMs
are present, using RPUs, how can we keep the same user-
experience, in terms of RPU usage, while assuring isolation in
terms of request/response load and processing to be conducted
on RPUs?

A. Current practice: OpenAMP

To answer the question, the first aspect to be analyzed is how
practitioners use RPU on Asymetric Multi-Processing (AMP)
architectures, as we aim to provide developers with the same
experience, even when running the code within a VM.

AMP architectures typically entail a combination of dissimi-
lar software environments such as Linux, a real-time operating
system (RTOS), or bare-metal running on homogeneous or
heterogeneous processing cores present in an MPSoC, all
working in concert to achieve the design goals of the end
application. Using hypervisors, such as Xen, it is possible to



run several OSes as VMs on APUs, but it is not possible to
run Xen on top of an RPU. The latter typically run a bare-
metal application or at least an RTOS that is not controlled
by a hypervisor. To effectively deal with the complexities of
managing life cycle of several different operating systems
on dissimilar processors, and to provide an enabling Inter
Processor Communications (IPC) infrastructure for offloading
compute workload, new and improved software capabilities
and methods are being studied [9]. The most recent tech-
nique resides in using OpenAMP [8] providing the software
components needed to enable the development of software
applications for Asymmetric Multiprocessing (AMP) systems.

As anticipated in section II, OpenAMP uses two main
framework components already present in Linux Kernel from
2011 for managing and massaging between heterogeneous pro-
cessors: remoteproc (Remote Processor) and RPMs (Remote
Processor Messaging). The former is a framework that allows
a Linux master to control and manage the life cycle of remote
processors and their associated software contexts to enable
control of the reset, load, execute and reboot states of the pro-
cessors and cores, while the latter is a Messaging framework
that provides inter-processor communication (IPC) between
kernel drivers and remote processors in AMP environments.

The RPMsg in LinuxAMP implicitly assumes that Linux
will always be the master operating system and does not
support Linux as remote OS in an AMP configuration. Further,
the remoteproc and RPMsg APIs are available from Linux
kernel space only and there is no equivalent API or library
usable with other OSs and run-times. A typical setup can be
observed in Fig. 1.

Fig. 1. LinuxAMP typical setup.

Fig. 2. OpenAMP possible setup.

The OpenAMP framework was introduced to expand the
scope of the original Linux AMP framework providing stan-
dalone library written in C language that implements re-
moteproc and RPMsg functionality usable with RTOS or Bare-
metal software environments, with API level compatibility and

functional symmetry to its Linux counterpart. In this way it
is possible to create another type of setup as represented in
Fig. 2.

While these setups are the current practice to offload pro-
cessing to RPUs (the Cortex R5 processors in the figure), this
is still not enough to assure isolation and transparency to VMs
running on APUs (the Cortex A5 processors in the figure).

B. The proposed solution: XEN over OpenAMP

To complete the answer to the question above, we propose
to combine the virtualization paradigm with the possibility of-
fered by OpenAMP of communication between heterogeneous
processors, with the aim of create a mechanism for sharing
RPU’s computation resources between VMs.

As target hypervisor, we assume to use XEN for many
reasons: (i) it is open-source and thus modifiable; (ii) it has
already been ported on ARM and on MPSoCs such as Xilinx’
Ultrascale+; (iii) it already implements real-time extensions
useful for mixed-criticality systems; and (iv) it is based on
Linux, hence it can be easily integrated with OpenAMP.

Fig. 3. Xen over OpenAMP setup.

To achieve isolation and resource sharing of the RPU’s
computation resources, the framework provided by OpenAMP
can be used from within the hypervisor for supervised man-
agement of heterogeneous compute resources, allowing the
hypervisor to supervise interactions between the VMs running
on it and the software running on RPU (see Fig. 3). The idea
consists to implement a new framework that wraps the one
offered by OpenAMP, adding algorithms for real-time control
of requests (in terms of bandwidth regulation, with reservation
approaches) coming from VMs. If the request sent by a VM
is schedulable by the RTOS running on RPUs, then it will be
sent through RPMsg otherwise it will be deferred, ensuring
that the RPU will never be overloaded. It is worth noting
that applications run in VMs can still use the same API to
communicate with the RPU as if they were running bare-metal
on APUs, hence achieving transparency for developers.

On the RPU side, the approach for sharing the resource
consists in creating a specific firmware for the RPU containing
not only the RTOS files but also the code of all the tasks
that VMs, running on APUs, may request during their exe-
cution. The firmware will be inserted into the OS root file
system which will be loaded on the APUs part. Immediately



after system startup, together with the creation of VMs, the
firmware previously created will be loaded on the RPU via
remoteproc by the hypervisor. Doing so, once the system is
started, each virtual machine can request the execution of a
real time task. This request is captured by the hypervisor which
must demand for the current load on the RPU, using RPMsg,
so as to decide whether the requested task can be performed
without the risk of exceeding the time constraints of the other
tasks currently running on RPU. If so, the hypervisor will
be able to use the primitives offered by OpenAMP to start
the requested task on RPU and manage the communication
with the requesting VM, which will remain unaware of all the
underlying communication. On the other hand, if the requested
task turns out to be infeasible, the requesting VM would
receive an error message to avoid overloading the RPU. It is
worth pointing out that the constraint to deploy all the needed
tasks in advance on the RPU is not a strong requirement.
Typically, in embedded systems, tasks which will be performed
are well known before the execution, especially in a safety
critical environments with strict temporal requirements. In
addition, if new tasks or improved versions of existing tasks
need to be added, it is always possible to stop the execution
and reload the RPU with a new firmware.

Using the APIs offered by OpenAMP is also possible an
alternative deployment, making the RPU act as master. In this
scenario, the RTOS can be regarded as a safety-critical monitor
for VMs running on APUs. The RTOS will handle critical
system functionality requested from VMs and will manage
several Linux contexts handling non-critical system functions.
Upon failure of one the Linux-based subsystem, the RTOS
can simply re-boot the failed subsystem without causing any
adverse effects to critical system functions.

IV. THE CASE OF THE ITER REAL-TIME VERTICAL
STABILIZATION SYSTEMS

Tokamaks are one of the most promising experimental
devices aimed at proving the feasibility of energy production
by means of nuclear fusion on Earth [12]. In a tokamak, a
fully ionized gas of hydrogen ions, called plasma, is confined
by magnetic fields and heated to temperatures up to hundreds
millions of degrees [13]. At such high temperatures, collisions
between ions can overcome the Coulomb repulsive forces,
resulting in fusion reactions [14]. Since the mid 70s, many
International projects have been successfully established to
build and operate tokamak machines all around the world.
ITER [15], which is currently under construction in France,
represents the most ambitious one, and includes the joint
efforts of EU, India, People’s Republic of China, Russia, South
Korea and USA. ITER will be the first magnetic confinement
device to produce a net surplus of fusion energy and its first
plasma is envisaged in 2025.

In large experimental plants such as ITER, there are some
common requirements that have to be taken into account
during the design of the real-time infrastructure [16], [17]. In
particular, on the hardware side, such an infrastructure should:

• cope with the unavoidable hardware obsolescence and
maintenance requirements that are expected during the
life cycle of an experiment spanning several decades,
whilst attempting to be as hardware independent as
possible;

• manage the expected increase in computational require-
ments by being scalable;

• allow sharing of the resources between the processing
nodes (e.g. to share the plant measurements and the
outputs of each processing node).

Moreover, on the software side, it is crucial to have an
architecture that:

• supports and facilitates the test and validation, by estab-
lishing strict and well defined boundaries between the
application algorithm and the interfaces with other plant
systems;

• supports model-based development in order to be able to
validate software components against plant models and
minimize the risks and commissioning/debugging efforts
when developing complex plant control systems;

• supports the development of model-free and data-driven
control algorithms that include different loops, with dif-
ferent sampling times, and different requirements in terms
of reliability.

The latter requirement calls for an architecture based on
a mixed-criticality system (MCS) to implement integrated
control systems with different levels of criticality. Possible
control approaches that belong to this category are those
ones based on Extremum Seeking [18] and on Reinforcement
Learning [19]. Hybrid approaches, where model-based adap-
tive control schemes are augmented with neural networks that
are continuously trained by a loop with lower priority, also
calls for mixed-criticality architectures.

An example of advanced control system for the ITER
tokamak that may rely on a mixed-criticality real-time infras-
tructure, is the Vertical Stabilization (VS) one, which stabilizes
the plasma column in the vacuum chamber and counteracts all
the relevant disturbances. Indeed, high performance plasmas
currently run on tokamaks have an elongated poloidal cross-
section that make them vertically unstable. Therefore, an
active VS system is needed to run the discharges (for more
details, the interested reader may refer to [10]).

Model-based approaches have been proposed in literature
to solve the VS problem. Despite the different proposed
solutions, the performance of any existing VS system strongly
depends on the so called plasma growth-rate γ. Therefore,
a possible approach would be to adapt the control gains as
function of γ. However, the real-time estimation of γ is based
on the plasma equilibrium reconstruction [11], which is still a
computationally demanding task, if compared with the time
scale the VS system should react in [20]. Therefore such
plasma equilibrium algorithms should run as low-priority task
in a MCS.

Moreover, nowadays computational capability are paving
the way for data-driven control approaches to solve the VS



Fig. 4. Deep Model Reference Adaptive Vertical Stabilization System.

problem that also call for MCS. One possible architecture is
the one shown in Fig. 4, which is based on a scheme originally
presented in [21]. Here a Model Reference Adaptive Control
is augmented by a Deep Neutral Networks that identifies in
real-time the significant nonlinearities and uncertainties. More
in details, the update of the weights for the neural part of the
proposed architecture is performed in real-time at different
sampling times: the faster loop deals with the update of the
weights of the outer layer, which runs at the same sampling
time as of the baseline controller. on the other hand, the
weights of the inner layers are adapted at a slower sampling
rate, by using data batches for the update. Therefore, this
architecture includes at least three different control loops, with
different level of criticality, being the baseline controller the
most critical one. There is then the need to guarantee, at the
implementation level, temporal separation and fault isolation
of the tasks, to avoid that a problem or a delay in a low
criticality task, as the adaptation of the inner layers of the deep
neural network, can affect a high criticality one. In addition,
the proposed system may need to run in isolation with respect
to other plasma control systems components deployed on the
same machinery.

As a consequence, on our virtualized MPSoC architecture,
the baseline controller could be seen as the critical real-time
task to be offloaded to the RPU, while the outer control
loops can be deployed on two temporally separated VMs,
running on APUs. Our architecture also enables the possibility
to run testing and commissioning sessions of new versions
of controllers ”in parallel” with stable and fully tested ones,
on the same hardware and on the same data in real-time. In
this way, it is possible to rapidly commission new software
versions, while falling back to the stable controller in case of
malfunction, so to fully exploit the computing power of the
hardware deployed in the tokamak. In this scenario, the new
software will run the updated version of the baseline controller
on the RPU, concurrently with the previous stable version. The
proposed architecture would thus transparently manage the
sharing of the RPU on behalf of controllers running in VMs,
minimizing interference and without requiring developers to
bother about resource sharing.

V. CONCLUSIVE REMARKS

In this paper we presented an architectural proposal, based
on virtualization and processor communication mechanisms
on asymmetric multi-processors, to virtualize Real-Time Pro-
cessing Units in modern Multi-Processor Systems on Chip.
The architectural solution enables new usage scenarios of
hardware accelerators, while assuring transparency and isola-
tion. Current efforts are being devoted to the implementation
of the solution on real machinery. Future work will address
the development, deployment, and test of the ITER vertical
stabilization controller, as envisioned in the previous section.
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