
Combinatorial Auctions for Resource Allocation in a Distributed Sensor Network∗

John Ostwald Victor Lesser Sherief Abdallah

Abstract

This paper discusses a solution to the problems posed by
sensor resource allocation in an adaptive, distributed radar
array. We have formulated a variant of the classic resource
allocation problem, called the setting-based resource al-
location problem, which reflects the challenges posed in
domains in which sensors have multiple settings, each of
which could be useful to multiple tasks. Further, we have
implemented a solution to this problem that takes advantage
of the locality of resources and tasks that is common to such
domains. This solution involves translating tasks and possi-
ble resource configurations into bids that can be solved by
a modified combinatorial auction, thus allowing us to make
use of recent developments in the solution of such auctions.
We have also developed an information-theoretic procedure
for accomplishing this translation, which models the effect
various sensor settings would have on the network’s output.

1 Introduction

The CASA project, funded by NSF, is constructing
an adaptive, distributed array of radar dishes designed to
monitor tornadoes and other meteorological phenomena.
The radar dishes have a number of parameters that can
be adjusted, such as what area they are sweeping across,
pulse rate, etc. The resource allocation problem in this
domain is, loosely stated, to decide at each time step
(allocation cycle) what setting to have each sensor in,
taking into account the needs of various monitoring tasks.
(See Section 2 for a more precise statement of the problem.)

For example, consider the sensor layout shown in Figure
1. In this diagram S1 and S2 denote radar dishes, and
H1 and R1 are areas of interest for a hail monitoring and
a rainfall monitoring task respectively. In choosing an

∗This material is based upon work supported by the National Science
Foundation Engineering Research Centers Program under NSF Award No.
EEC-0313747. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

allocation for this time step, a resource allocation process
would have to make a number of decisions. For instance,
it would have to decide whether each sensor should sweep
over one task’s area, or both should sweep the same task if
one is more important, or whether one or both of the sensors
should sweep over an area large enough to encompass both
tasks. It would also have to decide whether to optimize the
other parameters for each radar in a manner that is useful to
the rain task, the hail task, or both. In short it should look
at all the options and consider all the preferences provided
by the tasks, and choose the globally best settings.

Figure 1. Example Arrangement of Sensors
and Tasks

The rest of this paper is structured as follows: In Section
2 we present our resource allocation problem formally
and compare it to the classic resource allocation problem.

In Section 3 we compare our problem and approach to
those presented in various well-known papers on resource
allocation. In Section 4 we present the details of the system
we built to solve the problem in our domain. In Section 5
we discuss the performance of our system, and finally, in
Section 7, we will discuss the significance of our work and
what we plan to do next.

2 Problem Overview

The problem we are addressing, which we will call the
setting-based resource allocation problem, is closely related
to the classic resource allocation problem. We will present
the classic problem first, for comparison, then introduce
the setting-based variant. In a classic resource allocation
problem, we have a setR = {r1, r2, ...rn} of resources
and a set{t1, t2, ...tm} of tasks. Each task has atask utility
functionTi : Powerset(R) → R representing the utility
that the task would yield for each set of resources that
could be allocated to it. The resource allocation problem
is then to choose, for each taskti, a setSi of resources to
allocate such that theSi’s are disjoint and

∑
i≤m Ti(Si) is

maximized.

The classic resource allocation problem is applicable
to domains where tasks cannot share resources. However,
in our domain it is entirely possible that a resource could
be configured to fulfill the needs of more than one task.
A modification to the problem that allows for this is
the following: In the setting-based resource allocation
problem, we have a set of resourcesR = {r1, r2, ...rn}
each of which has a setVi of settings it can be in. We
will define a global configurationto be a mapping from
the resources to the elements of their respectiveVi’s,
specifying what setting each resource is in. We will letC
denote the set of possibleglobal configurations. There is
also a set{t1, t2, ...tm} of tasks. As before, each task has
a task utility functionTi : C → R, but in this domain the
function evaluatesglobal configurationsinstead of sets of
resources. The problem is to choose aglobal configuration
c such that

∑
i≤m Ti(c) is maximized.

The intuitive approach to solving this problem is simply
to consider every possibleglobal configurationand to
evaluate every task for each. If we address the problem
in this manner, the number ofconfigurations that will
have to be searched through is

∏
i≤m |Vi| and the number

of task utility functionsthat will have to be evaluated is
m
∏
i≤m |Vi|.

An alternate approach, and the one we will be focus-
ing on in this paper, requires us to augment the language

in which thetask utility functionsreport their values. First,
they need to be allowed to specify minimum values forpar-
tial configurations, that is specifications of settings for only
some of the resources. The value for aglobal configuration
is then the highest value specified for either it or any par-
tial configuration whose settings agree with it’s own. We
will henceforth use the termconfigurationto refer to both
partial and global configurations. Second, thetask utility
functionsmust be allowed to give aconfigurationa value
of 0 by omission: eachtask utility functionprovides a list
of configurationsand values for thoseconfigurations, and
any configurationnot enumerated in the list is assumed to
have value 0. We will refer to this list as a bid and the set of
configurationsevaluated in the bid as theexplicit domainof
the task utility function. For instance, in our example from
figure 1, the rainfall task could report that any global con-
figuration which has S1 sweeping from 0 to 18 degrees and
S2 sweeping form 200 to 217 degrees will be worth at least
15 units of utility, regardless of what any other sensors not
shown in the diagram might be doing. If it reports nothing
else, then it can be assumed that no other partial configura-
tion is of value to it. It is worth noting that both of these
augmentations make sense in the domain of a sensor net-
work, where it is often the case that the value of aglobal
configurationto a task depends only on the settings of a few
resources (in a sensor net, these would be the sensors near
whatever is being monitored by the task). Also note that we
are not restricting the configurations that the tasks can eval-
uate or the values they can give them, but simply allowing
tasks to evaluate classes of configurations if they so desire.
A task could still evaluate everyglobal configurationindi-
vidually if the evaluations of thoseconfigurationsrequired
it.

Our proposed approach, then, is as follows: For every
taskti, we evaluateTi for everyconfigurationin its explicit
domain. We then find theglobal configurationthat has the
highest utility yielded thetask utility functionsof every
task. The number ofTi’s that will have to be evaluated in
this approach is

∑
i≤m |explicit domain(Ti)|. We then

have the added challenge of finding the bestglobal config-
uration considering all the bids, which amounts to a search
through a space of size

∏
i≤m |explicit domain(Ti)|. We

call this approach the task-based approach.

Clearly, the applicability of this approach hinges on two
things: the size of theexplicit domainsof the task utility
functionsand the difficulty of combining the bids. We
will first examine the size of theexplicit domainsand then
discuss how we will combine bids. The size of theexplicit
domainscan vary greatly depending on the specifics of
the application. A task could be concerned with every
possible combination of the settings of every resource (in
which case the size of that task’stask utility function’s

Bidset← ∅
for each task tdo

let T denote the task utility function of T
for each set S of resourcesdo

for each configuration c of Sdo
if c is in the domain of Tthen

Bidset← Bidset ∪ {c, T (c)}
end

end
end

end
return bid-combiner(Bidset)

Algorithm 1 : Pseudo code for Task-Based Approach

explicit domainwould be
∏
i≤n |Vi + 1|), or at the other

extreme, it could be interested only in one setting of one
resource. In the worst case, if everytask utility function
referred to everyconfiguration, the number of evaluations
of task utility functionswould bem

∏
i≤n |Vi + 1|, which

is asymptotically the same as in the intuitive approach
as theVi’s increase. This means that, if we can address
bid combination, this approach is as reasonable as the
intuitive if the resources have a large number of possible
configurations.

The task-based approach becomes even more reasonable
for applications where tasks and resources are linked, that
is for any given task, there will be relatively few resources
that it will be interested in. This is the case when the tasks
are highly specialized and only a certain class of resources
is useful for each task or when the tasks and resources have
a physical location and only nearby resources can be used
for a task. Many distributed sensor networks, including the
array we are interested in, have this last characteristic.

So, the main problem of this approach is clearly the
bid-combination problem. We address this problem using
recent innovations in combinatorial auction technology. A
combinatorial auction is a silent auction in which bidders
can bid on sets of items instead of single items. Each
bidder provides sets of items and corresponding prices for
each set, and the auctioneer chooses the set of bids that
maximizes the payment. In the last few years a great deal of
progress has been made at efficiently solving these auctions
(i.e. finding the optimal allocation). These algorithms can
be modified to handle the bid combination aspect of our
setting-based resource allocation problem, by considering
the resources items and the tasks bidders (the role of the
settings will be discussed in Section 4.5). The particular
solution we are using is Sandholm’s BOB algorithm [7, 8],
which can solve auctions involving hundreds of items and
thousands of bids in under ten seconds . The modifications

we made to the BOB algorithm are discussed in Section 4.5.

3 Related Work

A great deal of research has been devoted to the classic
resource allocation problem and variants thereof. However,
to our knowledge, no work has been done on the setting-
based resource allocation problem. The classic problem
can be viewed as a simplified setting-based problem in
which each resource setting represents allocation to a single
task. More precisely, the simplifications of the classic
problem are 1) that every resource has the same set of
possible settings, 2) that the number of settings in this
set is the same as the number of tasks, 3) that the value
offered by each task’stask utility functiondepends only
upon which resources are in one specific setting (the setting
corresponding to being allocated to that task), and 4) that
the setting that is relevant to each task is relevant to no other
task. This section will examine several well-known papers
that deal with the classic resource allocation problem
and examine how they differ from our work beyond their
addressing of the classic problem.

In [9], the resource allocation aspect of the problem
they are addressing is simplified by the fact that theirtask
utility functionsfall into two types. Tasks of the first type
are interested only in sets of size one, which means that if
there aren resources, the domain size of anytask utility
function is n, whereas if they were allowed to refer to any
set of resources it would be2n. The other type oftask
utility function they have has only two values in its range:
zero and another (implicit) number. This means that they
don’t need to take into consideration a task’s preferences
among sets of resources that will satisfy it.

In [2] the resource allocation problem is phrased as alist
coloring problem, which is like themap coloring problem
except that each node can take on only certain colors. This
means that thetask utility functionsall refer to sets of size
one, which as before decreases the size of thetask utility
function domains to the number of resources. Further,
since a solution must satisfy every task, there is no concept
of different sets having different values to a task, or of
different tasks being worth more than others, which means
that there are only two values that anytask utility function
can take on. Note that this is an even stronger restriction
than the second in the last paragraph, since in that paper it
could be worth more to satisfy one task than another.

[4] addresses the problem of network congestion, and
as such there is only one resource (the network) and the
question is simply how many units of it each task (user)

gets. This means that thetask utility functionsmust have
the same value for any set of resources of a given size.

[5] Addresses the classic resource allocation problem
without further restriction. Their solution is unrelated to
ours.

[10] presents the results of a competition in which agents
compete to purchase commodities. This means that their
problem differs from our version of the resource allocation
problem in that they are not trying to find a globally optimal
solution. While this adds various strategic elements to the
problem, it eliminates the need to find an optimal solution.

4 Implementation

We have implemented the task-based approach for the
domain of sensor scheduling in our radar array. Here,
the resource allocation problem is deciding what setting
each radar should be in for the next time step, taking into
account all the various tasks that are present at the time
step. Tasks, in this domain, consist of a request for a
scanning of a certain type to occur in a particular area,
along with data about the utility of the task. We estimate
the value of variousconfigurationsof sensors to tasks and
send these evaluations as bids to the combinatorial auction
solver and get our final answer.

We will now address details of the implementation. In
section 4.1 we will describe the testbed for which our al-
gorithms are designed. In section 4.2, we will examine
the exact format of the bids which are sent to the auction
program; in section 4.3 we will examine how we evaluate
configurationsto form these bids, i.e. the exact nature of
the task utility functionsfor our domain; in section 4.4 we
will examine how we decide what settings to consider for
each task, i.e. how we choose theexplicit domainsof our
task utility functions; and in section 4.5 we briefly introduce
the BOB algorithm and discuss modifications to the auction
solver.

4.1 Testbed

The sensor array that these algorithms are designed for
consists of 4 radar dishes, later scaling to a few dozen,
spaced approximately 30 km apart. The dishes and their
associated computers are connected to the local power grid
and communicate with each other using a high speed wired
connection

4.2 Bid Format

A bid for a specific task consists of some number of
clauses, each clause representing the settings of some

number of sensors. The settings consist of a start angle, an
end angle, and a set of values for the rest of the parameters,
corresponding to the kind of task they are optimized for (so
the setting{S1: 0-30, R} would mean sensor 1 sweeping
from 0 to 30 degrees, with the rest of the parameters
optimized in the manner that is best for measuring rainfall).

For example, we could have a rainfall task whose bid
was the following

R1:
{S1: 0-18, R; S2 200-217, R}

-> 15 util-
ity units
XOR
{S1: 0-18, R; S2 180-217, RH}

-> 6 util-
ity units
XOR
.
.
.

where RH is a set of parameters which does a decent job
for both rainfall and hail. The meaning of this is that if,
for example, theglobal configurationincludes{S1: 0-18,
R; S2 200-217, R}, then task R1 will yield 15 units of
utility. For example, consider the sensor layout shown in
Figure 1 where S1 and S2 are sensors, and H1 and R1
are the areas of interest of a hail and a rainfall task re-
spectively. The first three clauses of R1’s bid are as follows:

R1:
{1: 0-36, R }: 11.46
XOR
{2: 180-200, H 1: 0-36, R }: 11.46
XOR
{2: 180-217, RH 1: 0-36, R }: 11.46
XOR
.
.
.

4.3 Bid Clause Evaluation

In this section we will examine how we evaluate a
configuration’s value to a task, that is how we calculate
task utility functions. We use an information-theoretic
approach similar to [1]. The key idea is that the entire
sensor-net system, of which the resource allocator we
have built is one small component, is being asked to make
a decision about some aspect of the state of the world,

such as what the rainfall is in a particular region. Our
task utility functionsattempt to model the quality of the
decision that the larger system is likely to make given a
particularconfiguration. We make the assumption that we
have a distribution over the state the environment could be
in with respect to the decision to which the task relates.
(e.g., this distribution would be over the possible amounts
of rainfall in the area if the task were a rainfall task.) This
distribution used for the examples in this paper is uniform,
but could later take into account the system’s knowledge.
For each decision the system might make in each possible
state of the environment, there is an associated utility. See
figure 2 for a table of these values for rainfall. Our system
estimates what decision would be made given each sensor
configuration in each state of the environment and then
decides the bid clause value based on the improvement in
decision thatconfigurationwould yield. In other words,
to decide how much aconfigurationis worth to a task, we
consider the states the environment could be in and look at
how good a decision the meteorological algorithms would
make in each state.

To make things more concrete: the value of a specific
configurationto a task is:

∑
E

[∑
M

P (E)P (M |E)V al(E,D(M))

−V al(E, defaultdecision)] (1)

WhereE is the current state of the environment,M is
the set of measurements the sensors could make,P (E)
is the probability of the environment being in a state,
P (M |E) is the probability of taking measurementsM in
stateE, V al(E, d) is the utility of making decisiond in
stateE,D(M) is the decision resulting from measurements
M anddefaultdecision is the system’s current best guess
at the state of the environment.

P (E) is currently assumed to be 1 divided by the num-
ber of possible states but it could be based on knowledge
from previous time steps.defaultdecision is currently
hard coded to be the middle value, but could also be based
on information from previous time steps, andV al(E, d)
is looked up in utility tables like the one shown in Figure
2. P (M |E) andD(M) are estimated using Bayesian net-
works, as is discussed in the next paragraph.

To calculateP (M |E), we need to model the rela-
tionship between the state of the environment and the
sensor readings. To calculate D(M), we need to model
the relationship between the sensor measurements and the
decisions that the meteorological algorithms will make.
We use Bayesian networks to model both of these (see
Figure 3). In fact, since the meteorological algorithms are

themselves attempting to model the relationship between
the sensors and the environment, we use the same Bayes
net to model both the sensor readings and the decision
making, inferring first down the tree, then up. Thus, for
each state of the environment, we infer a distribution over
possible sensor readings, and then for each set of readings,
we run the inference back up the tree to find our decision.

v ← 0
template←
retrieve bayes template(task, configuration)
update(template)
for e ∈ E do

for m ∈M do
v ← v + P (e)× template.getP (m)×
V al(e, template.decide(m))

end
v ← v − V al(e, d)

end
return v

Algorithm 2 : Value of a Specific Configuration to a Task

Figure 2. Utility Table for Rainfall

For an example, let us look at how the clauses of R1
in the example from Figure 1 were constructed. When
the task arrives, the system retrieves a template for each
number of sensors that could be used to satisfy the task (in
this case 1, 2 or 3). Figure 3 is the template for rainfall
using two sensors. The bottom level of the net refers to
sensor measurements, and the top is the probability of the
aspect of the environment we are supposed to be deciding
about, in this case the amount of rainfall in the area of
interest. It is important to note that these Bayes nets will
not be used to actually draw inferences from the sensor
readings—a sophisticated meteorological system will do
the actual data analysis. The Bayes-nets represents an
approximation of how the meteorological system would
respond given specific data. Once the template has been

Figure 3. Bayes Net for Rainfall with 2 Sensors

retrieved, we update its conditional probability tables to
reflect the current local signal to noise ratio. Then we do
the calculation described in Expression 1 for each setting
of sensors.

We will go through this calculation for the first clause
of R1: {1: 0-36, R}: 11.46155205. Both the rainfall
(E in Expression 1) and the sensor reading nodes (M in
Expression 1) take on the values LOW, MED, and HIGH.
For each value of E, there are 3 values for M ({M1=LOW}
, {M1=MED} , and {M1=HIGH}), where M1 denotes
the reflectivity measurement for M1. So the full equation is:

P (R = LOW)
[
P (M1 = LOW |R = LOW)V al(R =

LOW,D(M1=LOW))
+ P (M1 =MED|R = LOW)V al(R = LOW,D(M1 =
MED))
+ P (M1 =HIGH|R=LOW)V al(R=LOW,D(M1 =
HIGH))
− V al(R=LOW, dec=MED)

]
+

P (R = MED)
[
P (M1 = LOW |R = MED)V al(R =

MED,D(M1=LOW))
+ P (M1 =MED|R=MED)V al(R=MED,D(M1 =
MED))
+ P (M1=HIGH|R=MED)V al(R=MED,D(M1=
HIGH))
− V al(R=MED, dec=MED)

]
+

P (R = HIGH)
[
P (M1 = LOW |R = HIGH)V al(R =

HIGH,D(M1=LOW))
+ P (M1 = MED|R = HIGH)V al(R =
HIGH,D(M1=MED))
+ P (M1 = HIGH|R = HIGH)V al(R =
HIGH,D(M1=HIGH))
− V al(R=HIGH, dec=MED)

]
= 11

Where R is the amount of actual rainfall.

4.4 Configuration Selection

Since ourconfigurationsinclude both a start angle and
an end angle, the size of ourtask utility functions’ explicit
domainscould be very large. Even if we limit ourselves
to nearby sensors and only considerconfigurationsthat
sweep over the task, the combinatorics of the possible
start and end angles is prohibitive. We thus introduce a
preprocessing step which lists all the reasonable angles
for each sensor to be sweeping and the reasonable setting
sets (R, H, etc) for each of those angles. Then when we
are evaluatingconfigurationsfor a task, we only need to
consider the combinations of settings that were decided on
in the preprocessing step. What we mean by a reasonable
angle is best explained in the context of an example. Recall
the map shown in Figure 1. Our approach is, for each
sensor, to consider only the angles that are needed to look at
some set of tasks, and only the setting sets that make sense
for those tasks. So, for sensor one, the onlyconfigurations
we are interested in are{0-16, R}, {16-36, H}, {0-36, R},
{0-36, H}, and {0-36, RH}. Similarly, for sensor two,
we are only interested in{200-217, R}, {180-200, H},
{180-217, R}, {180-217, H}, and {180-217, RH}. So
when it comes time to generate the bids, we only need to
consider pairs and singletons of these, reducing the number
of bid clauses, for this toy example, from about3 ∗ 1011

(for a discretization of one) to70.

4.5 Combinatorial Auction and Modifications

The BOB algorithm represents the bids as a graph,
wherein each node is a bid clause and each edge represents
mutual exclusivity between two clauses. The algorithm is
then a depth first search through the space of bid combina-
tions. It heuristically selects a clause to consider, removes
that clause from the graph, and then finds the best solution
with and without the clause. Much of the speed of the algo-
rithm comes from the fact that removing clauses that have
been considered will often decompose the graph into sev-
eral smaller graphs, thus speeding up the calculation (since
the algorithm is at the worst case exponential in the num-
ber of nodes). See [7] for a thorough presentation of this
algorithm.

As was mentioned in section 2, we had to modify the
combinatorial auction program to accommodate the multi-
setting aspect of the problem. The modification we made
was to change the conditions under which two clauses are
mutually exclusive. In a normal combinatorial auction, two
bid clauses are mutually exclusive if they are of the same
bid or if they refer to some of the same items (resources).

In our implementation, two clauses are mutually exclusive
if they are in the same bid or if they refer to some of the
same items AND their requested settings for those items
differ. That is to say, if a large number of bids want S1 in
the sameconfiguration, then they can all be satisfied as far
as S1 is concerned.

5 Results

First let us look at some examples of bid clauses to
confirm that the task utility computation matches our
intuitions. Consider a single rainfall task: for one sensor
in rainfall setting, it will compute a utility of 11.46 if the
sensor is sweeping across 30 degrees, 9.22 for 60 degrees,
and 6.98 for 90 degrees. This is the behavior we want,
since a larger the sweep angle means the radar spends
less time looking at any given point. Also, if we look at
multiple sensors for the same task, the utility computed will
be 14.38 for three sensors sweeping 30 degrees in rainfall
setting as opposed to the 11.46 for one. If we increase the
amount of noise in the environment, the gap widens, with
the task utility being 5.42 for one sensor and 8.02 for 3
(an increase of 47% as compared to 25% for the low noise
case).

For the example we have been discussing, the total
runtime is 18.5 seconds on a 1794.602 MHz Pentium 4
processor with 512MB of ram. 13.2 of these seconds are
spent on Bayesian inference: a total of 1152 inferences
are drawn in the calculation of 48 bid clauses. 42 of these
clauses are sent to the auction algorithm (clauses with low
values are pruned), which takes .047 seconds to solve them.

For comparison, if we add in a third task, the total
runtime is 105 seconds. 86 of these seconds are spent on
Bayesian inference: a total 7464 inferences are drawn in
the calculation of 280 bid clauses. 209 of these clauses are
sent to the auction algorithm, which takes 1.3 seconds to
solve them.

The results so far are encouraging in that they suggest
that the combinatorial auction itself, the most daunting part
of the problem from a combinatorial standpoint, appears
to run fast enough (especially with additions that will be
discussed in Section 7). This result alone shows that the
approach is promising. Most of the computation in our
implementation occurs during the evaluation of thetask
utility functionswhich could in principal be evaluated by
any means we like. We will discuss ways to speed up both
thetask utility functionevaluation and the rest of the system
in Section 7.

6 Targeting Real-time

The nature of our domain is such that the sensors would
ideally have a new tasking every thirty seconds. Conse-
quently, it would be better if both the combinatorial auc-
tion part of our approach and the Bayesian bid generation
part ran more quickly. While there exist algorithms for fast
Bayesian inference [6], there aren’t many real time win-
ner determination algorithms. The focus in this section will
therefore be on speeding up our combinatorial auction.

First optimization we have implemented combines mul-
tiple bids with same sensor configurations but different pay-
off. The main modification/complication of the simple ap-
proach is to keep the XOR links consistent as we merge
bids. In particular, once two bids are merged, their XOR bid
lists are merged (union-ed) as well. Figure 4 illustrates the
process. Bidsx andy propose the same radar settings but
with different values and different sets of conflicting bids.
Bothx andy are combined into one bid with the summation
of the utility and the union of the sets of conflicting bids.

x y

b1

b2

b3

b4

x+y

b1

b2

b3

b4

Figure 4. Merging Bids

Furthermore, we studied the any time property of the
BOB algorithm using different heuristics for computing up-
per and lower bounds of the solution. The BOB algorithm
uses Upper and lower bounds to prune the search tree. The
tighter the bounds are the more efficient the search is. Re-
sults shown in Figure 5, which show the potential of the
approach. The vertical axis is the total value/utility of the
best solution found so far and the horizontal axis is the time
spent finding the best solution (in milliseconds). The sim-
ple heuristic, namedsimplein the figure, uses the largest bid
value as a lower bound and the sum of all bids as an upper
bound. The greedy heuristic, namedgreedyin the figure,
sorts bids according to their density= bid value

#bid items requested. The
lower bound is obtained by fitting as many bids as possible
in a greedy fashion using the previous ordering. The upper
bound is the maximum obtainable value if bids are not in-
tegral (i.e. part of the bid can be accepted). This bound is
obtained by adding bids from the ordered list until no more
items are available. The figure compares both the simple
and the greedy heuristics. It also shows thesimpleheuris-
tic with and without sorting bids. While sorting bids is an
expensive preprocessing step, it makes finding the largest

bid faster. As the results show, the greedy heuristic outper-
forms the simple heuristic. The sorting process does not
impact the simple policy significantly.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000

ut
ili

ty

time

simple
simple with sort
greedy with sort

Figure 5. Any time performance of BOB

7 Summary and Future Work

In addressing the problems set forth by the domain
of our particular sensor net, we have formulated a new
variant on the classic resource allocation problem, which
we call thesetting-based resource allocation problem. This
problem reflects the challenges posed in the allocation
of specialized sensor resources in the type of distributed
sensor network in which sensors have multiple settings,
each of which could be useful to multiple tasks. Further,
we have proposed a solution to this problem that takes
advantage of the locality of resources and tasks that is
common to such domains.

This solution involves translating tasks into bids that
can be solved by a modified combinatorial auction, thus
allowing us to take advantage of recent developments in the
solution of such auctions. We developed an information-
theoretic procedure for accomplishing this translation
which allows us to model the use of the sensors to a high
degree of accuracy. Further, since this modeling is done
with Bayesian networks, it is relatively simple to enter
domain knowledge provided by experts.

We then implemented this approach for our domain,
allowing us to test the soundness of the approach and to
confirm that the answers provided by our model make
sense. Our implementation also gives us preliminary run-
time data which helps us understand both the applicability

of the approach to the domain and what features might be
useful in speeding up the approach. We will discuss these
features in the following paragraphs.

We are discussing a number of modifications to our sys-
tem, designed to speed up both the auction and thetask util-
ity functionevaluation. The changes we are considering to
the BOB algorithm are as follows: In our domain, the enti-
ties being observed will be largely unchanged from one time
step to the next, so one would expect the input to BOB not
to change that much between consecutive time steps. There-
fore one would expect the input bid graph of timet+1 to be
slightly different than the bid graph at timet. Re-executing
BOB over the whole bid graph seems wasteful and does
not exploit the redundancy between consecutive inputs. At
least, BOB solution to the previous bid graph should serve
as the first guess for the next time step. One of the future di-
rections we are considering is incremental BOB, or IBOB.
The idea is to store partial results from BOB and then de-
fine operators that modifies the input bid graph (e.g. add bid
and remove bid). The difference between two consecutive
inputs is expressed using these operators. This is then used
along with partial results from the previous BOB run to find
the next optimal solution with minimal redundancy.

We are also discussing speeding up thetask utility func-
tion evaluations in several ways. The least drastic change
we are considering is using an approximate inference
algorithm for Bayesian inference in place of the junction
tree algorithm we are currently using. Another modification
we are considering is compiling the Bayes nets to remove
the middle-layer nodes (such as the reflectivity nodes in
Figure 3). This can be done by accounting for the effects of
the removed nodes in the conditional probability tables of
the remaining nodes. A more significant enhancement we
are considering is adding a case-base that would keep track
frequently evaluatedconfigurationsand then interpolate
based on the closest known configuration. Perhaps the
most promising idea is to replace our Bayes nets with a
neural network trained to mimic their output. If successful,
either of these last two enhancements would give us similar
evaluations to those provided by our current models, but in
a fraction of the on-line time.

One final idea to speed up the system differs from those
we have just discussed in that it promises to reduce the total
number oftask utility functionevaluations that will have to
be performed: We are considering the possibility of using a
bid-eliciting auction such as the one described in [3]. This
algorithm, instead of taking a set of bids as input, requests
individual bid clauses (or relationships between the bids) as
they are needed in the search. This could potentially reduce
the number oftask utility functionevaluations performed.

References

[1] A. Arnt and S. Zilberstein. Attribute measurement policies
for cost-effective classification. InSIAM, 2004.

[2] B. Y. Choueiry, B. Faltings, and G. Noubir. Abstraction
Methods for Resource Allocation. InProceedings of the
Workshop on Theory Reformulation and Abstraction, pages
2–71/2–90, Jackson Hole, Wyoming, 1994.

[3] W. Conen and T. Sandholm. Minimal preference elicitation
in combinatorial auctions. InInternational Joint Confer-
ence of Artificial Intelligence-2001 Workshop on Economic
Agents, Models, and Mechanisms, pages 71–80, 2001.

[4] S. Gorinsky and H. Vin. Additive increase appears infe-
rior. In Technical Report,University of Texas, Austin, 2000.,
2000.

[5] J. Hansen, S. Ghosh, R. Rajkumar, and J. Lehoczky. Re-
source management for highly configurable tasks. InPro-
ceedings of the 12th Workshop on Parallel and Distributed
Real-Time Systems, 2004.

[6] T. P. Minka. A family of algorithms for approximate
bayesian inference. PhD thesis, Massachusetts Institute of
Technology, 2001. Supervisor-Rosalind Picard.

[7] T. Sandholm and S. Suri. BOB: Improved winner determi-
nation in combinatorial auctions and generalizations. InAr-
tificial Intelligence, 2003.

[8] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB:
A fast optimal algorithm for combinatorial auctions. InIn-
ternational Joint Conference of Artificial Intelligence, pages
1102–1108, 2001.

[9] W. E. Walsh and M. P. Wellman. Efficiency and equilibrium
in task allocation economies with hierarchical dependencies.
In International Joint Conference of Artificial Intelligence,
pages 520–526, 1999.

[10] M. Wellman, P. Wurman, K. O’Malley, R. Bangera, S. Lin,
D. Reeves, and W. Walsh. The 2001 trading agent competi-
tion. In Electronic Markets 13(1), 2003.

