
Quantifying the gap between embedded control models
and time-triggered implementations

Hakan Yazarel, Antoine Girard, George J. Pappas, Rajeev Alur
University of Pennsylvania

Philadelphia, PA 19104 USA
{hakan,agirard,pappasg}@seas.upenn.edu, alur@cis.upenn.edu

Abstract

Mapping a set of feedback control components to exe-
cutable code introduces errors due to a variety of factors
such as discretization, computational delays, and schedul-
ing policies. We argue that the gap between the model and
the implementation can be rigorously quantified leading to
predictability if the implementation is viewed as a sequence
of control blocks executed in statically allocated time slots
on a time-triggered platform. For linear systems controlled
by linear controllers, we show how to calculate the exact
error between the model-level semantics and the execution
semantics of an implementation, allowing us to compare
different implementations. The calculated error of differ-
ent implementations is demonstrated using simulations on
illustrative examples.

1 Introduction

Contemporary industrial control design relies heavily
on tools for mathematical modelling and analysis. Even
though such tools support automatic code generation from
the model, many issues relevant to correctness and optimal-
ity of the implementation with respect to the timed seman-
tics of the model are not satisfactorily addressed. Conse-
quently, analysis results established for the model are not
meaningful for the implementation, and the execution of the
implementation is not predictable, causing problems in sys-
tem integration. The challenge of bridging the gap between
the model and the implementation motivates our research.

In this paper, we begin to address the challenge in the
context of implementing feedback control loops by soft-
ware [9]. Consider a physical plant interacting with a digital
controller that measures some plant signals and generates
appropriate control signals in order to influence the behav-
ior of the plant. The models of both the plant and the con-
troller have well-defined timed semantics (continuous-time

or discrete-time) that can be used for simulation and analy-
sis.

Once the controller design is complete, the designed
controller model is typically expressed as a set of control
(usually MATLAB) blocks, where each control block com-
putes outputs that influence other blocks or the plant be-
ing controlled. Typically, the software implementation of
such blocks relies on the support offered by a real-time op-
erating system for scheduling periodic tasks. Each control
block is compiled into an executable code in a host language
such as C, and the control designer specifies a period for
the corresponding task. To implement the resulting peri-
odic tasks on a specific platform, one needs to determine
the worst-case-execution-time for each block, and check
whether the task set is schedulable using standard schedul-
ing algorithms such as earliest-deadline-first (EDF) or rate
monotonic scheduling (c.f. [7, 19]).

While the real-time scheduling based implementation of-
fers a separation of concerns using the abstraction of real-
time tasks with periods and deadlines, it introduces several
sources of unpredictability. The only guarantee provided
by the scheduler is that a control block will get a chance to
complete its execution once during its period. In particular,
there are no guarantees regarding when a control block ac-
tually reads its inputs and when its outputs become available
to its environment, and the order in which the various blocks
execute. While there is extensive research on reformulating
the scheduling problem (c.f. [7]), for instance, by introduc-
ing ordering constraints among tasks, and introducing con-
straints on the latency between successive executions of a
task, quantifying the error between the timed semantics of
the control blocks and the possible executions of scheduled
tasks, and understanding its impact on the application-level
quality-of-service, remains difficult.

The recent emergence of time-triggered architecture as
an implementation platform for embedded systems offers
opportunities for a more predictable mapping of control
models [20, 19]. In a time-triggered implementation, in-
stead of mapping control blocks to periodic tasks, the com-

piler can allocate well-defined time slots to control blocks.
For example, if each time slot is δ units, and a control block
is mapped to the k-th slot, then we can assume that this
control block reads its inputs at time kδ, finishes its com-
putation within time δ, and makes its outputs available to
its environment at time (k + 1)δ. Given a mapping of all
the control blocks to the time slots, one can precisely define
the trajectories of the implementation and quantify the error
with respect to the model-level semantics 1.

In our formalization, given a controller model as a set
of interacting control blocks, we define the controller im-
plementation on a time-triggered platform using a dispatch
sequence that gives the order in which the blocks are repeat-
edly executed, and a timing function that gives the number
of time slots needed to execute each block. For a given
model of the plant, we can precisely define the semantics
of the implementation, and measure its quality by metrics,
such as the L2-norm, of the discrepancy between the trajec-
tories of the model and the implementation. Two questions
naturally arise: can we compute such metrics, and thereby,
compare two different implementations, and can we decide
an “optimal” dispatch sequence from a given model.

In this paper, we focus on the former question for the
case of plants and control designs modeled as linear control
systems. Given a control design, a dispatch sequence, and
a timing function, we model the controller implementation
naturally as a periodic linear time-varying system (PLTV).
Using the existing machinery for transforming a PLTV to
a linear time-invariant linear system, we can then check if
the implementation preserves stability as well as compute
the error with respect to the model semantics measured by
L2-norms. It should be noted that even though only the
controller model is implemented in real-time software, our
analysis focuses on the error of the overall closed-loop sys-
tem and therefore includes the plant dynamics in the analy-
sis. Since different implementations correspond to different
PLTVs, this gives us a way of comparing two implementa-
tions quantitatively. We explain our results using analysis
and simulations on two illustrative examples.

Related Work.

Bridging the gap between high-level modeling or program-
ming abstractions, and implementation platforms has been
identified as a key challenge for embedded software re-
search by many researchers (c.f. [24, 21]). Programming
abstractions for embedded real-time controllers include
synchronous reactive programming (languages such as ES-
TEREL and LUSTRE [4, 12, 11]), and the related Fixed Log-
ical Execution Time (FLET) assumption used in the Giotto

1Admittedly, there are other sources of errors such as uncertainty in
sensing, but the focus of this paper is on analyzing errors due to computa-
tion delays and scheduling.

project [13, 14]. In particular, Giotto provides predictable
execution semantics that is independent of the scheduling
policy by enforcing that a periodic task reads its inputs at
the beginning of its period, and delays its outputs till the end
of the period. However, this line of research does not ad-
dress the problem of errors introduced by mapping control
models to programs. Research on time-triggered architec-
ture has focused on achieving clock synchronization, fault
tolerance, real-time communication, and automotive appli-
cations (c.f. [19, 20]).

Recently, the problem of generating code from timed and
hybrid automata has been considered in [2, 16, 27], but in
these papers the focus has been on choosing the sampling
period so as to avoid errors due to switching and commu-
nication. The work on mapping Simulink blocks to Lus-
tre focuses on signal dependencies [8]. In [1], relative
scheduling as a way of generating a dispatch sequence for
a control model for soft real-time applications has been ex-
plored but it did not have a framework for quantifying the
errors. Model-based development of embedded systems is
also promoted by other projects with orthogonal concerns:
Ptolemy supports integration of heterogeneous models of
computation [10], GME supports integration of multiple
views of the system [18], and platform based design pro-
vides a framework for defining several layers of abstractions
for system implementations [23]. Many variations of ba-
sic scheduling model have been explored, but the emphasis
is not on quantifying the errors introduced during mapping
control model to the task model. Perhaps the most related of
these efforts is control-aware scheduling [26], in which pe-
riods for tasks are determined by optimizing a performance
index.

There is a rich literature on sampled control systems [3]
along two main approaches. The first approach starts with
a continuous plant, and given implementation-dependent
sampling times, the plant is discretized, and a controller
is designed for the discretized plant. The disadvantage of
this approach is that the control design must be repeated in
order to accommodate changes in the implementation plat-
form and does not therefore provide separation of concerns
between the control engineer and the software implementa-
tion. The second approach starts with a designed continu-
ous controller and focuses on discretizing the controller on
some implementation platform [3]. Even though this is the
spirit of our approach, the resulting error analysis has his-
torically focused on quantifying the errors introduced due to
sampling without paying attention to more detailed models
of implementation platforms that must sequentially execute
multiple control blocks. More sophisticated models of im-
plementation platforms have recently considered platform
constraints [22] or limited-bandwidth communication con-
straints [5, 15, 17], with a focus on designing controllers
that take into account such constraints. Even though we use

techniques similar to those in [17], in this paper we decou-
ple control from scheduling and focus on quantifying the
implementation error induced by sequentializing the soft-
ware execution of interdependent control blocks.

2 Modelling

In this section, we define the models of a real-time em-
bedded control system and define the model-level semantics
used for control design, the implementation-level semantics
used for software execution on a time-triggered platform.

2.1 Feedback Control Model

Consider a finite set X = {x1, x2, . . . , xn} of environ-
ment or plant variables, a set Y = {y1, . . . , yp} of plant
output variables, and a set U = {u1, . . . , um} of plant con-
trol variables. All variables take values in R. A state over
a set of variables is a mapping from the set of variables to
corresponding values. The set of all possible plant states is
thus R

n, and we obtain similar sets of states for all other
variables.

A feedback control model is a tuple M = 〈MP ,MC〉
consisting of a plant model MP and a controller model
MC . A plant model MP consists of

• A function f : R
n ×R

m → R
n that define the dynam-

ics of variables xi in terms of the current plant state
and control inputs.

• A function h : R
n → R

p that expresses the observable
output of the plant given the current plant state.

A controller model MC consists of a finite set of control
blocks MC = (B1, . . . ,Bm), one control block Bj for ev-
ery control variable uj ∈ U . Every control block Bj con-
sists of a function kj : R

j−1 × R
p → R that expresses the

feedback control law for the control variable uj as a func-
tion of other control variables and observable plant outputs.
We assume that the dependence among the control variables
is acyclic and thus the control variables can be ordered so
that the feedback law for the control variable uj is a function
of the plant outputs and the control variable u1, . . . , uj−1.
The feedback law of u1 is only a function of the plant out-
puts.

2.2 Model Level Semantics

Given a feedback control model M = 〈MP ,MC〉 with
variables X , Y , U , a trajectory for M is a function from
the time domain R

≥0 to the set of states over all variables.
Let x(t) = (x1(t), . . . , xn(t)) denote plant trajectories in
vector notation, and, similarly, y(t) = (y1(t), . . . , yp(t)),
and u(t) = (u1(t), . . . , um(t)). Given feedback control

model M, we denote the continuous-time semantics of the
feedback control model by [[M]]C and define [[M]]C as the
collection of all trajectories (x(t), y(t), u(t)) that satisfy the
following differential and algebraic constraints modelling
both the plant and the controller dynamics:

MP :




ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))
x(0) ∈ R

n
(1)

MC :




u1(t) = k1(y(t))
uj(t) = kj(y(t), u1(t) . . . uj−1(t)),

2 ≤ j ≤ m
(2)

We assume that the feedback composition, illustrated in
Figure 1, to be well-posed, meaning that for any initial plant
state x(0) the above equations have unique solutions. Given
x(0), we denote the unique solutions for the continuous-
semantics as

(x(t), y(t), u(t)) = [[M]]C(x(0)) (3)

The continuous-time semantics is implementation indepen-
dent semantics that is used for the mathematical analysis
and design of controllers that achieve desired performance
specifications of the output trajectories y(t). Given a con-
trol design MC , the continuous-time semantics will serve
as the ideal semantics. Our goal in this paper is to quantify
the deviation from this ideal semantics when the controller
MC is implemented on a given time-triggered platform.

2.3 Implementation Level Semantics

The ideal continuous-time semantics assumes that all
control blocks of controller MC = (B1, . . . ,Bm) are
“computed” instantaneously and simultaneously. Of
course, any software implementation of MC will violate
both assumptions. As discussed in the introduction, map-
ping control blocks to periodic tasks does not allow a mathe-
matically rigorous execution semantics. Instead, we assume
that the implementation is on a time-triggered platform in
which time can be allotted in fixed-size slots.

To model the order in which the control blocks are ex-
ecuted we consider a dispatch sequence ρ, which is an
infinite string over the set {B0,B1, . . . ,Bm}. Here, B0

is used to model idling from the viewpoint of the con-
troller (e.g., idling, or allocation of a time slot to activi-
ties other than the computation of control outputs). Typ-
ically, ρ will be periodic, and will be specified by a fi-
nite string that repeats. Each control block is to be ex-
ecuted without pre-emption, and when one control block
completes its execution, the next block can start immedi-
ately. For example, given a controller MC = (B1,B2,B3)
with three control blocks, possible dispatch sequences are
the uniform sequence (B1B2B3)ω or the nonuniform se-
quence (B1B2B1B3B0)ω that also includes idling. Note that

Controller

Plant
y u

u2

u1

y

u1

y

um = km(y, u1 . . . um−1)...
um−1

u2 = k2(y, u1)

u1 = k1(y)

y

ẋ = f(x, u)
y = h(x)

Bm

B2

B1

...

u2

um

u1

u

Figure 1. Continuous semantics of control loops

a dispatch sequence contains only ordering information, and
thus, can potentially be independent of the processing speed
of the platform.

A time-triggered platform provides an atomic time slot
of length δ, and each block is assigned a fixed number of
such slots. The computation of each control block Bi con-
sists of reading the plant output variables using sensors, up-
dating the control variable ui, and finally writing the com-
puted control value to the actuators at the end of its allotted
time. We assume that sensor reading and actuator writing
take zero time. The computation time of each control block
is captured by a timing function τ : {B1, . . . ,Bm} → Z

+

which associates to each control block the number of time
slots needed to execute a control block. Assume τ (B0) = 1.

Given a feedback control model M = 〈MP ,MC〉, a
dispatch sequence ρ, a timing function τ and a time slot
length δ, we can define the implementation semantics as-
sociated with M, denoted as [[M]](ρ,τ,δ), to be the set of
trajectories obtained by executing the control blocks of con-
troller MC according to the dispatch sequence ρ, where the

number of slots of length δ for each control block are cho-
sen according to the timing function τ .

Dispatch sequence ρ, timing function τ and time slot
length δ result in the following sequence of timing instants
ti: t0 = 0 and ti =

∑i
k=0 τ (ρ(k))δ for i ≥ 1. These are

the precise timing instants when a control block completes
its computation and its outputs are updated.

The implementation semantics [[M]](ρ,τ,δ) can now
be precisely defined as the collection of trajectories
(x(t), y(t), u(t)) that for all t ≥ 0 satisfy the plant dynam-
ics that stays the same as in Equation (1), and the following
controller implementation constraints for every 1 ≤ j ≤ m
and i ≥ 0,

uj(t) = uj(ti) for ti < t < ti+1 (4)

uj(0) = 0 (5)

u1(ti+1) =
{
u1(ti) if ρ(i) �= 1
k1(y(ti)) if ρ(i) = 1 (6)

For 2 ≤ j ≤ m,

uj(ti+1) =
{
uj(ti), if ρ(i) �= j
kj(y(ti), u1(ti) . . . uj−1(ti)), if ρ(i) = j

(7)
These constraints say that the function u(t) is piecewise-
constant. If ρ(i) = j, the control output uj is updated by
evaluating kj .

Given x(0), we denote the unique solutions for the
implementation-semantics as

(x(t), y(t), u(t)) = [[M]](ρ,τ,δ)(x(0)) (8)

The main goal of this paper is to quantify the quality of
the controller implementation for a particular dispatch se-
quence ρ, timing function τ and time slot length δ. Having
defined both the ideal platform-independent semantics, and
the platform-dependent semantics, we can directly define
the error of the implementation as a function of the initial
plant state x(0) simply as

(x(t), y(t), u(t)) = [[M]]C(x(0))
(x̃(t), ỹ(t), ũ(t)) = [[M]](ρ,τ,δ)(x(0))

eM(ρ, τ, δ, x(0)) =
∫ +∞

0

‖y(t) − ỹ(t)‖2
2dt (9)

We are therefore measuring the implementation error in the
L2 sense. The challenge is now to compute the L2 norm of
the implementation error as a function of x(0), given imple-
mentation specifics (ρ, τ, δ).

Given a feedback control model M, we will say that the
implementation (ρ1, τ1, δ1) is more accurate than the imple-
mentation (ρ2, τ2, δ2) (noted (ρ1, τ1, δ1) 	M (ρ2, τ2, δ2))
if the implementation error of (ρ1, τ1, δ1) is smaller than

the one of (ρ2, τ2, δ2) independently of the initial state of
the plant:

∀x(0) ∈ R
n, eM(ρ1, τ1, δ1, x(0)) ≤ eM(ρ2, τ2, δ2, x(0)).

(10)
Note that the relation 	M is a preorder on the set of imple-
mentations.

3 Analysis

The goal of this part is to provide a method for the com-
putation of the implementation error eM(ρ, τ, δ, x(0)). We
assume that the plant model is a linear time invariant (LTI)
systems (i.e. f(x, u) = Apx+Bpu and h(x) = Cpx):

MP :




ẋ(t) = Apx(t) +Bpu(t),
y(t) = Cpx(t),
x(0) ∈ R

n
(11)

where Ap ∈ R
n×n, Bp ∈ R

n×m and Cp ∈ R
p×n.

We assume that the feedback controller model MC =
(B1, . . .Bm) consists of one control linear block Bi for
every variable ui (i.e. k1(y) is a linear combination of
y1, . . . , yp and kj(y, u1 . . . uj−1) is a linear combination of
y1, . . . , yp and u1, . . . , uj−1). Then, the feedback control
law given in a vector form is given by,

MC : u(t) = Kcy(t) + Lcu(t) (12)

where Kc ∈ R
m×p, and Lc ∈ R

m×m. Note that the as-
sumption that the dependence between control variables are
acyclic implies that Lc is lower triangular.

For the sake of simplicity, we will assume that all the
execution of all the control blocks require the same time.
Thus, for all 1 ≤ j ≤ m, τ (Bi) = 1 and for all i ≥ 0,
ti = iδ. Let M = 〈MP ,MC〉 and

(x(t), u(t), z(t)) = [[M]]C(x(0)) (13)

(x̃(t), ũ(t), z̃(t)) = [[M]](ρ,τ,δ)(x(0)). (14)

3.1 Discretization of the implementation error

In this section, we discretize the integral defining the er-
ror due to implementation as given in Equation (9). We
show that this integral can be computed from the sequences
of values x(ti), x̃(ti), ũ(ti), for i ≥ 0. Let us define the
vector

ψ(t) =


 x(t)
x̃(t)
ũ(t)


 (15)

Theorem 3.1 There exists a positive symmetric matrix Q
such that the implementation error defined by equation (9)
is:

eM(ρ, τ, δ, x(0)) =
i=+∞∑

i=0

ψ(ti)TQψ(ti) (16)

Proof : First, let us remark that eM(ρ, τ, δ, x(0)) =∑i=+∞
i=0 Ii where Ii =

∫ ti+1

ti
‖y(t) − ỹ(t)‖2

2dt. On the
interval [ti, ti+1), the evolution of the closed loop system
in the continuous time semantics can be described by the
following differential equation:

ẋ(t) =
[
Ap +Bp(I − Lc)−1KcCp

]
x(t). (17)

On the same interval, the evolution of the plant in the im-
plementation semantics is given by

˙̃x(t) = Apx̃(t) +Bpũ(ti). (18)

Let us define

A =
[
Ap +Bp(I − Lc)−1KcCp 0

0 Ap

]
, B =

[
0
Bp

]

C = [Cp − Cp] , ϕ(t) =
[
x(t)
x̃(t)

]
.

The output deviation due to implementation is ye(t) =
y(t) − ỹ(t). On [ti, ti+1), ye(t) is the output of the LTI
system {

ϕ̇(t) = Aϕ(t) +Bũ(ti),
ye(t) = Cϕ(t) (19)

By solving the differential equation, we have that

ye(t) = C
[
eA(t−ti)(ϕ(ti) +A−1Bũ(ti)) −A−1Bũ(ti)

]

We can check that

Ii =
∫ ti+1

ti
ye(t)T ye(t)dt

= (ϕ(ti) +A−1Bũ(ti))TM(ϕ(ti) +A−1Bũ(ti))
−2(ϕ(ti) +A−1Bũ(ti))TNA−1Bũ(ti)
+ũ(ti)TBT (A−1)TPA−1Bũ(ti)

where

M =
∫ δ

0
eAT tCTCeAtdt, N =

∫ δ

0
eAT tCTCdt,

P =
∫ δ

0
CTCdt.

Let us define the following matrices

Q1,1 = M,

Q1,2 = QT
2,1 = (M −N)A−1B,

Q2,2 = BT (A−1)T (M −N −NT + P)A−1B.

Then, we have

Ii =
[
ϕ(ti)
ũ(ti)

]T [
Q1,1 Q1,2

Q2,1 Q2,2

] [
ϕ(ti)
ũ(ti)

]
.

This leads to the expected result. �
In the following, we show that the sequences x(ti), x̃(ti)

and ũ(ti) characterizing the implementation error can be
computed from discrete time linear systems derived from
the continuous time semantics and the implementation se-
mantics of the feedback model.

3.2 Discrete time linear system from the continu-
ous time semantics

From the differential equation (17), the sequences x(ti)
are the successive iterations of the following discrete time
LTI system:

x(ti+1) = E x(ti), E = eδ[Ap+Bp(I−Lc)
−1KcCp]. (20)

3.3 Discrete time linear system from the imple-
mentation semantics

In this section, we show that the sequences x̃(ti) and
ũ(ti) are the output sequences of a discrete time periodic
linear time-varying (PLTV) system. The main idea is that
during the execution of a particular control block, the feed-
back system evolves like a particular linear system. Since
the sequence of executions of the control blocks is periodic,
then the system evolves globally like a PLTV system.

3.3.1 Control blocks as linear systems

First, let us consider the control block B0 defined in sec-
tion 2. Assume execution happens during the time inter-
val [ti, ti+1]. The execution of B0 does not affect the con-
trol variables, hence ũ(ti+1) = ũ(ti). On the time interval
[ti, ti+1], the plant evolves continuously according to equa-
tion (18). Hence, we have

x̃(ti+1) = eδAp x̃(ti) + (eδAp − I)A−1
p Bpu(ti). (21)

Therefore, the value of the variables are modified by the
execution of the control block B0 according to the following
linear system:

[
x̃(ti+1)
ũ(ti+1)

]
= E0

[
x̃(ti)
ũ(ti)

]
,

E0 =
[
eδAp (eδAp − I)A−1

p Bp

0 I

]
(22)

Let us now consider the control block Bj , 1 ≤ j ≤ m,
executed during the time interval [ti, ti+1]. For k �= j, the
execution of Bj does not modify the value of the variables
ũk. Thus, the value of the variable ũj is updated according
to

ũk(ti+1) = ũk(ti), if k �= j

ũj(ti+1) = [Kc]jCpx̃(ti) + [Lc]j ũ(ti)

where [Kc]j and [Lc]j denote the jth lines of the matrices
Kc and Lc. Let Uj be the matrix whose lines [Uj]k are

[Uj]k = 0, if k �= j
[Uj]j = [Kc]jCp

Let Vj be the matrix whose lines [Vj]k are

[Vj]k = 0, if k �= j
[Vj]j = [Lc]j

Let Wj be the matrix whose coefficients are all zero except
the jth element of its diagonal [Wj]j,j = −1. Then,

ũ(ti+1) = Uj x̃(ti) + Vj ũ(ti) + (I +Wj)ũ(ti)
ũ(ti+1) = Uj x̃(ti) + (I + Vj +Wj)ũ(ti).

Thus, the value of the variables are modified by the exe-
cution of the control block Bj according to the following
linear system:

[
x̃(ti+1)
ũ(ti+1)

]
= Ej

[
x̃(ti)
ũ(ti)

]
,

Ej =
[
eδAP (eδAP − I)A−1

P BP

Uj I + Vj +Wj

]
(23)

3.3.2 From dispatch sequences to PLTV systems

For the computation of the error due to implementation, we
need the values of the variables x̃(t) and ũ(t) at the time
values ti for i ≥ 0. For each control block, the value of the
variables of the system at the end of the execution is a linear
combination of these values at the beginning of the execu-
tion. Let us consider a dispatch sequence ρ defining the or-
der in which the control blocks have to be executed. Hence,
the sequences x̃(ti) and ũ(ti), for i ≥ 0, can be determined
from the following discrete time dynamical system:

[
x̃(ti+1)
ũ(ti+1)

]
= Eρ(i)

[
x̃(ti)
ũ(ti)

]
(24)

Henceforth, we will assume that ρ is periodic, and let nρ

denote its period. Then, this dynamical system is a PLTV
system.

3.4 Computation of the Implementation Error

In this section, we propose a method to compute the
error due to implementation. First, we define a system
which describes both the evolutions defined by the contin-
uous time semantics and the implementation semantics and
whose state is the vector ψ(t) defined by equation (15):

ψ(t) =


 x(t)
x̃(t)
ũ(t)


 (25)

Then,

ψ(ti+1) = Ēρ(i) ψ(ti), Ēρ(i) =
[
E 0
0 Eρ(i)

]
. (26)

This system is also a PLTV system of period nρ. A classi-
cal technique for the analysis of PLTV systems is the lifting
technique (see for instance [25]). It consists in a transfor-
mation which allows rewriting the PLTV system as a LTI
system. Let us define the following matrices

Ê = Ēρ(nρ−1)Ēρ(nρ−2) . . . Ēρ(1)Ēρ(0)

Ĝ =




I
Ēρ(0)

Ēρ(1)Ēρ(0)

...
Ēρ(nρ−2) . . . Ēρ(0)




Then, we have, for all l ≥ 0,


ψ(t(l+1)nρ
) = Ê ψ(tlnρ

)




ψ(tlnρ
)

...
ψ(tlnρ+nρ−1)


 = Ĝ ψ(tlnρ

)
(27)

Let us remark that this new system is a LTI system. We
define the block diagonal matrix Q̂ composed of nρ blocks
equal to the matrix Q given by Theorem 3.1:

Q̂ =



Q

. . .
Q




We can now state the main result of this paper.

Theorem 3.2 The error due to the implementation can be
computed by

eM(ρ, τ, δ, x(0)) = x(0)THTOHx(0) (28)

where

H =


 I
I
0


 (29)

and O is the solution of the Lyapunov equation

O = ÊTOÊ + ĜT Q̂Ĝ. (30)

Proof : From theorem 3.1, we have

eM(ρ, τ, δ, x(0)) =
l=+∞∑

l=0

i=lp+p−1∑
i=lp

ψ(ti)TQ ψ(ti)

=
l=+∞∑

l=0

ψ(tlp)T ĜT Q̂Ĝ ψ(tlp)

=
l=+∞∑

l=0

ψ(0)T (Êl)T ĜT Q̂ĜÊl ψ(0)

= ψ(0)TO ψ(0)

where

O =
l=+∞∑

l=0

(Êl)T ĜT Q̂ĜÊl.

From the theory of LTI systems O is the solution of the
Lyapunov equation (30). Moreover, from the continuous
time and the implementation semantics, we have ψ(0) =
Hx(0). �

The above Theorem provides a criterion for the com-
parison of two implementations of an embedded controller.
Let M be a feedback control model, let (ρ1, τ1, δ1) and
(ρ2, τ2, δ2) be two implementations. Then, from Theorem
3.2, there exist two symmetric matrices O1 and O2 such
that for all x(0) ∈ R

n,

eM(ρ1, τ1, δ1, x(0)) = x(0)THTO1Hx(0)
eM(ρ2, τ2, δ2, x(0)) = x(0)THTO2Hx(0)

Corollary 3.1 (ρ1, τ1, δ1) 	M (ρ2, τ2, δ2) if and only if
the symmetric matrix HT (O2 −O1)H is positive definite.

Proof : (ρ1, τ1, δ1) 	M (ρ2, τ2, δ2) if and only if for
all x(0) ∈ R

n, x(0)THTO1Hx(0) ≤ x(0)THTO2Hx(0)
or equivalently 0 ≤ x(0)THT (O2 −O1)Hx(0). The latest
inequality holds for all x(0) if and only ifHT (O2−O1)H is
positive definite. �

Remark 3.3 The rigorous analysis of the complexity of the
whole procedure is quite difficult and tedious. However,
let us remark that most of the computations are matrix op-
erations (sums, products, linear matrix equations) whose
complexity in time is polynomial in the size of the matrices.
Furthermore, the largest matrix considered during the pro-
cedure is the matrix Ĝ which has nρ × (2n+m) lines and
2n + m columns. Therefore, it is clear that the complexity
of the whole procedure is polynomial in the size of the feed-
back control model (i.e. n + m) and in the period of the
dispatch sequence nρ.

4 Computational Examples

In this section, we present numerical examples that il-
lustrate the analysis method for comparing feedback con-
troller implementations. The analysis method has been im-
plemented as a MATLAB script. The inputs to the script
are the continuous plant model MP defined as in (11), the
continuous controller model MC defined as in (12), im-
plementation specifics (ρ, τ, δ), for a periodic ρ, defined as
in Section 2. Then the script computes the implementation
error by the method presented in Section 3. We omit the de-
tails on the design process of continuous controllers in the
examples, since the focus of the paper is not the design of
the continuous controllers but the analysis of the implemen-
tations of the pre-designed feedback controllers.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

4

5

6

7

Time (sec)

O
bs

er
va

tio
n

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

4

5

6

7

Time (sec)

O
bs

er
va

tio
n

1

Figure 2. Plots of the first output of the plant for
the semantics [[M]]C (solid line, top and bottom fig-
ures), [[M]](ρ1,τ1,δ1) (dotted line, top and bottom figures),
[[M]](ρ2,τ2,δ2) (dashed line, top figure), [[M]](ρ3,τ3,δ3)

(dashed line, bottom figure).

Example 4.1 Consider the 2-input 2-ouput continuous LTI
plant model MP given in the form of (11) with,

Ap =
[
0.65 0.065
0 13

]
, Bp =

[
10.4000 0
−10.4000 10.4000

]
,

Cp =
[
1 1
0 1

]

A linear time-invariant controller model MC =
(B1,B2) designed by a control engineer to regulate the plant
MP is given in the matrix form as in (12) with Lc = 0 and

Kc =
[−1.4000 0.9000

0.5000 −1.6000

]

Control block B1 updates controller input u1 and keeps u2

unchanged. Control block B2 updates control input u2 and
keeps u1 unchanged. We consider three implementations of
the controller (ρ1, τ1, δ1), (ρ2, τ2, δ2) and (ρ3, τ3, δ3) given
by

ρ1 = (B2B1)ω, τ1(Bi) = 1, δ1 = 0.01sec
ρ2 = (B2B1B1B1)ω, τ2(Bi) = 1, δ2 = 0.01sec
ρ3 = (B1B2B2B2B2B2)ω, τ3(Bi) = 1, δ3 = 0.01sec

Using the method presented in Section 3, we compute the
matrices O1,O2 and O3 defined in (30). The computa-
tion time required to evaluate these matrices is 0.08 sec-
onds. Using Corollary 3.1, we can order the implementa-
tions with the relation 	M: (ρ3, τ3, δ3) is more accurate
than (ρ1, τ1, δ1) which is more accurate than (ρ2, τ2, δ2).
For the initial value of the state of the plant x(0) = [3 −3]T ,
the implementation errors are

eM(ρ1, τ1, δ1, x(0)) = 2.6013
eM(ρ2, τ2, δ2, x(0)) = 7.0562
eM(ρ3, τ3, δ3, x(0)) = 0.8458

In Figure 2, the evolutions of the first output of the plant for
the three implementations are represented.

In this example, the dynamics of the second state of the
plant is much faster than the dynamics of the first one. More
attention is needed for the second state, since the propa-
gation of errors due to implementation is much faster for
this state. The implementation (ρ3, τ3, δ3) is more accurate
since it gives more attention on the computation of the con-
trol block B2 which corresponds to the faster dynamics.

Example 4.2 The second example we consider in this pa-
per is a model of vibration control of a multivariable smart
structural system which is defined as a sensor-controller-
actuator system which can automatically adjust to changes
in the environment. We adopt the 2-input 4-output contin-
uous model of such a system presented in [6], where the
vibration of a two dimensional distributed cantilever plate
is controlled using two PVDF sensors and two PZT actua-
tors. The experimentally identified continuous LTI model
MP of the smart structural system is given in the form of
(11) with,

Ap =



−0.757 −0.225 −83.5 −3.86
−0.224 −0.793 −1.60 −97.4

141 −82.0 −0.752 −0.260
−68.2 109 −0.193 −0.798


 ,

Bp =




0 0
0 0

0.914 −0.209
−0.189 0.456


 , Cp =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




A continuous LTI controller model MC = (B1,B2) de-
signed by a control engineer to regulate the plant MP is
given in the matrix form as in (12) with Lc = 0 and

K =
[−6 −0.1 20 −5
−0.35 −0.3 −10 0.1

]

We note that, the plant is naturally a stable plant in the sense
that, it is stable even though no controller is used. However,
the settling time is very slow and the controller is used to
stabilize the plant faster.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

O
bs

er
va

tio
n

1

Continuous controller K

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5
Implementation 1

O
bs

er
va

tio
n

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5
Implementation 2

O
bs

er
va

tio
n

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5
Implementation 3

O
bs

er
va

tio
n

1

Time (sec)

Figure 3. Plots of the first output of the plant model
for the semantics [[M]]C (top figure), [[M]](ρ1,τ1,δ1) (sec-
ond to top figure), [[M]](ρ2,τ2,δ2) (second to bottom figure),
[[M]](ρ3,τ3,δ3) (bottom figure).

We first consider three implementations (ρ1, τ1, δ1),
(ρ2, τ2, δ2) and (ρ3, τ3, δ3) given by

ρ1 = (B1B2)ω, τ1(Bi) = 1,
ρ2 = (B1B1B2)ω, τ2(Bi) = 1,
ρ3 = (B1B1B1B1B1B1B1B1B2)ω, τ3(Bi) = 1,

and δ1 = δ2 = δ3 = 0.005sec.
Using a simple test on the eigenstructure of some ma-

trices defined by the method presented in section 3, we
can determine that the first implementation is unstable.
Hence, for all initial values of the plant x(0) ∈ R

4,
eM(ρ1, τ, δ, x(0)) = ∞. It is worth noting that the imple-
mentation (ρ1, τ1, δ1) whose dispatch sequence alternates
control blocks B1 and B2 uniformly (which seems a reason-
able choice) destabilizes the plant Mp which was initially
stable. This illustrates the critical fact that a bad implemen-
tation of the feedback controller can have dramatic conse-
quences on the behavior of the closed loop system.

We also computed the matrices O2 and O3 defined in
(30). The computation time required to evaluate these ma-
trices is 0.12 seconds. Using Corollary 3.1, we can order the
implementations with the relation 	M: (ρ3, τ3, δ3) is more

accurate than (ρ2, τ2, δ2). Then, for the initial value of the
state of the plant x(0) = [1 1 1 1]T , the implementation
errors are

eM(ρ1, τ1, δ1, x(0)) = ∞
eM(ρ2, τ2, δ2, x(0)) = 0.5401
eM(ρ3, τ3, δ3, x(0)) = 0.1061

In Figure 3, the evolutions of the first output of the plant
model for the three implementations are represented. Now
let us consider the implementations consisting of the same
dispatch sequences and the same timing functions but run-
ning on a faster platform:

ρ1 = (B1B2)ω, τ1(Bi) = 1,
ρ2 = (B1B1B2)ω, τ2(Bi) = 1,
ρ3 = (B1B1B1B1B1B1B1B1B2)ω, τ3(Bi) = 1,

and δ′1 = δ′2 = δ′3 = 0.002sec.
Let us remark that the implementation (ρ1, τ1, δ1) is now

stable. More generally, we can check experimentally that
for the same dispatch sequence and the same timing func-
tion, the faster the platform the more accurate the imple-
mentation. Actually, the six implementations can be or-
dered according to the preorder 	M:

(ρ3, τ3, δ
′
3) 	M (ρ3, τ3, δ3) 	M (ρ2, τ2, δ

′
2)

	M (ρ1, τ1, δ
′
1) 	M (ρ2, τ2, δ2) 	M (ρ1, τ1, δ1)

For the initial value of the state of the plant x(0) =
[1 1 1 1]T , the implementation errors are

eM(ρ1, τ1, δ
′
1, x(0)) = 0.1744

eM(ρ2, τ2, δ
′
2, x(0)) = 0.1368

eM(ρ3, τ3, δ
′
3, x(0)) = 0.0695

An important point to note is that, the performances of the
implementations (ρ1, τ1, δ

′
1) and (ρ2, τ2, δ

′
2) are not as good

as the one of (ρ3, τ3, δ3) even though the latter runs on a
platform more than twice slower. This illustrates the fact
that a rigorous analysis of the error due to the implementa-
tion of a feedback controller is of great interests since the
performance of a controller can be considerably increased
without changing the platform.

5 Discussions and Conclusions

In this paper, we formulated the problem of quantify-
ing the error due to the implementation of embedded con-
trollers on time-triggered platforms. For linear models and
controllers, we presented a method to exactly compute the
L2-error of the deviation of the output of the plant in the im-
plementation semantics from the output of the plant in the
continuous time semantics. This method relies on standard

tools of periodic linear time-varying systems, and gives a
criterion to compare implementations independently of the
initial value of the state of the plant.

Future research includes the extension of our framework
to larger classes of plant models, including uncertain linear,
nonlinear and hybrid systems, as well as more general non-
linear and dynamic controllers. Whereas exact computation
of the error may not be feasible in these general settings,
computable error bounds for appropriate norms will still en-
able the comparison of different implementations. Finally,
our approach may enable us to develop a scheduling frame-
work on time-triggered platforms in order to reduce imple-
mentation error, while potentially achieving a decomposi-
tion between dispatch sequences and timing functions.

6 Acknowledgements

This research is partially supported by the National Sci-
ence Foundation Information Technology Research grant
CCR 0410662. The second author is partially supported
by the Région Rhône-Alpes (Projet CalCel). We also thank
Nader Motee for valuable discussions on control theory.

References

[1] R. Alur and A. Chandrashekharapuram. Dispatch sequences
for embedded control models. In Proceedings of the 11th
IEEE Real-time and Embedded Technology and Applica-
tions, pages 508–518, 2005.

[2] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. Generat-
ing embedded software from hierarchical hybrid models. In
Proceedings of the ACM Conference on Languages, Compil-
ers, and Tools for Embedded Systems, pages 171–182, 2003.

[3] K. Aström and B. Wittenmark. Computer-controlled sys-
tems: Theory and Design. Prentice Hall, 1997.

[4] G. Berry and G. Gonthier. The synchronous program-
ming language ESTEREL: design, semantics, implementa-
tion. Technical Report 842, INRIA, 1988.

[5] R. Brockett. Stabilization of motor networks. In Proceed-
ings of the 1995 IEEE Conference on Decision and Control,
pages 1484–1488, Dec. 1995.

[6] R. Butler and V. Rao. A state space modeling and control
method for multivariable smart structural systems. Smart
Materials and Structures, 5(4):386–399, 1996.

[7] G. Buttazo. Hard real-time computing systems: Predictable
scheduling algorithms and applications. Kluwer Academic
Publishers, 1997.

[8] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis.
Translating discrete-time Simulink to Lustre. In Proceed-
ings of Third International Conference on Embedded Soft-
ware, LNCS 2855, pages 84–99, 2003.

[9] P. Caspi and O. Maler. From control loops to real-time pro-
grams. Handbook of Networked and Embedded Control Sys-
tems (to appear), 2005.

[10] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Luvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity–the
Ptolemy approach. Proceedings of the IEEE, 91(1):127–
144, 2003.

[11] N. Halbwachs. Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Publishers, 1993.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language Lustre. Pro-
ceedings of the IEEE, 79:1305–1320, 1991.

[13] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-
triggered language for embedded programming. Proceed-
ings of the IEEE, 91(1):84–99, 2003.

[14] T. Henzinger and C. Kirsch. The embedded machine: Pre-
dictable, portable, real-time code. In Proceedings of the
ACM Conference on Programming Language Design and
Implementation, pages 315–326, 2002.

[15] D. Hristu and K. Morgansen. Limited communication con-
trol. Systems and control letters, 37(4):193–205, July 1999.

[16] Y. Hur, J. Kim, I. Lee, and J. Choi. Sound code generation
from communicating hybrid models. In Hybrid Systems:
Computation and Control, Proceedings of the 7th Interna-
tional Workshop, LNCS 2993, pages 432–447, 2004.

[17] H. Ishii and B. Francis. Stabilization with control networks.
Automatica, 38:1745–1751, 2002.

[18] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings
of the IEEE, 91(1):145–164, 2003.

[19] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 2000.

[20] H. Kopetz and G. Bauer. The time triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[21] E. Lee. What’s ahead for embedded software. IEEE Com-
puter, pages 18–26, September 2000.

[22] L. Palopoli, C. Pinello, A. L. Sangiovanni-Vincentelli, L. El-
Ghaoui, and A. Bicchi. Synthesis of robust control systems
under resource constraints. In M. Greenstreet and C. Tomlin,
editors, Hybrid Systems: Computation and Control, volume
LNCS 2289 of Lecture Notes in Computer Science, pages
337–350. Springer-Verlag, Heidelberg, Germany, 2002.

[23] A. Sangiovanni-Vincetelli, L. Carloni, F. D. Bernardinis,
and M. Sgori. Benefits and challenges for platform-based
design. In Proceedings of the 41th ACM Design Automation
Conference, pages 409–414, 2004.

[24] S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gill. Modeling
and design of embedded software. Proceedings of the IEEE,
91(1), 2003.

[25] S.Bittanti and P.Colaneri. Invariant representations of
discrete-time periodic systems - a survey. Automatica,
36(12):1777–1793, 2000.

[26] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task schedu-
lability in real-time control systems. In Procedings of the
IEEE Real-Time Systems Symposium, 1996.

[27] M. D. Wulf, L. Doyen, and J. Raskin. Almost ASAP seman-
tics: From timed models to timed implementations. In Hy-
brid Systems: Computation and Control, Proceedings of the
7th International Workshop, LNCS 2993, pages 296–310,
2004.

