
An Upper Bound to the Lateness of Soft Real-time Tasks Scheduled by EDF on

Multiprocessors∗

Paolo Valente

Scuola Superiore S. Anna, Italy

pv@gandalf.sssup.it

Giuseppe Lipari

Scuola Superiore S. Anna, Italy

lipari@sssup.it

Abstract

Multiprocessors are now commonplace for efficiently

achieving high computational power, even in embedded sys-

tems. A considerable research effort is being addressed to

schedulability analysis of global scheduling in Symmetric

Multiprocessor Platforms (SMP), where there is a global

queue of ready tasks, and preemption and migration are al-

lowed.

In many soft real-time applications (as e.g. multimedia

and telecommunication) a bounded lateness is often tol-

erated. Unfortunately, when considering priority-driven

scheduling of periodic/sporadic tasks, previous results only

focused on guaranteeing all deadlines, and provided worst-

case utilization bounds that are lower than the maximum

available computational power. In particular, until now, the

existence of an upper bound on the lateness of soft real-time

tasks for a fully utilized SMP was still an open problem.

In this paper we do solve this problem by providing an up-

per bound to the lateness of periodic/sporadic tasks – with

relative deadlines equal to periods/minimum inter-arrival

times – scheduled by EDF on a SMP, under the only assump-

tion that the total utilization is no higher than the total system

capacity.

1. Introduction

Multiprocessors are now commonplace in general-
purpose as well as in embedded systems. They provide a

cost-effective solution to achieve high computational power.

Besides, due to technological and physical constraints, in-
creasing the speed of single processors is becoming more and

more difficult. Hence multiprocessor platforms seem to be

the only option for the most computationally demanding ap-
plications.

In the last year a large number of multi-core chips as well
as multiprocessor architectures have been launched in the

market. For example, to meet the requirements of demanding

embedded real-time applications, ARM proposes MPCore, a

∗This work has been supported in part by the European Commission un-

der contract IST 2001-34820 (ARTIST project).

synthesizable multiprocessor core, while Motorola proposes

its PowerPMC-280 SMP platform. In the high-end general

purpose processor market, both Intel, with its Pentium D
brand, and AMD, with e.g. the Opteron dual-core processor,

envision multi-core processors as the architecture of choice

for high performance applications.

In this paper we consider soft real-time tasks to be ex-

ecuted on a Symmetric Multi Processor (SMP) platforms,

comprised of M identical processors with constant speed.
Unfortunately, multiprocessor platforms pose greater diffi-

culties than single processor ones when applications have
time requirements. Many negative results are known on the

scheduling of real-time applications on multiprocessors, in-

cluding SMPs [1, 2, 4, 8, 3, 7, 6, 12].

The results presented in this paper are related to the class

of soft real-time applications that can be modeled as a set

of periodic/sporadic tasks, i.e. sequences of jobs to execute,
where each job is associated with a relative completion dead-

line equal to the period/minimum inter-arrival time. In soft

real-time applications, deadlines are not critical, but it is im-
portant to respect some Quality of Service (QoS) require-

ments. Examples of such QoS constraints are: limited num-

ber of deadline misses, limited deadline miss percentage, and
so on.

In this paper we are interested in soft real-time applica-

tions that can tolerate a bounded lateness with respect to the
desired deadline. This kind of constraint matches a large

class of applications, like multimedia, telecommunication,

and financial ones. As an example, consider a video player: a
given frame-rate must be guaranteed, but a jitter of few mil-

liseconds in the frame-time does not significantly affect the

quality of the video. In contrast, audio quality is extremely
sensitive to silence gaps. However, audio samples are typi-

cally buffered and played back at the desired rate by the au-
dio device. A bounded lateness in providing new samples to

the device can be easily compensated using a pre-buffering

strategy.

1.1. Related work

Research on real-time multiprocessor scheduling has

been mainly focused on guaranteeing strict deadline obser-
vance. The two main approaches are partitioning and global

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

scheduling. In partitioning the task set is divided – parti-

tioned – into M groups. Each group of tasks is assigned to
one of the processors, and processors are scheduled indepen-

dently. The main advantage of such an approach is its sim-

plicity, as a multiprocessor scheduling problem is reduced to
M uniprocessor ones. Furthermore, since there is no migra-

tion, this approach presents a low overhead.

Unfortunately, there are various negative drawbacks.

First, finding an optimal assignment of tasks to processors is

a bin-packing problem, which is NP-hard in the strong sense.
Hence, sub-optimal heuristics are usually adopted [13, 11, 9].

Second, there are task sets that are schedulable only if tasks

are not partitioned [6]. Also, when tasks are allowed to dy-
namically enter and leave the system, a global re-assignment

of tasks to processors may be necessary to balance the load,

otherwise the overall utilization may decrease dramatically.

In global scheduling, jobs are inserted in a global priority-

ordered ready queue, and at each time instant the available
processors are allocated to the highest priority jobs in the

ready queue. Tasks are in general subject to migration, i.e.

during the system lifetime they may be executed on different
processors.

An important classification is whether a scheduling algo-
rithm is priority-driven [8], i.e. each job is assigned a fixed

priority, or the priority of a job can vary over time. An impor-
tant class of global schedulers of the second type is the class

of PFair schedulers [5, 14]. PFair schedulers break jobs into

smaller uniform pieces, which are then scheduled.

Unfortunately, in case of either partitioning or priority-

driven scheduling, meeting all deadlines is paid in terms of
schedulable utilization: any possible priority-driven and/or

partitioned scheduling algorithm has a total worst-case uti-

lization upper bound no larger than M+1
2 [6]. On the con-

trary, PFair algorithms are the only known schedulers able to

meet all the deadlines still achieving full utilization. Unfor-

tunately they may suffer from high scheduling and migration
overhead.

1.2. Motivation

Until now, soft real-time applications could be scheduled
on multiprocessor platforms either using efficient priority-

driven schedulers and obtaining zero lateness, but wasting up

to half of the available computational power; or using PFair
algorithms, which do achieve full utilization with zero late-

ness, but may cause high overhead.

Except for PFair scheduling, to the best of the authors’

knowledge, no lateness bound is available for soft real-time

tasks that fully utilize a multiprocessor. In particular, it was
not even known if lateness was actually bounded.

When considering partitioning, it is impossible to reach
full utilization with bounded lateness, as shown by the fol-

lowing example. Consider 2 processors and 3 tasks, each one
with utilization 2/3. There is no way to assign all tasks to

the processors and achieve bounded lateness. In fact, either

we overload one of the processors, or we discard one of the
tasks, achieving a total utilization of 4/3.

Proc.

P1 1

1, 2

1, 2

2, 3

2

1

Job arrivalsE, PTask

3
t

1P2
t

Speed
service

Dual proc.

1

1 1

653

2

33

2 41

3 2 32 3 2

2 2

1 1

1

Figure 1. Example of unbounded lateness with

fixed priority scheduling.

When considering global scheduling, not all priority-
driven scheduling algorithms can achieve bounded lateness.

Consider a system with 2 processors and 3 tasks, scheduled

by fixed priority with priority assigned according to Rate
Monotonic. Task 1 and 2 have computation time 1 and pe-

riod 2; task 3 has computation time 2 and period 3. The total
utilization is 5/3 < 2. Job arrivals are shown in the top part

of Fig. 1. Each arriving job is depicted as a rectangle: the

projection of the left corner of each rectangle represents the
arrival time of the corresponding job, while the length of the

base is equal to the execution time of the job. The number

on each rectangle refers to the task that issued the job. The
schedule of the first 6 instants of time is shown in the bot-

tom part of the figure. Notice that task 3 starts accumulating

instances, and the lateness of each instance indefinitely in-
creases.

In the previous example, it is easy to see that EDF would

have not suffered from the problem of unbounded lateness,

because jobs whose deadline is in the past have larger prior-
ity than newly arriving jobs. Intuitively, this property of EDF

priorities apparently guarantees a bounded lateness. How-

ever, until now, providing an upper bound to the lateness
of soft real-time tasks for a fully utilized SMP, and under

priority-driven scheduling, was still an open problem.

1.3. Contribution

In this paper we consider a class of global priority-driven

schedulers, the DPS Finish Time Schedulers (see Section 4
for a definition of this class), which EDF belongs to. We

prove that these schedulers guarantee bounded lateness even
when the system is fully utilized. We achieve this result by

actually computing an upper bound to the maximum lateness

in a simple closed form.

Is this bound tight? We performed a large number of sim-

ulation experiments to see how the actual maximum lateness
experienced by the tasks compares to our worst-case bound.

The bound resulted virtually tight in case of 2 processors: the
ratio between the measured maximum lateness and the bound

is 0.99. This ratio decreases as the number of processors in-

creases, until it stabilizes at approximately 1/3 for a number
of processors higher than 10. All the results are discussed

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

more extensively in Section 5.

The paper is organized as follows. In Section 2 we for-

mally introduce the system and the notations. In Section 3

we present the main results, whereas in Section 4 we present
the proofs. Finally, we report simulation results in Section 5.

2. System description and notations

We consider a system consisting of N periodic or spo-

radic tasks to be executed on a multiprocessor platform with

M identical processors. All the processors have the same
speed (capacity) R, measured in number of execution cycles

per time units. Each task i consists of an infinite sequence

of jobs Jj
i j = 1, . . . to be executed. Each job Jj

i is char-

acterized by an activation (arrival) time aj
i , a length L(Jj

i),
equal to the number of execution cycles for completing the

job, and a completion deadline dj
i . We say that a job Jj

i has

an execution time ej
i ≡

L(Jj
i)

R
. The following relations hold:

aj
i ≥ aj−1

i + Ti

dj
i = aj

i + Ti

where Ti is the task period (minimum inter-arrival time).

The completion (finish) time of the job Jj
i is denoted as

f j
i . We define as lateness of a job Jj

i the quantity latj
i ≡

max
[

0, f j
i − dj

i

]

.

We denote, respectively, with Li ≡ maxj

{

L(Jj
i)

}

and

Ei ≡ Li

R
the worst-case job length and the worst-case job

execution time for task i. Finally, we define Ui ≡
Ei

Ti
≤ 1 as

the utilization of task i. We assume that
∑N

i=1 Ui ≤ M .

In [10] the concept of predictable scheduler is defined. A

scheduler is predictable if, given two sets of jobs with the
same cardinality and such that, for each job in the first set,

there is a corresponding job in the second set with the same

arrival time and priority, and with execution time no larger
than the job in the first set, then the finish time of each job

in the first set is no lower than the finish time of the corre-

sponding job in the second set. They also proved that any
priority driven scheduler is predictable. Hence, for simplic-

ity, in the remainder we will assume that each job Jj
i has a

length L(Jj
i) = Li.

We assume that a job cannot start executing before the

previous job of the same task has completed. We refer to this
constraint as the precedence constraint. We stress the fact

that a job can arrive also before the previous jobs of the same

task have completed. We say that a job Jj
i is pending at time

t if and only if aj
i ≤ t < f j

i (hence a job under service is still

pending). Every task has a FIFO queue where its pending

jobs are stored. We say that a task is active if it has pending
jobs.

We define as total speed and maximum total speed of a

multiprocessor at time t, respectively, Mbusy(t) ·R and M ·R,

where Mbusy(t) ≤ M is the number of busy processors at
time t. We define as under-load and full-load periods the time

intervals during which Mbusy(t) < M and Mbusy(t) = M ,

respectively.

In the remainder of the paper we will refer to the above

defined system as the Multi Processor System (MPS).

As stated in the introduction, we consider global priority-

driven scheduling. At each time instant the available proces-

sors are allocated to the highest priority jobs in the ready
queue. We assume that ties are arbitrarily broken. We al-

low preemption and migration, i.e. jobs can be suspended and
later resumed on the same or on a different processor, due to

the arrival of some higher priority job. In particular, we will

focus on a special class of global priority-driven scheduling
algorithms – defined in the next subsection – that includes

EDF.

We call a job fraction any portion of a job continuously

executed between two consecutive start (or resume) and sus-

pend (or completion) events. We define as priority of a job
fraction the priority of the job the fraction belongs to. We

define a chain of jobs of a task any sequence of job fractions

belonging to the same task and served back-to-back, and head

of the chain the first job fraction in the sequence.

We will assume any generic function f(t) of the time to
be right continuous. Furthermore, for compactness, we set

f(x−) = limt→x− f(t), and we assume that the exponenti-

ation ax, with exponent x = 0, is always equal to 1 (even
when the base a is infinite).

2.1. The Dedicated Processor System

In this subsection we introduce the Dedicated Processor

System (DPS), a special reference system that we will use to

define the class of global priority-driven schedulers for which

our results hold.

Definition 1 Given a MPS, we define as its reference Ded-

icated Processor System (DPS) the system consisting of the

same task set and a multi-processor platform containing a

dedicated processor for each of the N tasks in the MPS;

each dedicated processor has a speed RDPS
i ≡ Ui · R

i = 1, 2, . . . , N .

For any job Jj
i we define as its virtual finish time the time

instant F j
i at which it is completed in the DPS. Since Ti = Ei

Ui

∀i, and since we assumed that all the jobs of the i-th task

have worst-case length Li, we have that the DPS completes

each job exactly on its deadline and, hence, no later than the

arrival of the next job of the same task, i.e. ∀Jj
i F j

i = dj
i ≤

aj+1
i . Consequently ∀Jj

i latj
i = f j

i − F j
i . This is the crucial

property that we will exploit to compute an upper bound to
the maximum lateness.

An example of the service provided by a MPS and by its
reference DPS is shown in Fig. 2.A. The task set is comprised

of 4 periodic tasks, all with period 4 and job length 3. Arriv-

ing jobs are depicted using the same conventions as in Fig. 1.

Jobs are scheduled by EDF in the MPS. Especially, since

ties can be arbitrarily broken, in this example we chose to
break ties in favor of lower index tasks to draw one of the

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

A

3/4

3/4

3/4

3, 4

3, 4

3, 4

3, 4

DP2

DP3

DP1

DP4

t

t

1

2

3

4

Task E, P

Proc. Speed DPS service

Job arrivals

t

1

1

1P3

P2

P1

Proc. Speed MPS service

4

3

1

2

{1, 2, 3, 4}

{3, 4}

{1, 2, 3, 4}

t

{4}

{1, 2, 3, 4}
B

3/4

)|t|α(

2

111

s=15

1211873 15 16

b=8

1

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

1 1 1 1

11

1 4

3

2

4

3

2

4

4

2

343

1

Figure 2. Comparing the MPS and the DPS.

possible schedules. The figure clearly shows that, whereas

the DPS correctly schedules all the jobs, the MPS misses e.g.

the deadline of job J1
4 at time 4. Upon J1

4 completion, task
4 has lateness 3. The situation gets worse during the second

period, and both J2
3 and J2

4 miss their deadline at time 8.

Hereafter we will consider the following two systems: a
generic MPS and its reference DPS. We will refer to these

systems as the MPS and the DPS, respectively. We can now

define the class of schedulers we will focus on.

Definition 2 We say that a priority-driven scheduler for the

MPS is a DPS Finish Time (DPS-FT) scheduler, if, denoted

with P j
i the priority of the generic job Jj

i , we have that

∀Jj
i , J l

k

{

P j
i = P l

k ⇐⇒ F j
i = F l

k

P j
i > P l

k ⇐⇒ F j
i < F l

k

(1)

and, at each time instant, the available processors are allo-

cated to the highest priority jobs. Ties are arbitrarily broken.

In other words, in a DPS-FT scheduler the ordering among

job priorities is the opposite of the ordering between job fin-

ish times in the DPS. Since ∀Jj
i F j

i = dj
i , EDF is a DPS-FT

scheduler. Hereafter, we will assume that a DPS-FT sched-

uler is used to schedule jobs in the MPS.
Under the assumptions of constant speed processors and

of tasks with constant job length, any DPS-FT scheduler

is equivalent to EDF (i.e. it generates the same schedules).
However, all the following lemmas and theorems will be ac-

tually proved in the more general case where all the proces-

sors have the same time-varying speed R(t), and where each
dedicated processor has time-varying speed RDPS

i (t) = Ui ·
R(t). In this case, the class of DPS-FT schedulers can also

include schedulers different from EDF. While this general-
ization does not complicate the proofs, it paves the way for

future more general results.
We define as WMPS

i (t) and WDPS
i (t) the amount of ser-

vice provided by, respectively, the MPS and the DPS to the

i-th task during [0, t]. We define the total amount of ser-
vice provided by the MPS and the DPS during [0, t] as, re-

R Speed of any of the processors

M Number of processors in the system

WS(t) Total amount of service delivered by the sys-

tem S during [0, t]
WS

i (t) Amount of service received by the i-th task

during [0, t] in a system S
L(J) Length (num. of execution cycles) of job J

Jj
i The j-th job of the i-th task

aj
i , sj

i , f j
i Arrival time, start time, finish time of Jj

i

F j
i (Virtual) finish time of Jj

i in the DPS

Li (Worst-case) length of i-th task

Ei (Worst-case) execution time of i-th task

Lmax Maximum job length over all the tasks

Emax Maximum execution time over all the tasks

lagi(t) Lag of task i (WDPS
i (t) − WMPS

i (t)).

Table 1. Notations used in this paper.

spectively, WMPS(t) ≡
∑

i WMPS
i (t) and WDPS(t) ≡

∑

i WDPS
i (t). We define as lag of the i-th task at time t

the following quantity:

lagi(t) ≡ WDPS
i (t) − WMPS

i (t)

For brevity, given two time instants t2 > t1, we define

WMPS
i (t1, t2) ≡ WMPS

i (t2) − WMPS
i (t1). We use the

same short notation for WDPS
i , WMPS , WDPS and lagi.

In the proofs we will often use the following property:

since RDPS
i ≤ R ∀i, the lag of a task can not increase during

the service of one of its job chains. For example, in Fig. 2.A

the lag of task 4 increases during [0, 3], and it is equal to 9
4

at time 3. Conversely, it decreases during [3, 6], and it is e.g.

equal to 2 at time 4.

Since the lag of a task may be a useful figure of merit, in
this paper we report an upper bound to the maximum per-

task lag in addition to the one on the maximum lateness. The

notations introduced until now are summarized in Table 2.1.

3. Maximum lag and maximum lateness

In this section we enunciate and briefly discuss the follow-

ing theorems, which constitute the main results of this paper.

Theorem 1 If an MPS comprised of M identical processors

is scheduled using a DPS-FT scheduler, the following guar-

antees on the lag experienced by any task hold:

∀i, t lagi(t) ≤ (1−
Ui

M
)·Li+Ui·(

M

M − 1
)M−3·Lmax (2)

∀Jj
i lagi(f

j
i) ≤ Ui ·

[

M − 1

M
· Li + (

M

M − 1
)M−3 · Lmax

]

(3)

Theorem 2 If an MPS comprised of M identical constant

speed processors is scheduled using a DPS-FT scheduler, the

following guarantees on the job lateness hold:

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

∀Jj
i latj

i ≤
M − 1

M
· Ei + (

M

M − 1
)M−3 · Emax. (4)

The formal proofs of the theorems (and of the next corol-

lary) are reported in the next section. We can note that proces-

sors are not required to have constant speed for Theorem 1 to
hold (but they must be identical, i.e. they must all have the

same speed at any time instant). With regard to Theorem 2,

we highlight that, when M = 1, Eq. (4) collapses to the EDF

guarantee ∀Jj
i latj

i = 0, since (M
M−1)M−3 becomes equal to

zero.

It is easy to prove that the right terms in Inequalities (2),
(3) and (4) are all non-decreasing functions of M , and that

(limM→+∞
M

M−1)M−1 = e. It follows that:

Corollary 1 If an MPS comprised of M identical proces-

sors is scheduled using a DPS-FT scheduler, the following

inequalities hold:

∀i, t lagi(t) ≤ (1 −
Ui

M
) · Li + e · Lmax (5)

∀Jj
i lagi(f

j
i) ≤ Ui · [Li + e · Lmax] (6)

Furthermore, if processors have constant speed, the fol-

lowing inequality holds:

∀Jj
i latj

i ≤ Ei + e · Emax. (7)

As can be seen, the corollary provides simpler but more
conservative upper bounds. Finally, it is worth noting that all

the above results hold also when tasks fully utilize the system.

4. Proofs

In this section we will formally prove Theorems 1 and

2, and Corollary 1. First, we introduce the notations used
in the proofs and the proof strategy. The proofs are essen-

tially based on computing a bound to lagi(t), from which the

bound on the lateness will be then derived.

The following Lemma restricts the time instants to be con-
sidered when computing an upper bound to the lag.

Lemma 1 The maximum lag experienced by a task is no

higher than the maximum lag that the task can experience

at the start time of some of its job fractions.

Proof. When a task is inactive, its lag is necessarily no higher

than 0. Consider instead a generic maximal active period

[t1, t2] of task i. Let Xk
i be the k-th job fraction of task i

served by the MPS. Any time instant t ∈ [t1, t2] necessarily

falls into a sub-interval [fk−1
i , fk

i] ⊆ [t1, t2] ranging from

the finish time fk−1
i of a job fraction Xk−1

i , and the finish
time of the next job fraction Xk

i served by the MPS (if Xk
i

is the first job fraction of task i executed during [t1, t2], then

we assume fk−1
i = t1). Since the lag can not increase during

the service of a job, we have that

max
t∈[fk−1, fk

i]
lagi(t) = lagi(s

k
i)

where sk
i is the start time of the fraction Xk

i . �

Consequently, in the next subsection we will focus on
computing the maximum lag of the task at the start time s

of a generic job fraction X belonging to a job Jj
i .

First, if s = aj
i , then lagi(s) = 0 because both the MPS

and DPS have finished all the pending jobs at s−.

Let us then consider the case s > aj
i (note that, in gen-

eral, s might be even larger than F j
i , i.e. larger than the job

deadline in case of EDF).

To handle this case, we define as α(t) the set of the tasks

owning pending jobs with priority no lower than X at time
t. For example, in case of EDF, α(t) includes all the tasks

owning jobs with deadline no higher than Jj
i (i.e. than the

job X belongs to) at time t. Note that ∀t ∈ [aj
i , s) i ∈ α(t),

because Jj
i is pending during [aj

i , s) and, by definition, its

priority is equal to the priority of its fraction X . Fig. 2.B

shows the values assumed by α(t) and |α(t)| during [0, s),
assuming the fraction X to coincide with the whole job J4

4 ,

which in turn starts service at time s = 15 in Fig. 2.A.

There are only two possible causes for X to start at time

s > aj
i : 1) X is blocked by priority, that is at least M tasks

own pending jobs with priority no lower than Jj
i at time s−

(|α(s−)| ≥ M); 2) X is blocked by the precedence constraint
at time s−.

In the second case, X belongs to a chain. Since the lag

of a task does not increase while its jobs are being served,
the maximum lag of the task is trivially upper bounded by

its maximum lag at the start time of the chain head. This

is in its turn equal to 0, unless the chain head is blocked by
priority. As a conclusion, the problem that remains to solve

is computing the maximum lag of the task at the start time of

a fraction blocked by priority. To this aim, we will use the
following two definitions.

Definition 3 Given a job fraction X blocked by priority, we

define as last priority blocking period for X the time inter-

val [b, s), where b is the smallest time instant b such that

∀t ∈ [b, s) |α(t)| ≥ M , i.e. such that at least M tasks are

continuously active and have pending jobs with priority no

lower than X during [b, s).

Fig. 2.B shows the last priority blocking period of the job

J4
4 . We note that b might in general precede aj

i . Furthermore,

we will exploit the following two properties of the last pri-

ority blocking period: |α(b−)| < M , and the MPS is in full
load during [b, s).

Definition 4 We define Γ as the set of the jobs that receive

service in the MPS during [b, s).

Notice that, by definition of last priority blocking period,

the jobs in Γ have priority no lower than X . As an ex-
ample, assuming again X = J4

4 in Fig. 2, we have that

Γ = {J2
3 , J2

4 , J3
1 , J3

2 , J3
3 , J3

4 , J4
1 , J4

2 , J4
3}.

The MPS starts serving X only after serving part of the
jobs in Γ. However, the jobs in Γ have priority no lower than

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

Jj
i , which means that they finish no later than Jj

i in the DPS.

Hence, the DPS must complete all the jobs in Γ before it can

complete Jj
i . Furthermore, since the MPS works at maxi-

mum total speed during [b, s], it consumes the jobs in Γ at

a pace no lower than the one at which the DPS could con-
sume them during the same time interval. For these reasons,

intuitively, the maximum value of lagi(s) depends on how

ahead is the DPS with respect to the MPS in the service of
the jobs in Γ at time b. More formally, we will show that the

maximum value of lagi(s) depends on the following quan-

tity:
∑

j∈αpos lagj(b), where αpos ⊆ α(b) is the subset of
the tasks with positive lag at time b. We call total lag related

to the fraction X the above quantity.

We can now define the proof strategy: we will first ex-

press the maximum lag of a task as a function of the total

lag in Subsection 4.1. This general formula will serve two
purposes. We will first use it in Subsection 4.2 to compute

an upper bound to the total lag itself. Then, in the last sub-

section, we will substitute the just computed bound in the
general formula, thus getting an upper bound to the lag ex-

perienced by a task. Finally, the latter bound will be used to

compute an upper bound to the lateness experienced by a job.
A more detailed version of any of the following proofs can

be found in [15].

4.1. Basic lemmas

This subsection contains four lemmas: the first two lem-
mas allows us to provide an upper bound to the lag of a task

as a function of the total lag, whereas the last two lemmas are

just algebraic facilities that will be used in next subsection to
compute the maximum total lag.

As an intermediate step for computing an upper bound to
the maximum lag of a task, the next lemma provides an up-

per bound to the difference between the total amount of ser-

vice WMPS(b, s) that the MPS provides during [b, s] and

the total amount of service WDPS(b, F j
i) that the DPS must

provide during [b, F j
i] to finish Jj

i .

In the lemma, a special set of tasks σ is defined. We will

discuss the use of σ just after enunciating the lemma.

Lemma 2 Let X be a generic job fraction, belonging to a

job Jj
i , that starts service at time s in the MPS after being

blocked by priority. Let σ be any subset of the M − 1 tasks

whose jobs are under execution at time s, excluding task i.
We have:

WMPS(b, s) − WDPS(b, F j
i) ≤

∑

h∈αpos lagh(b) −
∑

h∈σ lagh(s) − Lres(Jj
i)

(8)

where Lres(Jj
i) is the difference between the length of Jj

i and

the portion of Jj
i already served by the MPS at time s, b is

the beginning of the last priority blocking period of X , and

αpos ≡ {i ∈ α(b) | lagi(b) > 0}.

Before the proof, a quick comment on the set σ. It can be

any subset of the tasks that are active at time s, i excluded.
For example, assuming X = J4

4 in Fig. 2, the possible values

of σ are {2}, {3} and {2, 3}. The lemma holds for any choice

of σ. In the following, we will use this same lemma with
different values of σ to achieve different results. In fact, if

we set σ = ∅, Inequality (8) provides an upper bound to

WMPS(b, s) − WDPS(b, F j
i) as a function of the total lag,

which will be used for computing an upper bound to the lag

of any task. Conversely, the case σ �= ∅ will be used when

computing an upper bound to the total lag. The proof of the
lemma follows.

Proof. To prove Inequality (8), we will first compute

an upper bound to WMPS(b, s), then a lower bound to

WDPS(b, F j
i), and finally subtract them. Let Γ(σ) ⊆ Γ

be the subset of the jobs in Γ issued by the tasks in σ, and

Γ(σ) ≡ Γ\Γ(σ). For both bounds, we will separate the con-
tribution due to the jobs in Γ(σ) from the contribution due to

the jobs in Γ(σ). We start by computing an upper bound to

WMPS(b, s).
During [b, s) the MPS serves only some fractions (at most

all the fractions) of the jobs in the previous two sets. Hence,

defined as L(Γ(σ)), WMPS
Γ(σ) (b) and WMPS

Γ(σ) (b, s) the sum of

the length of the jobs in Γ(σ), the service that the MPS gave
to the jobs in Γ(σ) before time b and the amount of service

provided to the tasks in σ by the MPS during [b, s], respec-

tively, we have that:

WMPS(b, s) ≤ L(Γ(σ))− WMPS
Γ(σ) (b) + WMPS

Γ(σ) (b, s) (9)

Second, we compute a lower bound for WDPS(b, F j
i).

Observe that: 1) not all the jobs in Γ have arrived at time b,

2) the DPS must complete all the jobs in Γ no later than F j
i .

It follows that F j
i ≥ b. As done before, we separate the con-

tribution of the jobs in Γ(σ) from the one of the jobs in Γ(σ).
With regard to the latter set, the DPS must certainly have

served both all the jobs in Γ(σ), and the portion Lres(Jj
i)

before finishing Jj
i . However, part of these jobs might have

arrived before b, and the DPS might have already (partially)

served them. The service provided to these jobs can be writ-

ten as WDPS
Γ(σ) (b) + WDPS

J
j
i

(b). In the end, we can write:

WDPS(b, F j
j) ≥

L(Γ(σ)) + WDPS
Γ(σ) (b, F j

i) + Lres(Jj
i) +

− (WDPS
Γ(σ) (b) + WDPS

J
j
i

(b)).
(10)

Now we find an upper bound to the last term. Consider
a generic job J ∈ Γ(σ). If at time b the DPS has already

served a portion of J larger than the portion already served
by the MPS, then J is pending in the MPS at time b and has

priority no lower than X . Let q be the task that generated J .

We have that lagq(b) > 0. Let WMPS
J (b) and WDPS

J (b) be
the service that the MPS and DPS give to J before b, respec-

tively. We have that WDPS
J (b) > WMPS

J (b) ≥ 0. Finally,

let WMPS

J
(b) and WDPS

J
(b) be, respectively, the service that

the MPS and the DPS give to the jobs of q, excluding J , be-

fore b.

By definition, q ∈ αpos\σ. Moreover, from the defini-

tion of lagq(b) we get WDPS
J (b) = lagq(b) + WMPS

J (b) −

(WDPS

J
(b) − WMPS

J
(b)). Since WDPS

J (b) > WMPS
J (b),

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

WDPS

J
(b) − WMPS

J
(b) ≥ 0. In the end,

WDPS
J (b) ≤ lagq(b) + WMPS

J (b).

Summing over all the jobs J ∈ Γ(σ) and applying the

above arguments to WDPS

J
j
i

(b) as well, we get:

WDPS
Γ(σ) (b) + WDPS

J
j
i

(b) ≤
∑

q∈αpos\σ lagq(b) + WMPS
Γ(σ) (b) ≤

∑

q∈αpos lagq(b) + WMPS
Γ(σ) (b)

(11)

We can divide σ into two subset, a subset σ1 ⊆ α(b) and a

subset σ2 such that σ2∩α(b) = ∅. Finally, defined σpos
1 ⊆ σ1

as the subset of the tasks whose lag is positive at time b, we

have
∑

q∈αpos\σ lagq(b) =
∑

q∈αpos lagq(b) −
∑

q∈σ
pos
1

lagq(b) ≤
∑

q∈αpos lagq(b) −
∑

q∈σ1
lagq(b) =

∑

q∈αpos lagq(b) −
∑

q∈σ lagq(b).

(12)

where the last equality follows from the fact that ∀q ∈
σ2 lagq(b) = 0.

Substituting (12) in (11), we get

WDPS
Γ(σ) (b) + WDPS

J
j
i

(b) ≤
∑

q∈αpos

lagq(b) −
∑

q∈σ

lagq(b).

(13)

At this point, we can return back to Inequality (10) and
write:

WDPS(b, F j
j) ≥

L(Γ(σ)) + WDPS
Γ(σ) (b, F j

i) + Lres(Jj
i)+

−
∑

q∈αpos lagq(b) +
∑

q∈σ lagq(b) − WMPS
Γ(σ) (b)

Subtracting the last inequality from (9), we get:

WMPS(b, s) − WDPS(b, F j
i) ≤

WMPS
Γ(σ) (b) − WDPS

Γ(σ) (b, F j
i)+

−Lres(Jj
i) +

∑

q∈αpos lagq(b) −
∑

q∈σ lagq(b).
(14)

We can simplify the above expression by considering that

WMPS
Γ(σ) (b, s) − WDPS

Γ(σ) (b, F j
i) ≤

WMPS
Γ(σ) (b, s) − WDPS

Γ(σ) (b, s) =

−
∑

j∈σ lagj(b, s)

(15)

Substituting (15) in (14), we get the thesis.

�

Using the bound computed in the previous lemma, we can

now prove the following lemma, which expresses the maxi-
mum lag of a task as a function of the total lag.

Lemma 3 Let X be a generic job fraction, belonging to a

job Jj
i , that starts service at time s in the MPS after being

blocked by priority. Let σ be any subset of the M − 1 tasks

, excluding task i, whose jobs are under execution at time s.

We have:
lagi(s) ≤ Lres(Jj

i)+

+Ui

M
·
[

∑

j∈αpos lagj(b) −
∑

j∈σ lagj(s) − Lres(Jj
i)

]

(16)

where Lres(Jj
i) is the difference between the length of Jj

i and

the portion of Jj
i already served by the MPS at time s, b is

the beginning of the last priority blocking period of X , and

αpos ≡ {i ∈ α(b) | lagi(b) > 0}.

Proof. The proof strategy is as follows: we will first express

lagi(F
j
i) in a convenient form, then we will find an upper

bound to lagi(s) − lagi(F
j
i), finally we will sum this bound

to lagi(F
j
i). We have that:

WDPS
i (F j

i) = WMPS
i (s) + Lres(Jj

i) (17)

We can do some algebraic manipulations:

WMPS
i (s) = WMPS

i (F j
i) + ∆ (18)

where ∆ ≡ WMPS
i (s) − WMPS

i (F j
i). Substituting succes-

sively (17) and (18) in the definition of lagi(F
j
i), we get

lagi(F
j
i) = Lres(Jj

i) + ∆ (19)

We will now compute an upper bound to lagi(s) −

lagi(F
j
i). From (18) we get:

lagi(s)−lagi(F
j
i) =

[

WDPS
i (s) − WDPS

i (F j
i)

]

−∆ (20)

We want now to exploit Lemma 2 to find an upper bound

to the difference WDPS
i (s) − WDPS

i (F j
i) in (20). To this

aim, we can first put this difference in a more convenient

form:

WDPS
i (s) − WDPS

i (F j
i) = WDPS

i (b, s) − WDPS
i (b, F j

i)
(21)

We need a last step arrive to a form similar to the left

member of Inequality (8). To this aim, we will work on

WDPS
i (b, s). Since [b, s] falls inside a full-load period (at

least M tasks are active during [b, s)), then ∀t ∈ [b, s] the

total speed of the MPS at time t is RMPS(t) = M · R(t). In

contrast, the total speed RDPS(t) of the DPS is:

R
DPS(t) =

j∈ADP S(t)

Uj · R(t) =
j∈ADP S(t) Uj

M
· R

MPS(t)

where ADPS(t) is the set of the tasks active under the DPS

at time t. Furthermore, WDPS
i (b, s) is maximum if the DPS

continuously serves the i-th task during [b, s]. Defined χi(t)
as the fraction of the total speed that the DPS dedicates to the

i − th task at time t ∈ [b, s] under this hypothesis, we have

χi(t) = Ui

j∈ADP S(t)
Uj

. In the end:

WDPS
i (b, s) ≤

∫ s

b
χi(τ) · RDPS(τ) · dτ =

∫ s

b
Ui

j∈ADP S(τ)
Uj

· j∈ADP S(τ)
Uj

M
· RMPS(τ) =

Ui

M
· WMPS(b, s)

(22)

As a conclusion, substituting the last inequality in (21) and

exploiting (8), we get

WDPS
i (s) − WDPS

i (F j
i) ≤

Ui

M
·
[

WMPS(b, s) − WDPS(b, F j
i)

]

Ui

M
·
[

∑

j∈αpos lagj(b) −
∑

j∈σ lagj(s) − Lres(Jj
i)

]

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

Substituting the last inequality in (20), and summing to

(19), we get the thesis. �

The following two purely algebraic Lemmas will prove

useful in the next subsection. For space constraints, we re-
moved their proofs, which can be found in [15].

Lemma 4 Defined the following two functions:

gi(x) ≡

{

x i = 1

Ai + Ei ·
[

Bi −
∑i−1

j=1 gj(x)
]

i = 2, . . . , K

with Ai ≥ 0, Bi ≥ 0 and 0 ≤ Ei ≤
1
M

i = 2, . . . , K , and
1 ≤ K ≤ M ; and defined

f(K, A2, . . . , AK , B2, . . . , BK , E2, . . . , EK , x) ≡

K

i=1

gi(x)

f(K, A2, . . . , AK , B2, . . . , BK , E2, . . . , EK , x) is a

non-decreasing function of x.

Lemma 5 We define

hi ≡ C + Pi ·

D −
i−1
∑

j=1

hj

 i = 1, 2, . . . , K (23)

with C > 0, D > 0,0 ≤ Pi ≤
1
M

i = 2, . . . , K , 1 ≤ K ≤
M , and assuming

∑m

j=l aj ≡ 0 if l < m. We have

z(K, C, D, P1, P2, . . . , PK) ≡
∑K

i=1 hi ≤
K · C + D ·

[

1 − (M−1
M

)K
]

4.2. Bounding the total lag

We need a last intermediate lemma.

Lemma 6 Let A(t̄) be any subset of V ≤ M tasks under

service at time t̄. We have that:
∑

j∈A(t̄) lagj(t̄) ≤ V · M−1
M

· Lmax+

+
[

1 − (M−1
M

)V
]

· maxj∈A(t̄)

[

∑

i∈α
pos
j

lagi(bj)
]

where bj is the beginning of the last priority blocking period

of the head Xj of the chain, under service at time t̄, of the j−
th task in A(t̄), αpos

j is the set of the tasks whose pending jobs

have priority no lower than Xj , and whose lag is positive at

time bj .

Proof. We will first find an upper bound to
∑

j∈A(t̄) lagj(t̄)

with the same form of function z in Lemma 5, then we will
apply this lemma to prove the thesis. We can assume, without

losing generality, that the V tasks in A(t̄) are the tasks 1, 2,

. . ., V , and that they are ordered by the start time sj of the
chain heads Xj . Let J(Xj) be the job the fraction Xj belongs

to. We define

Lag ≡ max
j∈A(t̄)

∑

i∈α
pos
j

lagi(bj)

From Lemma 3 and posing σ = {1, 2, . . . , V − 1}, we

can write

lagV (t̄) ≤ lagV (sV) ≤
M−UV

M
· Lres(J(XV)) + UV

M
·
[

Lag −
∑V −1

j=1 lagj(sV)
]

≤

M−UV

M
· Lmax + UV

M
·
[

Lag −
∑V −1

j=1 lagj(t̄)
]

because the lag of a task can not increase during the execution
of one of its chains (tasks 1, 2, . . ., V − 1 are continuously

served during [sV , t]). Now we define

λj(t̄) ≡
M − 1

M
· Lmax +

Uj

M
·

[

Lag −

j−1
∑

i=1

lagi(t̄)

]

Considering that lagV (t̄) ≤ λV (t̄) and adding lagV −1(t̄)
we get

lagV −1(t̄) + lagV (t̄) ≤ lagV −1(t̄) + λV (t̄) =

f(2, A2 = M−1
M

· Lmax, B2 = Lag −
∑V −2

i=1 lagi(t̄),

E2 = UV

M
, lagV −1(t̄))

(24)

where the function f is the one defined in Lemma 4, and, as
such, it is a non-decreasing function of lagV −1(t̄). Hence, to

find an upper bound to its value, we look for the maximum

value that can be assumed by lagV −1(t̄).
From Lemma 3, posing σ = {1, 2, . . . , V − 2}, and

repeating the same steps as above, we get lagV −1(t̄) ≤
λV −1(t̄). Hence, considering (24), the previous bound on

lagV −1(t̄) and Lemma 4, we have

lagV −1(t̄) + lagV (t̄) ≤ λV −1(t̄) + λV (t̄)

By inductively applying this argument, after V steps we

get: V
∑

j=1

lagj(t̄) ≤
V

∑

j=1

λj(t̄)

Hence, the thesis follows from applying Lemma 5 to
∑V

j=1 λj(t̄) = z(V, C = M−1
M

· Lmax, D = Lag, P1 =
U1

M
, P2 = U2

M
, . . . , PV = UV

M
).

�

We can now compute an upper bound to the total lag.

Theorem 3 For any job fraction X which starts service in

the MPS after being blocked by priority, we have
∑

j∈αpos

lagj(b) ≤ (
M

M − 1
)M−2 · (M − 1) · Lmax (25)

where b is the beginning of the last priority blocking period

of X , and αpos ≡ {i ∈ α(b) | lagi(b) > 0}.

Proof. We will proceed by induction. For the base case,

let X be the first job fraction blocked by priority from the
beginning of the lifetime of the system. In such a case b co-

incides with the beginning of the first congestion period for

the MPS, which implies
∑

j∈αpos lagj(b) ≤ 0. Hence (25)
trivially holds.

For the inductive step, suppose that (25) holds for all the

job fractions blocked by priority that started service before

X . From the definition of last priority blocking period, it
follows that the tasks in αpos are less than M and cannot be

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

blocked by priority at time b−. Hence, they are all under

service at time b−. From Lemma 6 and Inequality (25), we
can write

∑

j∈αpos lagj(b) ≤ |αpos| · M−1
M

· Lmax+

+
[

1 − (M−1
M

)|α
pos|

]

·
[

(M
M−1)M−2 · [(M − 1) · Lmax]

]

Consider that, as |αpos| increases, (M−1
M

)|α
pos| decreases,

hence the right term in the previous inequality increases.
Hence, since |αpos| ≤ M − 1, the thesis follows from set-

ting |αpos| = M − 1. �

4.3. Maximum lag and maximum lateness

First we prove our upper bounds to the lag.

Proof of Theorem 1 Due to space limitations and since the

proof is quite intuitive, we report just a sketch here. The full
proof can be found in [15].

Given a fraction X blocked by priority, it is easy to prove

that lagi(s) is upper bounded by the the right term of (2), by

just assuming σ = ∅ in Lemma 3 and substituting in (16)
the upper bound to the total lag provided by Theorem 3. It

is easy to prove that the same bound holds if X is blocked

by precedence, by considering that the lag of a task can not
increase while the task is being served, and assuming that the

chain head is blocked by priority. Finally, thanks to Lemma

1, the Inequality (2) holds at any time instant.

The upper bound (3) on the completion time of a job can
be computed by applying the above arguments to the last frac-

tion of the job, and subtracting, to the upper bound to lagi(s),
the difference between the amount of service received by
the task during the service of the fraction and the maximum

amount service that the task can receive in the DPS during

the same time interval. �

We can now prove our upper bound to the lateness.

Proof of Theorem 2 Recall that latji = f j
i − F j

i . If f j
i ≤

F j
i , the thesis trivially holds. Consider the case f j

i > F j
i . We

will prove the thesis by contradiction. The schedules of (the

fractions of) Jj
i in the MPS and in the DPS, and hence the

difference f j
i − F j

i , do not depend on whether task i issues

new jobs after aj
i . Suppose that indeed an indefinite number

of jobs has been issued by task i at time aj
i . In such a case, if

the upper bound (4) does not hold, we have that

WDPS
i (F j

i , f j
i) >

Ui ·
[

M−1
M

· Li, max + (M
M−1)M−3 · Lmax

]

Furthermore, since WDPS
i (F j

i) = WMPS
i (f j

i) we have

lagi(f
j
i) =

WDPS
i (f j

i) − WMPS
i (f j

i) =

WDPS
i (f j

i) − WDPS
i (F j

i) =

WDPS
i (F j

i , f j
i) >

Ui ·
[

M−1
M

· Li + (M
M−1)M−3 · Lmax

]

which contradicts Inequality (3). �

All is left to prove is Corollary 1.

Proof of Corollary 1 It is immediate to note that (2), (3)

and (4) are non-decreasing functions of M if and only if
(M

M−1)M−1 is a non decreasing function of M . Assuming

M ≥ 1, and defined x ≡ M − 1 ≥ 0, we have

(M
M−1)M−1 = (1 + 1

x
)x

Defined f(x) ≡ (1 + 1
x
)x, we can compute the first deriv-

ative D[f(x)] = ex·log[1+ 1
x] ·

[

log
[

1 + 1
x

]

− 1
x+1

]

. It is easy

to prove that D[f(x)] ≥ 0 ∀x ≥ 0. Hence ∀x ≥ 0 f(x) ≤
limx−>∞(1 + 1

x
)x = e. The thesis follows from substituting

e in place of (M
M−1)M−1 in the right terms of (2), (6) and (4).

�

5. Simulations

We simulated EDF global scheduling over 19 SMP plat-

forms, comprised of 2, 3, . . . , 20 unit-speed processors, re-

spectively. For each SMP, we considered four different types
of task sets, all with total utilization equal to the number of

available processors. The first type of task sets was made
only of light tasks, i.e. tasks with utilization no higher than

0.5. In the second type, half of the total capacity was de-

voted to light tasks, while the other half was devoted to heavy

tasks, i.e. tasks with utilization higher than 0.5. The third type

of task sets was made only of heavy tasks. The fourth type

was made only of very heavy tasks, i.e. tasks with utilization
higher than 0.8.

For each SMP and for each type of task set, 50 task sets
were randomly generated. Finally, for each task set, the cor-

responding EDF schedule was simulated for 2·104 ·105 ticks,

105 ticks being the maximum task period.

For the first type of task sets, Fig. 3.(a) shows, for each

SMP, the maximum ratio recorded, over the 50 simulation

runs, between the lateness experienced by a task and the value
of the upper bound (4) for the task. We will shortly refer to

the above quantity as the maximum ratio. For each SMP,

the mean ratio, i.e. the ratio between the mean lateness ex-
perienced by the task with the maximum ratio and the upper

bound (4) is reported as well.

As can be seen, the maximum ratio decreases as the num-

ber of processors increases. Especially, it is equal to 0.73
for 2 processors, and it stabilizes at about 0.15 for a number
of processors larger than 10. The mean ratio soon becomes

negligible. Moving to the successive types of task sets, both

the maximum and the mean ratio increase. The highest val-
ues are achieved in case of only very heavy tasks, as shown

in Fig. 3.(b). Fig. 3.(c) shows the values of the upper bound
(4) for the tasks that experienced the ratio reported in inset

(b). Especially, the values of the upper bound reported in

Fig. 3.(c) coincide with the ones we obtained for the other
three types of task sets (in fact, according to (4), the bound

does not depend on the utilization of the tasks).

Fig. 3.(b) shows that the bound is virtually tight for two
processors. Then the maximum ratio stabilizes at approxi-

mately 1/3 for a number of processors larger than 10.

In the end, according to the simulations, the bound is tight

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

CPUs

(a) Only light tasks

Ratio maximum lateness/Th. bound
Ratio mean lateness/Th. bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

CPUs

(b) Only very heavy tasks

Ratio maximum lateness/Th. bound
Ratio mean lateness/Th. bound

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 2 4 6 8 10 12 14 16 18 20

ti
c
k
s

CPUs

(c) Only very heavy tasks

Theoretical bound

Figure 3. Inset (a) and (b): ratio between experienced lateness and upper bound. Inset (c): value of the

upper bound.

only for very heavy tasks on 2 processors, while it is too con-

servative in the other cases. However, we could not generate

all the possible light and heavy task sets during simulations.
Finally, the actual bound may depend on the characteristics of

the tasks (computation time and periods). Indeed, determin-

ing a possible relationship between the properties of a task set
and the resulting worst-case lateness is still an open problem.

6. Conclusions

In this paper we propose an upper bound to the lateness

of soft real-time tasks scheduled by EDF on a SMP. First we
show that not all scheduling algorithms are able to provide a

bounded lateness in the case of full utilization. Then, we pro-

pose a bound and prove its correctness. The proposed bound
is in a simple closed form, and it has been shown to be vir-

tually tight for heavy task sets on 2 processors. According to

the simulations, the bound is not tight for more than 2 proces-
sors and for light task sets.

Obviously, we could not generate all the possible light and
heavy task sets during simulations. Hence, proving whether

the bound is tight, for light task sets, and for more than 2

processors, is still an open problem. We believe that possi-
ble relationships between the properties of the tasks and the

actual bound should be investigated.

Acknowledgements

We wish to thank Enrico Bini for his insightful sugges-
tions to improve the presentation of this paper.

References

[1] J. Anderson and A. Srinivasan. Mixed pfair/erfair schedul-

ing of asynchronous periodic tasks. Journal of Computer and

System Sciences, 68(1):157–204, 2004.
[2] B. Andersson. Static-priority scheduling on multiprocessors.

PhD thesis, Department of Computer Engineering, Chalmer

University of Technology, Goteborg, Sweden, 2003.
[3] B. Andersson, S. Baruah, and J. Jonsson. Static-priority

scheduling on multiprocessors. In IEEE, editor, Proceedings

of the IEEE Real-Time Systems Symposium, Dec 2001.

[4] T. Baker. Multiprocessor EDF and deadline monotonic

schedulability analysis. In Proceedings of the 24th IEEE In-

ternational Real-Time Systems Symposium, RTSS’03, 2003.

[5] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportion-

ate progress: A notion of fairness in resource allocation. Al-

gorithmica, 6, 1996.

[6] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Ander-

son, and S. Baruah. Handbook of Scheduling: Algorithms,

Models, and Performance Analysis, chapter A Categorization

of Real-time Multiprocessor Scheduling Problems and Algo-

rithms. Chapman Hall/ CRC Press, 2004.

[7] S. Funk, J. Goossens, and S. Baruah. On-line scheduling

on uniform multiprocessors. In IEEE, editor, Proceedings of

the IEEE Real-Time Systems Symposium, pages 183–192, Dec

2001.

[8] J. Goossens, S. Funk, and S. Baruah. Priority-driven schedul-

ing of periodic task systems on multiprocessors. Real-Time

Systems, 25(2-3):187–205, Sep-Oct 2003.

[9] R. Graham. Computer and Job Scheduling Theory, chapter

Bounds on the performance of scheduling algorithms. Wiley,

New York, 1976.

[10] R. Ha and J. W. S. Liu. Validating timing constraints in mul-

tiprocessor and distributed real-time systems. In 14th IEEE

International Conference on Distributed Computing Systems,

Los Alamitos, 1994.

[11] A. Khemka and R. K. Shyamasunda. Multiprocessor schedul-

ing of periodic tasks in a hard real-time environment. Techni-

cal report, Tata Institute of Fundamental Research, 1990.

[12] A. Mok and M. Dertouzos. Multiprocessor scheduling in a

hard real-time environment. In Proceedings of the Seventh

Texas Conference on Computing Systems, 1978.

[13] Y. Oh and S. H. Son. Allocating fixed-priority periodic tasks

on multiprocessor systems. Journal on Real Time Systems, 9,

1995.

[14] A. Srinivasan and J. Anderson. Efficient scheduling of soft

real-time applications on multiprocessors. In Proceedings of

the at the 15th Euromicro Conference on Real-time Systems,

pages 51–59, July 2003.

[15] P. Valente and G. Lipari. An upper bound to the

lateness of edf on multiprocessors. Technical Re-

port RETIS TR05-01, Scuola Superiore S. Anna, 2005.

http://feanor.sssup.it/~pv/edf_tr.pdf.

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)

0-7695-2490-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:33 from IEEE Xplore. Restrictions apply.

