
Delay Analysis in Temperature-Constrained Hard Real-TimeSystems
with General Task Arrivals

Shengquan Wang
The University of Michigan - Dearborn

Dearborn, MI 48128, USA
shqwang@umd.umich.edu

Riccardo Bettati
Texas A&M University

College Station, TX 77843, USA
bettati@cs.tamu.edu

Abstract

In this paper, we study temperature-constrained hard real-
time systems, where real-time guarantees must be met with-
out exceeding safe temperature levels within the proces-
sor. Dynamic speed scaling is one of the major techniques
to manage power so as to maintain safe temperature lev-
els. As example, we adopt a simple reactive speed con-
trol technique in our work. We design a methodology to
perform delay analysis for general task arrivals under re-
active speed control with First-In-First-Out (FIFO) sche-
duling and Static-Priority (SP) scheduling. As a special
case, we obtain a close-form delay formula for the leaky-
bucket task arrival model. Our data show how simple reac-
tive speed control can decrease the delay of tasks compared
with any constant-speed scheme.

1 Introduction

With the rapidly increasing power density in processors
the problem of thermal management in systems is becom-
ing acute. Methods to manage heat to control its dissipa-
tion have been gaining much attention by researchers and
practitioners. Techniques are being investigated for ther-
mal control both at design time through appropriate pack-
aging and active heat dissipation mechanisms, and at run
time through various forms of dynamic thermal manage-
ment (DTM) (e.g., [1]).

Thermal management through packaging (that improves
airflow, for example) and active heat dissipation will be-
come increasingly challenging in the near future, due to the
high levels of peak power involved and the extremely high
power density in emerging systems-in-package [2]. In ad-
dition, the packaging requirements and operating environ-
ments of many high-performance embedded devices render

This work was funded by NSF under Grant No. CNS-0509483, while
Dr. Wang was at Texas A&M University.

such approaches inappropriate.
A number of dynamic thermal management approaches

to control the temperature at run time have been proposed,
ranging from clock throttling to dynamic voltage scaling
(DVS) to in-chip load balancing:

• The Pentium 4 Series processors usesClock Throt-
tling [3] or Clock Gating[4] to stall the clock and so
allow the processor to cool during thermal overload.

• Dynamic Voltage Scaling(DVS) [1] is used in a va-
riety of modern processor technologies and allows to
switch between different frequency and voltage op-
erating points at run time in response to the current
thermal situation. In the Enhanced Intel SpeedStep
mechanism in the Pentium M processor, for example,
a low-power operating point is reached in response
to a thermal trigger by first reducing the frequency
(within a few microseconds) and then reducing the
voltage (at a rate of one mV per microsecond) [3].

• A number ofarchitecture-levelmechanisms for ther-
mal control have been proposed that turn off com-
ponents inside the processor in response to thermal
overload. Skadron et al. [4] for example argue that the
microarchitecture should distribute the workload in
response to the thermal situation by taking advantage
of instruction-level parallelism. The performance pen-
alty caused by this “local gating” would not be exces-
sive. On a coarser level, the Pentium Core Duo Ar-
chitecture allows the OS or the BIOS to disable one
of the cores by putting it into sleep mode [5].

As high-performanceembedded systems become increas-
ingly temperature-constrained, the question of how the ther-
mal behavior of the system and the thermal control mecha-
nisms affect real-time guarantees must be addressed. In this
paper we describe delay analysis techniques in temperature-
constrained hard real-time systems, wheredeadlinecon-
straints for tasks have to be balanced againsttemperature
constraints of the system.

Dynamic speed scaling allows for a trade-off between
these two performance metrics: To meet the deadline con-
straint, we run the processor at a higher speed; To maintain
the safe temperature levels, we run the process at a lower
speed. The work on dynamic speed scaling techniques to
control temperature in real-time systems was initiated in [6]
and further investigated in [7]. Both [6] and [7] focus on
online algorithms in real-time systems, where the scheduler
learns about a task only at its release time. In contrast, in
our work we assume a deterministic task model (e.g., peri-
odic tasks) and so allows for design-time delay analysis.

We distinguish between proactive and reactive speed scal-
ing schemes. Whenever the temperature model is known,
the scheduler could in principle use aproactivespeed-scaling
approach, where – similarly to a non-work-conservingsched-
uler – resources are preserved for future use. In this pa-
per, we limit ourselves toreactiveschemes, and propose a
simple reactive speed scaling technique for the processor,
which will be discussed in Section 2. We focus on reactive
schemes primarily because they are simple to integrate with
current processor capabilities through the ACPI power con-
trol framework [8, 9]. In our previous paper [10], we mo-
tivate the reactive scheme and perform delay analysis for
identical-period tasks. In this paper, we extend it to general
task arrivals with First-in First-out (FIFO) scheduling and
Static-Priority (SP) scheduling.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the thermal model, speed scaling sche-
mes, and task model and scheduling algorithms. After in-
troducing two important lemmas in Section 3, we design
the methodology to perform delay analysis for FIFO and
SP scheduling algorithms in Sections 4 and 5 respectively.
We measure the performance in Section 6. Finally, we con-
clude our work with final remarks and give an outlook on
future work in Section 7.

2 Models

2.1 Thermal Model

A wide range of increasingly sophisticated thermal mod-
els for integrated circuits have been proposed in the last
few years. Some are comparatively simple, chip-wide mod-
els, such as developed by Dhodapkaret al. [11] in TEM-
PEST. Other models, such as used in HotSpot [4], describe
the thermal behavior at the granularity of architecture-level
blocks or below, and so more accurately capture the effects
of hotspots.

In this paper we will be using a very simple chip-wide
thermal model previously used in [6, 7, 11, 12]. While this
model does not capture fine-granularity thermal effects, the
authors in [4] for example agree that it is somewhat appro-
priate for the investigation of chip-level techniques, such

as speed-scaling. In addition, existing processors typically
have well-defined hotspots, and accurate placement of sen-
sors allows alleviates the need for fine-granularity tempera-
ture modeling. The Intel Core Duo processor, for example,
has a highly accurate digital thermometer placed at the sin-
gle hotspot of each die, in addition to a single legacy thermal
diode for both cores [5]. More accurate thermal models can
be derived from this simple one by more closely modeling
the power dissipation (such as the use of active dissipation
devices) or by augmenting the input power by a stochastic
component, etc.

We defines(t) as theprocessor speed (frequency)at time
t. Then the input powerP (t) at timet is usually represented
as

P (t) = κsα(t), (1)

for some constantκ andα > 1. Usually, it is assumed that
α = 3 [6,7].

We assume that the ambient has a fixed temperature, and
that temperature is scaled so that the ambient temperature is
zero. We defineT (t) as the temperature at timet. We adopt
Fourier’s Law as shown in the following formula [6,7,12]:

T ′(t) =
P (t)

Cth

−
T (t)

RthCth

, (2)

whereRth is the thermal resistance andCth is the thermal
capacitance of the chip. Applying (1) into (2), we have

T ′(t) = asα(t) − bT (t), (3)

wherea andb are positive constants and defined as follows:

a =
κ

Cth

, b =
1

RthCth

. (4)

Equation (3) is a classic linear differential equation. If
we assume that the temperature at timet0 isT0, i.e.,T (t0) =
T0, (3) can be solved as

T (t) =

∫ t

t0

asα(τ)e−b(t−τ)dτ + T0e
−b(t−t0). (5)

We observe that we can always appropriately scale the speed
to control the temperature:

• If we want to keep the temperature constant at a value
TC during a time interval[t0, t1], then for anyt ∈
[t0, t1], we can set

s(t) = (
bTC

a
)

1
α . (6)

• If, on the other hand, we keep the speed constant at
s(t) = sC during the same interval, then the temper-
ature develops as follows:

T (t) =
asα

C

b
+ (T (t0) −

asα
C

b
)e−b(t−t0). (7)

This relation between processor speed and temperature is
the basis for any speed scaling scheme.

2.2 Speed Scaling

The effect of many dynamic thermal management sche-
mes (most prominently DVS and clock throttling) can be
described by the speed/temperature relation depicted in (6)
and (7). The goal of dynamic thermal management is to
maintain the processor temperature within a safe operating
range, and not exceed what we call thehighest-temperature
thresholdTH , which in turn should be at a safe margin from
the maximum junction temperature of the chip. Tempera-
ture control must ensure that

T (t) ≤ TH . (8)

On the other hand, we can freely set the processor speed, up
to some maximum speedsH , i.e.,

0 ≤ s(t) ≤ sH . (9)

In the absence of dynamic speed scaling we have to set
a constant value of the processing speed so that the temper-
ature will never exceedTH . Assuming that the initial tem-
perature is less thanTH , we can defineequilibrium speed
sE as

sE = (
b

a
TH)

1
α . (10)

For any constant processor speed not exceedingsE , the pro-
cessor does not exceed temperatureTH . Note that the equi-
librium speedsE is the maximum constant speed that we
can set to maintain the safe temperature level.

A dynamic speed scaling scheme would take advantage
of the power dissipation during idle times. It would make
use of periods where the processor is “cool”, typically after
idle periods, to dynamically scale the speed and temporarily
execute tasks at speeds higher thansE . As a result, dynamic
speed scaling would be used to improve the overall proces-
sor utilization.

In defining the dynamic speed scaling algorithm we must
keep in mind that (a) it must be supported by existing power
control frameworks such as ACPI [8,9], and (b) it must lead
to tractable design – time delay analysis. We therefore use
the following very simplereactivespeed scaling algorithm:

The processor will run at maximum speedsH

when there is backlogged workload and the tem-
perature is below the thresholdTH . Whenever
the temperature hitsTH , the processor will run
at the equilibrium speedsE , which is defined
in (10). Whenever the backlogged workload
is empty, the processor idles (runs at the zero
speed).

If we defineW (t) as the backlogged workload at timet,
the speed scaling scheme described before can be expressed

using the following formula:

s(t) =











sH , (W (t) > 0) ∧ (T (t) < TH)

sE , (W (t) > 0) ∧ (T (t) = TH)

0, W (t) = 0

(11)

Figure 1 shows an example of how temperature changes un-
der reactive speed scaling.

t

Hs
Es

)(ts

t

)(tT

HT

Figure 1. Illustration of reactive speed scal-
ing.

It is easy to show that in any case the temperature never
exceeds the thresholdTH . By using the full speed some-
time, we aim to improve the processor utilization compared
with the constant-speed scaling. The reactive speed scal-
ing is very simple: whenever the temperature reaches the
threshold, an event is triggered by the thermal monitor, and
the system throttles the processor speed.

2.3 Task Model and Scheduling Algorithms

The workload consists of a set of tasks{Γi : i = 1, 2,
. . . , n}. Each taskΓi is composed of a sequence of jobs.
For a job, the time elapsed from thereleasetime tr to the
completiontime tf is called thedelayof the job, and the
worst-case delay of all jobs in TaskΓi is denoted bydi.
Jobs within a task are executed in a first-in first-out order.

We characterize the workload of TaskΓi by theworkload
functionfi(t), the accumulated requested processor cycles
of all the jobs fromΓi released during[0, t]. Similarly, to
characterize the actual executed processor cycles received
by Γi, we definegi(t), the service functionfor Γi, as the
total executed processor cycles rendered to jobs ofΓi during
[0, t].

A time-independent representation offi(t) is the work-
load constraint functionFi(I), which is defined as follows.

Definition 1 (Workload Constraint Function). Fi(I) is a
workload constraint function for the workload functionfi(t),
if for any0 ≤ I ≤ t,

fi(t) − fi(t − I) ≤ Fi(I). (12)

For example, if a taskΓi is constrained by a leaky bucket
with a bucket sizeσi and an average rateρi, then

Fi(I) = σi + ρiI. (13)

Once tasks arrive in our system, a scheduling algorithm
will be used to schedule the service order of jobs from dif-
ferent tasks. Both the workload and the scheduling algo-
rithm will determine the delay experienced by jobs. In this
paper, we consider two scheduling algorithms:First-in First-
out (FIFO)scheduling andStatic Priority (SP)scheduling.

3 Important Lemmas

The difficulty for delay analysis in a system with reac-
tive speed scaling lies in the speed of the processor not be-
ing constant. Moreover the changes in processing speed are
triggered by the thermal behavior, which follows (11). As
a result, as we will show, simple busy-period analysis does
not work.

The following two lemmas show how the change of tem-
perature, job arrival, job execution will affect the tempera-
ture at a later time or the delay of a later job.

Lemma 1. In a system under our reactive speed scaling,
given a time instancet, we consider a job with a release
timetr and a completion timetf such thattr < t andtf <
t. We assume that the processor is idle during[tf , t]. If we
take either of the following actions as shown in Figure 2:

trt ft

trt0t *
ft

(A)

trt
*
ft

(B)

t*
ft*

rt
(C)

Figure 2. Temperature effect.

• Action A: Increasing the temperature at timet0 (t0 ≤
tr) such that the job has the same release timetr but
a new completion timet∗f satisfyingt∗f < t;

• Action B: Increasing the processor cycles for this job
such that the job has the same release timetr but a
new completion timet∗f satisfyingt∗f < t;

• Action C: Shifting the job such that the job has a new
release timet∗r and a new completion timet∗r satisfy-
ing tr < t∗r < t andtf < t∗f < t,

then we haveTt ≤ T ∗
t , whereTt and T ∗

t are the temper-
atures at timet in the original and the modified scenarios
respectively.

Lemma 2. In a system under our reactive speed scaling,
we consider two jobsJk ’s (k = 1, 2), each of which has a
release timetk,r and the completion timetk,f . We assume
t1,f < t2,f . If we take either of the following actions as
shown in Figure 3:

rt ,1 ft ,1 rt ,2 ft ,2

rt ,2
*
,2 ft*

,1 ft*
,1 rt

rt ,1
*
,1 ft *

,2 ft

rt ,1 ft ,1 rt ,20t
*
,2 ft (A)

(B)

(C)

rt ,2

Figure 3. Delay effect.

• Action A: Increasing the temperature att0 (t0 ≤ t2,r)
such that JobJ2 has the same release timet2,r but a
new completion timet∗2,f ;

• Action B: Increasing the processor cycles of JobJ1

such that JobJk (k = 1, 2) has the same release time
tk,r but a new completion timet∗k,f ;

• Action C: Shifting JobJ1 such that JobJ1 has a new
release timet∗1,r and a new completion timet∗1,f , and
JobJ2 has the same release timet2,r and a new com-
pletion timet∗2,f satisfyingt1,r ≤ t∗1,r and t∗1,f ≤
t∗2,f ,

thent2,f ≤ t∗2,f . If we defined2 andd∗2 as the delay of Job
J2 in the original and the modified scenarios respectively,
thend2 ≤ d∗2.

The proofs of Lemmas 1 and 2 can be found in [13].
Here we summarize the three actions defined in the above
two lemmas as follows:

• Action A: Increasing the temperature at some time
instances;

• Action B: Increasing the processor cycles of some
jobs;

• Action C: Shifting some jobs to a later time.

By the lemmas, with either of the above three actions, we
can increase the temperature at a later time and the delay of
the later job.

The above two lemmas together with the three actions
are important to our delay analysis under reactive speed
scaling, which will be our focus in the next two sections.

4 Delay Analysis of FIFO Scheduling

Recall that the speed of the processor is triggered by the
thermal behavior and varies over time under reactive speed
scaling. Simple busy-period analysis will not work in this
environment. In simple busy-period analysis, the jobs ar-
riving before the busy period will not affect the delay of
jobs arriving during the busy period. However, under reac-
tive speed scaling, the execution of a job arriving earlier will
heat up the processor and so affect the delay of a job arriving
later as shown in Lemma 2. Therefore, in the busy-period
analysis under reactive speed scaling, we have to take this
effect into consideration.

We start our delay analysis in the system with FIFO sche-
duling. Under FIFO scheduling, all tasks experience the
same worst-case delay as the aggregated task does. There-
fore, we consider the aggregated task, whose workload con-
straint function can be written asF (I) =

∑n
i=1 Fi(I). First,

we investigate the worst-case delay for the aggregated task.

Delay Constraint We consider a busy period[t1, t0] with
lengthδ1 during which a job will experience the longest de-
lay and immediately before which the processor is idle. The
processor runs at high speedsH in Interval [t1, t1,h] with
lengthδ1,h and at equilibrium speedsE in Interval[t1,h, t0]
with lengthδ1,e as shown in the right side of Figure 4(a).

δm,0 δm,h

tm tm,0 tm-1 t3,0

δ2,0

t2,0 t1t2

δ2,h δ1,h δ1,e

t1,h t0

δ3,0 δ3,h

t3

tm tm-1 t1t2 t1,h t0t3

(a)

(b)

δ1,h δ1,e

Figure 4. Job executions.

We defined as the worst-case delay experienced by a job
in the busy period[t1, t0]. Then, by the definition of worst-
case delay, we have

d = sup
t≥t1

{inf{τ : f(t) ≤ g(t + τ)}}}, (14)

wheref(t) andg(t) are the workload function and the ser-
vice function of the aggregated task respectively, as defined
in Section 2. In other words, if by timet + τ , the service
received by the task is no less than its workload function
f(t), then all jobs of the task arriving before timet should
have been served, with a delay no more thanτ .

Since the processor is idle at timet1, we havef(t1) =
g(t1). Therefore,f(t) ≤ g(t + τ) in (14) can be written as

f(t) − f(t1) ≤ g(t + τ) − g(t1). (15)

First, we study the right side of (15). Recall that the proces-
sor runs at high speedsH in Interval [t1, t1,h] with length
δ1,h and at equilibrium speedsE in Interval [t1,h, t0] with
lengthδ1,e. If we defineI = t − t1, then we have

g(t + τ) − g(t1) = G(I + τ), (16)

whereG(I), aservice constraint functionof g(t), is defined
as

G(I) = min{(sH − sE)δ1,h + sEI, sHI}. (17)

Next, we study the left side of (15). With Action B, the job
will experience a longer delay with more workload released
and completed before the completion of this job. Therefore,
if we set

f(t) − f(t1) = F (I), (18)

together with (16), then the worst-case delay in (15) can be
written as (see Figure 5)

d = sup
I≥0

{inf{τ : F (I) ≤ G(I + τ)}}. (19)

)(IF

)(IG

h,1δ e,1δ

d

I

Figure 5. Delay constraint.

As we can see, the undetermined service constraint func-
tion G(I) is the key in the worst-case delay formula (19).
Next, we will focus on obtainingG(I).

Service Constraint As defined in (17),G(I) is a func-
tion of δ1,h, which depends on the temperature at timet1.
Instead of determining the exact temperature att1, we aim
to obtain a tight upper-bound oft1, which will result in an
upper-bound of the worst-case delay according to Lemma 2.

To achieve this, we introduce extra intervals[tk+1, tk]’s
(k = 1, . . . , m− 1), as shown in Figure 4(a). By Lemma 1,
we can use the three actions mentioned above to upper-
bound the temperature att1. With Action A, we upper-
bound the temperature attm to be TH . With Action C,
for each Intervalδk (k = 2, . . . , m), we shift all parts of
job execution to the end of this interval, such that the be-
ginning part is idle with lengthδk,0 and the ending part is
busy with lengthδk,h, as shown in Figure 4(b). We assume
that the temperature will not hitTH during [tm, t1]

1, then

1If there is an interval[tk0+1, tk0
] during which the temperature hits

TH , then the temperature attk0
is TH . In this case, we can setm = k0

and remove all intervals on the left.

the processor will run at high speedsH during each interval
[tk+1,0, tk].

We consider the service received in each interval[tk, t0],
k = 1, . . . , m. As shown in Figure 4(b), the executed pro-
cessor cycles in[tk, t0] can be written as

g(t0) − g(tk) = sH

k
∑

j=1

δj,h + sEδ1,e. (20)

Fork = 1, we haveg(t0)− g(t1) = f(t0) − f(t1). Fol-
lowing the delay analysis in the above delay constraint, we
consider the worst-case workloadf(t0) − f(t1) = F (t0 −
t1). Therefore, by (20) we have

sHδ1,h + sEδ1,e = F (δ1,h + δ1,e). (21)

For k = 2, . . . , m, by the definition of the worst-case
delay, the number of processor cycles in Interval[tk, t0]
is bounded asg(t0) − g(tk) ≤ f(t0) − f(tk − d). By
Lemma 2, the delay becomes longer wheng(t0) − g(tk) =
f(t0) − f(tk − d) = F (t0 − tk + d) by either shifting
the job execution or increasing the processor cycles of jobs.
Therefore, by (20) we have

sH

k
∑

j=1

δj,h + sEδ1,e = F (

k
∑

j=1

δj,h + δ1,e + d). (22)

Note that the service received by jobs depends on the
processing speed, which changes with the thermal behavior.
Next we want to see how the temperature changes in each
interval.

Temperature Constraint First, we consider each inter-
val [tk+1, tk], k = 1, . . . , m − 1, which is composes of an
idle period with lengthδk+1,0 and a busy period with length
δk+1,h. DefineTk as the temperature attk, then following
the temperature formula (7), we have

Tk =
asα

H

b
+ (Tk+1e

−bδk+1,0 −
asα

H

b
)e−bδk+1,h . (23)

Together with the assumption thatTk ≤ TH andTm = TH ,
we have

Tk

TH

= (
sH

sE

)α
∑m

r=k+1
e−b

Pr−1

l=k+1
δl(1 − e−bδr,h)

+e−b
P

m
l=k+1

δl ≤ 1. (24)

Next, considering Interval[t1, t1,h], we have

T1

TH

= (
sH

sE

)α − ((
sH

sE

)α − 1)ebδ1,h . (25)

Therefore, for any given values ofδ1,h, δ1,e, δk,0, and
δk,h, k = 2, . . . , m, which are constrained by the above

constraint conditions (19), (21), (22), (24), and (25), we can
obtain an upper-bound of the worst-case delay, which we
denote asd(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h). Note that
d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h) can always bound the
worst-case delay. In order to find a tight upper-bound of the
worst-case delay, we can choose a set ofδk,0’s andδk,h’s
to minimized(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h) as sum-
marized in the following theorem:

Theorem 1. In a system with FIFO scheduling under reac-
tive speed scaling, the worst-case delayd can be obtained
by the following formula

d = min{d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h)}

subject to(19), (21), (22), (24), and (25). (26)

As a case study, in the following, we consider a leaky-
bucket task workload and have the following theorem for
the worst-case delay with FIFO scheduling:

Corollary 1. In a system with FIFO scheduling under re-
active speed scaling, we consider tasks with leaky-bucket
workload and the workload constraint function of the ag-
gregated task isF (I) = σ + ρI. Defineχ1 = sE

sH
and

χ2 = ρ
sH

. A tight bound of the worst-case delayd is ex-
pressed as follows:

d =

{

V (X − Y), χ2 ≤ χα
1

V (X − Y − Z), otherwise
(27)

whereV = (1−χ1)(1−χ2)
χ1−χ2

, X = χ1

1−χ1
dE , Y = 1

b
ln 1−χ2

1−χα
1

,

and Z = 1
b

χ2

1−χ2
ln χ2

χα
1

. DefinedH and dE as the delay
when the processor always runs atsH andsE respectively,
i.e.,dH = σ

sH
anddE = σ

sE
. The worst-case delayd is also

constrained by

dH ≤ d ≤ dE . (28)

The proof is given in Appendix A.

5 Delay Analysis of SP Scheduling

In order to perform delay analysis in the system with SP
scheduling, we introduce the following lemma:

Lemma 3. No matter what scheduling (FIFO or SP) is used
in a system under reactive speed scaling defined in (11), the
service functiong(t) of the aggregated task will be uniquely
determined by the workload functionf(t) of the aggregated
task, not by the scheduling algorithm.

Proof: The service functiong(t) can be written as

g(t) =

∫ t

0

s(τ)dτ. (29)

According to (11),s(t) is determined byW (t) and T (t)
under reactive speed scaling, whereW (t) is the backlogged
workload at timet (i.e., W (t) = f(t) − g(t)) and T (t)
is determined bys(t) according to (5). Therefore, the ser-
vice functiong(t) will be uniquely determined by the work-
load functionf(t) of the aggregated task. We have no as-
sumption of the scheduling algorithm. Hence the lemma is
proved.

Based on this lemma, we are able to obtain the worst-
case delay under SP scheduling as shown in the following
theorem2:

Theorem 2. In a system with SP scheduling under reactive
speed scaling, the worst-case delaydi for TaskΓi can be
obtained by the following formula

di = sup
I≥0

{inf{τ :
∑i−1

j=1
Fj(I + τ) + Fi(I)

≤ G(I + τ)}}, (30)

whereG(I) is defined in (17) andδ1,h in G(I) can be ob-
tained by minimizingd(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h)
in Theorem 1.

Proof: We consider a busy interval[t1, t0], during which
at least one job from TasksΓj (j ≤ i) is running, and imme-
diately before which no jobs from TasksΓj (j ≤ i) are run-
ning. We know that the delay of a jobJ of TaskΓi is intro-
duced by two arrival stages of jobs in the queue: all queued
jobs atJ ’s release time and the higher-priority ones coming
betweenJ ’s release time and completion time. Then we
have the worst-case delay for a job of TaskΓi as follows:

di = sup
t≥t1

{inf{τ :
∑i−1

j=1
fj(t + τ) + fi(t)

≤
∑i

j=1
gj(t + τ)}}, (31)

wherefi(t) andgi(t) are the workload function and the ser-
vice function of TaskΓi respectively.

By our assumption about Interval[t1, t0], we havefj(t1)
= gj(t1), j = 1, . . . , i, and gj(t) = gj(t1), j = i +

1, . . . , n. Therefore,
∑i−1

j=1 fj(t+τ)+fi(t) ≤
∑i

j=1 gj(t+

τ) in the above formula can be written as
∑i−1

j=1(fj(t+τ)−

fj(t1))+(fi(t)−fi(t1)) ≤
∑n

j=1(gj(t+τ)−gj(t1)). With
the similar analysis for FIFO scheduling, the worst-case de-
lay happens when

∑i−1
j=1(fj(t + τ) − fj(t1)) + (fi(t) −

fi(t1)) =
∑i−1

j=1 Fj(I + τ) + Fi(I). DefineI = t − t1
and then (30) holds. In (30),G(I) is defined in (17). By
Lemma 3, the service function under SP scheduling is same
as the one under FIFO scheduling. Thenδ1,h in G(I) can
be obtained by minimizingd(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0,
δm,h) in Theorem 1.

2In the following, the smaller index of a task indicates a higher priority.

Similarly, in the following we consider the leaky-bucket
task workload as a case study. We have the following theo-
rem on the worst-case delay for SP scheduling:

Corollary 2. In a system with SP scheduling under reactive
speed scaling, we assume that TaskΓi has a workload con-
straint functionFi(I) = σi + ρiI. The worst-case delaydi

for Taski can be written as

di = max{dE,i − ∆, dH,i}, (32)

where

dE,i =

∑i
j=1 σj

sE −
∑i−1

j=1 ρj

, (33)

dH,i =

∑i
j=1 σj

sH −
∑i−1

j=1 ρj

, (34)

∆ =
σ − sEd

sE −
∑i−1

j=1 ρj

. (35)

andd in (35) can be obtained by Corollary 1.

The proof is given in Appendix B.

6 Performance Evaluation

In this section we evaluate the benefit of using simple
reactive speed scaling scheme by comparing the worst-case
delay with that of a system without speed scaling. We adopt
as the baseline a constant-speed processor that runs at equi-
librium speedsE .

We choose the same setting as [4] for a silicon chip. The
thermal conductivity of the silicon material per unit volume
is kth = 100 W/mK and the thermal capacitance per unit
volume iscth = 1.75 × 106 J/m3K. The chip istth =
0.55 mm thick. Therefore, the thermal RC time constant
RC = cth

kth
t2th = 0.0044 sec [4]. Hence by Equation (4)

b ≈ 228.6 sec−1. The ambient temperature is45◦C and the
maximum temperature threshold is85◦C, thenTH = 40◦C.
The equilibrium speedsE will be fixed by the system, but
sH can be freely chosen. We arbitrarily picksH = 10

7 sE

and assumeα = 3.
We consider three tasksΓi’s (i = 1, 2, 3). As a case

study, we consider a leaky-bucket workload and assume
each taskΓi has a leaky bucket arrival withFi(I) = σi +
ρiI. The aggregate task has an arrival withF (I) = σ + ρI,
whereσ =

∑3
i=1 σi and ρ =

∑3
i=1 ρi. In our evalua-

tion, we varyσ/sE and ρ/sE in the ranges of[0, 0.005]
and[0, 0.5] respectively. We compare the worst-case delay
of jobs in the system under reactive speed scaling and the
baseline one in the systems the processor always run at the
equilibrium speed.

0.01

0.01

0.038

0.038

0.066

0.066

0.094

0.094

0.122

0.122

0.15

0.15

0.178

0.178

0.206

0.206

0.234

0.234

0.262

0.262

0.29

0.29

ρ/s
E

σ/
s E

 s
ec

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5
x 10

−3

Figure 6. A contour plot of delay decrease ra-
tio |d − dE |/dE for the aggregated task under
reactive speed scaling for FIFO scheduling.

First we consider FIFO scheduling. We evaluate the worst-
case delay decrease ratio|d − dE |/dE for the aggregated
task. 3 Figure 6 shows a contour plot of|d − dE |/dE in
terms ofσ/sE andρ/sE . We observe that the delay de-
crease ratio changes from a minimum0 (asd = dE) to a
maximum of1 − sE

sH
= 0.300 (asd = dH). The delay

decrease ratio will decrease as eitherσ or ρ increases.
Next we consider SP scheduling. We assume thatσ1 :

σ2 : σ3 = ρ1 : ρ2 : ρ3 = 1 : 2 : 3. We evaluate the
worst-case delay decrease ratio|di−dE,i|/dE,i for TaskΓi.
Each individual picture in Figure 7 shows contour plots of
|di − dE,i|/dE,i in terms ofσ/sE andρ/sE , for the three
tasks separately. We observe that the delay decrease ratio
changes from a minimum of0 (asdi = dE,i) to a maximum
of 1 − sE

sH
= 0.300 for TaskΓ1, to a maximum of(1 −

sE

sH
)/(1− 1

6
sE

sH
) = 0.316 for TaskΓ2, and to a maximum of

(1 − sE

sH
)/(1 − 1

2
sE

sH
) = 0.353 for TaskΓ3 (asdi = dE,i).

As if the delay decrease ratio is not larger than0.3, the
ratio will decrease as eitherσ orρ increases for any task. As
if it becomes larger than0.3, we have different observation
results for the lower-priority tasks. In particular, consider-
ing the lower-priority task, for smallσ andρ, the delay de-
crease ratio can be written as(1− sE

sH
)/(1− 1

sH

∑i
j=1 ρj).

Therefore, as shown at the left-bottom corner of the last two
contour plots in Figure 7, the delay decrease ratio will keep
constant asσ increases andρ keeps constant, but increase
asρ increases andσ keeps constant.

7 Conclusion and Future Work

Delay analysis in systems with temperature-constrained
speed scaling is difficult, as the traditional definition of “busy

3The alert reader has noticed that we did not define a value for param-
etera. This is becausea appears only in the computation ofsE , which
cancels out in the delay decrease ratio.

0.01

0.01

0.08

0.08

0.15

0.15

0.22

0.22

0.29
0.29

ρ/s
E

σ/
s E

 s
ec

 Γ1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5
x 10

−3

0.01

0.01

0.066

0.066

0.122

0.122

0.178

0.178

0.234

0.234

0.29

0.29

0.301

0.301

0.301

0.303

0.303

0.303

0.305

0.305

0.
30

7

0.307

0.309 0.309

0.311
0.313 0.315

ρ/s
E

σ/
s E

 s
ec

 Γ2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5
x 10

−3

0.01

0.01

0.038

0.038

0.066

0.066

0.094

0.094

0.122

0.122

0.15

0.15

0.178

0.178

0.206

0.206

0.234

0.234

0.262

0.262

0.29

0.29

0.301

0.301

0.
30

6

0.306

0.311

0.311

0.316

0.316

0.
32

1

0.
32

6
0.331
0.336

0.341 0.346

ρ/s
E

σ/
s E

 s
ec

 Γ3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5
x 10

−3

Figure 7. Contour plots of delay decrease ra-
tio |di − dE,i|/dE,i for Task Γi (i = 1, 2, 3) under
reactive speed scaling for SP scheduling.

period” does not apply and it becomes difficult to separate
the execution of jobs from the interference by ones arriving
earlier or having low priorities because of dynamic speed
scaling triggered by the thermal behavior. In this paper we
have shown how to compute bounds on the worst-case de-
lay for tasks with arbitrary job arrivals for both FIFO and
SP scheduling algorithms in a system with a very simple
speed scaling algorithm, which simply runs at maximum
speed until the CPU becomes idle or reaches a critical tem-
perature. In the latter case the processing speed is reduced
(through DVS or appropriate clock throttling) to an equilib-
rium speed that keeps the temperature constant. We have
shown that such a scheme reduces worst-case delays.

In order to further improve the performance of speed
scaling, one would have to find ways to partially isolate jobs

from the thermal effects of ones arriving earlier or having
low priorities. One weakness of the proposed speed-scaling
algorithm is its inability to pro-actively process low-priority
tasks at lower-than-equilibrium speeds. At this point we
don’t know how to perform delay analysis for non-trivial
speed scaling algorithms, however.

References

[1] D. Brooks and M. Martonosi, “Dynamic thermal man-
agement for high-performance microprocessors,” in
Proceedings of the 7th International Symposium on
High-Performance Computer Architecture, 2001.

[2] Semiconductor Industry Association, “2005 inter-
national technology roadmap for semiconductors,”
http://public.itrs.net.

[3] E. Rotem, A. Naveh, M. Moffie, and A. Mendelson,
“Analysis of thermal monitor features of the Intel Pen-
tium M processor,” inProceedings of the First Work-
shop on Temperature-Aware Computer Systems, 2004.

[4] K. Skadron, M. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan, “Temperature-
aware microarchitecture: Extended discussion and re-
sults,” Tech. Rep. CS-2003-08, Department of Com-
puter Science, University of Virginia, 2003.

[5] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem,
“Introduction to Intel Core Duo processor architec-
ture,” Intel Technology Journal, vol. 10, no. 2, pp.
89 – 97, 2006.

[6] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed
scaling to manage energy and temperature,” inIEEE
Syposium on Foundations of Computer Science, 2004.

[7] N. Bansal and K. Pruhs, “Speed scaling to manage
temperature,” inSymposium on Theoretical Aspects of
Computer Science, 2005.

[8] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander,
G. Gerosa, R. Philip, and J. Alvarez, “Thermal man-
agement system for high performance powerpc micro-
processors,” inIEEE International Computer Confer-
ence, 1997.

[9] E. Rotem, A. Naveh, M. Moffie, and A. Mendelson,
“Analysis of thermal monitor features of the intel pen-
tium m processor,” inWorkshop on Temperature-
aware Computer Systems, 2004.

[10] S. Wang and R. Bettati, “Reactive speed control in
temperature-constrained real-time systems,” inEu-
romicro Conference on Real-Time Systems, 2006.

[11] A. Dhodapkar, C.H. Lim, G. Cai, and W.R. Daasch,
“TEMPEST: A thermal enabled multi-model pow-
er/performance estimator,” inWorkshop on Power-
Aware Computer Systems, ASPLOS-IX, 2000.

[12] A. Cohen, L. Finkelstein, A. Mendelson, R. Ronen,
and D. Rudoy, “On estimating optimal performance
of CPU dynamic thermal management,” inComputer
Architecture Letters, 2003.

[13] S. Wang and R. Bettati, “Delay analysis in
temperature-constrained hard real-time systems with
general task arrivals,” Tech. Rep. tamu-cs-tr-2006-
5-3, Department of Computer Science, Texas A&M
University, 2006, http://www.cs.tamu.edu/
academics/tr/tamu-cs-tr-2006-5-3.

A Proof of Corollary 1

We follow the analysis in Section 4, we consider the
three constraints as follows:

Delay Constraint SinceF (I) = σ + ρI, by (19) we can
obtain the delayd as

d = max{
σ

sH

,
σ

sE

− (
sH

sE

− 1)δ1,h}. (36)

Therefore, we have

δ1,h =
σ

sE
− d

sH

sE
− 1

, (37)

as

d ≥
σ

sH

. (38)

Service Constraint To simplify the service analysis, we
consider equal intervals and assumeδk = δ for k = 3, . . . , m.
We investigate the service received in each interval[tk, t0],
k = 1, . . . , m.

As k = 1, by (21) we have

sHδ1,h + sEδ1,e = σ + ρ(δ1,h + δ1,e). (39)

Hence,

(sH − ρ)δ1,h + (sE − ρ)δ1,e = σ. (40)

As k = 2, . . . , m, by (22), we have

sH

∑k

j=1
δj,h + sEδ1,e

= σ + ρ((k − 2)δ + (δ2 + δ1) + d). (41)

If k = 2, together with (40), we have

δ2,h =
δ2,0 + d
sH

ρ
− 1

. (42)

If k ≥ 3, we have

δk,h =
ρ

sH

δ. (43)

Temperature Constraint By (37) and (43), we can rewrite
the temperature constraint condition (24).

As k = 2, . . . , m − 1,

Tk

TH

= e−b(m−k)δ(1 − ξ) + ξ, (44)

where

ξ = (
sH

sE

)α 1 − e
−b

ρ
sH

δ

1 − e−bδ
. (45)

By (44),T2 is a function ofδ andm. It is easy to know that
the smallerT2 is, the short delayd is. Therefore, we want to
find δ andm to minimizeT2 so that we a tight upper-bound
d of the original worst-case delay.

If ξ ≤ 1, thenTk/TH ≤ 1. By (44),T2 is a decreasing
function in terms of(m−2)δ, thenT2/TH ≥ lim(m−2)δ→∞

T2/TH = ξ. 4 Furthermore,ξ is an increasing function
of δ, thenT2/TH ≥ limδ→0 ξ = (sH

sE
)α ρ

sH
. Therefore,

we choose the minimum and setT2/TH = (sH

sE
)α ρ

sH
as

(sH

sE
)α ρ

sH
≤ 1.

If ξ > 1, thenT2/TH is the maximum among allTk/TH ’s.
Therefore, we only need to consider boundT2/TH ≤ 1.
By (44), T2/TH is an increasing function in terms ofm,
thenT2/TH will be minimized atm = 2. Hence, we set
T2/TH = 1 in this case.

Therefore, with the analysis above, we can set

T2

TH

= min{(
sH

sE

)α ρ

sH

, 1}. (46)

At the same time, by (23) and (25), we have

δ1,h + δ2,h =
1

b
ln

(sH

sE
)α − T2

TH
e−bδ2,0

(sH

sE
)α − 1

. (47)

Therefore, by (37), (42), (46), and (47), we can obtain
the worst-case delayd as follows:

d =
(1 − χ1)(1 − χ2)

χ1 − χ2
(

χ1

1 − χ1

σ

sE

+
χ2

1 − χ2
δ2,0

−
1

b
ln

1 − min{χ2, χ
α
1 }e

−bδ2,0

1 − χα
1

), (48)

4We assume that at time zero the system is at lowest temperature.
Therefore, we can pick the intervals with overall length up to infinity.

whereχ1 = sE

sH
, andχ2 = ρ

sH
.

Equation (48) shows thatd is a function ofδ2,0. Since
the above analysis works for any chosenδ2,0, we want to
obtain a minimumd in terms ofδ2,0. There are two cases:

• χ2 ≤ χα
1 : d will be minimized atδ2,0 = 0, therefore

d = V (X − Y), (49)

• χ2 > χα
1 : d will be minimized atδ2,0 = 1

b
ln χ2

χα
1

,
therefore

d = V (X − Y − Z), (50)

whereV, X, Y, Z are defined in Corollary 1.
On the other hand, in the temperature constraint, ask =

1, by (25) and the constraint thatT1/TH ≤ 1, we have

δ1,h ≥ 0. (51)

Therefore, by (37), we have

d ≤
σ

sE

. (52)

Recall thatdH = σ
sH

anddE = σ
sE

, then by (38) and (52),
the worst-case delay is also constrained by

dH ≤ d ≤ dE . (53)

B Proof of Corollary 2

By Theorem 2,G(I) = min{(sH − sE)δ1,h + sE(I +
di), sH(I + di)} depends onδ1,h. For the leaky bucket task
workload, by (37) we haveδ1,h = (σ

sE
−d)/(sH

sE
−1), where

d can be obtained by Corollary 1.
By (30), the delay formula can written as

∑i−1

j=1
σj + ρj(I + di) + σi + ρiI =

min{(sH − sE)δ1,h + sE(I + di),

sH(I + di)} (54)

Then, asdi > δ1,h, we have

di =

∑i−1
j=1(σj + ρjdi) + σi

sE

− (
sH

sE

− 1)δ1,h, (55)

otherwise

di =

∑i−1
j=1(σj + ρjdi) + σi

sH

. (56)

Therefore, by (37), (55), and (56), we have

di = max{dE,i − ∆, dH,i}, (57)

wheredE,i anddH,i are defined in Corollary 2, andd can
be obtained by Corollary 1. The worst-case delaydi is con-
strained by

dH,i ≤ di ≤ dE,i. (58)

