Delay Analysis in Temperature-Constrained Hard Real-TimeSystems
with General Task Arrivals

Shengquan Wang
The University of Michigan - Dearborn
Dearborn, MI 48128, USA
shgqwang@nd. um ch. edu

Riccardo Bettati
Texas A&M University

College Station, TX 77843, USA

bettati @s.tanu. edu

Abstract such approaches inappropriate.
A number of dynamic thermal management approaches
In this paper, we study temperature-constrained hard real+o control the temperature at run time have been proposed,
time systems, where real-time guarantees must be met withranging from clock throttling to dynamic voltage scaling
out exceeding safe temperature levels within the proces-(DVS) to in-chip load balancing:

sor. Dynamic speed scaling is one of the major techniques The Pentium 4 Series processors uésck Throt-

to manage power so as to maintain safe temperature lev-
els. As example, we adopt a simple reactive speed con-
trol technique in our work. We design a methodology to
perform delay analysis for general task arrivals under re-
active speed control with First-In-First-Out (FIFO) sche-
duling and Static-Priority (SP) scheduling. As a special
case, we obtain a close-form delay formula for the leaky-
bucket task arrival model. Our data show how simple reac-
tive speed control can decrease the delay of tasks compared
with any constant-speed scheme.

1 Introduction

With the rapidly increasing power density in processors
the problem of thermal management in systems is becom-
ing acute. Methods to manage heat to control its dissipa-
tion have been gaining much attention by researchers and
practitioners. Techniques are being investigated for-ther
mal control both at design time through appropriate pack-
aging and active heat dissipation mechanisms, and at run
time through various forms of dynamic thermal manage-
ment (DTM) (e.q., [1]).

Thermal management through packaging (that improves
airflow, for example) and active heat dissipation will be-
come increasingly challenging in the near future, due to the.
high levels of peak power involved and the extremely high
power density in emerging systems-in-package [2]. In ad-
dition, the packaging requirements and operating environ-
ments of many high-performance embedded devices rende

This work was funded by NSF under Grant No. CNS-0509483,evhil
Dr. Wang was at Texas A&M University.

tling [3] or Clock Gating[4] to stall the clock and so
allow the processor to cool during thermal overload.

Dynamic Voltage Scalin@dVS) [1] is used in a va-

riety of modern processor technologies and allows to
switch between different frequency and voltage op-
erating points at run time in response to the current
thermal situation. In the Enhanced Intel SpeedStep
mechanism in the Pentium M processor, for example,
a low-power operating point is reached in response
to a thermal trigger by first reducing the frequency
(within a few microseconds) and then reducing the
voltage (at a rate of one mV per microsecond) [3].

A number ofarchitecture-levemechanisms for ther-
mal control have been proposed that turn off com-
ponents inside the processor in response to thermal
overload. Skadron et al. [4] for example argue that the
microarchitecture should distribute the workload in
response to the thermal situation by taking advantage
of instruction-level parallelism. The performance pen-
alty caused by this “local gating” would not be exces-
sive. On a coarser level, the Pentium Core Duo Ar-
chitecture allows the OS or the BIOS to disable one
of the cores by putting it into sleep mode [5].

As high-performance embedded systems become increas-
ingly temperature-constrained, the question of how the the
mal behavior of the system and the thermal control mecha-
nisms affect real-time guarantees must be addressedsin thi
paperwe describe delay analysis techniques in temperature
constrained hard real-time systems, whdeadlinecon-
straints for tasks have to be balanced agaiestperature
constraints of the system.

Dynamic speed scaling allows for a trade-off between as speed-scaling. In addition, existing processors tjipica
these two performance metrics: To meet the deadline con-have well-defined hotspots, and accurate placement of sen-
straint, we run the processor at a higher speed; To maintairsors allows alleviates the need for fine-granularity teraper
the safe temperature levels, we run the process at a loweture modeling. The Intel Core Duo processor, for example,
speed. The work on dynamic speed scaling techniques tchas a highly accurate digital thermometer placed at the sin-
control temperature in real-time systems was initiateéd]n [gle hotspot of each die, in addition to a single legacy thérma
and further investigated in [7]. Both [6] and [7] focus on diode for both cores [5]. More accurate thermal models can
online algorithms in real-time systems, where the schedule be derived from this simple one by more closely modeling
learns about a task only at its release time. In contrast, inthe power dissipation (such as the use of active dissipation
our work we assume a deterministic task model (e.g., peri-devices) or by augmenting the input power by a stochastic
odic tasks) and so allows for design-time delay analysis. component, etc.

We distinguish between proactive and reactive speed scal- We defines(t) as theprocessor speed (frequenat)time
ing schemes. Whenever the temperature model is known¢. Then the input poweP(t) at timet is usually represented
the scheduler could in principle uspmactivespeed-scaling as
approach, where — similarly to a non-work-conserving sehed P(t) — rs®

: (t) = rs®(t), 1)
uler — resources are preserved for future use. In this pa-
per, we limit ourselves teeactiveschemes, and propose a for some constant anda > 1. Usually, it is assumed that
simple reactive speed scaling technique for the processore = 3 [6,7].
which will be discussed in Section 2. We focus on reactive ~ We assume that the ambient has a fixed temperature, and
schemes primarily because they are simple to integrate withthat temperature is scaled so that the ambient temperature i
current processor capabilities through the ACPI power con-zero. We defind’(t) as the temperature at timeWe adopt
trol framework [8, 9]. In our previous paper [10], we mo- Fourier’s Law as shown in the following formula [6,7,12]:
tivate the reactive scheme and perform delay analysis for) P(t) T(t)
identical-period tasks. In this paper, we extend it to gaher T'(t) = Cin RnCon’ 2)
task arrivals with First-in First-out (FIFO) schedulingdan
Static-Priority (SP) scheduling.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the thermal model, speed scaling sche- T'(t) = as™(t) — bT(t), 3)
mes, and task model and scheduling algorithms. After in-\nere; andb are positive constants and defined as follows:
troducing two important lemmas in Section 3, we design
the methodology to perform delay analysis for FIFO and a= L’ - 1) (4)

SP scheduling algorithms in Sections 4 and 5 respectively. Cin RinCin
We measure the performance in Section 6. Finally, we con- Equation (3) is a classic linear differential equation. If
clude our work with final remarks and give an outlook on we assume that the temperature at tigis 7o, i.e.,T (tg) =

whereRy;, is the thermal resistance agy;, is the thermal
capacitance of the chip. Applying (1) into (2), we have

future work in Section 7. T, (3) can be solved as
t
_ @ —b(t—) —b(t—to)
2 Models T(t) = /to as®(T)e dr + Toe o), (5)
We observe that we can always appropriately scale the speed
2.1 Thermal Model to control the temperature:

o If we want to keep the temperature constant at a value
Tc¢ during a time intervalto, t1], then for anyt €
[to, t1], we can set

A wide range of increasingly sophisticated thermal mod-
els for integrated circuits have been proposed in the last
few years. Some are comparatively simple, chip-wide mod-
els, such as developed by Dhodapkéaial. [11] in TEM- s(t) = (ch
PEST. Other models, such as used in HotSpot [4], describe a
the thermal behavior at the granularity of architecturele
blocks or below, and so more accurately capture the effects
of hotspots.

In this paper we will be using a very simple chip-wide o
thermal model previously used in [6, 7, 11, 12]. While this T(t) = + (T'(to) — “_C)efb(tfto). (7)
model does not capture fine-granularity thermal effects, th b b
authors in [4] for example agree that it is somewhat appro- This relation between processor speed and temperature is
priate for the investigation of chip-level techniques,tsuc the basis for any speed scaling scheme.

). (6)

e If, on the other hand, we keep the speed constant at
s(t) = s¢ during the same interval, then the temper-
ature develops as follows:

asg

2.2 Speed Scaling using the following formula:

The effect of many dynamic thermal management sche- sg, (W(t) >0)A(T'(t) <Twh)
mes (most prominently DVS and clock throttling) can be s(t)=<sp, (W(t)>0)A(T(t)=Tx) (11)
described by the speed/temperature relation depicted in (6 0 W(t) =0

and (7). The goal of dynamic thermal management is to
maintain the processor temperature within a safe operatingrigure 1 shows an example of how temperature changes un-
range, and not exceed what we call thghest-temperature der reactive speed scaling.

thresholdl'y, which in turn should be at a safe margin from

the maximum junction temperature of the chip. Tempera- s(t)

ture control must ensure that 2; - - -
T(t) < Th. 8) L
T
On the other hand, we can freely set the processor speed, up T, -
to some maximum speeq,, i.e.,
t
0<s(t) < sq. (9) i

Figure 1. lllustration of reactive speed scal-

In the absence of dynamic speed scaling we have to set ing

a constant value of the processing speed so that the temper-
ature will never excee'’;. Assuming that the initial tem-

perature is less thal;, we can definequilibrium speed It is easy to show that in any case the temperature never

5p as exceeds the thresholb;. By using the full speed some-
b . time, we aim to improve the processor utilization compared
SE = (ETH)E- (10) with the constant-speed scaling. The reactive speed scal-
) ing is very simple: whenever the temperature reaches the
For any constant processor speed not exceedinthe pro- {hreshold, an event is triggered by the thermal monitor, and

cessor does not exceed temperafiiie Note that the equi- {he system throttles the processor speed.
librium speedsg is the maximum constant speed that we

can set to maintain the safe temperature level. 2.3 Task Model and Scheduling Algorithms
A dynamic speed scaling scheme would take advantage
of the power dissipation during idle times. It would make
use of periods where the processor is “cool”, typically afte
idle periods, to dynamically scale the speed and tempwraril
execute tasks at speeds higher thanAs a result, dynamic
speed scaling would be used to improve the overall proces
sor utilization.
In defining the dynamic speed scaling algorithm we must

keep in mind that (a) it must be supported by existing power function f;(¢), the accumulated requested processor cycles

control frameworks such as ACPI [8,9], and (b) it must lead of all the jobs fromT'; released duringp, £]. Similarly, to

to tractab!e design -~ time dellay analysis. We there]_‘ore US€characterize the actual executed processor cycles receive
the following very simpleeactivespeed scaling algorithm:

by T';, we defineg;(¢), the service functiorfor I';, as the
total executed processor cycles rendered to jolbs dfiring

The workload consists of a set of tasis; : i = 1,2,
...,n}. Each task’; is composed of a sequence of jobs.
For a job, the time elapsed from theleasetime ¢, to the
completiontime ¢ is called thedelay of the job, and the
‘worst-case delay of all jobs in Tadk; is denoted byd;.
Jobs within a task are executed in a first-in first-out order.
We characterize the workload of TaBkby theworkload

The processor will run at maximum speeg

when there is backlogged workload and the tem- [0,1]. o _ _
perature is below the threshdld;. Whenever A time-independent representation £f{t) is the work-
the temperature hitEy;, the processor will run load constraint functioi; (1), which is defined as follows.

at the equilibrium speed, which is defined Definition 1 (Workload Constraint Function)F;(I) is a

in (10). Whenever the backlogged workload workload constraint function for the workload functigit),
is empty, the processor idles (runs at the zero if forany 0 < I < ¢

speed).

(t) — fi(t = 1) < Ei(I).
If we defineW(¢) as the backlogged workload at tinte i) = filt =) < Bi(I) (12)

the speed scaling scheme described before can be expressed

For example, if a task; is constrained by a leaky bucket
with a bucket sizer; and an average ragg, then

Fi(I) = oi + pil. (13)

Lemma 2. In a system under our reactive speed scaling,
we consider two jobd}’s (k = 1,2), each of which has a
release timgy, , and the completion timg, ;. We assume
ti,y < ta . If we take either of the following actions as

Once tasks arrive in our system, a scheduling algorithm shown in Figure 3:

will be used to schedule the service order of jobs from dif-
ferent tasks. Both the workload and the scheduling algo-

rithm will determine the delay experienced by jobs. In this
paper, we consider two scheduling algorithiRisst-in First-
out (FIFO) scheduling anétatic Priority (SP)scheduling.

3

Important Lemmas

The difficulty for delay analysis in a system with reac-
tive speed scaling lies in the speed of the processor not be-

ing constant. Moreover the changes in processing speed are

triggered by the thermal behavior, which follows (11). As

a result, as we will show, simple busy-period analysis does

not work.

The following two lemmas show how the change of tem-
perature, job arrival, job execution will affect the temger
ture at a later time or the delay of a later job.

Lemma 1. In a system under our reactive speed scaling,
given a time instance, we consider a job with a release
timet, and a completion timé; such that, < tandt; <

t. We assume that the processor is idle duriifygt]. If we
take either of the following actions as shown in Figure 2:

)

®)

|
t
|
tt t
l
t‘ ©)

t ot

T

Figure 2. Temperature effect.

Action A: Increasing the temperature at timg(t, <
t,) such that the job has the same release timbeut
a new completion time}. satisfyingt} < ¢;

Action B: Increasing the processor cycles for this job
such that the job has the same release timbut a
new completion time; satisfyingt} < ¢;

Action C: Shifting the job such that the job has a new
release time’: and a new completion timé satisfy-
ingt, <t: <tandty < t; <t,

then we havd}; < T/, whereT; and T} are the temper-
atures at timef in the original and the modified scenarios
respectively.

[

|| |

b

t

1r tl,l

Figure 3. Delay effect.

e Action A: Increasing the temperature@at(ty < t2,)
such that Job/; has the same release time, but a
new completion time; ;

e Action B: Increasing the processor cycles of Jgb
such that JolJ;, (k = 1, 2) has the same release time
tr,» but a new completion tinﬁ_’f;

e Action C: Shifting Job/; such that Job/; has a new
release time] . and a new completion timg ,, and
Job.J; has the same release time, and a new com-
pletion timet; , satisfying?,, < ¢7, andt] , <
t5

thenty y < t5 .. If we definel; andd; as the delay of Job

Jo in the orig"inal and the modified scenarios respectively,
thend, < d3.

The proofs of Lemmas 1 and 2 can be found in [13].
Here we summarize the three actions defined in the above
two lemmas as follows:

e Action A: Increasing the temperature at some time
instances;

e Action B: Increasing the processor cycles of some
jobs;

e Action C: Shifting some jobs to a later time.

By the lemmas, with either of the above three actions, we
can increase the temperature at a later time and the delay of
the later job.

The above two lemmas together with the three actions
are important to our delay analysis under reactive speed
scaling, which will be our focus in the next two sections.

4 Delay Analysis of FIFO Scheduling First, we study the right side of (15). Recall that the preces
sor runs at high speegy in Interval [t1,1,5] with length

Recall that the speed of the processor is triggered by thed1,» and at equilibrium speesgls in Interval [t p, o] with

thermal behavior and varies over time under reactive speedengthd: .. If we definel = ¢ — ¢,, then we have

scaling. Simple busy-period analysis will not work in this

environment. In simple busy-period analysis, the jobs ar- gt +7) —g(t) = G(I +7), (16)

riving before the busy period will not affect the delay of whereG(1), aservice constraint functioof ¢(¢), is defined

jobs arriving during the busy period. However, under reac- g5

tive speed scaling, the execution of a job arriving earlidr w

heat up the processor and so affectthe delay of ajob arriving ~ G(I) = min{(syg — sg)01,n + sgl,sul}. 17)

later as shown in Lemma 2. Therefore, in the busy-period .\ e <1,y the left side of (15). With Action B, the job
analysis under reactive speed scaling, we have to take this

. . : will experience a longer delay with more workload released
effect into consideration. and completed before the completion of this job. Therefore
We start our delay analysis in the system with FIFO sche- P P 10D '

duling. Under FIFO scheduling, all tasks experience the ifwe set
same worst-case delay as the aggregated task does. There- f@t) = f(t1) = F(I), (18)
fore, we consider the aggregated task, whose workload con-

straint function can be written d&(1) = """, F;(I). First, together with (16), then the worst-case delay in (15) can be
we investigate the worst-case delay for the aggregated taskwritten as (see Figure 5)

Delay Constraint We consider a busy peridth , to] with I ??S{mf{T P < G+ (19)
lengthd; during which a job will experience the longest de-
lay and immediately before which the processor is idle. The
processor runs at high speeg in Interval [t1, 1 5] with
lengthd, ;, and at equilibrium speedy in Intervallt; 5, to]

with lengthd; . as shown in the right side of Figure 4(a).

F(1)

O 4

Figure 5. Delay constraint.

(b) As we can see, the undetermined service constraint func-
tion G(I) is the key in the worst-case delay formula (19).
Next, we will focus on obtaining (7).

Figure 4. Job executions.

. _ ~ Service Constraint As defined in (17)G(I) is a func-
We defined as the worst-case delay experienced by a job tion of 4, ;,, which depends on the temperature at time

in the busy periodt1, o). Then, by the definition of worst- |nstead of determining the exact temperaturg atve aim

case delay, we have to obtain a tight upper-bound of, which will result in an
] upper-bound of the worst-case delay according to Lemma 2.
d= f;lg{mf{T Df() <g(t+7)} (14) To achieve this, we introduce extra intervélls, |, t.]'s

(k=1,...,m—1),asshownin Figure 4(a). By Lemma 1,
wheref(t) andg(t) are the workload function and the ser- we can use the three actions mentioned above to upper-
vice function of the aggregated task respectively, as défine bound the temperature af. With Action A, we upper-
in Section 2. In other words, if by time+ 7, the service bound the temperature &t, to be T. With Action C,
received by the task is no less than its workload function for each Intervab, (k¢ = 2,...,m), we shift all parts of

f (), then all jobs of the task arriving before timshould job execution to the end of this interval, such that the be-
have been served, with a delay no more than ginning part is idle with lengthy; o and the ending part is
Since the processor is idle at timg we havef(t;) = busy with lengthy;, ,, as shown in Figure 4(b). We assume

g(t1). Therefore f(t) < g(t + 7) in (14) can be written as that the temperature will not hify; during [t,,, 1] , then

Lif there is an intervalty, 11, tx,] during which the temperature hits
f) = ft) < g(t+7) —g(tr). (15) Ty, then the temperature ;;O is TOH. In this case, we can set = ko
and remove all intervals on the left.

the processor will run at high speeg during each interval
[tht1,05 th)-

We consider the service received in each intefyal],
k=1,...,m. As shown in Figure 4(b), the executed pro-
cessor cycles ifty, to] can be written as

k
g(to) — g(tr) = su Z 0j.n + SEO1 6.

J=1

(20)

Fork =1, we havey(to) — g(t1) = f(to) — f(t1). Fol-

constraint conditions (19), (21), (22), (24), and (25), wa ¢
obtain an upper-bound of the worst-case delay, which we
denote asl(d1 1, 01.¢, 02,0, 92,1, - - - s Om,0, Im.p). Note that
d(01.h,01.,92,0,02.hs - - - om0, Om) CAN Always bound the
worst-case delay. In order to find a tight upper-bound of the
worst-case delay, we can choose a set;of's anddy, ;'S

to minimized(d1 4, 01,e,92,0, 02,1 - - - » Om,0, Om,n) @S SUM-
marized in the following theorem:

Theorem 1. In a system with FIFO scheduling under reac-
tive speed scaling, the worst-case detbgan be obtained

lowing the delay analysis in the above delay constraint, we by the following formula

consider the worst-case worklogdt,) — f(t1) = F(to —
t1). Therefore, by (20) we have

SHO1 L+ SEO1e = F(010 + 01,¢). (21)

For k = 2,...,m, by the definition of the worst-case
delay, the number of processor cycles in Interjal ¢o]
is bounded ag(tg) — g(tx) < f(to) — f(tx — d). By
Lemma 2, the delay becomes longer whg¢ty) — g(tx) =
f(to) = f(tx, — d) = F(to — ty + d) by either shifting

d = min{d(dl,hadl,ea62,0762,h7 e 75m,075m,h)}

subject to(19), (21), (22), (24), and (25) (26)
As a case study, in the following, we consider a leaky-

bucket task workload and have the following theorem for
the worst-case delay with FIFO scheduling:

Corollary 1. In a system with FIFO scheduling under re-
active speed scaling, we consider tasks with leaky-bucket

the job execution or increasing the processor cycles of jobs workload and the workload constraint function of the ag-

Therefore, by (20) we have

k k
SH Z Ojn + SE01e = F(Z Sjn + 016 +d).

Jj=1

(22)

J=1

Note that the service received by jobs depends on the

gregated task is'(I) = o + plI. Definey; = 2£ and
X2 = . Atight bound of the worst-case deldyis ex-
pressed as follows:

processing speed, which changes with the thermal behavior.

Next we want to see how the temperature changes in eaclyherey = ({=x)0—x2) x _

interval.

Temperature Constraint First, we consider each inter-
val [tgi1,tk], k = 1,...,m — 1, which is composes of an
idle period with lengtld; 41 o and a busy period with length
dr+1,n- DefineT), as the temperature &, then following
the temperature formula (7), we have

asy asy
b b

Together with the assumption tHt < Ty andT,,, = Ty,
we have

T, — as gy + (Tk+1eib5k+l'o _)€*b5k+l,h. (23)

Ty SH\ o™ S S —b3r
Tn = G 2@ e
+e P XiZed < 1, (24)
Next, considering Intervat,, ¢; 5], we have
T SH SH bs
— = ()Y — ((=)* = 1)e™rn, 25
7 = G = () = 1)e (25)

Therefore, for any given values 6f 5, 1., dx,0, and
Or.n, k = 2,...,m, which are constrained by the above

VX-Y < x¢
V(X -Y —Z), otherwise

1—
X1—X2 11(;(1 dp, Y = %hl 1—;((52’”

andZ = 1. x2 Jpxz,

P T Iy Definedy and dg as the delay
when the processor always runsst andsg respectively,
i.e.,dg = i anddg = -Z. The worst-case delayis also

. sp’
constrained by

dg < d < dg. (28)

The proofis given in Appendix A.

5 Delay Analysis of SP Scheduling

In order to perform delay analysis in the system with SP
scheduling, we introduce the following lemma:

Lemma 3. No matter what scheduling (FIFO or SP) is used
in a system under reactive speed scaling defined in (11), the
service functiory(t) of the aggregated task will be uniquely
determined by the workload functigiit) of the aggregated
task, not by the scheduling algorithm.

Proof: The service functiog(t) can be written as

(29)

According to (11),s(¢) is determined byW (¢) and T'(t) Similarly, in the following we consider the leaky-bucket
under reactive speed scaling, wh&rét) is the backlogged task workload as a case study. We have the following theo-
workload at timet (i.e., W(t) = f(t) — g(¢t)) andT'(¢) rem on the worst-case delay for SP scheduling:

is determined by (t) according to (5). Therefore, the ser- _))
vice functiong(t) will be uniquely determined by the work- Corollary 2: In a system with SP scheduling under reactive
load functionf(t) of the aggregated task. We have no as- SPeed scaling, we assume that Téskas a workload con-
sumption of the scheduling algorithm. Hence the lemma is Straint functionf;(7) = o; + piI. The worst-case delay;
proved. - for Task: can be written as

Based on this lemma, we are able to obtain the worst-

case delay under SP scheduling as shown in the following di = max{dp; — &, dn.;}, (32)
theorent: where
Theorem 2. In a system with SP scheduling under reactive Zi o
speed scaling, the worst-case delgyfor TaskI'; can be dp. — - =i=177 33
Ei i—1 3 ()
obtained by the following formula Sp — ijl Pj
d; = sup{inf{r : F(I+7)+ Fi(I dpg, = ——— - 34
sup(inf{r: > F5(I+7)+ () Y (34)
- i1
whereG(I) is defined in (17) and; 5, in G(I) can be ob- SE = 2j=1 P
tained by minimizing/(61 ., 01,¢, 62,0, 62,1 - - - 6m.05 O, 1) andd in (35) can be obtained by Corollary 1
in Theorem 1. '

Proof: We consider a busy intenjal, ¢o], during which The proofis given in Appendix B,

atleast one job from Task$; (j <) is running, and imme-]

diately before which no jobs from TasKs (j < i)arerun- 6 Performance Evaluation

ning. We know that the delay of a jabof TaskI'; is intro-

duced by two arrival stages of jobs in the queue: all queued In this section we evaluate the benefit of using simple
jobs at.J’s release time and the higher-priority ones coming reactive speed scaling scheme by comparing the worst-case
betweenJ’s release time and completion time. Then we delay with that of a system without speed scaling. We adopt

have the worst-case delay for a job of Tdskas follows: as the baseline a constant-speed processor that runs at equi
i librium speecsg.
d; = sup{inf{r : Z it T) + fi2) We choose the same setting as [4] for a silicon chip. The
t=2ty =t thermal conductivity of the silicon material per unit volam
< Z i(t+7) (31) is K, :_100 W/mK and the thermal capacitgn_ce per unit
j=1 volume iscy, = 1.75 x 10% J/m3K. The chip ist;, =

wheref;(t) andg,(t) are the workload function and the ser- 0.55 mnz,hthifk' Therefore, the thermal RC time constant

vice function of TasK'; respectively. RC = mfthj 0.0044 sec [4]. Hence by E:quann (4)

= gi(t1), j = 1,...,i, andg;(t) = g;(t1), j = i + maximum temperature thresholddi5°C, thenT; = 40°C.

1,....n. ThereforeEj;ll Fi(t+r)+fit) < 2321 g;(t+ The equilibrium speedg will be flx_ed t_)y th_e syitelr(r;, but
sy can be freely chosen. We arbitrarily piely = = sg

: i—1
) in the above formula can be written 33, _, (f;(t+7) — and assume — 3.

Fit))+(fi(t) = filtr)) < 3751 (g5 (t+7)—g;(t1)). With We consider three taskg;s (i = 1,2,3). As a case
the similar analysis forlFIFO scheduling, the worst-case de study, we consider a leaky-bucket workload and assume
lay happens whef;—; (f;(t + 7) — fi(t1)) + (fi(t) = each task; has a leaky bucket arrival with (1) = o; +

fi(t)) = ZZ Y Fj(I +7) + Fi(I). Definel =t —t, pil. The aggregate task has an arrival withl) = o + pI,

and then (30) holds In (30¥7(I) is defined in (17). By whereo = Zf’zl o; andp = 2?21 pi. In our evalua-
Lemma 3, the service function under SP scheduling is sametion, we varyo /sy and p/sg in the ranges of0, 0.005]

as the one under FIFO scheduling. Thign, in G(I) can and|0, 0.5] respectively. We compare the worst-case delay
be obtained by minimizing(d1 », 61.¢, 62,0, 02,4, - - - s Om 0 of jobs in the system under reactive speed scaling and the
m,n) in Theorem 1. u baseline one in the systems the processor always run at the
equilibrium speed.

2|n the following, the smaller index of a task indicates a leigpriority.

Q
To_~

4 ‘%u\ o B
%0
o, \&
® \

alsg sec

Figure 6. A contour plot of delay decrease ra-
tio |d — dg|/dg for the aggregated task under
reactive speed scaling for FIFO scheduling.

alsg sec

First we consider FIFO scheduling. We evaluate the:
case delay decrease ratib— dp|/dg for the aggregate
task. * Figure 6 shows a contour plot ¢ — dg|/dg in
terms ofo/sgp andp/sp. We observe that the delay -
crease ratio changes from a minimunfasd = dg) to a
maximum of1 — i—g = 0.300 (asd = dg). The dela
decrease ratio will decrease as either p increases.

Next we consider SP scheduling. We assume #hat
o9 103 = p1 :p2:op3 = 1:2: 3. We evaluate th
worst-case delay decrease ratip—dg ;| /dg ; for TaskT';.
Each individual picture in Figure 7 shows contour plot
|d; — dgil/dE . in terms ofo/sp andp/sg, for the three
tasks separately. We observe that the delay decreas:
changes from a minimum éf(asd; = dg ;) to @ maximun
of 1 — §—§ = 0.300 for TaskI'y, to a maximum of(1 —

2)/(1- %2_5) = 0.316 for TaskI'y, and to a maximum of

(1—2£)/(1 - %g—i) = 0.353 for TaskI'; (asd; = dg ;).
As If the delay decrease ratio is not larger tltad, the
ratio will decrease as eitheror p increases for any task. As
if it becomes larger thaf.3, we have different observation

results for the lower-priority tasks. In particular, cafesi-

ing the lower-priority task, for smalt andp, the delay de- period” does not apply and it becomes difficult to separate
crease ratio can be written @s— 22) /(1 — i > =1 Pi)- the execution of jobs from the interference by ones arriving
Therefore, as shown at the left-bottom corner of the last two earlier or having low priorities because of dynamic speed
contour plots in Figure 7, the delay decrease ratio will keep scaling triggered by the thermal behavior. In this paper we

constant ag increases ang keeps constant, but increase have shown how to compute bounds on the worst-case de-

alsg sec

Figure 7. Contour plots of delay decrease ra-
tio |d; — dg|/dg, for Task I'; (i = 1,2, 3) under
reactive speed scaling for SP scheduling.

asp increases and keeps constant. lay for tasks with arbitrary job arrivals for both FIFO and
SP scheduling algorithms in a system with a very simple
7 Conclusion and Future Work speed scaling algorithm, which simply runs at maximum

speed until the CPU becomes idle or reaches a critical tem-
OIperature. In the latter case the processing speed is reduced
(through DVS or appropriate clock throttling) to an equilib
rium speed that keeps the temperature constant. We have
3The alert reader has noticed that we did not define a valueafanp- shown that such a scheme reduces worst-case delays.
etera. This _is because appears onl)_/ in the computation 8f;, which In order to further improve the performance of speed
cancels outin the delay decrease ratio. scaling, one would have to find ways to partially isolate jobs

Delay analysis in systems with temperature-constraine
speed scaling is difficult, as the traditional definition oSy

from the thermal effects of ones arriving earlier or having [11]
low priorities. One weakness of the proposed speed-scaling
algorithm is its inability to pro-actively process low-prity

tasks at lower-than-equilibrium speeds. At this point we
don’t know how to perform delay analysis for non-trivial
speed scaling algorithms, however. [12]

References

[1] D. Brooks and M. Martonosi, “Dynamic thermal man- [13]
agement for high-performance microprocessors,” in
Proceedings of the 7th International Symposium on
High-Performance Computer Architect2001.

[2] Semiconductor Industry Association, “2005 inter-
national technology roadmap for semiconductors,”
http://public.itrs.nnet.

E. Rotem, A. Naveh, M. Moffie, and A. Mendelson, A

“Analysis of thermal monitor features of the Intel Pen-
tium M processor,” inProceedings of the First Work-
shop on Temperature-Aware Computer Syst@ng4.

(3]

[4] K. Skadron, M. Stan, W. Huang, S. Velusamy,

K. Sankaranarayanan, and D. Tarjan, “Temperature-
aware microarchitecture: Extended discussion and re-
sults,” Tech. Rep. CS-2003-08, Department of Com-

puter Science, University of Virginia, 2003.

A. Dhodapkar, C.H. Lim, G. Cai, and W.R. Daasch,
“TEMPEST: A thermal enabled multi-model pow-
er/performance estimator,” iWorkshop on Power-
Aware Computer Systems, ASPLOSZ0600.

2] A. Cohen, L. Finkelstein, A. Mendelson, R. Ronen,

and D. Rudoy, “On estimating optimal performance
of CPU dynamic thermal management,”Qomputer
Architecture Letters2003.

S. Wang and R. Bettati, “Delay analysis in
temperature-constrained hard real-time systems with
general task arrivals,” Tech. Rep. tamu-cs-tr-2006-
5-3, Department of Computer Science, Texas A&M
University, 2006, htt p: // ww. cs. t anmu. edu/
academ cs/tr/tanu-cs-tr-2006-5- 3.

Proof of Corollary 1

We follow the analysis in Section 4, we consider the
three constraints as follows:

Delay Constraint SinceF(I) = o + pI, by (19) we can
obtain the delayl as

g

[5] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem, Therefore, we have

“Introduction to Intel Core Duo processor architec-
ture,” Intel Technology Journalvol. 10, no. 2, pp.
89 — 97, 2006.

[6] N.Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed as
scaling to manage energy and temperature JEBE

Syposium on Foundations of Computer Scie2064.
[7]

N. Bansal and K. Pruhs, “Speed scaling to manage
temperature,” irSymposium on Theoretical Aspects of

Computer Scien¢005.
(8]

G. Gerosa, R. Philip, and J. Alvarez, “Thermal man-
agement system for high performance powerpc micro-
processors,” iINREEE International Computer Confer-
ence 1997.

_ g 9 _(sH
d = max{ pytip (SE 1)61.1n}- (36)
o _q
O1h = oo, (37)
]
da> 2. (38)
SH

Service Constraint To simplify the service analysis, we
consider equal intervals and assuipe= § fork = 3,...,m.
We investigate the service received in each intepyalt],

H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, kK =1,...,m.
As k =1, by (21) we have

Hence,

E. Rotem, A. Naveh, M. Moffie, and A. Mendelson,
“Analysis of thermal monitor features of the intel pen-
tium m processor,” inWorkshop on Temperature-
aware Computer Systen004.

(9]

[10] S. Wang and R. Bettati, “Reactive speed control in
temperature-constrained real-time systems,” Ein

romicro Conference on Real-Time SysteRG06.

SHO1h + 8E01e = 0+ p(d1,n + 1) (39)
(sg — p)din + (55 — p)iie =0 (40)
Ask =2,...,m,by(22), we have
k
SH ZFl 0jn + SEO1,e
= o+p((k—2)5+ (62 +61)+d). (41)

If k& = 2, together with (40), we have

(42)

If & > 3, we have

O, = —5
SH

(43)

Temperature Constraint By (37) and (43), we can rewrite
the temperature constraint condition (24).
Ask=2,....m—1,

T
T =g g, (44)
Ty
where
sy, 1— e VsH?
= (g) o (45)

By (44),T5 is a function of§ andm. It is easy to know that
the smallefT; is, the short delay is. Therefore, we want to
find andm to minimizeT, so that we a tight upper-bound
d of the original worst-case delay.

If £ <1,thenT, /Ty < 1. By (44),T> is a decreasing
functionin terms ofm—2)d, thenTs /Ty > lim ,,—2)5—o0
Ty/Ty = & 4 Furthermoreg is an increasing function
of 6, thenTy /Ty > lims_0& = (j—g)“si. Therefore,
we choose the minimum and s&f/Ty = (3£)* - as
(sm)e L <1,

If§ > 1, thenTy /Ty is the maximumamong &ll, /Ty's.
Therefore, we only need to consider boufig/ Ty < 1.
By (44), T /Ty is an increasing function in terms of,
thenTy /Ty will be minimized atm = 2. Hence, we set
T>/Ty = 1in this case.

Therefore, with the analysis above, we can set

TS . . SH ‘li
Ty mm{(SE) SH,I}. (46)
At the same time, by (23) and (25), we have
1 (S_H)f! _ ;:_26—1752,0
= —In-2E U 47
61,h + 52,]1 b n (z_g)a -1 ()

Therefore, by (37), (42), (46), and (47), we can obtain

the worst-case delajyas follows:
_ (I=x)0=-x2), xa o X2
d = — 92,0
X1~ X2 l-=x188 1l-x2 7
1 1 _ 3 (67 7b52’[)
——In min{x., X; e), (48)
I—x9

4We assume that at time zero the system is at lowest temperatur

Therefore, we can pick the intervals with overall length ainfinity.

wherey; = Si andy; = £

Equation (48) shows thazt is a function ofds . Since
the above analysis works for any chosen, we want to
obtain a minimum in terms ofé, (. There are two cases:

e x2 < x¢: dwill be minimized aty, , = 0, therefore
d=V(X-Y), (49)

e x2 > x§: d will be minimized até, o = }In X—?

therefore

d=V(X-Y - 2), (50)
whereV, X, Y, Z are defined in Corollary 1.

On the other hand, in the temperature constraink; as
1, by (25) and the constraint that /Ty < 1, we have

S1p > 0. (51)

Therefore, by (37), we have
a<Z. (52)

SE

Recall thatdy = = anddg = = then by (38) and (52),
the worst-case delay is also constrained by

dy < d<dp. (53)
B Proof of Corollary 2

By Theorem 2G(I) = min{(sg — sg)d1.n + sp(l +
d;),su(I+d;)} depends oid, 5. For the leaky bucket task

workload, by (37) we havé, , = (= —d)/(££—1), where
d can be obtained by Corollary 1.
By (30), the delay formula can written as
1—1
ZFI oj+pi(I+di) +oi+pil =
min{(sH — SE)él,h + SE(I + dl),
su(l+d;)} (54)
Then, asi; > 6 5, we have
+ pjidi) + o
PP = /A L0 R L RPN
SE SE
otherwise
(o + pjid; +oi
di — Z (GJ pidi) + o (56)
sy
Therefore, by (37), (55), and (56), we have
di = max{dg; — A,dg}, (57)

wheredg ; anddy ; are defined in Corollary 2, andlcan
be obtained by Corollary 1. The worst-case delais con-
strained by

dr; <d; <dg;. (58)

