
I/O-Aware Deadline Miss Ratio Management in Real-Time Embedded Databases ∗

Woochul Kang, Sang H. Son, and John A. Stankovic
Department of Computer Science

University of Virginia
{wk5f,son,stankovic}@cs.virginia.edu

Mehdi Amirijoo
Department of Computer and Information Science

Linköping University
meham@ida.liu.se

Abstract

Recently, cheap and large capacity non-volatile memory
such as flash memory is rapidly replacing disks in embedded
systems. While the access time of flash memory is highly
predictable, deadline misses may occur if data objects in
flash memory are not properly managed in real-time em-
bedded databases. Buffer cache can be used to mitigate
this problem. However, since the workload of a real-time
database cannot be precisely predicted, it may not be feasi-
ble to provide enough buffer space to satisfy all timing con-
straints. Several deadline miss ratio management schemes
have been proposed, but they do not consider I/O activi-
ties. In this paper, we present an I/O-aware deadline miss
ratio management scheme in real-time embedded databases
whose secondary storage is flash memory. We propose an
adaptive I/O deadline assignment scheme, in which I/O
deadlines are derived from up-to-date system status. We
also present a deadline miss ratio management architecture
where a control theory-based feedback control loop prevents
resource overload both in I/O and CPU. A simulation study
shows that our approach can effectively cope with both I/O
and CPU overload to achieve the desired deadline miss ra-
tio.

1 Introduction

A number of emerging applications require real-time
data services to handle large amounts of data in a timely
fashion. Examples include traffic control, target tracking,
and network management. Unlike traditional applications,
they require transactions to be completed within their dead-
lines. Several approaches using real-time database sys-
tems (RTDBS) have been proposed to handle these time-
constrained transactions [4][20][14]. Most of them are
based on main-memory databases due to the inherent un-
predictability of disk I/O. In main-memory databases, it is
assumed that the database is small enough to fit into main

∗This research work was funded in part by NSF CNS-0614886

memory, thus eliminating most I/O operations. However,
this assumption does not hold when the database size is
greater than main memory. Another problem with main-
memory databases is that they are vulnerable to system fail-
ures. Recent advancement in semiconductor technology
enables us to overcome the unpredictability of disks with
cheap and large capacity non-volatile memories. In par-
ticular, flash memory is rapidly replacing disks not only in
real-time embedded systems, but also in high-performance
servers [2] . Unlike disks, the access time to flash memory
is not affected by mechanical parts; thus, flash memory is
several orders of magnitude faster and highly predictable.
These desirable characteristics make flash memory more
suitable for RTDBS. However, flash memory still has high
overhead in access time compared to volatile memory such
as SRAM. Table 1 shows the overhead of flash memory in
comparison to SRAM.

Type Read Write Erase

SRAM 10ns 10ns N/A
NAND Flash 10µs 200µs 2ms

Table 1: Characteristics of memory devices [17].

Such gaps in access time are critical for RTDBS because
high I/O overheads may incur deadline misses if data ob-
jects are not properly managed. System designers may pro-
vide buffer memory to mitigate the high overhead of flash
memory accesses. However, in many cases, the workloads
are unknown at design time and they can change dynami-
cally. Therefore, it may not be feasible to provide enough
buffer space to satisfy all timing constraints. In particular,
resource-constrained embedded systems are extremely cost
and space sensitive, and cannot afford to have large buffers.

In this paper, we propose an I/O-aware deadline miss ra-
tio management scheme for real-time embedded database
systems (RTEDBS) whose secondary storage is flash mem-
ory. The contributions of this paper are three-fold:

1. an adaptive I/O deadline assignment scheme,
2. a model of deadline miss ratio in terms of I/O and CPU

workloads, and
3. a feedback control architecture to satisfy a given dead-

line miss ratio.

To the best of our knowledge, this is the first paper on dead-
line miss ratio management of RTEDBS with flash stor-
age using feedback control to consider both I/O and CPU
workloads. Previous approaches on deadline miss ratio
management in RTDBS assumed main-memory databases
[14][5]. As a result they only considered CPU workloads,
which is insufficient when managing the Quality of Service
(QoS) of modern RTEDBS consisting of volatile memory
as well as non-volatile flash memory. Several I/O-aware
approaches [3][8] have been proposed. However, they as-
sumed disks as secondary storage, and their primary re-
search focus was deadline-driven disk scheduling to miti-
gate the unpredictability of disk operations.

A key issue in deadline miss ratio management with dif-
ferent kinds of resources, e.g. I/O and CPU, is to find
out which resource is the bottleneck that causes deadline
misses. In RTEDBS, a deadline miss can happen either be-
cause of an overload in I/O or CPU, or both. By properly
setting deadlines for each resource request and observing
its deadline misses, we can tell which resource is the bot-
tleneck. However, deriving a deadline for each resource is
not straightforward because the deadlines are set for transac-
tions, not for individual resource requests. In this paper, we
assume a 2-phase transaction model, where each transaction
consists of an I/O phase and a computation phase. The I/O
deadlines and subsequent CPU deadlines for respective I/O
phases and computation phases are derived from transaction
deadlines with up-to-date system overload status.

Having I/O deadlines and CPU deadlines enables us to
measure and model the system in terms of I/O and CPU
workloads and their respective deadline miss ratios. A
straightforward approach would be to build separate mod-
els for I/O and CPU. However, our experiments show that
CPU and I/O deadline miss ratios are coupled and af-
fect each other, thus necessitating multiple-input/ multiple-
output (MIMO) modeling of the system. In this paper, the
RTEDBS is modeled as a MIMO system to capture this cou-
pling of control inputs and system outputs.

The use of feedback controllers has shown to be ef-
fective for real-time systems with unpredictable workloads
[5][14][16]. A feedback control architecture is proposed to
guarantee the desired deadline miss ratio. At each sampling
instant, the feedback control loop measures I/O and CPU
miss ratios and computes control signals, e.g. the required
I/O and CPU workload adjustment. In particular, our ap-
proach controls both I/O and CPU workloads at the same
time because of close interactions between them.

The rest of the paper is organized as follows. Section 2
describes our system and data model for RTEDBS. In Sec-
tion 3, our deadline miss ratio management architecture is
described. In Section 4, the performance evaluation results
are presented. In Section 5, we discuss the related work.
Finally, Section 6 concludes the paper.

2 System and Data Model for RTEDBS

2.1 System Model

A real-time embedded system that includes a CPU, main
memory, and flash memory is considered. The buffer pool is
a cache between the flash memory and the CPU. It is shared
between transactions to reduce the data storage access time.
The maximum size of the buffer pool is configured at de-
ployment time and does not change over its lifetime. How-
ever, the proportion of allocated buffer pool size between
different classes is not fixed since a fixed allocation can in-
cur inefficient use of the buffer resource.

The I/O load between main memory and flash memory
occurs only when an explicit I/O request is issued for a data
object not present in the buffer pool. Implicit I/O requests
such as page faults are not considered because virtual mem-
ory is typically not supported in embedded systems.

2.2 Data and Transaction Model

In our data model, data objects can be classified into two
classes, temporal and non-temporal data. Temporal data ob-
jects are updated periodically by update transactions. In
contrast to update transactions, user transactions may read
both temporal and non-temporal data objects and modify
non-temporal data objects.

Since embedded platforms are assumed for our RT-
EDBS, transactions are canned transactions, whose char-
acteristics including data requirement and worst-case com-
putation time is known at the design time. However, work-
load and data access patterns of the whole RTEDBS can be
unpredictable and change dynamically because the invoca-
tion frequency of each transaction is unknown. Since data
requirements are known for each transaction, data requests
of each transaction can be gathered before its computation
to improve the response time. To this end, we model each
transaction as a two-phase operation, an I/O phase and a
computation phase. In the I/O phase, data objects for the
transaction are brought to the buffer pool from the flash
memory. In a single transaction, the computation phase can
begin only after all its required data objects are present in the
buffer pool. However, the I/O and the computation phase
of different transactions can overlap. For example, while
transaction i is under the I/O operation, transaction j can
perform its computation. A transaction can commit after
the computation phase by updating a copy of the data object
in the memory buffer. The time required to update the data
object in the memory buffer is ignored in this transaction
model because it is relatively small compared to flash mem-
ory accesses. The buffer manager will eventually write the
updated buffers back to flash memory when the buffer man-
ager is running out of buffers.

Di

Ci

Dio,i

Ti

Dcpu,i

Ri

Figure 1: The timing of a typical transaction.

Figure 1 shows the timing of a typical transaction i,
where Ti is a release time, Di is a relative deadline, Ri

is a I/O time, Ci is a computation time, Dio,i is a relative
I/O deadline, and Dcpu,i is a relative CPU deadline. While
the deadline of each transaction i is set by the application
in consideration of the worst case I/O time and computa-
tion time, Dio,i and Dcpu,i are dynamically derived from
the relative deadline Di and the current deadline miss ratio.
When the I/O deadline is missed, the transaction is aborted
and its computation phase is not initiated. This dynamic I/O
deadline assignment scheme is explained in the Section 3.2.

Transactions are classified into classes by their impor-
tance. Two service classes, a guaranteed service class and
a best effort service class, are assumed in this study for
simplicity. Resources including the buffer space are shared
between service classes. Instead of providing each service
class fixed amount of resources, the allocation of resources
to each service class is adaptive in our RTEDBS. Our adap-
tive buffer space allocation scheme is presented in Section
3.4.

3 Approach

A system overload due to a transient surge of the work-
load is the main source of deadline misses in soft real-time
systems. When the number of deadline misses increases be-
cause of the scarcity of a specific resource, the feedback
control loop for the resource reduces the workload by ad-
justing the system parameters. In this section, we present
a QoS management architecture which controls both CPU
and I/O workloads with a feedback control.

3.1 Performance Metrics

In our approach, the main performance metric is the
deadline miss ratio of real-time transactions. A deadline
miss can be caused by either an I/O deadline miss or a CPU
deadline miss.

CPU deadline miss: A transaction misses its deadline and
all data objects needed by the transaction are present in
the buffer pool by the I/O deadline.

I/O deadline miss: Some data objects needed by the trans-
action are not present in the buffer pool at the I/O dead-
line. In this case, the computation phase is not initiated.

When a deadline miss happens, it can be attributed to either
a CPU or an I/O deadline miss, but not both. Accordingly,
CPU and I/O deadline miss ratios are obtained as follows,

m{cpu|io} =
of {CPU |I/O} deadline misses in admitted transactions

of admitted transactions
(1)

where, total miss ratio = mcpu + mio ≤ 1. (2)

By observing the deadline miss ratios for CPU and I/O,
we can tell which resource is the current bottleneck in the
RTEDBS.

The desired levels of miss ratio, mref , for the guaran-
teed service class is expressed in the QoS specification. The
desired level of deadline miss ratio for CPU, mref,cpu, and
I/O, mref,io, are set separately such that their sum is equal
to mref . The reference deadline miss ratios for I/O and CPU
are weighted according to the system overload status as fol-
lows,

mref,{cpu|io}(t) = ρ{cpu|io}(t) × mref (3)

where,
ρ{cpu|io}(t) =

Total number of {CPU | I/O} deadline misses

Total number of deadline misses
(4)

Note that ρcpu(t) and ρio(t) are defined only when the
RTEDBS has deadline misses, and the sum of ρcpu(t) and
ρio(t) equals to one.

3.2 Adaptive I/O Deadline Assignment

Since a transaction deadline is set for the transaction, not
for I/O or computation phases, deriving an I/O deadline is
not straightforward. In this paper, instead of setting I/O
deadlines statically for each transaction, we define I/O dead-
lines recursively as a time-varying function of the deadline
miss ratio of the past sampling period as follows,

I/O deadline for transaction i =

Ti + Di − Ci ×
(

1 + mcpu(t) × Di − Ci

Ci

)
, (5)

where mcpu(t) is the CPU deadline miss ratio during the
past sampling period. The initial value for mcpu(0) is set to
zero. The I/O deadline reflects the up-to-date resource status
and the amount of slack time that is required for the compu-
tation phase to finish within the transaction deadline; in our
two-phase transaction model, the deadline for the computa-
tion phase is equal to the transaction deadline.

An I/O deadline can be as long as Ti +Di−Ci when the
CPU is not overloaded, thus, mcpu is close to zero; this im-
plies that the computation phase requires less slack time to
meet the transaction deadline. In contrast, an I/O deadline
can be as short as Ti when the CPU resource is the bottle-
neck and most I/O requests can be handled in the data buffer
without incurring physical I/O operations and I/O deadline
misses in the end. In this case, the computation phase re-
quires more slack time. Overall, I/O deadlines are set in

inverse proportion to the CPU deadline miss ratio of the lat-
est sampling period. However, in practice, the two extreme
cases rarely happen since the controller keep the deadline
miss ratio (mcpu + mio) under mref , e.g. 0.01.

Setting I/O deadlines can serve two purposes: time-
cognizant I/O scheduling and I/O workload control. In this
paper, we use I/O deadlines only for I/O workload control
purposes; the controller controls the I/O workload based on
mio. In terms of I/O scheduling, a First-come/First-service
scheduling policy is used for its simplicity. We reserve the
study on the impact of the time-cognizant I/O scheduling as
our future work.

3.3 Deadline Miss Ratio Management Ar-
chitecture

Figure 2 shows the deadline miss ratio management ar-
chitecture for RTEDBS. Transactions issued by sensors (up-
date transactions) and users (user transactions) are placed on
the ready queue. The transaction queue can have several ser-
vice classes. The figure shows two classes: a guaranteed ser-
vice queue and a best effort service queue. The transactions
in the best effort service queue are dispatched only if the
ready queue for the guaranteed service class is empty. The
dispatched transactions are managed by the transaction han-
dler, which consists of a buffer manager (BM), a freshness
manager (FM), a concurrency control (CC), and a sched-
uler (S). Transactions are observed by the monitor and the
statistics of monitored transactions, including deadline miss
ratios, (mio and mcpu), and utilizations (uio and ucpu), are
reported to the QoS controllers on every sampling period.

QoS Controller

QoD

Manager

Buffer

Size

Estimator

Admission

Controller

Actuator

Monitor

mio, mcpu ,uio, ucpu

Transaction Handler

BM FM CC S

∆buffer_size

Ready Queue

Dispatch

Abort/Restart

Block

Block Queue

∆update_rate

∆Wnew

User Transactions

Best Effort Transactions

∆Wio,∆Wcpu

CPU, I/O workload controller

(Multiple input/ Multiple output)

∆W

Update Transactions

Figure 2: Feedback control architecture

Controllers calculate the workload adaptations required
to meet the reference miss ratios, mref,io and mref,cpu, by
comparing them to current miss ratios. Once the workload
changes are determined, they are enforced by two actuators
independently. For CPU workload adaptation, the update
rates of temporal data are adjusted by the Quality of Data
(QoD) manager. For I/O workload adaptation, the buffer

size of the guaranteed service is adjusted by the buffer size
estimator. If the workload needs to be adjusted more than
the actuators can handle, the admission controller adapts the
workload by allowing or denying user transactions.

3.4 I/O and CPU Workload Adjustment

In I/O-aware deadline miss ratio management, the work-
load should be separately defined for I/O and CPU. The
CPU workload, Wcpu, can be measured as the amount of
requested computation to do at a given time. However, we
need to be more specific about I/O workload because the
I/O workload of a transaction depends on the buffer cache;
In the presence of buffer cache, I/O requests from a transac-
tion incur I/O operations only if data objects are not found
in the buffer. In our study, I/O workload, Wio for the past
sampling period is estimated as follows,

Wio =
of buffer access × (1 − HIT) × buffer page size

bandwidth × sampling period
, (6)

where, HIT is the buffer hit ratio during the past sam-
pling period. Note that we consider explicit I/O requests and
subsequent buffer misses as the only source of I/O work-
load. Once the target I/O workload, Wio,target, is provided
by the controller (in Section 3.5), the target buffer hit ra-
tio can be obtained from Equation (6). The buffer size to
achieve that target buffer hit ratio can be estimated with an
estimation function [6][9]. In this paper, we use the tech-
nique proposed by Brown et al. [6], in which the relation
between the buffer size and the buffer hit ratio is linearly
approximated with the last two hit ratio observations.

It may be argued that adaptive buffer adjustment is un-
necessary because providing larger buffer space will solve
I/O overload problem. However, memory is a scarce re-
source in most embedded systems and we cannot afford to
have large buffer memory. Therefore, we need to increase
the total utilization of the buffer memory by adaptively allo-
cating buffer space to each service classes. For instance, by
reducing the buffer space of a service class when its I/O is
under-utilized, the RTEDBS can provide more buffer space
to the other service classes that requires it.

In contrast to the I/O workload, the CPU workload can
be adjusted by changing the precision of transactions [5] or
the freshness of temporal data [14]. In this paper, we change
the freshness of temporal data by changing update intervals
of temporal data. For details, readers are referred to [14].

If further workload adaptation is not possible by chang-
ing update intervals and buffer size, admission control is
applied. By allowing or denying more user transactions,
workloads are adjusted. However, we should be careful
in applying admission control because it changes both I/O
and CPU workloads together. Aggressive admission con-
trol can make systems unstable. For instance, if I/O allows

50% additional user transaction while CPU needs only 10%
additional user transactions, then allowing 50% additional
user transaction can cause an overshoot in CPU miss ratios.
To prevent an excessive overshoot, we take a conservative
approach by taking the average of two. Another interest-
ing issue in applying admission control occurs when each
resource wants to adjust workload in different directions;
e.g., CPU wants to increase its workload by allowing 20%
additional user transactions while I/O wants to decrease its
workload by 20%. In this case, the admission rate is deter-
mined by the resource that has a higher deadline miss ratio.

3.5 Control Loop Design

In this section, we model RTEDBS in terms of I/O and
CPU deadline miss ratios and build a controller to manage
deadline misses.

3.5.1 System Modeling

The first step in the design of a feedback control loop is the
modeling of the controlled system [11]; the RTEBDS in our
study.

Unlike the previous work [5][14], which has single-input
and single-output (SISO), the RTEDBS in this paper has
multiple inputs (Wcpu and Wio) and multiple outputs (mcpu

and mio). We may choose to use two separate SISO mod-
els for each pair of control input and system output; (Wcpu,
mcpu) and (Wio, mio), respectively. However, if an input of
the system is highly affected by another input, then a Multi-
ple Inputs/Multiple Outputs (MIMO) model should be con-
sidered [10][11]. Having two SISO models does not capture
the interaction between different control inputs and system
outputs; for example, the interaction between the I/O work-
load and the CPU deadline miss ratio cannot be modeled
with two SISO models. To understand the interaction be-
tween control inputs and system outputs in the RTEDBS,
we performed a series of experiments by applying a discrete
sine wave input while the other input was fixed. We did this
for both CPU workload and I/O workload. The workloads
were adjusted by controlling the buffer size and update rates
of temporal data for I/O and CPU respectively. Figure 3(a)
shows the result of applying the sine wave CPU workload
with 40% amplitude while the I/O workload was fixed at
120%. While the CPU workload changes between 80% and
120%, the I/O workload stays at around 110% without a sig-
nificant deviation. This result shows that the I/O workload
is not affected by CPU workload change. On the contrary,
an I/O workload change has a significant impact on the CPU
workload as shown in Figure 3(b). In Figure 3(b), a discrete
sine wave input was applied to the I/O while the CPU work-
load was fixed at 130%. Even though we fixed the CPU
workload, it was affected by changes to the I/O workload,

and, consequently, the CPU deadline miss ratio was also af-
fected by this. Interestingly enough, the results show that
the CPU workload is inversely proportional to the I/O work-
load. This is because transactions are aborted when their
I/O deadlines are missed. The higher the I/O deadline miss
ratio is, the more transactions are aborted by I/O deadline
misses. Therefore, CPU workload decreases, thus, decreas-
ing the CPU deadline miss ratio. This experiment shows
that a MIMO model is more appropriate for RTEDBS than
SISO models.

Another issue in modeling a computing system is its non-
linearity and time-variant characteristics. Complex systems
such as RTEDBS can show a non-linear response to inputs.
For example, the CPU deadline miss ratio develops quite
differently when the CPU is saturated than when it is not
saturated. However, the system can be approximated quite
closely with linear time invariant models such as the ARX
model by choosing an operating region where the system’s
response is approximately linear [11]. Even when the sys-
tem’s response is highly non-linear, the system can be mod-
eled with linear models by dividing the operating region into
several sub-operating regions, where each region is approx-
imately linear; in this case, adaptive control techniques such
as gain scheduling [11] can be used for control. In case of
RTEDBS, the operating region of the controller is set so that
the deadline miss ratio is greater than 0 and less than 50%.
As we will show later, the accuracy of the linear model in
the operating region is acceptable; hence, the linear model
is sufficient for our purpose. The form of the linear time in-
variant model that we use for RTEDBS is shown in (7), with
parameters A and B.
(

mio(k + 1)
mcpu(k + 1)

)
= A ·

(
mio(k)
mcpu(k)

)
+ B ·

(
Wio(k)
Wcpu(k)

)
(7)

Because the RTEDBS is modeled as a MIMO system, A
and B are 2x2 matrices. A RTEDBS simulator which will
be introduced in Section 4 was used for system identifi-
cation [15]. In the system identification, relatively prime
sine wave workloads for CPU and I/O were applied simul-
taneously to the simulator to get the parameters. In our
study, the RTEDBS model has A =

(
0.5403 0.1740
0.2405 0.4500

)
, and

B =

(
0.2400 −0.1208
−0.0100 0.1774

)
as its parameters. All eigen-

values of A are inside the unit circle; hence, the system is
stable [11].

In terms of the system order, note that we model the RT-
EDBS as a first-order system; the current outputs are deter-
mined by their inputs and the outputs of the last sample. The
accuracy of the model is satisfactory and, hence, the chosen
model order is sufficient for our purposes.

The model can be validated by comparing the experi-
mental result to what the model predicts. Figure 4 plots
the experimental response of the RTEDBS and the predic-
tion of the model. We can see that the model provides

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

w
or

kl
oa

d
&

 m
is

s
ra

tio
 (

%
)

time (seconds)

I/O workload
CPU workload

I/O deadline miss ratio
CPU deadline miss ratio

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

w
or

kl
oa

d
&

 m
is

s
ra

tio
 (

%
)

time (seconds)

I/O workload
CPU workload

I/O deadline miss ratio
CPU deadline miss ratio

(a) sine wave CPU workload (b) sine wave I/O workload

Figure 3: SISO inputs to RTEDBS.

highly accurate predictions. The accuracy metric R2 =

1 − variance(experimental value - predicted value)
variance(experimental value) is 0.93 and 0.78

for the I/O and CPU dead line miss ratio respectively. Usu-
ally, R2 ≥ 0.8 is considered acceptable [11]. With regard
to R2 and multi-step validation in Figure 4, the suggested
first-order linear model can be considered acceptable.

3.5.2 Controller Design

For RTEDBS, we choose to use a proportional integral (PI)
control function given by,

U(k) = Kp · E(k) + KI ·
k−1∑
j=1

E(j). (8)

At each sampling instant k, the controller computes the con-
trol input U(k) = [WIO(k) WCPU (k)]T by monitoring the
control error E(k) = [mref,IO(k)−mIO(k) mref,CPU (k)−
mCPU (k)]T . Kp and KI are controller gains.

One important design consideration in computing sys-
tems such as RTEDBS which have a stochastic nature is to
control the trade-off between short settling times and over-
reacting to random fluctuations. If a controller is too aggres-
sive, then the controller over-reacts to this random fluctua-
tion. To this end, we choose to use the linear quadratic reg-
ulator (LQR) technique to determine control gains, which is
accepted as a general technique for MIMO systems [11]. In
LQR, control gains are set to minimize the quadratic cost
function,

J =

∞∑
k=0

[E(k) V (k)] · Q ·
(

E(k)
V (k)

)
+ U(k)

T · R · U(k). (9)

The cost function includes the control errors E(k), accumu-
lated errors V (k), and weighting matrices Q and R. LQR
allows us to better negotiate the trade-offs between speed
of response and over-reaction to random fluctuation by se-
lecting appropriate Q and R matrices. Q quantifies the cost
of control errors and R quantifies the cost of control effort.
Since controlling the I/O workload by changing the buffer
size incurs higher cost than controlling the CPU workload
by changing the update interval, we impose a higher weight
on I/O. We choose R=diag(1/3, 1/8) where 1/3 is the cost
of I/O control and 1/8 is the cost of CPU control. Then, we
choose Q=diag(0.1, 0.1, 0.001, 0.001) to weight the control
errors more heavily than the integrated control errors. For

more details on the LQR technique, readers are referred to
[11].

Finally, in terms of the sampling interval, we sample ev-
ery 10 seconds. In RTEDBS, the buffer management affects
the choice of the sampling interval in particular because the
buffer hit ratio changes slowly after adjusting the buffer size.
If the sampling interval is too short, controlling the buffer
size may not have an effect until the next sampling period,
thus wasting the control effort.

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900

w
or

kl
oa

d
&

 m
is

s
ra

tio
 (

%
)

time (seconds)

I/O workload
CPU workload

I/O deadline miss ratio

CPU deadline miss ratio
I/O miss predicted

CPU miss predicted

Figure 4: Model validation.

4 Experiment

The main objective of the experiment is to test the ef-
fectiveness of controlling I/O and CPU workloads together
instead of considering only one in the presence of unpre-
dictable workloads. A scheme which is not I/O-aware is
compared to our scheme. For experiments, we developed
a simulator that models the proposed RTEDBS. Various
workloads were applied to the simulator to test its perfor-
mance.

4.1 Simulation Settings

The simulated workload consists of sensor data update
transactions and user transactions. User transaction work-
loads are synthesized to test a wide range of workloads and
patterns. Update transaction workloads follow similar set-
tings as in [14]. I/O components including NAND flash
memory are modeled to follow the performance character-
istics typically found in commercial products [2].

4.1.1 Data and Update Transactions

3,000 temporal data objects and another 3,000 non-temporal
data objects reside in the database. Among them, the update

Parameter Value

of temporal data objects 3000
Update interval (Pi) Uniform(100ms, 50sec)
EETi Uniform(2ms, 4ms)

Actual exec. time Normal(EETi,
√

EETi)
Relative deadline 2 × Pi

data object access/update 1
Update CPU load ≈ 50%
Update I/O load � 1%

Table 2: Update transaction settings.

Parameter Value

of non-temporal data objects 3000
EECTi Uniform(3ms, 5ms)

Actual exec. time Normal(EETi,
√

EETi)
EEITi NUMdata × ReadAccessTime/page
Relative deadline (EECTi + EEITi) × slack factor
Slack factor Uniform(5, 10)
NUMdata (I/O intensive) Normal(150, 30)
NUMdata (balanced) Normal(100, 20)
NUMdata (CPU intensive) Normal(50, 10)

Table 3: User transaction settings.

Parameter Value

Read access time / page 30µs
Write access time 300µs
Erase time N/A
Page size 512 bytes
Bank interleaving N/A
Flash memory max. bandwidth 16MB/sec
BUS bandwidth ∞
Buffer size 30 - 3000 data objects
Buffer replacement algorithm LRU

Table 4: Flash memory and buffer settings.

stream updates only temporal data. The update period, pi,
follows a uniform distribution Uniform(100ms, 50sec).
The expected execution time (EET) of an update trans-
action is uniformly distributed in the range (3ms, 6ms).
The actual execution time is given by normal distribution
Normal(EETi,

√
EETi). The relative deadline of an up-

date is set to 2 × pi. An update transaction incurs I/O op-
erations if its target data object is not found in the buffer.
However, I/O deadlines for update transactions are not set
because update transactions are not I/O-intensive. The de-
fault settings shown in Table 2 generate about 50% CPU
load and less than 1% I/O load when the buffer can hold
50% of total temporal data objects.

4.1.2 User Transaction

A user transaction accesses both temporal and non-temporal
data and updates only non-temporal data. The arrival rate of
user transactions to the database follows the Poisson distri-
bution. In terms of the number of data accesses per transac-
tion (NUMdata), three settings are tested; I/O intensive set-
tings where NUMdata is given by Normal(150, 30), bal-
anced settings whose NUMdata follows Normal(100, 20),
and CPU intensive settings where NUMdata is given by
Normal(50, 10). The execution of user transactions con-
sists of an I/O phase and a computing phase. The ex-

pected execution time (EECTi) of the computation phase
is given by the Uniform(3ms, 5ms). The actual execu-
tion time follows Normal (EECTi,

√
EECTi). The ex-

pected execution time of the I/O phase (EEITi) is given
by the multiplication of NUMdata and the read access time
to flash memory per page. The actual execution time of
the I/O phase is determined by the number of data objects
found in the buffer. The deadline of a user transaction is
(EECTi + EEITi)× slack factor. The slack factor is uni-
formly distributed ranging from 5 to 10. In I/O intensive
settings, user transactions result in more I/O workload than
CPU workload; when 100 user transactions arrive per sec-
ond in addition to default update transactions, about 55%
and 30% additional I/O and CPU loads are incurred respec-
tively. In CPU intensive settings, 18% I/O load and 30%
CPU load are incurred. In balanced settings, 35% I/O load
and 30% CPU load are incurred. In experiments, the arrival
rates are adjusted to increase or decrease the I/O and CPU
load.

4.1.3 Flash Memory and Buffer

When a transaction accesses data objects, the buffer pool in
the main memory is first searched, and if not found, the data
objects in the persistent storage are brought to the buffer
in main memory. The Least Recently Used (LRU) buffer
replacement scheme is used for buffer management. The
maximum size of the buffer pool is set to hold 3000 data
objects (1/2 of total data objects). The buffer pool is shared
between the guaranteed service and the best-effort service.
The ratio of buffer pool sizes between two services is ad-
justed dynamically. A NAND flash memory is assumed for
persistent data storage. Read operations occur in the unit of
a page. The size of a page is set to 512 bytes. Read time
per page is set to 30µs. Write time is set to 300µs and the
write operations are done by a translation layer [12] without
block-erase; therefore, the erase time is not considered. We
assume the size of flash memory is big enough, so garbage
collection occurs infrequently [7]. The flash memory is as-
sumed to have only one bank and read/write requests are se-
rialized to the bank. Because we assume no interleaving be-
tween banks, the maximum bandwidth of the flash memory
accesses is determined only by the access latencies. The ob-
tained maximum bandwidth is about 16MB/sec. The band-
width of the interconnection bus between the main memory
and the flash memory is assumed to be much greater than the
flash memory bandwidth, thus avoiding interferences from
other bus operations; this assumption is reasonable when we
consider the two most common bus technologies, USB [1]
and PCI [19], that have 40 MB/sec and 133.3 MB/sec max-
imum bandwidth respectively.

4.2 Baseline

To our best knowledge, the issues of simultaneous con-
trol of I/O and CPU workloads for deadline miss ratio man-
agement have hardly been studied in real-time databases.
Therefore, we compare our scheme (I/O-CPU) with the fol-
lowing baseline scheme which was introduced in [14].

CPU-ONLY: This scheme is not I/O-aware; the I/O dead-
line is not set for transactions, and I/O and CPU dead-
lines are not distinguished. When deadline miss ra-
tio deviates from the desired miss ratio, only the CPU
workload is adjusted by changing the update rates
of the temporal data and applying admission control;
the I/O workload is not dynamically controlled. This
scheme was originally designed for main-memory real-
time database that has no or negligible I/O workload.
For comparison to our approach, the RTEDBS was
modeled by a first-order SISO model; the CPU work-
load is the control input and the deadline miss ratio is
the system output. A PI controller is used.

4.3 Results

Each simulation is run at least 5 times, and their aver-
age is taken. 90% confidence intervals are drawn for each
data point. For deadline miss ratios, confidence intervals are
not shown because they are no more than 0.5%. For experi-
ments, the reference miss ratio is set to 3%. Two metrics are
used to compare our approach to the baseline: the average
miss ratio and throughput. The average miss ratio indicates
if the miss ratio requirement is satisfied, and the through-
put indicates if underutilization is occurred to achieve the
miss ratio requirement. The throughput is defined as the
percentage of timely transactions over the total number of
submitted transactions.

4.3.1 Experiment 1: Varying Loads

Computational systems usually show different behavior for
different workloads, especially when overloaded. In this ex-
periment, workloads are varied by applying an increasing
number of user transactions. Overload can result from ei-
ther I/O or CPU, or both. We apply three different sets of
workloads by applying three different sets of user transac-
tions.

Balanced I/O and CPU: NUMdata, the number of ac-
cesses data per transaction, follows Normal(100, 20).
The user transactions incur almost the same amount of
I/O and CPU workload. In this setting, the I/O work-
load varies from 50% to 190% by applying more user
transactions. The CPU workload varies accordingly.

CPU intensive: NUMdata follows Normal(50, 10).
Each user transaction incurs about 1.5 times more
CPU load than I/O load. In this setting, the CPU
workload varies from 50% to 190%. The I/O workload
varies accordingly.

I/O intensive: NUMdata follows Normal(150, 30). Each
user transaction incurs about 100% more I/O load than
CPU load. In this setting, the I/O workload varies from
50% to 190%. The CPU workload varies accordingly.

Note that the workload in the three settings indicates the
amount of workload applied to the simulated RTEDBS
when all transactions are admitted and no workload control
is applied. Furthermore, because the measured I/O work-
load changes with the size of buffer space and its subsequent
buffer hit ratio, the same set of transactions can incur dif-
ferent I/O workloads in different RTEDBS settings. In our
experiments, sets of transactions are prepared to incur x%
workload in a RTEDBS setting, whose buffer size is 1000
data objects. The same sets of transactions are applied to
each experiment to generate x% workload. The actual mea-
sured workload in each experiment may be different due to
different settings, e.g, different buffer sizes, admission con-
trols and controllers

The result is shown in Figure 5-7. The results show
that both I/O-CPU and CPU-ONLY effectively achieve the
desired miss ratio, that is 3%, in all three different work-
loads. However, the throughputs of the two schemes to
achieve the desired miss ratio are quite different. In all
three workloads, I/O-CPU shows much higher throughputs.
For instance, when 190% I/O workload (or CPU workload
in CPU-intensive) is applied, I/O-CPU achieves 17%-28%
higher throughput than CPU-ONLY. The throughput gap be-
tween I/O-CPU and CPU-ONLY increases as the workload
increases. I/O-CPU shows significantly better throughput
than CPU-ONLY when the workload is I/O intensive as in
Figure 7. This is because I/O-CPU can effectively use more
buffer space as shown in Figure 7-(b). For CPU-ONLY, the
buffer size is fixed at 1000 data objects. As the I/O workload
increases, it incurs more buffer cache misses. For I/O-CPU,
the I/O workload is effectively reduced by utilizing unused
buffer space of the best-effort service class, thus increasing
the buffer hit ratio.

Interestingly enough, I/O-CPU consumes less buffer than
CPU-ONLY both in balanced workloads and CPU-intensive
workloads even though it achieves higher throughput than
CPU-ONLY as in Figure 5 and 6. For instance, in Figure
6, I/O-CPU achieves 20% more throughput when a 190%
CPU workload is applied even though it consumes almost
zero buffers. At first, this seems counter-intuitive because
providing more buffer cache should reduce the I/O load,
thus reducing deadline misses due to I/O overload. This
result can be attributed to the close interaction between I/O

 0

 20

 40

 60

 80

 100

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 M
is

s
R

at
io

, T
hr

ou
gh

pu
t (

%
)

I/O workload (%)

Miss ratio, I/O-CPU
Miss ratio, CPU-ONLY
Throughput, I/O-CPU

Throughput, CPU-ONLY

 0

 500

 1000

 1500

 2000

 2500

 3000

 40 60 80 100 120 140 160 180 200

B
uf

fe
r

S
iz

e
(#

 o
f d

at
a

ob
je

ct
s)

I/O workload (%)

I/O-CPU
CPU-ONLY

(a) Miss ratio and Throughput (b) Buffer size

Figure 5: Average performance when varying balanced I/O and CPU workload.

 0

 20

 40

 60

 80

 100

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 M
is

s
R

at
io

, T
hr

ou
gh

pu
t (

%
)

CPU workload (%)

Miss ratio, I/O-CPU
Miss ratio, CPU-ONLY
Throughput, I/O-CPU

Throughput, CPU-ONLY

 0

 500

 1000

 1500

 2000

 2500

 3000

 40 60 80 100 120 140 160 180 200

B
uf

fe
r

S
iz

e
(#

 o
f d

at
a

ob
je

ct
s)

CPU workload (%)

I/O-CPU
CPU-ONLY

(a) Miss ratio and Throughput (b) Buffer size

Figure 6: Average performance when varying CPU intensive workload.

 0

 20

 40

 60

 80

 100

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 M
is

s
R

at
io

, T
hr

ou
gh

pu
t (

%
)

I/O workload (%)

Miss ratio, I/O-CPU
Miss ratio, CPU-ONLY
Throughput, I/O-CPU

Throughput, CPU-ONLY

 0

 500

 1000

 1500

 2000

 2500

 3000

 40 60 80 100 120 140 160 180 200

B
uf

fe
r

S
iz

e
(#

 o
f d

at
a

ob
je

ct
s)

I/O workload (%)

I/O-CPU
CPU-ONLY

(a) Miss ratio and Throughput (b) Buffer size

Figure 7: Average performance when varying I/O intensive workload.

 0

 20

 40

 60

 80

 100

 40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

, T
hr

ou
gh

pu
t (

%
)

I/O workload (%)

Throughtput, 50-50
Throughput, 70-30
Throughput, 90-10

Deadline miss ratio, 50-50
Deadline miss ratio, 70-30
Deadline miss ratio, 90-10

 0

 200

 400

 600

 800

 1000

 40 60 80 100 120 140 160 180 200

B
uf

fe
r

S
iz

e
(#

 o
f d

at
a

ob
je

ct
s)

I/O workload (%)

Buffer size, 50-50
Buffer size, 70-30
Buffer size, 90-10

(a) Miss ratio and Throughput (b) Buffer size

Figure 8: x − y data access patterns with varying workload.

workloads and CPU workloads. When I/O is not the bot-
tleneck causing transaction deadline misses, having larger
buffer cache does not improve the overall miss ratio. In fact,
a larger buffer cache can deteriorate the overall miss ratio.
As shown in Figure 3-(b), I/O workload does not only con-
trol the I/O miss ratio but it also controls CPU miss ratio;
increasing I/O workload decreases CPU workload by abort-
ing transactions, and in contrast, decreasing I/O workload
increases CPU workload, thus incurring more CPU deadline
misses if CPU is already overloaded. In I/O-CPU, the trans-
actions which are less likely to meet the deadline are selec-
tively aborted due to small buffer cache. In other words,
when CPU is overloaded while I/O is not, CPU workload
can be effectively controlled by adjusting buffer cache size.
Furthermore, I/O workload control via buffer cache adjust-
ment is fine-grained; thus, it prevents overshooting. In con-
trast, CPU-ONLY achieves desired miss ratio only through
admission control when adjusting update intervals of tempo-
ral data is not available. With admission control, the amount
of workload adjustment is coarse-grained. Therefore, over-
shoot and subsequent underutilization can occur. Actually,
CPU-ONLY suffers from underutilization in Figure 5-(a);
the miss ratio is far lower than the desired value.

These results demonstrate that controlling I/O workload
via buffer management not only fosters effective use of
buffer cache resources but also enables fine-grained CPU
workload control. Overall, our approach guarantees the de-
sired QoS with much higher throughput; this implies re-
sources are more effectively used in our approach.

4.3.2 Experiment 2: Varying Data Access Patterns

I/O workload is highly affected by data access patterns. By
default, we assumed a uniform access pattern. However, the
data access patterns can be different from a uniform access
pattern. Moreover, the data access patterns can change at
run-time. Therefore, the deadline miss ratio management
scheme should be robust enough to cope with different data
access patterns. In this section, the effect of data contention
is tested using a x − y access scheme as described in [14].
In the x−y access scheme, x% of data accesses are directed
to y% of the data in the database. For instance, with 90-10
access pattern, 90% of data accesses are directed to 10% of
data in the database, thus, incurring data contention on 10%
of entire data. 50-50 access pattern is essentially equal to
uniform access pattern.

We test the robustness of our approach by applying three
different x−y access patterns; 90-10, 70-30, and 50-50 data
access patterns. Because of space limitation, we only show
the result when balanced I/O and CPU workload is applied
in Figure 8. As shown in Figure 8-(a), our deadline miss
ratio scheme achieves the desired miss ratio in all three dif-
ferent access patterns. Furthermore, the throughput of the

three access patterns are not significantly different; 90-10
achieves no more than 5% higher throughput than 50-50.
However, the buffer size to achieve the same performance
with different access patterns are quite different as shown in
Figure 8-(b). As the degree of data contention increases, the
smaller size of buffer is enough to achieve the same degree
of miss ratio and throughput. This suggests that miss ra-
tio management should have a flexible buffer management
scheme to dynamically adjust to different data access pat-
terns. Our results demonstrate that the proposed miss ratio
management scheme is robust enough to cope with different
data access patterns.

4.3.3 Experiment 3: Transient Performance

Average performance is not enough to show the perfor-
mance of dynamic systems like RTEDBS. Transient per-
formance including settling times and overshoots should be
small enough to satisfy the requirements of applications.
Figure 9 shows the result when the workload surges sud-
denly as a step function. Originally the system is set to have
30% I/O and 70% CPU loads. At 200 seconds, user transac-
tions surge to increase the I/O workload by 190% as a step
function. CPU load increases accordingly.

We can see that the CPU workload increases instantly
to 330% after I/O workload is reduced by the controller at
230 seconds. This is because reducing I/O workload by in-
creasing the buffer cache size allows more transactions to be
issued for the CPU phase without being aborted at the I/O
phase, thus, causing a sudden increase in the CPU work-
load. The miss ratio settles down within 70 seconds. A 70
second settling time may not be satisfactory for some real-
time systems whose workloads are highly bursty. However,
it satisfies the requirements of a wide range of real-time ap-
plications.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000

M
is

s
R

at
io

, W
or

kl
oa

d
(%

)

Time (sec)

I/O workload
CPU workload

I/O deadline miss ratio
CPU deadline miss ratio

Figure 9: Sudden surge of I/O and CPU workload.

5 Related Work

In the past two decades, the research in RTDBS has
received a great deal of attention [18][13]. Most of the
studies assume main memory databases [4] due the in-
herent unpredictability of disk I/O. However, several I/O-
aware approaches have been proposed, especially in terms

of deadline-driven disk scheduling [3][8]. Unlike these ap-
proaches, our approach assumes flash memory as a non-
volatile storage due to predictable performance.

Feedback control has been applied to QoS management
in real-time systems due to its robustness against unpre-
dictable operating environments. Lu et al. [16] proposed
a feedback control real-time scheduling framework where
they presented algorithms for managing miss ratio and uti-
lization. Kang et al. [14] proposed feedback control-based
QoS management architectures for main memory RTDBS
to support the desired QoS. All these studies consider only
CPU resource as the source of deadline misses and I/O is
not considered. Consequently, their approaches are based
on SISO models. Unlike these approaches, we consider both
I/O and CPU resources for deadline miss ratio management.
Furthermore, due to the close interaction between I/O and
CPU load, we use a MIMO technique.

6 Conclusions and Future Work

Despite the abundance of flash memory as a non-volatile
secondary storage in modern real-time embedded systems,
the problem of managing data in flash memory for real-
time applications has not been well addressed. To address
this problem, in this paper we presented an I/O-aware dead-
line miss ratio management scheme in RTEDBS whose sec-
ondary storage is a flash memory.

We showed that I/O and CPU workloads are closely re-
lated and a MIMO technique is required to capture the in-
teraction between them. Furthermore, a MIMO feedback
control loop was designed to control I/O and CPU work-
load simultaneously. Our approach gives robust and con-
trolled behavior in terms of guaranteeing the desired miss
ratio and achieving high throughput in diverse workloads,
access patterns, and even in the presence of transient over-
loads. The proposed algorithm outperforms the baseline al-
gorithm where only CPU overload is considered. As one
of the first studies on I/O-aware deadline miss ratio man-
agement, the significance of our work will increase as flash
memory increasingly replaces disks in real-time embedded
systems.

We will extend this work in several ways. One direc-
tion is to investigate the impact of applying different I/O
scheduling algorithms such as EDF. Secondly, adptive con-
trol approaches can be considered instead of manual tuning
to reduce the complexity of manual controller design and to
compensate for the non-linear dynamics of the system.

References

[1] http://www.everythingusb.com/usb2/faq.htm.
[2] http://www.samsung.com/products/semiconductor/flash/.

[3] R. Abbott and H. Garcia-Molina. Scheduling real-time trans-
actions with disk resident data. VLDB ’89: Proceedings of
the 15th international conference on Very large data bases,
pages 385–395, 1989.

[4] B. Adelberg. STRIP: A Soft Real-Time Main Memory
Database for Open Systems. PhD thesis, Stanford Univer-
sity, 1997.

[5] M. Amirijoo, J. Hansson, and S. H. Son. Specification and
management of QoS in real-time databases supporting im-
precise computations. IEEE Transactions on Computers,
55(3):304–319, March 2006.

[6] K. P. Brown, M. J. Carey, and M. Livny. Goal-oriented buffer
management revisited. SIGMOD Rec., 25(2):353–364, 1996.

[7] L.-P. Chang, T.-W. Kuo, and S.-W. Lo. Real-time garbage
collection for flash-memory storage systems of real-time em-
bedded systems. ACM Trans. on Embedded Computing Sys.,
3(4):837–863, 2004.

[8] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley. Per-
formance evaluation of two new disk scheduling algorithms
for real-time systems. The Journal of Real-Time Systems,
3(3):307–336, 1991.

[9] J.-Y. Chung, D. Ferguson, G. Wang, C. Nikolaou, and
J. Teng. Goal-oriented dynamic buffer pool management for
database systems. Technical report, IBM RC19807, Octo-
ber,1995.

[10] Y. Diao, N. Gandhi, and J. Hellerstein. Using MIMO feed-
back control to enforce policies for interrelated metrics with
application to the Apache web server. In Network Operations
and Management, April, 2002.

[11] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. Wiley IEEE press,
2004.

[12] INTEL. Understanding the flash translation layer (FTL)
specification. application note ap-684, December 1998.

[13] T.-W. K. E. Kam-yiu Lam. Real-Time Database Systems:
Architecture and Techniques. Kluwer Academic Publishers,
2001.

[14] K.-D. Kang, S. H. Son, and J. A. Stankovic. Managing
deadline miss ratio and sensor data freshness in real-time
databases. IEEE Transacctions on Knowledge and Data En-
gineering, 16(10):1200–1216, October 2004.

[15] L. Ljung. Systems Identification:Theory for the User 2nd edi-
tion. Prentice Hall PTR, 1999.

[16] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback
control real-time scheduling: Framework, modeling, and al-
gorithms. Real-Time Syst., 23(1-2):85–126, 2002.

[17] C. Park, J. Seo, D. Seo, S. Kim, and B. Kim. Cost-efficient
memory architecture design of nand flash memory embedded
systems. 21st International Conference on Computer Design,
2003.

[18] K. Ramamritham. Real-time databases. Distrib. Parallel
Databases, 1(2):199–226, 1993.

[19] T. Shanley and D. Anderson. PCI System Architecture(4th
Edition). Addison-Wesley Professional, 1999.

[20] J. A. Stankovic, S. H. Son, and J. Liebeherr. BeeHive: Global
multimedia database support for dependable, real-time appli-
cations. Lecture Notes in Computer Science, 1553:51–72,
1998.

