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Abstract

Compositional schedulability analysis of hierarchical
scheduling frameworks is a well studied problem, as it
has wide-ranging applications in the embedded systems do-
main. Several techniques, such as periodic resource model
based abstraction and composition, have been proposed for
this problem. However these frameworks are sub-optimal
because they incur bandwidth overhead. In this work, we
introduce the Explicit Deadline Periodic (EDP) resource
model, and present compositional analysis techniques un-
der EDF and DM. We show that these techniques are band-
width optimal, in that they do not incur any bandwidth over-
head in abstraction or composition. Hence, this framework
is more efficient when compared to existing approaches.

1. Introduction

Real-time embedded systems consist of a combination
of different processors and programmable components with
deadlines. Their increasing complexity demands advanced
design and analysis methods. Component-based engineer-
ing is widely accepted as an approach to facilitate their de-
sign. It is founded on the paradigm that a complex sys-
tem can be designed by decomposing it into simpler com-
ponents, and then composing the components using inter-
faces that abstract complexities. To take advantage of this
component-based design for real-time systems, schedulabil-
ity analysis of such systems should be addressed.

Component-based real-time systems often involve hier-
archical scheduling frameworks that support resource shar-
ing among components under different scheduling algo-
rithms. This framework can be represented as a tree of
nodes, where each node denotes a component comprising
of some real-time workload and a scheduling policy. In this
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representation, resources are allocated from a parent node to
its children. For such frameworks, it is desirable to achieve
schedulability analysis compositionally, i.e., we should be
able to check schedulability of the system by composing
interfaces that abstract component-level resource demand.
Ideally, these interfaces must use minimum resources to sat-
isfy demand of components. Furthermore, these interfaces
should expose only so much information about components
as is required for this analysis.

Resource model based component interfaces, and their
compositional analysis is a well known technique that ad-
dresses the aforementioned problem [14, 19, 20, 21]. A
resource model represents the characteristics of a resource
supply, and hence can be used for schedulability analysis. A
periodic resource model Γ = (Π,Θ), represents a resource
supply that has Θ units of resource capacity in every Π time
units. These models have been extensively studied under
fixed-priority [1, 3, 14, 19] and EDF [20] scheduling.

In this work, we introduce the Explicit Deadline Peri-
odic (EDP) resource model which generalizes the periodic
resource model. We use this model for compositional anal-
ysis of hierarchical scheduling frameworks that are com-
prised of EDF and DM schedulers. An EDP resource model
Ω = (Π,Θ,∆) repetitively provides Θ units of resource
within ∆ time units, where the period of repetition is Π.
This choice of model is implementation-oriented, because
many popular real-time schedulers support its semantics.
This model also closely characterizes the resource demand
of many real-time applications like avionics systems [7].

Bandwidth of a resource model ( Θ
Π for both periodic

and EDP models) is a measure of the resource requirement
of the model. Therefore, it is desirable to minimize this
quantity when abstracting components into resource mod-
els. When compared to the EDP model based analysis pre-
sented in this paper, periodic resource model based tech-
niques incur bandwidth overhead which can be explained as
follows. In order for a resource model to be able to sched-
ule a demand, length of the largest time interval with no
supply (henceforth denoted as starvation length) must be



smaller than the earliest deadline in demand. Since periodic
models have implicit deadlines, satisfaction of this require-
ment depends entirely on its capacity when resource period
is fixed. However, for EDP models, starvation length de-
pends on both its capacity and deadline. Therefore, it is
possible to adjust the deadline of EDP models and satisfy
this scheduling requirement without changing capacity (and
hence bandwidth).

In addition to introducing EDP models, the contributions
of this work include, (1) an efficient algorithm to compute
a bandwidth optimal EDP model based abstraction (hence-
forth denoted as EDP interface) for a component whose
demand comprises of sporadic tasks, (2) an exact transfor-
mation of EDP models to sporadic tasks for compositional
analysis (this transforms the composition problem to the
abstraction problem which can be solved as in (1) above),
and (3) bandwidth optimal, priority preserving abstraction
and transformation techniques when component priorities
are specified by the designer. These optimality results are
defined when the interface periods are fixed a priori. For
instance, the designer may specify periods taking into con-
sideration preemption overhead.

Related work. For real-time systems, there has been a
growing attention to hierarchical scheduling frameworks.
Since a two-level hierarchical framework was introduced by
Deng and Liu [5], its schedulability has been analyzed un-
der fixed-priority [10] and EDF [13, 15] scheduling. Since
in open systems, there can be more than two levels of hi-
erarchy, it is desirable to develop a more general analysis
framework. The bounded-delay resource model [18] has
been proposed to achieve a clean separation in a multi-
level hierarchical scheduling framework, and analysis tech-
niques [8, 21] have been introduced for this resource model.
However, no scheduling algorithm is known for such mod-
els, and hence compositional analysis has only been ad-
dressed w.r.t feasibility. Techniques have also been pro-
posed to support interacting tasks [17] and mutually exclu-
sive resource sharing between components [4] under peri-
odic resource models.

There have been studies [23, 9, 22, 6] on interface
theory for hierarchical scheduling frameworks. They use
assume/guarantee interfaces to abstract the resource re-
quirement of components in the form of demand func-
tions [23, 22], bounded-delay resource models [9], or pe-
riodic resource models [6]. Unlike resource models, de-
mand functions suffer from the problem of requiring large
amounts of space.

2. Preliminaries

In this paper we assume that each real-time task is an in-
dependent sporadic task. A task T = (p, e, d) has minimum

DM

EDF

DMEDF

EDF

C1 C2

C3

Component comprising of C4, C3

Component comprising of C1, C2

C5

C4

Figure 1. Hierarchical real-time system

separation p, execution requirement e and relative deadline
d such that e ≤ d ≤ p. For compositional schedulabil-
ity analysis using resource models, the component must ex-
port its worst case resource demand which depends on the
task model and scheduler. Any task model for which the
component can compute this demand, can be used in our
framework. A real-time component consists of a real-time
workload and a scheduling policy for the workload. In this
work, we assume that this workload comprises of sporadic
tasks and other real-time components.

Definition 2.1 (Real-time component) A real-time com-
ponent C is specified as C = 〈{C1, . . . , Cn}, S〉, where
each Ci is either another real-time component or a spo-
radic task. The workload C1, . . . , Cn is scheduled under S,
where S is either DM or EDF.

A hierarchical real-time system comprises of one or
more components arranged in a scheduling hierarchy. Note
that this system is assumed to be free of cycles, and there-
fore the workload of a component at the bottom of the hier-
archy is comprised of only sporadic tasks. Figure 1 shows
such a hierarchical system, where the workloads of C1, C2

and C3 are comprised of only sporadic tasks. We assume
that this system is scheduled on an uniprocessor platform.

The resource demand of a component with only sporadic
tasks, is the collective resource requirement of tasks when
they are scheduled under component scheduler. Recall that
the demand bound function of a component (dbf) gives the
maximum resource demand in a given time interval [2, 11].
Equation (1) gives the dbf for a componentC comprising of
sporadic tasks {T1, . . . , Tn} scheduled under EDF [2]. Sim-
ilarly, Equation (2) gives the dbf for task Ti inC when tasks
are scheduled under DM [11]. In this equation,HP(Ti) de-
notes the set of tasks in C that have priority higher than Ti.

dbfC(t) =
nX
i=1

„—
t+ pi − di
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�
ei

«
(1)

dbfC,i(t) =
X

Tk∈HP(Ti)

„‰
t

pk

ı
ek

«
+ ei (2)

As described in the introduction, a resource model spec-
ifies the timing properties of a resource supply. The supply



bound function (sbf) of a resource model gives the mini-
mum amount of resource that the model is guaranteed to
provide in a given time interval. For a periodic resource
model Γ = (Π,Θ), Equation (3) first proposed by Shin and
Lee [20], gives its sbf . In this equation, x = 2(Π−Θ) and
y =

⌊
t−(Π−Θ)

Π

⌋
.

sbfΓ(t) =

(
yΘ + max {0, t− x− yΠ} t ≥ Π−Θ

0 Otherwise
(3)

Compositional analysis of hierarchical systems has been
done by abstracting components into resource models such
as, periodic resource model [20], and bounded delay re-
source model [21]. In these analyses, dbf of components
and sbf of resource models are used to define schedulabil-
ity conditions. If the deadlines of a component workload
are met when higher priority interference is largest (dbf)
and supply from a resource model is least (sbf), then the
resource model can always successfully schedule the com-
ponent. Theorems 2.2 and 2.3 use this property to give
schedulability conditions over periodic resource models,
when component workload is comprised of only sporadic
tasks. In these theorems, LCMC denotes the least common
multiple of minimum separations of tasks in C. They also
define the notion of exactly schedulable, that identifies the
condition under which the resource model uses minimum
bandwidth to schedule the component.

Theorem 2.2 [20] A component C = 〈{T1 =
(p1, e1, d1), . . . , Tn = (pn, en, dn)}, EDF〉 is schedulable
using a periodic resource model Γ iff

∀t s.t. 0 < t ≤ LCMC +
n

max
i=1

di, dbfC(t) ≤ sbfΓ(t) (4)

Furthermore, C is exactly schedulable by Γ iff
in addition, ∃t s.t. minni=1 di ≤ t ≤ LCMC +
maxni=1 di and dbfC(t) = sbfΓ(t).

Note that if for any task Tj in the above theorem, dj >
pj , then for schedulability of C over a model Γ = (Π,Θ)
we also require Θ

Π ≥
∑n
i=1

ei

pi
[2].

Theorem 2.3 [20] A component C = 〈{T1 =
(p1, e1, d1), . . . , Tn = (pn, en, dn)}, DM〉 is schedulable
using a periodic resource model Γ iff

∀Ti, ∃ti ∈ [0, di] s.t. dbfC,i(ti) ≤ sbfΓ(ti) (5)

Furthermore, C is exactly schedulable by Γ iff in addition,
∀Ti,∀t ∈ [0, di] dbfC,i(t) ≥ sbfΓ(t).

Shin and Lee [20], use Theorems 2.2 and 2.3 to generate
periodic resource model based component abstractions. For
analysis of components comprising of other components,
they transform a periodic model Γ = (Π,Θ) into a spo-
radic task T = (Π,Θ,Π), thereby reducing the composi-
tion problem to the abstraction problem. This framework is
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Figure 2. Sub-optimal transformation

sub-optimal for the following reasons: (1) although Theo-
rems 2.2 and 2.3 use sbfΓ, the authors use a linear lower
bound of sbfΓ to generate abstractions, and hence incur
bandwidth overhead. (2) The transformation of periodic re-
source model based abstraction (Γ) into sporadic task (T )
induces demand overhead. This can be explained by ob-
serving that any periodic supply that can schedule T must
satisfy Γ, but there may exist a supply Γ′ which satisfies
Γ but cannot schedule T . Figure 2 illustrates this short-
coming for an example, where model Γ′ = (Π,Θ′) with
sbfΓ′(Π) < Θ and Θ′ > Θ cannot schedule T under EDF.
In this paper, we overcome these shortcomings, and hence
provide an efficient compositional analysis framework.

3. EDP resource model

Recollect that an explicit deadline periodic (EDP) re-
source model Ω = (Π,Θ,∆) provides Θ units of resource
within ∆ time units, with this process repeating every Π
time units. It is then easy to see that a periodic resource
model Γ = (Π,Θ) is the EDP model (Π,Θ,Π). In this
paper, we focus on EDP models with pre-period deadlines,
i.e., ∆ ≤ Π. The supply bound function of Ω is given by
the following equation, where x = (Π + ∆ − 2Θ) and
y =

⌊
t−(∆−Θ)

Π

⌋
. We also define a linear function usbfΩ

as the upper bound for sbfΩ. We use these functions to gen-
erate EDP interfaces. Figure 3 shows the sbf and usbf of Ω.
Observe that starvation length (Π + ∆ − 2Θ) of Ω can be
smaller than the starvation length (2Π−2Θ) of the periodic
model Γ, even though they have the same bandwidth.

sbfΩ(t) =

(
yΘ + max {0, t− x− yΠ} t ≥ ∆−Θ

0 Otherwise
(6)

usbfΩ(t) =
Θ

Π
(t− (∆−Θ)) (7)

Schedulability conditions for components with workload
comprising only of sporadic tasks and over EDP resource
models, are identical to Theorems 2.2 and 2.3 when sbf
from Equation (6) is used. Therefore, we use these theo-
rems to generate EDP interfaces. Before we present the ab-
straction procedure, we define the term bandwidth optimal
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for an EDP model and also derive conditions under which
this optimality is achieved.

Definition 3.1 (Bandwidth optimal) Given a component
C and period Π, model Ω = (Π,Θ,∆) that satisfies
schedulability conditions for C is bandwidth optimal iff its
bandwidth is the minimum over all EDP models that exactly
schedule C and have period Π.

Theorem 3.2 Let EDP model Ω = (Π,Θ,∆) with ∆ ≤ Π
exactly schedule component C = 〈{T1, . . . , Tn}, S〉. Then,
Ω is bandwidth optimal if ∆ = Θ.

Proof We show that if any model Ω′ = (Π,Θ′,∆′) with
∆′ > Θ′ exactly schedules C, then it must be the case
that Θ′ ≥ Θ. We prove this by contradiction and assume
Θ′ < Θ. We first show ∀t ≥ Π − Θ, sbfΩ′(t) < sbfΩ(t).
Since ∆′−Θ′

Π < 1,
⌊
t
Π

⌋
can be at most one greater than⌊

t−∆′+Θ′

Π

⌋
. Hence, we consider the following two cases.

Case
⌊
t
Π

⌋
=
⌊
t−∆′+Θ′

Π

⌋
(= k):

In this case, kΘ > kΘ′ and max{0, t− (Π−Θ)− kΠ} ≥
max{0, t− (Π + ∆′ − 2Θ′)− kΠ}. The second inequality
holds because Π − Θ < Π + ∆′ − 2Θ′. Therefore, from
Equation (6) we get sbfΩ′(t) < sbfΩ(t).

Case
⌊
t
Π

⌋
= k,

⌊
t−∆′+Θ′

Π

⌋
= k − 1:

Here, sbfΩ′(t) = (k − 1)Θ′ +
max {0, t− (Π + ∆′ − 2Θ′)− kΠ + Π}. Observe
that, max {0, t− (Π + ∆′ − 2Θ′)− kΠ + Π} < Θ′ for all
t ≥ Π − Θ. This is true because Π − Θ < Π + ∆′ − 2Θ′.
Therefore, sbfΩ′(t) < (k − 1)Θ′ + Θ′ ≤ kΘ ≤ sbfΩ(t).

We now derive a contradiction by showing that Ω′ cannot
schedule C. When S = EDF, since Ω exactly schedules C,
from Theorem 2.2 we get sbfΩ(t′) = dbfC(t′) for some
t′ ≥ mini di ≥ Π − Θ. Now since sbfΩ′(t′) < sbfΩ(t′),
we get that Ω′ does not schedule C. When S = DM from
Theorem 2.3 we get ∀Ti,∀t ∈ [0, di] dbfC,i(t) ≥ sbfΩ(t).
Since Π−Θ < Π+∆′−2Θ′, this then means that ∀Ti,∀t ∈
[0, di] dbfC,i(t) > sbfΩ′(t). From Theorem 2.3 we then get
Ω′ does not schedule C. 2

4. EDP interface generation

In this section, given interface period Π and a component
C whose workload comprises of only sporadic tasks, we
generate an EDP interface for C. This interface satisfies the
following notion of optimality.

Definition 4.1 (Bandwidth-deadline optimal)
Ω = (Π,Θ,∆) is a bandwidth-deadline optimal EDP
interface for a component C, iff

• Ω is bandwidth optimal for C, and
• For all Ω′ = (Π,Θ,∆′) such that Ω′ is bandwidth

optimal for C, ∆′ ≤ ∆.

Among all EDP interfaces that are bandwidth optimal for a
component C, the interface which has the largest deadline
is desirable. This is so because, a larger deadline implies
increased starvation length, which means reduced demand
at the next level for compositional analysis. We now de-
scribe techniques to generate these interfaces for compo-
nents scheduled under EDF or DM.

Abstraction under EDF. Let Ωm = (Π,Θm,∆m) de-
note the bandwidth-deadline optimal EDP interface for a
component C scheduled under EDF, where Π is known a
priori. The following abstraction procedure then computes
Θm and ∆m (for the computations given below, replace
sbfΓ in Equation (4) with sbfΩ defined in Equation (6)).

1. Set ∆ = Θ, evaluate Equation (4) for each time in-
terval length, and choose the maximum Θ(= Θm)
over all interval lengths (only those interval lengths at
which dbf changes, need to be considered). Note that
(Π,Θm,Θm) is bandwidth optimal for C.

2. Set Θ = Θm, evaluate Equation (4) for each inter-
val length, and choose the maximum ∆(= ∆m) over
all interval lengths. It is then easy to see that Ωm is
bandwidth-deadline optimal for C.

Abstraction under DM. We now compute Θm and ∆m

for the case when componentC is scheduled under DM. The
abstraction procedure consists of the following two steps
(for these computations replace sbfΓ in Equation (5) with
sbfΩ defined in Equation (6)):

1. Set ∆ = Θ and evaluate Equation (5) for each task
Ti in C, and for each interval length (only those in-
terval lengths at which dbf changes, need to be con-
sidered). Choose the minimum Θ(= Θmi

) over all
interval lengths and let Θm = maxi Θmi

. Then,
(Π,Θm,Θm) is bandwidth optimal for C.



2. Set Θ = Θm and evaluate Equation (5) for each task
Ti in C, and for each interval length. Choose the
maximum ∆(= ∆mi

) over all interval lengths and
let ∆m = mini ∆mi

. Then, Ωm = (Π,Θm,∆m) is
bandwidth-deadline optimal for C.

In order to generate the EDP interfaces we have to eval-
uate Equations (4) and (5) for different values of interval
length. Since they involve floor functions, computing Θ
that satisfies these equations is non-trivial. Therefore, we
now present a procedure that efficiently computes Θ, when
interval length t, corresponding dbf valueDt, period Π and
deadline ∆ are all known.

Algorithm 1 Algorithm for Equations (4) and (5)
Input: t,Dt,Π,∆
Output: Θopt

// Let t = kΠ + α and t′ =
¨
t−∆+Θ

Π

˝
Π

1: Set Θ = 0 and compute s0 = usbfΩ(t′). Let t0 =
¨
t−∆

Π

˝
Π.

2: if α < ∆ then
3: Set Θ = ∆ − α and compute s1 = usbfΩ(t′). Let t1 =¨

t−α
Π

˝
Π.

4: else
5: Set Θ = Π + ∆ − α and compute s1 = usbfΩ(t′). Let

t1 =
¨
t+Π−α

Π

˝
Π.

6: end if
7: if s1 > s0 and s1 ≤ Dt then
8: tmax = t1
9: else

10: tmax = t0
11: end if

// Case Dt is a multiple of Θopt

12: Compute Θ1 s.t. Θ1
Π

(tmax − (∆−Θ1)) = Dt
// Case Dt is not a multiple of Θopt

13: Compute Θ2 s.t. Θ2
Π

(tmax+Π−(∆−Θ2)) = Dt+ tmax+
Π− t

14: Return Θopt = mini Θi, where Θi ∈ R+ and i ∈ {1, 2}.

Algorithm 1 computes Θopt that satisfies the condi-
tion sbfΩ(t) = Dt. This procedure exploits the fact that
there are only two possible values for the floor function in
sbfΩ. This follows from the observation that Θ ≤ ∆ ≤
Π and α < Π, where α is the remainder obtained when t is
divided by Π. These values of the floor function are com-
puted in Lines 1,3 and 5 of the algorithm, with Θ set to the
smallest capacity of Ω that can generate those values.

In the algorithm, t′
(
=
⌊
t−∆+Θ

Π

⌋
Π
)

denotes the inter-
val length at which sbfΩ is a multiple of Θ. Observe that
sbfΩ(t′) = usbfΩ(t′), and hence the computation of sbfΩ

at t′ can be done efficiently. Therefore, in Lines 1,3 and 5
of the algorithm, sbfΩ(t′) is computed for the different pos-
sible capacities of Ω (corresponding to different values of
the floor function). Then, in Lines 7-11, we determine
tmax(= t′) such that the corresponding capacity Θmax is
the largest such capacity that is necessary but not sufficient

Θ1

t′ t

dbf

sbfΩ

Dt

(a) Θopt | Dt

t

dbf

sbfΩ

Dt

Θ2

t′

(b) Θopt - Dt

Figure 4. Figure for Algorithm 1

forDt. In other words, the minimum capacity Θopt required
to satisfy Dt is at least Θmax, and the value of the floor
function for Θopt is the same as its value for Θmax. In
Lines 12-13, we compute Θopt for the two different cases
shown in Figure 4 (Θopt either divides Dt or not). These
figures are only for illustration purposes, and give intuition
for the two cases under consideration. We do the compu-
tations in Lines 12-13 by setting usbfΩ(tmax) to Dt for
the case in Figure 4(a), and by setting usbfΩ(tmax + Π)
to Dt + tmax + Π− t for the case in Figure 4(b).

Algorithm 1 can be used to compute Θm and ∆m for the
abstraction procedures described earlier. Since each invo-
cation of the algorithm runs in constant time, the abstrac-
tion procedures have the same execution complexity as the
schedulability conditions given in Theorems 2.2 and 2.3. As
an aside, since a periodic resource model Γ = (Π,Θ) is an
EDP model (Π,Θ,Π), these techniques can also be used
to generate improved periodic resource model abstractions.
This addresses the first concern described in Section 2, for
the periodic abstraction framework [20].

Example 1 Consider components C1, C2 and C3

shown in Figure 1. Let C1 comprise of the task set
{(45, 2, 25), (65, 3, 30), (85, 4, 40)}, C2 comprise of
{(35000, 2000, 25000), (55000, 3000, 55000), (75000, 4000,
25000)} and C3 comprise of {(45, 1, 45), (75, 2, 20)}. The
load for these components (maxt

dbf(t)
t ) are 0.225, 0.24

and 0.1, respectively. We compute EDP interfaces for
these components for different values of interface period.
These interfaces are plotted in Figure 5 as I1, I2 and I3
corresponding to components C1, C2 and C3, respectively.
We observe that there are period values for which the band-
width of these interfaces are equal to the corresponding
component loads. From these plots we can also see that, as
period increases, the bandwidth also gradually increases.
Furthermore, from Figure 5(a), it can be seen that the
bandwidth has local peaks and troughs. It is then advan-
tageous to choose a period such that the corresponding
bandwidth is a trough. Similarly, since the deadline also
has local perturbations (Figure 5(b)), it is also desirable to
choose a period such that the corresponding deadline is a
peak.
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Figure 5. EDP interfaces for components C1, C2 and C3

5. Composition of EDP interfaces

Given an hierarchical scheduling framework as shown
in Figure 1, we can generate EDP interfaces for compo-
nents C1, C2 and C3 using techniques described in previ-
ous section. For analysis of the entire system, we must then
compose these interfaces iteratively until a single system-
level interface is obtained. In this paper, we address this
composition problem under EDF and DM schedulers. Our
approach to solve this problem is to reduce it to the ab-
straction problem, by transforming EDP interfaces into spo-
radic tasks. For the tasks we generate, EDF and DM are
optimal dynamic- and static-priority schedulers, respec-
tively [16, 12]. These transformations are also exact, in that
they are both necessary and sufficient for schedulability.

5.1. Exact transformation under EDF

We now present a function TEDF that takes an EDP inter-
face Ω and returns a sporadic task T . This task is demand-
supply optimal which can be defined as follows.

Definition 5.1 (Demand-supply optimal under EDF) A
sporadic task T scheduled under EDF is demand-supply
optimal for an EDP interface Ω iff

• For any EDP model Ω′ that can schedule T under EDF,
sbfΩ′(t) ≥ sbfΩ(t) for all t, and
• For any EDP model Ω′ that does not schedule T under

EDF, there exists a t such that sbfΩ′(t) < sbfΩ(t).

Informally, any EDP model that can schedule T must
always provide supply at least as much as sbfΩ, and any
EDP model that always provides supply greater than sbfΩ

must be able to schedule T . Note that the EDF scheduler
we mention here is the scheduler at the next level in the
hierarchy. For example, to transform the EDP interface of
component C1 in Figure 1, the relevant scheduler is the one
for component C4. Consider a simple transformation that
generates the sporadic task T = (Π,Θ,∆) for interface
Ω = (Π,Θ,∆). An example similar to Figure 2 can be

used to show that T is not demand-supply optimal for Ω.
Hence, we define TEDF as follows.

Definition 5.2 Given an EDP interface Ω = (Π,Θ,∆),
transformation TEDF is defined as TEDF(Ω) = (Π,Θ,Π +
∆−Θ).

Thus, given multiple EDP interfaces scheduled under
EDF, they can be composed by: (1) transforming each in-
terface into a sporadic task using Definition 5.2, and (2) ab-
stracting this set of sporadic tasks into an EDP interface us-
ing techniques described in Section 4. We now prove that
the transformation TEDF is exact.

Theorem 5.3 Sporadic task generated by TEDF given in
Definition 5.2, is demand-supply optimal for Ω.

Proof We first prove the sufficiency condition, i.e., we
show for all Ω′ that schedules T under EDF, sbfΩ′(t) ≥
sbfΩ(t) for all t. We consider two different types of inter-
val lengths; one where the length is in the range (nΠ + ∆−
2Θ, nΠ + ∆−Θ), and the other where the length is in the
range [nΠ + ∆−Θ, (n+ 1)Π + ∆− 2Θ], for some n ≥ 1.
Informally, these intervals correspond to the rising and flat
portions of sbfΩ, respectively.

Case 1: t ∈ (nΠ + ∆− 2Θ, nΠ + ∆−Θ)
We prove this case by contradiction. Let sbfΩ′(t) <

sbfΩ(t). At t′ =
⌊
t−(Π+∆−2Θ)

Π

⌋
Π + (Π + ∆ − Θ), we

have sbfΩ′(t′) ≥ dbfT (t′) (Ω′ schedules T ) and sbfΩ(t′) =
dbfT (t′). These together imply sbfΩ(t′) − sbfΩ(t) <
sbfΩ′(t′) − sbfΩ′(t). This is a contradiction because in
the interval [t, t′], sbfΩ is always rising with unit slope and
no sbf for uniprocessor platforms can rise with a greater
slope. Thus, we have shown that for all t > Π + ∆ − 2Θ,
sbfΩ′(t) ≥ sbfΩ(t). Since sbfΩ(t) = 0 for all t ≤
Π + ∆− 2Θ, we have proved sufficiency.

Case 2: t ∈ [nΠ + ∆−Θ, (n+ 1)Π + ∆− 2Θ]
In this case, dbfT (t) = sbfΩ(t). Since, any Ω′ that sched-
ules T must satisfy the condition sbfΩ′(t) ≥ dbfT (t) (The-
orem 2.2), the result follows.

The necessary condition follows from the fact that ∀t >
0, dbfT (t) ≤ sbfΩ(t). 2



5.2. Exact transformation under DM

In this section, we present a function TDM that takes an
EDP interface Ω scheduled under DM and returns a demand-
supply optimal sporadic task T . The deadline of tasks that
we generate must be at most their minimum separation in
order for DM to be optimal [12]. Therefore, TEDF defined in
the previous section is not a good transformation under DM.
Hence, we develop another transformation that generates
sporadic tasks with deadline at most their minimum separa-
tion. This procedure depends on the period of the EDP in-
terface at the next level in the hierarchy. For example in Fig-
ure 1, interface transformation for component C3 depends
on the interface period of component C5. Since interface
periods are known a priori, this dependence is not an issue.
Let Π′ denote this period of the higher level interface. To
define TDM, we first compute a bandwidth optimal resource
supply Ω∗ = (Π′,Θ∗,Θ∗) for interface Ω = (Π,Θ,∆). Ω∗
is such that,

∀t > 0, sbfΩ∗(t) ≥ sbfΩ(t) (sufficiency)

(∃t > 0, sbfΩ∗(t) = sbfΩ(t)) ∨
„

Θ∗

Π′
=

Θ

Π

«
(necessity)

These conditions imply that any EDP model with period Π′,
must have capacity at least Θ∗ to provide supply as much
as Ω (Theorem 3.2). We use Ω∗ to generate the demand-
supply optimal sporadic task T corresponding to Ω. This
notion of optimality for T is similar to the EDF case, except
that it depends on Π′.

Definition 5.4 (Demand-supply optimal under DM) A
sporadic task T scheduled under DM is demand-supply
optimal for an EDP interface Ω iff

• For any EDP model Ω′ with period Π′ that can sched-
ule T under DM, it must be the case that ∀t, sbfΩ′(t) ≥
sbfΩ(t), and
• For any EDP model Ω′ with period Π′ that does

not schedule T under DM, there exists a t such that
sbfΩ′(t) < sbfΩ(t).

Here, Π′ denotes the interface period at the next level from
Ω in the hierarchical system.

In the rest of this section, we define capacity Θ∗ corre-
sponding to Ω∗, and then present TDM using Θ∗.

Theorem 5.5 Given EDP interface Ω = (Π,Θ,∆) and
period Π′, the bandwidth optimal resource supply Ω∗ =
(Π′,Θ∗,Θ∗) is such that,

Θ∗ =

8><>:
Θ + kΘ

∆
Π′ = Π + k, k ≥ 0

Θ
k

Π′ = Π
k
, k ≥ 2

ΘC Π′ = Π
k

+ β, k ≥ 2

where β ∈
(

0, Π
k(k−1)

)
and k is an integer. If there exists

n ∈
(

∆−Θ
kβ , ∆−Θ

kβ + Π′ + 1
)

such that nkβ − (∆ − Θ) =

lΠ′ + γ and n is the smallest integer satisfying γ ≥ nΘ+γ
nk−l ,

then ΘC = nΘ
nk−(l+1) . Otherwise, ΘC = Θ

k + βΘ
Π .

Proof We consider the cases Π′ ≥ Π and Π′ < Π sepa-
rately.

Case 1: Π′ = Π + k, k ≥ 0
Consider the sbf of model Ω′ = (Π′,Θ′,Θ′) shown in
Figure 6(a), where Θ′ = Θ + k. Then, sbfΩ′(Π) = Θ,
Π′ − Θ′ = Π − Θ and Θ′

Π′ ≥ Θ
Π , and Ω′ is a bandwidth

optimal resource supply for model (Π,Θ,Θ). Further-
more, Ω′ also satisfies the sufficiency condition (of band-
width optimal resource supply) for Ω = (Π,Θ,∆). Hence,
Θ∗ ≤ Θ + k.

We now compute a non-negative quantity α such that
Θ∗ = Θ′ − α. Consider the EDP model Ω∗ = (Π′,Θ′ −
α,Θ′−α) as shown in the figure. Let t1 = Π′

⌊
nΘ
Θ∗

⌋
+Π′−

Θ∗ and t2 = Π′
⌈
nΘ
Θ∗

⌉
+Π′−Θ∗ be any two interval lengths

for which n ∈ {N⋃{0}} is unique (illustrated in Fig-
ure 6(a) for n = 2). Informally, between t1 and t2, sbfΩ has
exactly one flat segment. Now since Π′−Θ∗ ≥ Π−Θ, t2−
t1 ≥ Π−Θ. Then, it can never be the case that sbfΩ∗(t1) =
sbfΩ(t1) and sbfΩ∗ at t1 touches a rising segment of sbfΩ

(if this happens then sbfΩ∗(t2) < sbfΩ(t2)). Likewise,
it can never be the case that sbfΩ∗(t2) = sbfΩ(t2) and
sbfΩ∗ at t2 touches a flat segment of sbfΩ (if this happens
then sbfΩ∗(t1) < sbfΩ(t1)). This argument can be ap-
plied to all such pairs of t1 and t2. Hence, if sbfΩ∗(t) =
sbfΩ(t) with sbfΩ∗ touching a rising segment of sbfΩ, then⌊
nΘ
Θ∗

⌋
Π′ + Π′ − Θ∗ =

⌊
mΘ
Θ∗

⌋
Π′ + Π′ − Θ∗(= t) for

some m 6= n, where m,n ∈ {N⋃{0}}. Likewise, if
sbfΩ∗(t) = sbfΩ(t) with sbfΩ∗ touching a flat segment of
sbfΩ, then

⌊
nΘ
Θ∗

⌋
Π′+2Π′−Θ∗ =

⌊
mΘ
Θ∗

⌋
Π′+2Π′−Θ∗(= t)

for some m 6= n, where m,n ∈ {N⋃{0}}. Let lt denote
the index (starting from 0) of t in an increasing sequence of
all such relevant interval lengths. Then the following con-
ditions hold for each t.„—

t

Π′

�
+ 1

«
Θ∗ ≥

„—
t

Π′

�
+ 2 + lt

«
Θ

lt(Π−Θ) + (∆−Θ) ≥
„—

t

Π′

�
+ 1

«
α

Informally, first inequality represents the vertical gap be-
tween sbfΩ∗(t+ Π′) and the preceding horizontal segment
of sbfΩ (case 1 above), and second inequality represents
the horizontal gap at sbfΩ∗(t) between t and the succeed-
ing rising segment of sbfΩ (case 2 above). Combining these
conditions we get,

α ≤ k
„

1− (lt + 1)Θ

ltΠ + ∆

«
Since this condition must hold for all such t,

α ≤ min
lt


k

„
1− (lt + 1)Θ

ltΠ + ∆

«ff



t

Θ′ − α
Π − Θ

Π + ∆ − 2Θ

sbfΩ∗

Π − Θ + α

Π′

sbfΩ′
sbfΩ

t2t1

2Θ′

2(Θ′ − α)

Θ′

(a) Figure for Case 1

sbfΩ′
nkΘ∗

Π′ − Θ∗ nkΠ′

nkβ − (∆ − Θ)

nΘ

t

(b) Figure for Case 2

Figure 6. Figures for Theorem 5.5

Observe that the RHS here is minimized when lt = 0 be-
cause Θ ≤ ∆ ≤ Π. Therefore,

Θ∗ = Θ′ − k
„

1− Θ

∆

«
= Θ +

kΘ

∆

Case 2: Π′ = Π
k + β, k ≥ 2, β ∈

[
0, Π

k(k−1)

)
Since Ω∗ must be a bandwidth optimal resource supply for
Ω, Θ∗

Π′ ≥ Θ
Π (definition). Therefore, Θ∗ ≥ Θ

k + βΘ
Π .

Also, ∀n ≥ 1, s.t. t = nΠ + ∆ − Θ, it must hold that
sbfΩ∗(t) ≥ nΘ. If this condition is satisfied then the suffi-
ciency criteria of bandwidth optimal resource supply is met.
Furthermore, if this condition is tight for some n then we
also get necessity. We use this condition to compute Θ∗.

If Θ∗ ≥ Θ
k , then sbfΩ∗(nkΠ′) = nkΘ∗ ≥ nΘ. Since

nΠ+∆−Θ = nkΠ′−(nkβ−(∆−Θ)), ∀n s.t. nkβ−(∆−
Θ) ≤ 0 we get sbfΩ∗(t) ≥ nΘ. Therefore, if n ≤ ∆−Θ

kβ or
β = 0, Θ∗ ≥ Θ

k is sufficient.
We now consider the case when n > ∆−Θ

kβ and β 6=
0. Here t is smaller than nkΠ′ by nkβ − (∆ − Θ), and
we require that sbfΩ∗(t) ≥ nΘ. In other words, the total
resource supply of Ω∗ in an interval of length nkβ−(∆−Θ)
immediately preceding nkΠ′ must be at most nkΘ∗ − nΘ.
This interval of interest is shown in Figure 6(b). Assuming
nkβ − (∆−Θ) = lΠ′ + γ we then require,

∀n, nkΘ∗ − nΘ ≥ lΘ∗ + min{Θ∗, γ}

⇒Θ∗ ≥ max
n


min


nΘ

nk − (l + 1)
,
nΘ + γ

nk − l

ffff
Consider a n for which γ < nΘ+γ

nk−l (= Θ∗). Since
Θ∗ ≤ Θ we then get Π′Θ

Π ≥ nΘ+γ
nk−l . Hence, we can ignore

the term nΘ+γ
nk−l while computing Θ∗. Then, Θ∗ = nΘ

nk−(l+1)

for the smallest n which satisfies γ ≥ nΘ+γ
nk−l ( nΘ

nk−(l+1)

decreases with increasing n). This n if it exists, lies in(
∆−Θ
kβ , ∆−Θ

kβ + Π′ + 1
)

, because γ is the remainder of
nkβ − (∆−Θ) divided by Π′. 2

Transformation TDM can then be defined as follows.

Definition 5.6 Given an EDP interface Ω = (Π,Θ,∆) and
period Π′, transformation TDM is defined as TDM(Ω,Π′) =
(Π′,Θ∗,Π′).

TDM generates sporadic tasks with the same minimum sepa-
ration and deadline for all the component interfaces at any
one level in the hierarchical system. For example in Fig-
ure 1, the tasks generated for interfaces of components C3

and C4 have the same minimum separation and deadline
(capacities may be different). Thus, given multiple EDP in-
terfaces scheduled under DM, they can composed by: (1)
transforming each interface into a sporadic task using The-
orem 5.5 and Definition 5.6, and (2) abstracting this set
of sporadic tasks into an EDP interface using techniques
described in Section 4. The following corollary of Theo-
rem 5.5 states that TDM is exact.

Corollary 5.7 Transformation TDM as given in Defini-
tion 5.6 generates a demand-supply optimal sporadic task
under DM for Ω.

Example 2 We now demonstrate our composition tech-
niques on components C4 and C5 in Figure 1. Let the peri-
ods of chosen EDP interfaces I1, I2 and I3 be 13, 27 and
20, respectively, i.e., let I1 = (13, 3, 3), I2 = (27, 6.95, 27)
and I3 = (20, 2, 2) (from Figure 5). Now, I1 and I2 are
scheduled under EDF (C4 comprises of C1 and C2), and
hence the tasks for C4 using Definition 5.2 are (13, 3, 13)
and (27, 6.95, 47.05). Interface I4 for component C4 is
then plotted in Figure 7. We choose a period of 15 for I4,
i.e., let I4 = (15, 7.1445, 8.9446). For different values of
the interface period of component C5, we first transform
I3 and I4 into sporadic tasks (using Definition 5.6), and
then generate interface I5. Figure 7 also shows the plot
for I5 over different period values. Observe that the to-
tal bandwidth of I1 (period= 13) and I2 (period= 27) is
3
13 + 6.95

27 = 0.4881, and the bandwidth of I4 for period
values up to 19 is also 0.4881. This indicates that our com-
position and abstraction techniques do not incur any band-
width overhead for these period values. Similarly, the total
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Figure 7. EDP interfaces for components C4 and C5

bandwidth of I3 (period = 20) and I4 (period = 15) is
2
20 + 7.1445

15 = 0.5763, and the bandwidth of I5 for certain
periods (1, 5, etc.) is the same.

6. Priority preserving EDP interfaces

Analysis techniques described in previous sections, au-
tomatically assign deadlines to EDP interfaces. When com-
ponents are scheduled under DM, this means that their pri-
orities are also automatically fixed. However, it may be de-
sirable that system designers be able to control component
priorities. Hence in this section, we describe an analysis
technique that respects the designer specified component
priorities. We assume that components are scheduled un-
der DM, and therefore present a technique that assigns ap-
propriate deadlines to interfaces and their transformations.
We first give the procedure to compute a bandwidth optimal
EDP interface Ω = (Π,Θ,∆) for a component C whose
workload is comprised of only sporadic tasks. Note that
we only generate a bandwidth optimal interface as opposed
to the bandwidth-deadline optimal interface for the general
case. We then modify TDM to generate demand-supply opti-
mal sporadic tasks that respect component priorities.

Algorithm 2 gives the priority preserving abstraction
technique. This algorithm assumes that component Ci has
higher priority than component Cj for all i < j. In Lines 1
and 2 of the algorithm we compute the bandwidth opti-
mal and bandwidth-deadline optimal EDP interfaces, re-
spectively, for each component Cj . These interfaces do not
necessarily preserve the component priorities. Therefore,
in Lines 4-13 of the algorithm, we modify their deadlines
and capacities such that (1) component priorities are pre-
served, and (2) interface bandwidth is minimized. Capacity
Θj of interface Ωj is only increased if its maximum dead-
line ∆′j corresponding to Θj is smaller than the deadline of
Ωj−1. In this case, the deadline of Ωj is set equal to the
deadline of Ωj−1 and the corresponding capacity is com-
puted (Lines 10-11). After this process, all interfaces re-
spect the designer specified priorities. In Lines 14-16 of
the algorithm, interface deadlines are increased as much as

Algorithm 2 Priority preserving EDP interface
Input: Components C1, . . . , Cn and periods Π1, . . . ,Πn

Output: Ωj = (Πj ,Θj ,∆j) for j = 1, . . . , n
1: For each Cj execute Step 1 of abstraction technique for DM

and let (Πj ,Θj ,∆j) be the output.
2: For each Cj execute Step 2 of abstraction technique for DM

and let (Πj ,Θj ,∆
′
j) be the output.

// Refer to abstraction technique in Section 4 for the pre-
vious steps.

3: Let ∆ = Θ1

4: for j = 2 to n do
5: if Θj ≥ ∆ then
6: ∆ = Θj

7: else if ∆′j ≥ ∆ then
8: ∆j = ∆
9: else

10: Compute Θ s.t.(Πj ,Θ,∆) exactly schedules Cj .
11: Let Θj = Θ and ∆j = ∆
12: end if
13: end for
14: for j = n− 1 to 1 do
15: ∆j = max{∆j ,min{∆j+1,∆

′
j}}

16: end for

possible without violating priorities or increasing capaci-
ties. The following theorem proves that interfaces generated
using Algorithm 2 are bandwidth optimal.

Theorem 6.1 Given that component Ci has higher priority
than component Cj for all i < j, interface Ωj generated by
Algorithm 2 is bandwidth optimal for Cj .

Proof If capacity Θj of interface Ωj is not modified in
Line 11 of the algorithm, then from Theorem 3.2 we get
Ωj is bandwidth optimal for Cj . However, if Θj is modi-
fied then the deadline of Ωj is set to the deadline of Ωj−1.
Since component Cj−1 is required to have a higher priority
than component Cj , this is the minimum deadline for Ωj
(we assume that in case of a tie, priorities are determined
by indices). Note that the deadline of an interface is only
increased to respect priorities, and hence the deadlines of
Ω1, . . . ,Ωj−1 are the least possible. From Theorem 3.2 we



then get that Ωj is bandwidth optimal forCj under the given
component priorities. 2

Given an EDP interface Ω = (Π,Θ,∆) and period Π′,
TDM (Definition 5.6) generates a sporadic task whose dead-
line is Π′ for each component. Hence, this transformation
does not preserve the designer specified priorities. Assum-
ing components are abstracted using Algorithm 2, we mod-
ify TDM as follows. In order to respect component priori-
ties, we use the deadline of underlying interfaces to gener-
ate sporadic tasks. It is then easy to see that Corollary 5.7
also holds for TDM defined below.

Definition 6.2 Let Ω∗ = (Π′,Θ∗,Θ∗) denote a bandwidth
optimal resource supply for interface Ω = (Π,Θ,∆).
Then, transformation TDM is defined as TDM(Ω,Π′) =
(∆, sbfΩ∗(∆),∆).

7. Conclusion

We proposed a compositional analysis framework based
on the explicit deadline periodic resource model. We pre-
sented exact schedulability conditions for this model under
EDF and DM schedulers, and gave an efficient algorithm
to generate bandwidth-deadline optimal interfaces based on
this model. We also proposed transformations of these in-
terfaces to sporadic tasks for compositional analysis, and
showed that they are demand-supply optimal. In the fu-
ture, we plan to extend this framework to support incre-
mental analysis of dynamically changing components, as
well as for compositional analysis of systems scheduled on
multi-core platforms. We also plan to perform a compara-
tive study of EDP models with other resource models.
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