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Abstract 
 
Sea depth monitoring is a critical task to ensure the 

safe operation of harbors. Traditional schemes largely 
rely on labor-intensive work and expensive hardware. 
This study explores the possibility of deploying net-
worked sensors on the surface of sea, measuring and 
reporting sea depth of given areas. We propose a Re-
stricted Floating Sensors (RFS) model, in which sensor 
nodes are anchored to the sea bottom, floating within 
a restricted area. Distinguished from traditional sta-
tionary or mobile sensor networks, the RFS network 
consists of sensor nodes with restricted mobility. We 
construct the network model and elaborate the corre-
sponding localization problem. We show that by locat-
ing such RFS sensors, the sea depth can be estimated 
without the help of any extra ranging devices. A proto-
type system with 25 Telos sensor nodes is deployed to 
validate this design. We also examine the efficiency 
and scalability of this design through large-scale simu-
lations. 

 
1. Introduction 
 

We conducted a field study in H. H. Harbor, which 
is currently the second largest harbor for coal transpor-
tation in China. It has experienced rapid development 
over the past 5 years, and its coal transporting capabil-
ity has increased from 1.6 million tons per year in 
2002 to 6.7 million tons per year in 2006. However, 
this harbor currently suffers from the increasingly se-
vere problem of silt deposition along its sea route. H. 
H. Harbor has a sea route that is 19 nautical miles long 
and 800m wide at the entrance, including an inner 
route and an outer route. The sea route is designed to 
have a water depth of 13.5m to allow for the passage 
of ships that weigh over 50 thousand tons. Since the 
sea route has been in operation, it has always been 
threatened by the movement of silt from the shallow 
sea area within 14 nautical miles outside the route en-
trance. In the event that the sea route is silted up, ships 
of large tonnages must wait for entering the harbor to 
prevent grounding, and ships of small tonnages need 

be piloted into the harbor. Monitoring the extent of 
siltation reliably is critical in order to ensure the safe 
operation of H. H. Harbor.  

The uncertainty and the high instant intensity of the 
siltation make monitoring the extent of siltation ex-
tremely expensive and difficult. The amount of silta-
tion in H. H. Harbor is affected by many factors, 
among which tide and wind blow are the most domi-
nating. While the tides produce a periodic influence on 
the movement of silt, the highly variable nature of 
wind brings more incidental and intensive effects. For 
example, records show that strong winds with wind 
forces of 9 to 10 on the Beaufort scale hit H. H. Harbor 
from Oct. 10th to Oct. 13th in 2003. The storm surge 
brought 970,000m3 of silt to the sea route, which sud-
denly decreased the water depth from 9.5m to 5.7m 
and blocked most of the ships weighing more than 35 
thousand tons. The harbor administration hired three 
boats equipped with active sonars to cruise the 380km2 
shallow sea area around the harbor for several days. 
Monitoring sea depth costs this harbor more than 18 
million US dollars per year. 

In this work, we explore the possibility of deploy-
ing networked sensors on the sea surface for sea depth 
measurement. Different from deployments on ground, 
sensor nodes, in this scenario, will generally not be 
stationary at their original deployed places, but float by 
many factors, e.g. ocean current, wind blow, and tide 
etc. Therefore, we anchor the sensor nodes to the sea 

 
Figure 1: Restricted floating sensors on the sea

 



bottom by ropes to restrict their floating movements. 
Otherwise, they may float out of our interested moni-
toring area. We call them the Restricted Floating Sen-
sors (RFS). Figure 1 illustrates a RFS network de-
ployed in a sea area. As shown, different sea depths 
result in different sizes of floating areas. 

To map the sea depth, we need both geographic po-
sitions and water depths, which, intuitively, can be 
acquired by equipping GPS and sonar into each sensor, 
respectively. Being effective, using those extra ser-
vices means unacceptable cost. In this work, we design 
a scheme which obtains water depth from the localiza-
tion results of floating areas without extra ranging de-
vices. Only a small number of GPS equipped sensors 
are needed. The key issue in this design is determining 
the floating area of each sensor. Since the sensor nodes 
in the RFS network can float around, the traditional 
localization approaches for stationary sensors does not 
work well. On the other hand, simply treating the RFS 
network as a mobile sensor network and blindly apply-
ing those localization approaches for mobile WSNs 
does not capture the special nature of the RFS network. 
In RFS, sensors float within restricted areas, providing 
us possibilities to capture their mobility models. By 
understanding RFS mobility behaviors, we can achieve 
higher accuracy with reduced overhead. 

In this paper, we give an elaborate analysis on the 
localization problem in the RFS network. We build 
network models and establish the localization objective 
as locating the floating area of each sensor node. We 
equip a small portion of the network nodes with exter-
nal locating devices such as GPS receivers, called seed 
nodes; while others are non-seed nodes. All sensor 
nodes estimate their distances from each other. Our 
approach applies different computation schemes for 
efficiently localizing the floating areas of the seed and 
non-seed nodes based on range distance estimations. 
We then infer the sea depth at the anchor positions in a 
practical way, which prevents relying on other expen-
sive specialized devices like sonar pingers. 

We validate this design by launching a prototype 
system with 25 Telos sensor nodes off the seashore in 
HKUST campus. The results show that our prototype 
achieves less than 0.5m sea depth estimation error av-
eragely. We conduct a large scale simulation to further 
evaluate the system performance as well as its scalabil-
ity. With precise distance measurements assumed, we 
obtain the sea depth estimation with an average rela-
tive error within 20%. 

The rest of the paper is organized as follows. In 
Section 2, we formally define the RFS network model 
and formulate the localization problem for RFS. We 
describe our localization approaches for seeds and 
non-seeds in Section 3 and Section 4. In Section 5, we 

discuss measuring sea depth based on the floating area 
localization. We present the experiments and the re-
sults in Section 6. We summarize related work in Sec-
tion 7 and conclude this work in Section 8. 

 
2. The Network Model 
 

In this section, we first give a definition of the more 
general Restricted Mobile Sensor (RMS) network.  

DEFINITION 2.1 – RMS network. A sensor is called 
a restricted mobile sensor, if it is capable of movement 
but its movement is restricted within a local area of the 
application field. A network composed of restricted 
mobile sensors is called a RMS network. The RFS is a 
typical RMS network. Once anchored at a point, the 
sensor node floats on the sea surface but within a re-
stricted area.  

DEFINITION 2.2 – Floating area. In a RMS network, 
the movement of a sensor is limited in a restricted area. 
The restricted area may have different shapes due to 
different constraints of RMS networks. In the RFS 
network, each sensor node floats on the sea surface 
within a disk area centered at its anchor. This disk area 
is called the floating area of the sensor. We use o(c, r) 
to denote a disk floating area, where c and r represent 
the centre and radius of the disk area, respectively. In 
practice, c is the anchored position of each sensor and 
r is determined by the length of the rope and the sea 
depth at the anchored position. 

DEFINITION 2.3 – Floating model. In the RFS net-
work, each sensor floats within its floating area. The 
movement is affected by many factors, e.g. ocean cur-
rent, wind blow, tide etc. The factors above can hardly 
be modeled and mostly affect with randomness. In this 
case, the current position of a sensor is considered in-
dependent of its previous positions under non-
negligible intervals between consecutive sampling 
times. Each sensor is assumed to appear in the floating 
area under uniform distribution and the probability 
distribution of the sensor position is given by: 
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DEFINITION 2.4 – RFS network model. The tar-
geted RFS network N(S, O) consists of a set of sensors 
S and the corresponding set of floating areas O. Each 
sensor si moves within its floating area oi under the 
floating model. The floating areas of different sensors 
are assumed non-overlapped, i.e. ∀ si, sj ∈ S within 
floating area oi(ci, ri) and oj(cj, rj), dist(ci, cj) > ri + rj. 
This assumption prevents the possibility that two sen-
sors get too close and their ropes become twisted with 
each other. This assumption is realistic in practice as 



the sensor communication range is usually multiple 
times the radius of sensor floating area. 

DEFINITION 2.5 – Neighborhood of RFS. In tradi-
tional sensor networks, the neighbors of a sensor s are 
defined as the set of sensors that have direct communi-
cations with s. While the neighborhood is relatively 
stable in static sensor networks, it is highly dynamic in 
mobile sensor networks. As a restricted mobile sensor 
network, RFS network shares similarity with tradi-
tional mobile sensor networks in that each sensor node 
has dynamic connections with its neighboring nodes. 
However, the locality of sensor movement in the RFS 
network constrains this dynamic effect. Therefore, we 
are able to introduce a more proper definition of 
neighborhood for RFS. Sensor si and sj are defined to 
be neighbors iff. they can communicate with each other 
in their entire floating areas. Each node has direct com-
munication with its neighbor nodes at any time. Under 
this definition, we obtain a stable neighborhood in RFS 
networks. 

DEFINITION 2.6 – Floating area localization. In 
RFS networks, sensor nodes move within their floating 
areas under the probabilistic floating model. The local-
ization issue in RFS networks is to obtain the floating 
areas instead of the instantaneous locations. The float-
ing area localization in the RFS network indicates the 
process of locating the floating area o(c, r) of each 
sensor, including the central anchor position c and the 
radius r. In the following, localization means floating 
area localization if not elsewhere specified. 

DEFINITION 2.7 – Error. Let o(c, r) be the floating 
area of sensor s and ˆ ˆ ˆ( , )o c r be the estimated floating 
area. The localization error includes two parts: (1) er-
ror on the estimated anchor position ec = ˆ( , )dist c c ; (2) 
error on the estimated radius er = ˆ| |r r− . The relative 
error of floating area o(c, r) is defined as a 2D vector 

ˆ( , )E o o = (ec/r, er/r). The average localization error of 
a RFS network N(S, O) is defined as 

1 ˆ( ) ( , )
| | o O

E N E o o
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We design the Floating Area Localization Algo-
rithm (FALA) to localize sensor nodes in a RFS net-
work. In the localization process, all sensor nodes are 
able to measure the distances between themselves 
through RSS measurements. Other superior techniques 
like TOA, TDOA and AOA can be applied for higher 
ranging accuracy. 

As a statistic based algorithm, FALA yields the lo-
calization result after a series of data sampling. During 
each sampling process, seeds collect their locations 
and non-seeds process the distance measurements. 
FALA applies different schemes for locating seeds and 

non-seeds. Although seeds are able to know their in-
stantaneous locations, further computation based on 
the location information is needed to determine their 
floating areas. For non-seeds, FALA derives their 
floating areas from distance information through a 
sequential process. 

FALA includes four steps: sampling, seed floating 
area computing, non-seed floating area computing, and 
continuous date collection and accuracy improvement. 

 
3. FALA for Seeds 

 
As equipped with localization devices, seeds are 

aware of their instant positions. We carry out a series 
of samplings on seed positions. After a period of time, 
each seed node records a set of positions it resides in at 
different time. We estimate the floating area of seed 
nodes from the position sets. 

Obviously, all sampled positions of a seed are cer-
tainly in its floating area under the floating model. In 
other words, its floating area should be a disk area at 
least containing all sampled positions. Thus, we can 
transform the localization problem to figuring out a 
disk area which covers a set of positions.  

Apparently, there are many feasible disk areas, 
among which the smallest one should be considered 
the maximum likelihood estimation because it provides 
the highest probability of the occurrence of a set of 
positions. Thus, the smallest one is then considered the 
estimation of the floating area of the seed. As the sam-
pled positions accumulate, the floating area is asymp-
totically approached. The problem is formulated as 
follows.  

 
Given a set P of n points in the plane, find the small-

est enclosing disk for P, that is, the smallest disk that 
contains all the points of P.  

 
For simplicity, we assume that no three points are 

collinear and no four points are cocircular. In computa-
tional geometry, this problem is often called the Mini-
mum Enclosing Disk (MED) problem.  

It is not difficult to find a brute force solution to the 
problem which takes O(n4) running time. However, 
such an algorithm introduces intensive computational 
cost which is likely not suitable for the resource re-
stricted sensor nodes.  

A randomized algorithm[9, 17] for MED problem 
has been proposed in computational geometry domain, 
which takes O(n) expected running time. It is observed 
that when a point is outside the MED of all other 
points, it must lie in the boundary of MED of all points. 
The following theorem [9] illustrates this observation. 



Theorem: Let P be a set of points in the plane. Let R 
be a possibly empty set of points with R∩P = φ. Let 
D(P, R) denote the minimum enclosing disk of P that 
contains R on its boundary. Then we have, 
(a) If a point p ∈ D(P\{p}, R), then D(P, R) = 

D(P\{p}, R); 
(b) Otherwise D(P, R) = D(P\{p}, R∪{p}). 

 
Based on this theorem, the randomized algorithm 

RMED computes the MED of a given set P of posi-
tions. At the very beginning, we have no idea about 
which point lies on the boundary of MED, so the seed 
runs RMED(P, null) as a start.  

 

Algorithm RMED(P, R) 
1: if P = φ or |R| = 3, 
2:     then D := the disc defined by R. 
3: else choose a random p ∈ P, 
4:     D := RMED(P\{p}, R); 
5:     If p∉D, 
6:         then D := RMED(P\{p}, R∪{p}). 
7: return D. 
 

The RMED algorithm can be change to work in an 
incremental manner [9]. That is to say, being informed 
the current position from its positioning device at each 
sampling time, a seed updates its existing minimum 
enclosing disk and obtains a refined approximation of 
the floating area. In this online version of algorithm, 
seeds can start localization as early as possible without 
waiting for all n sampling positions collected. This 
feature well suits the data acquisition pattern of seed 
sampling process. Moreover, the updating process 
takes only O(1) expected running time. 

According to our algorithm, the approximated float-
ing area ô is always smaller than the real one o. The 
error between o and ô keeps decreasing during the 
updating processes in which ô expands towards o. To 
minimize the estimation error, the seed needs to collect 
more sample data. However, a large sample capacity 
usually implies a long period of sampling. Therefore, 
we need to properly choose a sample capacity aiming 
for an acceptable accuracy.  

We conduct a simulation to analyze the error of our 
estimation at different sample capacities of n = 2, 3, 5, 
10 and 20. The simulation results are shown in Figure 
2. We find that when the number of samplings is 10, 
80% of cases have less than 20% relative error of ra-
dius estimation and when the number of samplings is 
20, 90% of cases have less then 10% error. In most 
applications, a number ranging from 10 to 20 induces 
an acceptable sample capacity for seeds to compute 
their floating areas. 

4. FALA for Non-seeds 
 
When seeds have localized their floating areas, we 

need to utilize them as referees to locate non-seeds. 
Trilateration from referees is a widely used method to 
localize static nodes in stationary sensor networks. 
However, due to the dynamic property, directly using 
trilateration for RFS leads to poor accuracy. In this 
section, we propose a new scheme for locating non-
seeds based on statistical measurements.  

 
4.1. The Framework of Non-seed FALA 
  

Before looking inside the non-seed FALA, we first 
define two concepts about computed and computable 
sensor nodes. 

DEFINITION 4.1 – Computed and computable sen-
sor nodes. We call a sensor node computed if its float-
ing area is already known. If a non-computed sensor 
node has k (k ≥ 3) computed neighbors, it is a comput-
able sensor node. 

The non-seed FALA is an iterative process, gradu-
ally transforming computable sensors to computed 
sensors. Figure 3 plots a deployment of four sensors: a 
non-seed s, with the floating area o unknown, and its 
three neighbors {si | 1 ≤ i ≤ 3}. Assume all si are com-
puted nodes, that is, their floating area oi(ci, ri) are 
known. Let di denote the distance between s and si. 
Our goal is to estimate the floating area o of s. Clearly, 
with one time measurement there exists uncertainty for 
floating area computation. As shown in Figure 3, an-
other disk area o’ different from o is also possible to be 
a candidate of the floating area of s, because the cur-
rent position of s which satisfies all distance con-
straints also resides in o’. We cannot distinguish the 
real area from o and o’ at this stage. That means, it is 
impossible to calculate the floating area of s under a 
single time observation of di.  
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Figure 2: Cumulative distribution function of 
the estimated to real radius ratio 
 



 
Figure 3: Non-seed localization 

 

 
Figure 4: Anchor distance estimation 

 
The distance measurement di varies all the time due 

to the movement of s and si. We observe that multiple 
samplings can alleviate the uncertainty for localization. 
If we treat o and o’ as two sets of points in plane, when 
s moves to some position in o - o’, the distance sam-
pling information negates the possibility of o’ being 
the floating area. Furthermore, we know that di only 
depends on o(c, r) and oi(ci, ri), irrespective of any 
other floating areas oj (j ≠ i). Hence, the sample distri-
bution is determined by ri, r, and the distance between 
two anchored positions d’i = dist(c, ci), indicating that, 
to some extent, the samples statistics can imply ri, r, 
and d’i. Therefore, the relationship between the sample 
statistics and the parameters ri, r, and d’i is of great 
importance, based on which non-seeds can localize 
their floating areas. 

Without loss of generality, we only consider s and a 
calculated neighbor si, as shown in Figure 4. For sim-
plicity, we use d and d’ instead of di and d’i to elabo-
rate the non-seed FALA. We know d varies all the 
time while d’ is a static value. Let D denote the ran-
dom variable of d and let di denote the observed value 
of D at sampling time ti. 

Three steps are included in the floating area compu-
tation of non-seed s, described as below. 

1. A non-seed s samples the distance measurements 
d between s and its neighbors. 

2. Based on sample statistics, s calculates d’ and r. 
3. If s is computable, it calculates the anchor posi-

tion c by trilateration based on d’. 
In step 1, the non-seed s carries out a sampling 

process. In step 2, s estimate the hidden parameters 
based on distance samples. We consider two methods 

for exploring the relationship between sample statistics 
and the hidden parameters, based on the geometrical 
relationship and regression analysis respectively. 

In step 3, although sensor nodes are mobile, their 
anchored positions are static. Thus, it is possible to 
solve a typical point localization problem for locating 
anchored positions. On the premise that the distances 
from an unknown anchor position to three known an-
chored positions are obtained, trilateration can be con-
ducted to calculate the unknown anchored position. 
With c and r, this step completes the floating area com-
putation of s and s becomes a computed sensor node. 

 
4.2. Geometrical Relationship 

 
A simple method for estimating d’ and r is to ex-

plore the geometrical relationship between the two 
floating areas of s and si. We define dmax = max(D) and 
dmin = min(D) as the minimum and maximum values of 
D. As shown in Figure 4, dmax and dmin are obtained in 
two extreme situations. According to the geometrical 
relationship, we have: 

2
' minmax ddd +=  

max min

2 i
d dr r−= − . 

Such a method is simple to implement and takes lit-
tle computation cost. In practice, it is reasonable to 
regard max(di) and min(di) as the estimation of dmax 
and dmin respectively. However, the extreme cases may 
not occur in sampling, under which we will get bad 
estimations of dmax and dmin. In addition, non-negligible 
ranging errors of existing approaches also heavily de-
grade the effectiveness of the method. On the contrary, 
the statistical method, based on sampling distributions, 
less suffers from this. 

 
4.3. Regression Analysis 

 
As we have observed, the distribution of D, to some 

extent, reflects the hidden parameters r and d’. This 
fact allows us to design a method to estimate r and d’ 
based on sample statistics. 

In our analysis, since ri is a known parameter, we 
introduce two coefficients θ1 and θ2, such that r = θ1 × 
ri and d’ = θ2 × ri. The sample statistics include the 
mean μ̂ and the standard deviation σ̂ of samples, de-
fined by 
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A simulation study is conducted to explore the rela-
tionship between hidden parameters (θ1 and θ2) and 
sample statistics ( μ̂ andσ̂ ). Figure 5 gives us an im-
portant intuition about the relationship, that is, there 
exists linear relation between the parameters and the 
sample statistics. 

We now synthetically take account of the impact of 
both θ1 and θ2 by using multiple regression analysis. 
Let β be a 2×3 coefficient matrix, our general form of 
two-variable linear regression equation is as follows: 

1

2
ˆ
ˆ 1

θμ β θσ
⎡ ⎤⎡ ⎤ = × ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

. 

Using least squares technique, we have 
0.0951 0.9820 0.0409
0.4507 0.0035 0.1956

β ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

In summary, a node s first collects sample distances 
between itself and its neighbor si, and then calculates 
the statistics μ̂ and σ̂ . According to the regression 
model, s determines θ1 and θ2; and finally completes 
the estimation of r and d’.  

Errors of our regression model may come from two 
sources: (1) the residuals in regression analysis and (2) 
the inaccuracy of μ̂ andσ̂ .The residual figure, Figure 
6, illustrates that the error of our linear regression 
model is relatively small if we consider the usual val-
ues of θ1 and θ2. The inaccuracy of μ̂ andσ̂ is usually 
due to a small sample capacity. 

Taking error analysis of μ̂ as an example, the size 
of sample can be determined by the accuracy con-
strains. The normality test of sample data, Figure 7, 
suggests the sampling distribution is almost normal. 
Thus, the statistic 
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Figure 5: Hidden parameters vs. 
sample statistics 
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Figure 6: Residuals of regression analysis 
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Figure 7: Normal probability plot of sample data
 
According to the t-distribution, n = 30 deserves a 

90% confidence interval with an acceptable accuracy l 
= 0.6204σ̂ . 

 
5. Sea Depth Measurement by FALA 
 

The ultimate goal of this work is to estimate the 
depth of the sea. By utilizing FALA, we can efficiently 
localize the sensor nodes in the network. When we use 
a rope with length L to anchor the sensor node on the 
sea of depth h (L > h), the sensor node floats within the 
disk area of radius 2 2r L h= − , as shown in Figure 8. 
After localization, we obtain the floating area of a node, 
achieving its center c as well as its radius r. We can 
then easily calculate the sea depth at position c. This 
calculation involves neither extra measurements nor 
hardware costs.  



 
Figure 8: Geometrical structure of sea depth 
measurement 
 

 
Figure 9: Prototype system deployment 

 
When the sea depth of a monitoring region is deep, 

longer ropes are necessary. In this situation, the gravity 
of ropes cannot be ignored. When sensor nodes are on 
the boundaries of their floating areas, ropes cannot be 
straight but form a curve with steep upper part and 
mild lower part. Such a curve can be seen as a part of 
catenary. We can calculate the see depth according to 
localization results and the equation of catenary [3]. 

 
6. Performance Evaluation 
  

We first examine the effectiveness of our design by 
deploying a prototype system off the seashore. A large 
scale simulation is further conducted to test the system 
scalability under varied network parameters. 

We evaluate FALA using three metrics: E(c) = ec/r, 
E(r) = er/r, defined in Section 2, and E(h) = ˆ| |h h− /h 
to evaluate the error of sea depth measurement. In 
some previous literatures, the location error is repre-
sented relative to the hop size (the maximum commu-
nication range of a node) [6, 7]. For FALA evaluation, 

however, if we use the communication range as a 
benchmark to measure location error, a 1m error con-
tributes the same impact to a small floating area as to a 
large floating area, i.e. a 2m radius area and a 10m 
radius area. To diminish this unfairness, we adopt the 
relative error against the radii of floating areas in the 
evaluation. Since the communication range of each 
sensor node is usually 5~15 times larger than the ra-
dius of its floating areas in our experiment, the esti-
mate errors are usually several times than they are 
against the sensor communication range. 

 
6.1 Prototype Experiment 
  

To better understand the systematic behaviors of 
FALA, we deploy a prototype with 25 nodes off the 
seashore on university campus. The hardware layer of 
the prototype is constructed on the Telos motes with 
Atmel128 processor and CC2420 transceiver. We fit 
each node with a lightweight supporting shelf, which 
floats on the sea surface and raises the sensor node 
150cm high above the sea surface. 25 such assembled 
floating nodes are anchored on a 100m × 100m sea 
area where the water depth is around 4~7m. Figure 9 
exhibits our deployment. 

We utilize RSSI values from the transceivers to es-
timate the distances between nodes. The transmitting 
power of sensor nodes is set to 1mW and transmitting 
range could reach as far as 40m with more than -
95dbm receiving signal strength. We construct a dis-
tance estimator according to the most widely used sig-
nal propagation model: the log-normal shadowing 
model [15]. Due to the coarse and non-monotone cor-
respondence between the RSSI and distance in the real 
measurements, the relative error of the distance estima-
tion can be up to 150%, which heavily limits the accu-
racy of FALA. We believe more precise distance esti-
mating techniques such as TDOA or TOA based ap-
proaches will help to achieve better accuracy. 

Figure 10 plots the FALA performance in our pro-
totype system. The error of anchored position, as 
shown in Figure 10(a), is around 0.5~1 for seeds and 
0.5~4 for non-seeds. For radius estimation, the error is 
around 0.05~0.3, illustrated in Figure 10(b). In Figure 
10(c), we can see the relative error of sea depth is 
around 0.03~0.2. From Figure 10, seeds basically out-
perform non-seeds in all three metrics. 

In practice, two factors limit our prototype from 
more accurate results: (1) the seawater near the sea-
shore moves a little regularly rather than completely 
affected by randomness, which makes errors on our 
floating model assumptions; (2) the large errors in our 
RSSI based ranging technique contributes much to the 
estimation error of FALA. 
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Figure 10: FALA performance of each node in the prototype system 
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Figure 11: Impact of sample capacity with precise distance measurement 
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Figure 12: Impact of seed proportion with precise distance measurement 

 
 

6.2 Large-scale Simulation 
 
We generate networks of 900 nodes randomly distrib-

uted in a square sea region. In our simulation, the sea re-
gion is designed to be a 600m × 600m square and has a 
water depth around 10m. When a RFS network is de-
ployed in this sea region, the radii of floating areas are 
2~6m, which are determined by sea depth and rope length. 
A typical communication range of the sensor nodes is 30m 
and the average degree of network topology is 8. In all our 
measurements, we integrate the results from 100 network 
instances. 

In our simulation, we varied two parameters, the pro-
portion of seeds and the sample capacity, to examine 
FALA under different network settings. We test the per-
formances of geometrical relation (GR) method and re-
gression analysis (RA) method proposed in Section 4. 

 
Precise distance measurements 

We first assume precise distance measurement to ex-
plore the ideally achievable accuracy of FALA. Figure 
11(a) plots the average error of anchored position. The 

error of RA is below 1.5, which is lower than GR as the 
sample capacity varies in a wide range. When the size of 
sample is larger than 20, the extra gain from RA becomes 
trivial. Therefore, 20 can be a good choice of sample ca-
pacity considering the tradeoff between the accuracy and 
overhead. As shown in Figure 11(b), the average radius 
error of RA consistently decreases as the sample size in-
creases; while GR is slightly getting worse. RA outper-
forms GR when sample capacity is larger than 20. The 
average error of sea depth, investigated in Figure 11(c), 
follows the similar pattern as the radius estimation. 

We also examine the impact of the seed density on 
FALA, highlighted in Figure 12. All performance metrics 
get better when the seed density increases. There is nota-
ble gap between GR and RA in Figure 12(a). The error of 
RA is less than 2 when 25% seeds exist. In figure 12(b) 
we examine the radius estimation. We observe that both 
RA and GR yield smaller errors when inserting more 
seeds and RA is better than GR when seed proportion is 
larger than 20%. Figure 12(c) shows the error on sea depth 
measurements. Again, it follows the similar pattern as ra-
dius error does and RA yields the error from 0.35 to 0.2 
when seed proportion varies from 10% to 40%. 
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Figure 13: Impact of sample capacity with noisy distance measurement 
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Figure 14: Impact of seed proportion with noisy distance measurement 

 
Noisy distance measurements 

We further evaluate FALA under noisy distance 
measurements. In our simulation, we introduce a zero-
mean Gaussian noise with standard deviation of 50% 
of the real values into distance measurements. 

Again, RA outperforms GR, as shown in Figure 13 
and 14. Compared with Figure 11 and 12, the error of 
all performance metrics is larger than the correspond-
ing errors with precise distance measurement. Espe-
cially, for anchored position estimation, the error can 
be 3 times larger. Clearly, a noisy distance measure-
ment heavily degrades the performance of FALA. In 
such situations, 30 sample data and 30% seeds are nec-
essary for precise localization. 

 
7. Related Work 

 
Recent advances in WSNs attract the attention of a 

lot of researchers [1, 13, 16, 18] with many efforts 
made for locating sensors [6, 8, 10]. According to the 
targeted environments, previous localization ap-
proaches can be classified into two types: for static 
sensor networks and for mobile sensor networks. 

The static localization problem has been extensively 
studied for WSNs. The proposed localization ap-
proaches typically use a small number of seed nodes 
that are aware of their location. Moreover, ranging 
measurements [6, 10, 11, 14, 16] (in range-based ap-
proaches) or neighborhood information [4, 8, 12] (in 
range-free approaches) are utilized to locate non-seed 
nodes. All these approaches assume the invariability of 
sensor locations. Once a sensor node knows its location, 
it can be used as a beacon to locate other sensor nodes. 
Such a strategy fails in our RFS context due to the 
movement of sensors.  

Some of the static localization approaches [12, 14] 
can be extended to conform to the mobile environment. 
Most of them, however, cannot yield results in real 
time and thus suffer from estimation latency and inac-
curacy brought on by sensor movements. Bergamo and 
Mazzini’s [2] is one of the first works related to the 
localization problem in mobile sensor networks. Two 
fixed seeds are assumed transmitting across the entire 
network and other nodes can measure the received sig-
nal strength accurately. L. Hu and D. Evans propose a 
statistic based localization approach for mobile sensor 
networks in [7] based on the MCL method [5], which 
originates from a mobile localization problem in robot-
ics. Mobility creates obstacles to accurate localization, 
resulting in large errors and heavy communication cost. 
In addition, dense seed deployment is required in that 
proposed approach.  

None of above schemes considers a restricted 
movement model for sensor nodes. Directly using 
those localization approaches does not capture the spe-
cial movement behaviors of RFS networks. Hence, 
they suffer from either inaccurate localization results or 
unnecessary estimation overhead. 

 
8. Conclusions and Future Work 

 
We discuss a novel sea depth measurement applica-

tion using wireless sensor networks. We define the 
localization problem in RFS networks and introduce 
the concept of floating area localization, so as to de-
termine the floating areas of sensor nodes. A statistical 
approach, FALA, is designed, based on which the sea 
depth can be acquired without expensive sonar systems. 
A prototype with 25 Telos nodes is deployed on a sea 
surface, and intensive large-scale simulations are con-



ducted to examine the efficiency and scalability of the 
proposed approach. 

This work is still at its early stage. The future work 
leads into following directions.  

(1) One assumption in our floating model is that the 
sensors float within their anchored areas under ran-
domness, which in our prototype test is shown to be 
inadequate. The seawater near the seashore moves a 
little regularly rather than completely affected by ran-
domness. The wave may also introduce errors of esti-
mations. Thus a well model of the behaviors of the sea 
will help diminish their negative impact or even make 
use of their regularity to achieve more accuracy. 

(2) The system scalability is also an important issue 
we need pay special attention to. Since the RSSI based 
distance measurement bears a large error, there is a 
trend of error propagation on our estimations when the 
network size significantly increases, especially under a 
small percentage of seeds. Whether or not we are able 
to design a sound collaborating mechanism at the layer 
of network topology, so that we can suppress the local-
ization errors throughout the network, is a significant 
but challenging issue.  

(3) Sea depth estimation is of great interests and 
importance for many sea monitoring applications. Our 
FALA approach yields the estimations of sea depth by 
utilizing the result of the floating area localizations, 
reducing the cost. This approach, however, also has its 
own limitations, e.g. the anchor of each sensor can 
actually get buried by the silt, which leads to inaccurate 
estimations as the time passes by. Is there any other 
light-weight approach for measuring the sea depth? 
Due to the intensive needs on the sea depth measure-
ment and the difficulty of employing infrastructures at 
sea, we believe WSN is one of the best candidates for 
this application. 

(4) The Restricted Floating Sensors describe a gen-
eral model for sensor deployment which might be suit-
able for many sensing applications carried out on the 
sea. Under different contexts of the sensing applica-
tions, we might concern different factors of the net-
work besides the locations, such as sensor coverage, 
network connectivity, data samplings, etc. Due to the 
nature of restricted mobility, the RFS network intro-
duces the intermediate dynamics between the static 
network and mobile network. By developing mecha-
nisms over the dynamics but taking advantage of the 
restriction on the mobility, can we achieve higher effi-
ciency? We believe it is non-trivial and highly related 
to the concerned factors and the application context. 

We are currently continuing this project for answer-
ing part of above questions and deploying a real work-
ing system together with the research group from 
Ocean University of China. 
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