Efficient Model-Checking of Dense-Time Systems with Time-Gnvexity Analysis*

Farn Wang
Dept. of Electrical Engineering & Graduate Institute of &fenic Engineering
National Taiwan University
farn@cc.ee.ntu.edu.tw; http://cc.ee.ntu.edu.tw/farn

RED 7.0 is available at http://sourceforge.net/projectditoed
Proof of some lemmas can be found in the appendices.

Abstract 1 Introduction

The evaluation of successor or predecessor state spaces A Popular framework for the verification of embedded
through time progress is a central component in the model- SyStems [1,4,8, 13] is the TCTL model-checking problem
checking algorithms of dense-time automata. The timelll- In this framework, we are given a dense-time system
progress operator takes the concavity of a path condition 4€Scription as @imed automatorfTA) [3] and a specifica-
into consideration and usually results in high complexity tion formula inTimed Computation Tree Log{@CTL) [1]
in the evaluation. Previous algorithms in this aspect usu- and checks whether the TA satisfies the TCTL formula. To

ally assume that the location invariance condition of an au- chieve the promise of TCTL model-checking, the impor-
tomaton are convex in the dense-time state space and usénce of performance enhancement of related algorithms
a more efficient algorithm for time progress evaluation. [n annot be over-emphasized. One important algorithm in
fact, the restriction of location invariance condition con 1CTL model-checking is the time-progress evaluation al-
vexity can be further relaxed to that of time-convexity for 90rithm. For simplicity, we focus on the backward time-

a broader range of application of the more efficient algo- Progress operation. However, the ideas discussed in this
rithm. In this work, we present techniques for the efficient WOrk should also apply to the forward counterpart. Usually

model-checking of dense-time automata by taking the time- W€ are given gath conditiony and adestination condi-
convexity of path conditions into consideration. We first tion ¢ and want to compute the conditiofibck (¢, ¢) in
identify a class of TCTL formulas that only characterize SYMPOIS, ofthose states that can go to a state satisfying
time-convex state spaces. The class includes several imtfough a time progression ali)ng which all states satisfy
portant types of TCTL formulas, including some timed in- FOr convenience, giveh € R=? (the set of non-negative
evitabilities (of the form like70 o 4 ¢) with deadlines. We ~ '€als), we let + ¢ be the condition for states that satsify
then present a new formulation for the efficient evaluation o after the progression aftime units [1]. TherTbck (¢,)
timed inevitabilities with time-convex path conditiongieT ~ can be formulated as in table 1 [7]. The outer quantifica-
new formulation also leads to a new technique for the ap- fion ont specifies thethrough a time progression oftime
proximate evaluation of timed inevitabilities with betpee- units’ part. The inner quantification specifies that every

cision. Finally, we report our implementation and experi- Stat€ along the time progression satisfies\s can be seen,
ment. this formulation (T) ofTbck(¢,) incurs two existential

guantifications [6], one complementation, and two conjunc-
tions. Since the time-progress algorithm is fundamental to
Keywords: timed automaton, time progress, model- TCTL model-checking, such an involved formulation usu-
checking, TCTL, verification, timed inevitability, convex ally results in significant performance degradation.
concave One way to enhance the evaluation efficiency of formu-
lation (T) is to take the shape of the path conditibmto
consideration. An observation is that if the path condition
¢ characterizes aonvex state space, then formulation (T)

*The work is partially supported by NSC, Taiwan, ROC undentya
NSC 95-2221-E-002-067 and NSC 95-2221-E-002-072. 1A space isconvexif for any two points in the space, any point in

names| formulas

formulations

FHeRZD(Y+IAV eRZD (' <t — ¢+1))
M Tbek(9,0) | _ "5 c g2o (P+tA-TH eROWF <tA-p+1))
(M) | Thek/(p,¢) | HeRZW+tAPANP+1)

Table 1. Formulations (T) and (T")

can be rewritten as formulation (T’) in table 1. The reason
is that for two states and/, that respectively represent
the starting state and the destination state of a time psegre
sion along path conditios, we know that the following two
conditions are true.
e Bothr andv’ are in the convex space characterized by
o
o All states that happen during this time progress actu-
ally form a straight line segment betweerandv’ in
the state space.
According to the definition of convexity, then all states in

of time progress evaluation.

Here propositiong i r e andal ar mrespectively specify
that fire is detected and that alarm is on. This property
is usually evaluated as the following equivalent formula:
—3truelJ (fire A IO q0-al ar m).

However, the traditional formulation [7, 12] for
the evaluation of such a timed inevitability is like
—JtrueJ(fire A3Im30O(m <5V m > 10V —al arm),
wherem is a clock variable not used in the model. It is
obvious that such a formulation creates a concave path
condition.? [|

Thus it would be interesting to see whether we can avoid

this straight line segment (and time progression) must alsothe time progress evaluation along concave path conditions

be in the space characterizeddy

Example 1 Supposewe are in a state space of two cloaks
andy of readings irR=°. For a state witl: = 3 andy = 3,
we may use the pairr = 3,y = 3) to represent the state.
We have a path conditiah= = < 5Vy > 7. The condition
is concave since stat¢s = 3,y = 3) and(z = 9,y = 9)
both satisfy it but their middle point: = 6,y = 6) does
not. Intuitively, there is a gap betweén = 5,y = 5) and
(x = 7,y = 7) that cannot be stepped into accordingto
With the formulations in table ITbck (¢, = 8 Ay = 8)
is7 <z <8AT<y<8Ax =y. However,Tbck’'(¢,z =
8Ay =18)is0 <z <8A0 <y <8Axz = ywhich extends
across the gap and is incorrect. |

As can be seen from the new formula (T"), one ex-
istential quantification and one complementation can be
avoided with convex path conditions. It will be interesting
to see to what extent in TCTL model-checking [1, 12], we
can use formulation (T’) in place of (T) for better model-
checking performance. Specifically, one important class of
TCTL formulas, calledimed inevitabilitiesare of the form
VO (c,ay®» Where(c, d) is an interval inR=°, and are impor-
tant in specifying that some good behavior should happen
within a deadline.

Example 2 We may want to specify that after a fire is de-
tected, an alarm is signaled in 5 to 10 time units. In TCTL,
such a property can be written as follows.

vO (fire — VO 10al arm

the straight line segment between the two points is alsoérstiace. A
space that is not convex @ncave For convenience, we say a condition
is convex iff the state space that it characterizes is cangemon-convex
condition is concave.

in TCTL model-checking. In [11], the concept time-
convexityof path conditions was discussed to relax the ap-
plicability of the more efficient formulation (T") to concav
path conditions. In this work, we have the following contri-
butions.

¢ We identify a class, calle@CTL?, of TCTL formulas
that only characterize time-convex state spaces. The
syntax structures of formulas in this class can be rela-
tively efficiently checked. TCTL!¢ itself may not be
general enough for writing full specifications. But
its design purpose is to help us efficiently identifying
those subformulas in a full specification that can in-
duce efficient time progress evaluations.

e We then propose an adaptive algorithm for the time
progress evaluation. The algorithm uses several tech-
nigues, including off-line analysis to recognize the
TCTL path conditions in a full TCTL specification,
in order to avoid time-concavity checking and to avoid
evaluation with formulation (T).

e We propose a new formulation for the evaluation of
timed inevitabilities. The new formulation breaks a
time progress path into at most three run segments and
allows us to take the convexity of each segment into
consideration for efficient time progress evaluation.

e We extend the just-mentioned new formulation for a
new formulation for the approximate evaluation of

2Suppose we use a pdi, v) to represent a state in this system. Here
q is a location name andis a valuation ofn. Suppose we are given three
valuationsvy, vz, v3 with v1(m) = 0,v2(m) = 6, andvs(m) = 12.
It is true that(al armwz) is the middle point betweerfal ar mvq)
and (al armwvs). The path condition is concave since it is true that
(al armvy) and(al ar m v3) both satisfym < 5vm > 10V —al arm
while (al ar m v2) does not.

timed inevitabilities. This new approximate formu-
lation offers a better precision than the previous ap-
proach [12] in both theory and experiment.

e Finally, we have implemented our techniques and re-
port our experiment with our TA model-checkeED,
version 7.0. The result shows significant performance
enhancement against many timed inevitabilities.

We have the following presentation plan. Section 2 is for
related work. Section 3 defines TAs and the TCTL model-
checking problem and reviews a symbolic algorithm for the
TCTL model-checking problem. Section 4 explains how to
use the concept of time-convexity for the efficient evalua-
tion of time progress. Section 5 introduceSTL!. Sec-
tion 6 presents our new formulations for evaluating timed
inevitabilities. Section 7 reports our implementation and
experiment. Section 8 is the conclusion.

2 Related work

In [7], formulation (T) was proposed for the calcula-
tion of time progress precondition for TAs through con-
cave path conditions. Various tools for reachability anal-
ysis are now available with formulation (T") based on the
convexity assumption of the location invariance condition
of TAs [4, 8, 13].

In [12], performance-enhancing techniques for timed in-
evitabilities were presented. They also presented an earl
decision technique for the evaluation of timed inevitabili
ties. They also discussed how to pick the time length value
for the efficient evaluation of states that start non-Zemsru

In [9], a model-checking algorithm for timed inevitabil-
ities with event constraints and weak/strong fairness as-
sumptions was presented and implemented.

In [11], the concept of time-convexity was discussed.

3 TA and TCTL model-checking

3.1 Timed automata

LetN be the set of non-negative integéefsthe set of all
integers, andR=° the set of non-negative reals. Given two
setsX andY, X ¢ Y meansX C Y andX # Y. For
convenience, we may write a constraint likec A < d as
a shorthand for < A A A < d. Also ‘iff’ means “if and
only if.”

Given a set of atomic propositions and a séf of
clocks, alocation predicateis a Boolean combination of
atoms of the formg andz ~ ¢, whereg € Q, x € X, '~/
is one of<, <, =, >, >, andc € N. The set of all location
predicates of) and X is denoted a£(Q, X).

Definition 3 Timed automaton (TA) A TA is a tuple
(Q,X,I,H, E,o,o,r,m) with the following restrictions@

{z} {=z, y}
OO0
0
Ipn = qgArx<5h
Hy = (goNz<5)
Vo (@A (z<5Vy>T))
V o (eAz<10Ay <5)

Figure 1. An example TA

is a finite set of control locationsX is a finite set of clocks.
I € £(Q, X) is the initial condition.H € £(Q, X) is the
(location) invariance conditiont C @ x @ is a finite set
of transition ruleso : £ — Q andé : E — Q respectively
specify the source and the destination locations of eadh tra
sition. 7 : E — L(}, X) defines the triggering condition of
each rule execution. For eaehe E, w(e) C X specifies
the set of clocks to reset during the transition. |

For convenience, gven a TA A =
(Q,X,I,H,E ,0,6,7,7), we use Qa, Xa, Ia, Ha,
EA, 04,04, Ta, andmy to denote®, X, I, H, E, 0, 0, 7,
andr respectively.

Example 4 We have the transition diagrams of an example

¥TA A in figure 1. The ovals represent control locatiggs

q1, andgo. The initial location isgy. The arcs represent
transitions between locations. On each arc, we label the
triggering condition and the clock reset set. |

A valuationof a setY” (domain)is a mapping front” to
acodomain

Definition 5 States of a TAA clock valuatiorof a TA A is
a total valuation fromX 4, to R=°. A stateof A is a pair
(¢,v) suchthay; € Q4 andv is a clock valuation ofd. Let
V4 denote the set of states df [|

For any clock valuatiow of a TA A andt € R=°, v + ¢
is a valuation identical to except that for every: € X 4,
(v +t)(z) = v(z) +t. GivenasetX’ C X4, we letv X’
be a valuation that is identical ioexcept that all variables
in X’ are mapped to zero.

A state(q, v) satisfiesa location predicate, in symbols
(¢,v) E n, if nis evaluated true whenis interpreted true,
all other location names are interpreted false, and allkcloc
variables are interpreted accordinguto Given two states
(¢,v),(¢',v') and a transitiore € E 4, we sayA transits
with e from (¢, v) to (¢, '), in symbols(q, v) - (¢’, '),
if cale) =q,0a(e) =¢, (q,v) ETale) NHa,vmale) =
Vv, and(¢, V) E Ha.

a run of
state-time pairs

Definition6 Runs Given a TA A,
A is an infinite sequence of

((qo,v0),t0)((q1,v1)st1) - - ((qry VE), tk) o e v e such wardly. The satisfaction of the modal formulas is defined as
that for allk > 0, the following three restrictions hold. (1) follows.

ty < tgy1. (2)Forallt € [0,tg+1—tr]s (gr, v +t) E Ha. e A, (q,v) = 30¢q¢ iff there is a non-Zeno run from
(3) Either (g, vk + trt1 — tk) = (qu+1, vk+1) OF there is (¢, v) such that for all stateg)’, v’) that ist time units
ane € E4 suchthalqy, vp +tri1 —tr) — (Qrsts Ver1)- from (¢, v) in the run witht € (¢, d), A, (¢',V') E ¢.
The run isinitial if (go,v0) = La. Itis Zenoif there is a e A (q,v) E 3¢U<c,d>¢ iff there is a non-Zeno run
¢ € N such that for everyk > 0(t, < ¢). | from (¢, v) such that
— there is a statéq’, ') that ist time units from
3.2 TCTL (g,v) inthe run witht € (c,d) andA, (¢, V) =
¥; and

Given a set) of atomic propositions, a sef of clocks, — for all states(¢”, ") before(q', ') in the run,

and ab € N, azone predicatevithin boundb is a Boolean A (¢" V") E ¢

combination of atoms of the formandx —y~ec, where For a detailed deﬁnition, please check [1] The TCTL
g€ Q xyec XU{0}, ‘~e {<,< =4 >, >} and model-checking problenmstance of a TAA and a TCTL

¢ € Z.N [-b,b]. The set of all zone predicates @fand X formulag asks if all initial states ofi satisfy¢.

within boundb is denoted a<,(Q, X). The satisfaction of We also use(¢)) , to denote the set of stat@g) € Vi
zone predicates by a state can be defined similarly as that ofvith A, (¢,v) = ¢. Itis clear that for any(q,v) € Va,
location predicates. A, (g,v) [¢ifand onlyif (q,v) € (@) 4-

TCTL(Timed Computation Tree Logits a language for
the specification of timing behaviors with branching struc- 3.3 Symbolic TCTL model-checking
tures [1]. Here we adopt TCTL formulas, say with the

following extended syntax. A zoneof a proposition sef) and a clock seX within a
o 0 5 boundb is a set of states characterizable with a conjunctive
¢u=n] o1V 2| b1 [ey | 301U, 092 zone-predicate likg A n withag € Q andn € Z,(0, X).

The states in a zone share the same control location. A zone
is a convex space of states [5, 7]. Without loss of generality
we assume that the given characterization zone predicate
for a non-empty zone is alwayight. That is, for every in-
equalityz — y ~ cin the characterization zone predicate,
we cannot lower the value efwithout changing the mem-
bers of the corresponding zone. Such a tight zone predicate
for a zone can be obtained with an all-pair shortest-path al-
gorithm with cubic time complexity [5, 8].

According to [7, 12], the state spaces df that we
need to manipulate in model-checking fer are finite

Heren is a zone predicate i€, (Q, X)3, ‘(" € {[, (}, and
YVoe{],)}. ¢c € Nd e NU{oo}, ¢ < d, andd =
oo — 'Y = ‘). Standard shorthands likeue, falsg
1 A b2, d1 — P2, F0(c,ayP1, YU e a) P15 YO (c,ay$1, and
Vé1U . 402 are also adopted. Also intervil, oo) an be
conveniently omitted.

For modal formulasiCd,. 4 ¢ and3¢U<C_’d>zp, ¢is called
the path conditionwhile ¢ is called thedestination condi-
tion.

Given a TAA and a TCTL formulap, we letC be
the biggest timing constant used i and ¢. Note that) : . . .
our TCTL definition is a little extended from [1]. First, unions of zones charactenza_b_le with zone predicates in
we allow intervals instead of inequalities as the subssript Zcﬁ(QA’XA U {m, z}). Specifically,m andz are clock

to modal operators. Computationally, this does not affect variables used respectively for the evaluation of timing-co
much in the related algorithms in model-checking. Second straints of modal formulas and the non-Zeno requirement of

unlike the original definition in [1], we allow inequalities ~ 'uns: Many model-checkers for TAs are based on symbolic
Z..(Q, X) to appear in formulas. The reason is that accord- ma_nlpulanon algorithms ofone predicatesepresented in
ing to [7], in the evaluation of nested modal formulas, the various forms[4,8,13].

evaluation of inner modal formulas may yield predicatesin FOr convenience, given a formuta and a setX =
ch; (Qa, X4U{m, =}) wherem, z are two auxiliary clock {zx1,...,x,} of variables, we us8X (¢) as the shorthand

variables not used idl. Thus, for the investigation of con- for 3z ... H.x”(¢)' In_ table 2, we list the formulations for
o - N the symbolic evaluation algorithm of TCTL formulas from
cave path conditions in time progress evaluation, it makes

i ; . the literature [7,12]. Given a TAM and a TCTL formula
no difference to have zone predicates in TCTL formulas.
Given a statdq,) of a TA A and a TCTL formulas ¢, the symbolic algorithm inductively constructs zone pred-
we use the notatci](;m (¢,v) = ¢ to mean that statéy V)’ icates that characterize states satisfying subformulas of
satisfiesp in A. The satisfaction of zone (location) pred- We usef] , to denote the zone predicate obtained from the

icates and Boolean formulas i#h are defined straightfor- algorithmiin tablles land?2 fo_r aTCTL formuta L
In table 2, given a condition for a set of destination

3We abuse the notatiga-co, o] for (—oo, co). state and a transition, Xock. (i) denotes the condition

names formulas | non-Zeno formulations
runs only?

(@) q N/A q
(x—y~c)| z—y~c N/A T—y~c

oa(€) NHAN (Nyega qtonie) 70 N Tale)
(bck) | Xocke(v) | NA 3 (0) U foa(€),0a () (910 A 0a() A Ha A Ay = 0)
V) PVY N/A [9]4 VI¥]A
@) ¢ N/A 8l 4
€) Jx (o) N/A Jz([4] 4)
(~) ¢~ no ItpZ. ([¥14 V Veep TOek([4] 4, Xbck.(2)))
(N2) NZ(¢) yes gfpZ. (32 (2 =0A ([¢] 4 ~ (Z Nz > k)))), withk > 1.
GU") | 3¢Uat | ves [Fm(m=0A([¢], ~ (m € (c,d) A[9] 4 ANZ(true))))
(EIDN) 3D<c,d>¢ yes Im (m =0ANZ(m € (¢,d) — [[gb]]A))

N/A: not applicable.

Table 2. Traditional formulation for the symbolic evaluation of TCTL formulas

for states that can directly go to states(jg)) , through
transitione. Formally speaking(q,v) = Xbck.(v) iff
there exists d¢’, ') = ¢ with (¢,v) - (¢, /).

Also in table 2, formulatiori~) calculates the backward
reachability to states if{«)) , through a path along which
all states are ir{¢)) ,. Ifp is the least fixpoint operator. The
evaluation of the least fixpoint operator works by iterdtive
adding states t&@ until we find that there is no more ad-
dition possible.gfp is the greatest fixpoint operator. The

evaluation of the greatest fixpoint operator works by itera-

tively eliminating states fron¥ until we find that there is
no more elimination possible.

Formulation(NZ), with & > 1, characterizes those states
that starts a non-Zeno run along which all states satisfy

tion with formulation (NZ) and directly use& 4 instead.
Given a TAA and a TCTL formulap, we use[¢] " to de-
note the zone predicate obtained §dirom the algorithm in
tables 1 and 2 except that formulatid@&l) and(3|) in ta-
ble 3 are respectively used in place of formulatiGais v %)
and (3|J"?) in table 2. The following lemma shows that
this approximation is strictly safe for the evaluation ofiéid
inevitabilities.

Lemma 8 Given a TAA, a zone predicate, and an inter-

val (c,d) CRZ®, ([VOreaynld" N 4 & (VOtcayn) 4. W
Note that in example 2, the inner modal formula, i.e.,

305,100—al arm (A)

Parametet: can be any chosen integer no less than one.cannot be correctly evaluated with formulatiafi) in ta-

In [12], it was reported that = max(1, cﬁ) usually yields ble 3 which does not take non-Zenoness into consideration.

reasonably good performance. For example, the property can be violated with a Zeno run
To check a TAA against a TCTL formula, usually we ~ that does not progress more than 5 time units dftere is

check if 14 A [-¢] , is satisfiable.A satisfiesp if and only ~ true. Thus, to correctly check such properties, we cannot

if 74 A [~¢] , is unsatisfiable. use formulation4J) in table 3. Later in section 6, we shall

According to [7, 12], we have the following lemma. present a new approximate formulation that with enough
precision to correctly evaluate many timed inevitabititie

Lemma 7 Given a TAA and a TCTL formulap, for any
state(q,v) € Va, (q,v) = [¢] 4 iff A, (¢, v) = o]
It is known that formulation 0V ?%) is needed for the
correct evaluation of timed inevitabilities so that the in- In this section, we first review the concept of time-
evitabilities are not refuted by Zeno runs [12]. But for convexity [11]. Given a TAA and a spacé of states with
many verification tasks, the formulation (NZ) nested inside S C Vy, S is convexf for eachq € Qa, {(¢,v) | (¢,v) €
(30N%) is expensive to carry out. It involves a double fix- S} is convex. A state space that is not convexdsicave
point calculation, i.e., a least fixpoint for formulatiés-) The reachable state space of a TA is usually concave. Most
nested inside a greatest fixpoint. According to [12], the for state-spaces that we need to manipulate in TCTL model-
mulations in table 3 can be used for the approximate evalu-checking are likely concave. We say a TCTL formulés
ation of formuIationsﬂUNZ) and @ON?) if computation convex iff (¢)) , is convex. If¢ is not convex, then it is
resources is limited. The approximation skips the evalua-concave.

4 Time-convexity

names| formulas | non-Zeno formulations
runs only?
GV | U a¥ no m (m=0A([¢] 4 ~ (m € {c,d) N[] 4)))
30y ERY) no Im (m =0AgfpZ (V,.cp, Thek (m € (c,d) — [¢] 4, Xbck.(2))))

Table 3. A formulation for the approximate evaluation of 300-formulas

Example 9 Theinitial condition/4 of the TAinexample4 Example 14 In example QIbck(H, G N10<z<20A
is convex. On the other hand, the corresponding invariancel0 < y < 20) andThck/(H,q1 Az = 8 Ay = 8) both
condition H 4 is concave. Specifically, the following sub- evaluatetoy A0 < 2 <20A0 <y <20A(z—y <

formulaH = ¢; A (x < 5V y > 7)is concave. Forex- —3Vx—y > 3). |
ample, we may have two statég, ;) and (g1, v2) with

vi(z) = vi(y) = 3 andz(z) = 12(y) = 9. Itis clear According to [11], given a zone predicatewe can use
that(q1,v1) and(q1,12) are both in((H)) ,. However, the the following predicate, denotedi ne_concave(¢), to
middle point, say(q1,v3/2), between(qi, 1) and(qi, v2) check if ¢ is time-concave.

With 135 (2) = v3/2(y) = 6 is notin (H) ,.
Concavity may also happen with difference constraints pA3tE

between two clocks. For example, the following zone pred-

icateH = ¢ A (z —y < —3Vz —y > 3) is also concave.

For example, we may have two statgs, v3) and(q1, v4)

with v3(z) = 9, v3(y) = 3, va(z) = 3, andwy(y) = 9. It

is clear that(q1, v3) and(q1,v4) are both in((H)) ,. How- 5 Time-convexity checking from the syntax

ever the mlddle point, sa, u7/2),_ between(q:, v3) and of TCTL formulas

(q1,v4) With v72(z) = v7/5(y) = 6 is not. [
Itis known that formula (T’) for time progress evaluation

can be applied to convex path conditions.

R20 (6 -+t At € REO(H < t A (~¢) + 1))

Lemma 15 Given a zone predicatg t i me_.concave(¢)
is unsatisfiable if and only f¢)) , is time-convex. [|

Note that at the end of the last section, we present predi-
catet i me_concave() to check if a zone predicate is con-
cave. This checking incurs a complementation, three con-
junctions, and two existential quantifications and couiltl st
be costly. In this section, we present techniques for avoid-
ing this checking. The first idea is to recognize the syntax
structures in TCTL that yield only time-convex zone pred-

Example 10 In example 4, formula (T’) is not applicable
to H 4 which is concave. For exampl€bck(H 4, g1 Az =
8Ay =8)isqu ANT<ax<8ANT<y<8Azxz =uy.
However,Thck/(Ha, g1 Az =8 Ay =8)isq1 A0 <z <

8ANO=y<8Az=y which is_in_correct. = icates. This syntax checking could be much less expensive
According to [11], the restriction of the applicability of 4 invokingt i me_concave().
formula (T’) can be relaxed with the following concept. Given a TA4, two TCTL formulass andi) arelocation-

disjoint if there is aQ’ C Qa such that(¢), C

Definition 11 Time-convexity A state spaceS is time- (Vieq ahaand(w) 4 € (Viequ-q Da-
N~ A q - q AT

convexff for any (¢, v) € S andt € R=% with (q,v +1) € The following lemmas characterize classes of TCTL that
S, then foranyt’ € [0,1], (g, v +t') € S. If Sisnottime- only yield time-convex zone predicates.
convex, it istime-concave |

Lemma 16 Assume we have a TA an interval(c, co) C
Example 12 In examples 4 and 9,4 is time-convexwhile R=°, and two time-convex TCTL formulgsand ¢ such
H 4 is time-concave. Moreover, zone predicafe= ¢; A that$ andv) are location-disjoint (3¢ . .. ¥)) 4 is time-
(r—y < —3Vz—y > 3)is concave and time-convexll convex. ' n
We restate the following lemma from [11].
Corollary 17 Assume we have a TAl, an interval
Lemma 13 Given a TA A and a time-convex path {c,00) C R=% anda TCTL formula such that
zone predicatep and a destination zone predicate, e Ha AN¢andH A —¢ are location-disjoint; and
(Thek (o,) 4 = (Thek! (6, ¥)) 4. [] e ¢ and—¢ are both time-convex.
Lemma 13 implies that we can also apply the more effi- Then({(30 . o) ®)) 4 is time-convex.
cient formula of (T’) to concave but time-convex path con- Proof: We can prove that(3(=¢)U..\®ha =
ditions. (30 (c,00) @) 4~ Then the corollary follows lemma 16. B

Lemma 18 Given a TAA, a time-convex TCTL formula
¢, a TCTL formulayy, and an interval(c, co) C (0, c0),

(3 ¢, 00) 1)) 4 Is time-convex. [|

Lemma 19 Assume we have a TA, an interval[0,d) C
R=%, and two time-convex TCTL formulgsand ¢) such
that¢ and+ are location-disjoint.(Vé{, 4,¥)) 4 is time-
convex.]

The following corollary is important in that it cap-
tures the time-convexity of the important class of timed in-
evitabilities in TCTL formulas.

Corollary 20 Assume we have a TA an interval[0, d) C
R29, and a TCTL formula such that

e Hy N¢pandH,y A —¢ are location-disjoint; and

e ¢ and-—¢ are both time-convex.
Then{(VO0,q)®)) 4 is time-convex.
Proof: We can prove that (V(=¢)Upy®Na =
{(YOr0,ay®) 4- Then the corollary follows lemma 19. B

Example 21 For the TA in example 9, suppose we want to
specify that locatios will always happen in 10 time units.
The property can be written a8y 19jg2. According to
corollary 20, the space of the property is time-conve>ll

Lemma 22 Given a TAA, a time-convex TCTL formula
¢, and an interval(c,c0) C R=9, (V0. c)®)) 4 IS time-
convex. |

Lemma 23 Given a TAA, a time-convex TCTL formulg,
and aninterval0, d) C R=°, (30jg,49)) 4 is time-convex.
|

path conditions for efficient time progress evaluation. For

example, in benchmark (H) in table 7 in page 10, the

whole property is not inTCTL!*. But the inner path

conditionVt ransmJ;, s, €t ry, is in TCTL'® accord-

ing to lemma 19. This implies that in the evaluation

of the outerv(J-formula, we do not have to evaluate

time_concave([vtransmU s, retry,],) in order

to use the more efficient formulation (T’) in place of (T).
Then we can use the following procedure for the adaptive

evaluation of time progress.

Initially ® = (). /* for known convexities */
Initially ¥ = (). /* for known concavities */
Adapt i ve_Tbck(ng, ¢,ny) {
If H, is time-concave, returfbck (14, 7,).
Else if ¢ is a TCTL'“ formula, returnTbck’ (4, 1y).
Else if¢ € @, returnTbck’ (14, 1y)-
Else if ¢ € W, returnTbck (14, 7,)-
Else ift i me_concave(r,) is unsatisfiable{
O = ® U {¢}; returnTbeck’ (ng, 1y).
}
Else{
U =T U {}; returnTbeck (ng, ny)-
H}

Note that the procedure is designed to return a zone pred-
icate characterizing the same state spaceaX (14, 1y).
There is one extra argument, which is the subformula
whose evaluation yields,. This extra argument is used in
the first “Else if” statement to help us checking if the path
condition is generated from BCTL! formula and can be

Based on the lemmas in the above, we can define a newevaluated witiTbck’().

class of TCTL formulas that yield only time-convex state
spaces. This class is call@€CTL with timed-convexityle-
notedTCTL®, and is defined inductively as follows.

Definition 24 TCTL!* Only TCTL formulas of the follow-
ing forms are members of TCTL

e 7, a zone predicate such thiat me_concave(n) is
unsatisfiable.
é1 A b2, With ¢1 € TCTL™ A ¢ € TCTL,
3¢U<c,m)¢ with the following two properties.

— ¢ andy are inTCTL®®.

— ¢ andy are location-disjoint.
38U 00y With ¢ € TCTL' and(c, 00) C (0, 00).
V¢U[0,d>7/’ with the following properties.

— ¢ € TCTL®* andy € TCTL®.

— ¢ andvy are location-disjoint.

e V(.)¢ With (¢, 00) C R=% and¢ € TCTL.

e 30,4y with [0,d) € R=% and¢ € TCTL' . []
Note thatTCTL® itself may not support the full specifica-
tion of some properties. But it helps identifying subfor-
mulas in a full specification that yield only time-convex

Also, we use two set variabldsand ¥ to record the re-
sults of previous invocations 6f me_concave(). Ifithas
already been recorded, then we also avoid the repeated in-
vocations ot i me_concave() on the same argument path
condition. Repeated time progress evaluations along the
same path condition can actually happen a lot in the least
fixpoint and greatest fixpoint evaluation.

The following lemma shows that the procedure is cor-
rect.

Lemma 25 Given a TAA and two zone predicates;, 7,
and a TCTL formulag such that(¢), = (ns) .
(Tock(ng, ny)) 4 = (Adapti ve_Tbek(ng, d,my)) 4-

|

Without loss of generality, from now on, we assume

that in the model-checking, we useapt i ve_Thck() in
place ofTbck(). To check a TCTL formul® against a TA,
the only extra cost of usingdapt i ve_Thck() isto feed a
subformulay’ in ¢ to Adapt i ve_Tbck() as the second ar-
gument when we want to invokidapt i ve_Thck() with
the first argument being an (approximate) evaluatioa’ of

Im(m=0AgPZ. (Fz(z=0A((m<5Vm>10V-alarm ~ (Z Az >k)))))

=Im (m=0A0fpZ3z (2 =0AUPZ". (ZAz>kV\ cpThck(m <5V m>10V-al armXbck.(Z")))))

Table 4. Traditional formulation for the evaluation of 3005 ;q—al arm

6 New formulation of timed inevitabilities following lemma establishes the correctness of the new for-
mulation in table 5.

With formulation @0V #), formula (A) in example 2is | amma 26 Given a TA4 and a TCTL formulas, () , =
evaluated with the formula in table 4. As can be seen in <<[[¢]]erw>>A- m

table 4, the path condition in time progress evaluation is
m <5V m > 10V —-al ar mwhich is time-concavé.This
means that we cannot uSbck’() in place ofTbck () with
formulation @OV %),

In section 7, we will see that for some benchmarks,
formulation BV ?) indeed leads to much better verifica-
tion performance. However, there is an additional advan-
tage of formulation 4L1V%) in table 5 in that it links to a

However, we can see that for a non-Zeno yuto sat- safe approximation of timed inevitabilities with betteepr
isfy O,y it meansp can be decomposed into three run ¢isjon. Intuitively, we may replace N2) in table 5 directly
segments, p2, p3 such that with ¢ as an approximation for the efficient evaluation of
e states irp; happen attime if0, d) — (c,d) and satisfy ~ [NZ(¢)],. Specifically, we propose the approximate for-
Ha, o _ mulation @CJ) in table 6. Similarly, we usge]’;" ™" to

e states irp; happen at time iric, d) and satisfyp A Ha, denote the zone predicate obtainedddrom the algorithm
and in tables 1 and 2 except that formulatiati{" 4) in table 2

e p3 is anon-Zeno run with all states happening at time for 30-formulas are changed t&@({) in table 6. We then
in (¢, 00) — (c, d) and satisfyH . have the following lemma for the desired property of our

This observation leads to the new formulation for a formula new formulation for approximate model-checking.
like 300,..4y¢ in table 5. The advantage of the new formula-
tion is that it may happen that for each segment,0s, ps, Lemma 27 Given a TA A, a zone predicaten, and
its individual path condition could be time-convex and the an interval (c,d) € R=2% ([VOramli Vi &
corresponding time progress evaluation can be done with([VO . anl’s™ ") 4 & (VO re.ayn) - u
the more efficient formulation (T’) in place of (T). Specifi- This lemma shows that the new approximate formula-
cally, for example, fodJ;. 5 ¢, we have the followingmap- tion in table 6 is not only safe but also is strictly more pre-
ping between the syntax structure of its new formulation in cise than the one in table 3 for evaluating timed inevitabili
table 5 and the three run segments. ties. Our experiment report in the next section corrobagrate
e The path condition of the outél J-formula character- this lemma in that against all our timed inevitability bench
izes the time progress along. It can be evaluated marks, the approximate formulation in table 6 yields cdrrec
with formulation (T°) if Ha A m < cis time-convex. evaluation while the one in table 3 does not.
e The destination condition of the outélr)-formula and
the path condition of the innef| J-formula together 7 |mplementation and experiments
characterize the time progress algng It can be eval-
uated with formulation (T") ifpAHAAm > cAm < d
is time-convex.
e The destination condition of the inngl]-formula and
NZ(true) together characterize the time progress along

We have implemented procedukdapt i ve_Thck() in
section 5 and the two formulationd("V4) and @) in sec-
tions 6 iNRED 7.0, a model-checker for TAs and a paramet-
. . ; : ric safety analyzer for LHAs (linear hybrid automata) [2]
P3- It can be evaluated with formulation (T") i is based on the CRD (Clock-Restriction Diagram) and HRD
time-convex. (Hybrid-Restriction Diagram) technology [8, 10]. We used

Given a TAA and a TCTL formulab, we use[[¢]]’jf“f to the following two parameterized benchmarks from the liter-
denote the zone predicate obtainedd#drom the algorithm ature in our experiment.

in tables 1 and 2 except that formulatiaii (Y#) in table 5 1. Fischer's timed mutual exclusion algorithf@]: The

is used in place of formulatio(S0"#) in table 2. The algorithm relies on a global lock and a local clock per
process to control access to the critical section. Three
timing constants used are 5, 10, and 19. The formulas

4The path condition is time-concave since for example, givesiate

(alarmwv) with v(m) = 0, it is true that both(al armv) and .
(al ar mv+12) satisfym < 5vm > 10v-al ar m But(al ar m v+7) that we check are formmas (©), (D_)' _and (E)intable 7.
does not. Formula (C) says that if process 1 is in the ready mode,

name | formulas | new formulations
I0q¢ || Im(m =0A(m <c~ ((¢ Am>cAm<d)~ (m>dANZ(true)))))
Ieq¢ || Imm =0A(m <c~ ((pAm>cAm<d) ~ (m>dANZ(true)))))
e,qp¢ || Imm =0A(m <c~ ((pAm >cAm<d)~ (m>dANNZ(true)))))
(3ONZ) I0e.a¢ || Im(m =0A(m <c~ ((pAm >cAm<d)~ (m>dANZ(true)))))
Ip,q¢ || 3m(m =0A((¢ Am < d) ~ (m >dANZ(true))))
I0p.q)¢ || 3m(m =0A ((¢ Am < d) ~ (m >dANZ(true))))
I0ie00)@ || IM(m =0A (m < c~ (m > cANZ(¢))))
I(c,00)? || Im(m =0A (m < c~ (m > cANZ(¢))))
Table 5. A new formulation for 300-formulas.
name| formulas | new formulations
Iq¢ || Imm=0A(m<c~ ((pAm>cAm<d)~m>d)))
eq¢ || Imm=0A(m <c~ ((pAm>cAm<d) ~m>d)))
0@ || Inm=0A(m <c~ ((¢Am>cAm<d)~m>d)))
(300) I0c.q¢ || Im(m =0A(m <c~ ((pAm>cAm<d)~m>d)))
I0p,q¢ || Im(m =0A((¢ Am < d) ~m >d))
a9 || Imm =0A((p Am <d) ~m >d))
Ie,00)@ || Im(m =0A(m <c~ (m>cA¢)))
I(c.00)? || IM(m =0A(m <c~ (m>cA¢)))

Table 6. A new formulation for the approximate evaluation of 30-formulas.

then it will be in either the critical mode or the waiting
mode in 19 time units and it cannot stay in the ready
mode in the next 5 to 10 time units. This formula con-
sists of the conjunction of two timed inevitabilities.

Formula (D) says that after process 1 enters the ready

mode, in 24 to 34 time units, it will be in either the idle
mode or the critical mode. This timed inevitabilities
of this formula is fulfilled by first crossing the ready
mode and then the waiting mode.

Formula (H) uses an outéfl J-formula that nests a
timed inevitability (expressed as anothér-formula)

in its path condition. The outer| J-formula is also a
timed inevitability that says if the bus is in the colli-
sion mode and sender 1 is in the transmission mode,
then the bus will enter the idle mode in 52 time uints.
Also before the outer inevitability is fulfilled, sender 1
will inevitably go to the retry mode in 52 time units.

We have collected performance data for our implementa-

Formula (E) says that after process 1 enters the readytion configurations for formulation§I0), (30)), (30N %),

mode, it enters the waiting mode in 5 to 10 time units
and then enters either the critical section or the idle
mode in 19 to 24 time units. The formula consists of a
timed inevitability nesting another.

. CSMA/CDI[13]: This is the Ethernet bus arbitration
protocol with collision-and-retry. The timing constants

and(30V) for the evaluation of timed inevitabilities. The
performance data is reported in table 8. The CPU time
used, the total memory consumption for the data-structures
in state-space representations, and the answers of model-
checking are reported. Following the suggestion in [12],
we usek = (9 for all the confugurations. Also we use

used are 26, 52, and 808. The properties that we wantthe early decision techniques for the greatest fixpoint-eval

to check are formulas (F), (G), and (H) in table 7.
Formula (F) says that if sender 1 is in the transmis-
sion mode for 52 time units, then in all computations,

sender 2 cannot be in the transmission mode for at least

756 time units. This formula is a safety property, nota
timed inevitability.

Formula (G) says that if senders 1 and 2 are in the Elﬂ)

uation [12]. In general, our new formuIatiorQEﬂ) and
(30N 2) for timed ineviatbilities yield better performance
than the traditional formulatio@) and(30V4) do.

As for the approximation techniques, for the five bench-
marks for timed inevitabilities, formulatior{30) also
sometimes yield performance comparable with formulation
. However, the traditional formulatiofti(]) does not

transmission mode at the same time, then sender 2 Willp 6 the precision to correctly evaluate the timed ineilitab

enter the retry mode in 26 time units. This is a simple
timed inevitability.

ities. In contrast, our new approximate formulati@hﬁ)
is precise and efficient enough to correctly check the five

(C) || vO((ready; — ((¥Op,19(critical ; vwaiting,)) A=(30510r eady,)))

(D) [VO ((ready; Az1 =0) > VOpaaqlcritical ; vidle))

(E) [VO ((ready; Az1 =0) = V5,10 (Wai ting; AVQugoq(idle; vVeriticaly)))

(F) | vO((transm Az = 52) — VO 756t ransny)

(G) [[VO((transm Atransm) — Vg6 etry,)

(H) | VO ((bus_col lisionAtransm)—V (Vt ransmJy 5" et ryl) Ulo,52)Pus-i dI e)

Table 7. Six formulas used in the experiment

Table 8. Performance data of scalability w.r.t. various strategies

non-Zeno Previous formulation New formulation
benchmarks| formulas | runsonly ?| m time | memory | satisfied ?[| time | memory | satisfied ?
4 7.29s| 140M | no 0.112s 886k
no 5 N/A 6.76s 134M yes
©) 6 107s 701M
4 22.7s| 254M | yes 0.088s 896k
yes 5 N/A 3.16s 79M yes
6 58.5s 482M
Fischer's 4 1.22s 44M 0.524s 29M
mutual no 5 29.4s 296M no 6.93s 139M yes
exclusion (D) 6 N/A 104s 689M
algorithm 4 5.22s 117M 0.092s 886k
with m yes 5 140s 919M yes 2.41s 77™M yes
processes 6 N/A 45.2s 387M
4 || 0.076s 407k 0.096s 407k
no 5 6.98s 97M no 3.30s 93M yes
(E) 6 N/A 38.8s 356M
4 3.78s 102M 0.028s 407k
yes 5 85.0s 664M yes 0.092s 1.1M yes
6 N/A 2.38s 76M
3 || 0.108s 325k 0.112s 325k
no 4 6.17s 87M yes 2.65s 71IM yes
(F) 5 69.8s 448M 50.0s 359M
3 || 0.152s 325k 0.092s 325k
yes 4 6.17s 87M yes 2.57s 71IM yes
CSMA/CD 5 69.8s 448M 49.7s 359M
with 1 bus 3 || 0.112s 325k 0.064s 325k
andm (G) no 4 5.05s 76M no 0.108s 746k yes
senders 5 50.5s 367M 2.08s 65M
yes 3 81.3s 479M yes 56.0s 414M yes
3 || 0.128s 325k 0.072s 325k
(H) no 4 2.32s 7™M no 0.168s 746k yes
5 48.0s 391M 2.20s 65M
yes 3 250s| 1031M yes 53.8s 413M yes

data collected on a Pentium 4 1.7GHz with 2G memory runnifglX;
N/A: not available; s: seconds;

k: kilobytes of memory in diagram data-structure; M: megabyof memory in diagram data-structure

timed inevitabilities.
budget is a concern, formulatigal]) seems a good choice with procedure calls. As a result, garbage collection may
for economic and effective verification configuration. consume excessive computation time. In the future, we may

Also, we have not tuned the garbage collection capabil-
ities of RED in the experiment. In our present implemen-

This may imply that when computing tation, the garbage collection in RED is invoked regularly

gain more performance with a better implementation of the
garbage collector.

10

8 Concluding remarks

In this work, we discuss how to improve the perfor-

mance of TCTL model-checking algorithm with several
techniques. In our experiment, our techniques sometime

have enhanced the performance of TCTL model-checking
dramatically against several benchmarks. We feel hopeful
that such techniques could be used as a foundation in our fu{12]
ture endeavor to make TCTL model-checking an industrial
strength.

References

[1] R. Alur, C. Courcoubetis, D.L. Dill. Model Checking

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

for Real-Time Systems, IEEE LICS, 1990.

R. Alur, C.Courcoubetis, T.A. Henzinger, P.-H. Ho.
Hybrid Automata: an Algorithmic Approach to the
Specification and Verification of Hybrid Systems.
Workshop on Theory of Hybrid Systems, LNCS 736,
Springer-Verlag, 1993.

R. Alur, D.L. Dill. A Theory of Timed Automata. The-
oretical Computer Science, 126:183-235, 1994.

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson,
Wang Yi. UPPAAL - a Tool Suite for Automatic Ver-
ification of Real-Time Systems. Hybrid Control Sys-
tem Symposium, 1996, LNCS, Springer-Verlag.

D.L. Dill. Timing Assumptions and Verification of
Finite-state Concurrent Systems. CAV'89, LNCS 407,
Springer-Verlag.

J.B. Fourier. (reported in:) Analyse des travaux de
I’Académie Royale des Sciences pendant I'année
1824, Partie Mathématique, 1827.

T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine.
Symbolic Model Checking for Real-Time Systems,
IEEE LICS 1992.

F. Wang. Efficient Verification of Timed Automata
with BDD-like Data-Structures, STTT (Software
Tools for Technology Transfer), Vol. 6, Nr. 1, June
2004, Springer-Verlag; special issue for the 4th VM-
CAl, Jan. 2003, LNCS 2575, Springer-Verlag.

F. Wang. Model-Checking Distributed Real-Time Sys-
tems with States, Events, and Multiple Fairness As-
sumptions. AMAST'2004, LNCS 3116, Springer-

Verlag.

F. Wang. Symbolic Parametric Safety Analysis of Lin-
ear Hybrid Systems with BDD-like Data-Structures.
IEEE Transactions on Software Engineering, Volume

11

J11]

[13]

31, Issue 1 (January 2005), pp. 38-51, IEEE Com-
puter Society. A preliminary version is in proceedings
of 16th CAV, 2004, LNCS 3114, Springer-Verlag.

F. Wang. Time-Progress Evaluation for Dense-Time
Automata with Concave Path Conditions. ATVA 2008,
LNCS, Springer-Verlag.

F. Wang, G.-D. Huang, F. Yu. TCTL Inevitability
Analysis of Dense-Time Systems: From Theory to
Engineering. IEEE Transactions on Software Engi-
neering, Vol. 32, Nr. 7, July 2006, IEEE Computer
Society.

S. Yovine. Kronos: A Verification Tool for Real-Time
Systems. International Journal of Software Tools for
Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

statet time units from(q, v + ¢') with ¢ € (c,00). Then
the concatenation of the time progression framw + t/)
to (¢, v + t) andp can be used to support th@at v + t') €
(30U .00) 4 SiNCEL =1/ +1 > T andt —t' +1 € (¢, 00)
also. |

APPENDICES

A Proof for lemma 8

Lemma 8 Given a TAA, a zone predicatg, and an interval
(e, d) € RZO. (VO eyl D 4 & (VO caym) a-
Proof : Note that for the timed ineviability 6f0 . 472, the
set runs considered in formulatiqd) is a superset of
those considered in formulatiq@"#). Thus itis clear ~ Lemma 19 Assume we have a TA, an interval[0, d) C
that the lemma is true with the semantics/gfformulas. RZ%, and two time-convex TCTL formulag and+ such

[] that¢ andy are location-disjoint(VeéU, 4 %) 4 is time-
convex.
Proof : We assume there is@ C Q4 such that(¢)) , C
(Vieqr) aand(@) 4 € (Vyeq,—q) a- We assume
that there is a statg, v) and at € R=° such thatq,) and
(¢, v+ t) are both in{(Vol J;, 4 1)) 4. There are two cases
to analyze.

e ¢ € Q": Thisimplies that botliq, ») and(q, v +t) are
in (¢)) 4. Moreover, bothg, v) and(q, v+t) are notin
{(¥)) 4. This further implies that € [0, d). Otherwise,
the time progression frorty, v) to (¢, v + t) refutes
(¢,v) € (VoU|o,qy¥) 4- Since(()) 4 is time-convex,
we know that for every’ € [0,1], (¢, v +t') € (¢)) 4
and(q,v +t') & (v)) , also. With some arithmetic on
the time length to the fulfillment of), we know that

foreveryt’ € [0,], (¢,v +1') € (VOU\o, a—s/)y V) a-

D Proof for lemma 19

B Proof for lemma 16

Lemma 16 Assume we have a TA, an interval(c, co) C
RZ%, and two time-convex TCTL formulag and+ such
that¢ andy are location-disjoint(J¢lJ . .., ¥)) 4 is time-
convex.

Proof : We assume there is@ C Q. such that(¢)) , C
(Vgeor)4 and (@) 4 € (Ve o 0) 4 We assume
that there is a statg, v) and at € R=° such thatq,) and
(¢,v + 1) are both in{(3p{J,.. .)¥) 4- There are two cases
to analyze.

e ¢ € Q': This implies that bottiq, ») and(q, v + t) are
in (@) 4. Since((¢)) , is time-convex, we know that
for everyt’ € [0,t], (¢,v +t') € (¢)) , also. Then the
concatenation of the time progression froguv + t') Since[0, [d—t']) C [0, d), we know thalq,v +1') €
to (¢, v+ t) and a non-Zeno run froify, v + ¢) for the (¥oUjo,4¥) 4 according to the semantics of TCTL.
proof of (¢,v +t) € (30U,)¥)) 4 can be used to ¢ geQa—Q": In thig case, we _know tha(t]2 u)_and
supportthatq, v + ') € (FoU ;. o0) 4- (¢;v +t) are both in((+))) ,. Since(v)), is time-

e g€ Qa— Q' This is possible only wherie, o) is convex, we know tha_lt for e_ver;l € [0,¢], (q,v +
[0,00) since (¢,) does not satisfy the path condi- t') € () 4 also. This implies thatl, (¢,» + ') €
tion of 3¢)% in A. In this case, we know that <<V¢’U[0,d>¢>>_A-

(¢,v) and(q, v + t) are both in(())) ,. Since((y), Thusthelemmais proven. u
is time-convex, we know that for every € [0,¢],
(g, v+1t') € (), also. This implies that, (¢, v +
t") € (36U jg,00) ¥ -

Thus the lemma is proven. |

E Proof for lemma 22

Lemma 22 Given a TAA, a time-convex TCTL formula,
and anintervalc, o) C N, (VO ., o0)®)) 4 iS time-convex.
Proof : We assume that there is a stéer) and at € R=°
such that(g,v) and(q, v + t) are both in{(V. »)®)) 4.

C Proof for lemma 18

Lemma 18 Given a TAA, a time-convex TCTL formula
¢, a TCTL formulay, and an intervalc,c0) C (0, 00),
(30U ¢, 00)¥)) 4 Is time-convex.

Proof : We assume that there is a stéger) and at € R=°
such that(q, v) and(q, v + t) are both in{(VolJ . ..)¥) 4-
Since(c,00) # [0,00), we know thatd ¢ (c,oc0) which
implies that(q, v) and(q, v + t) are both in{(¢)) ,. Since
(@) 4 s time-convex, we know that for evety € [0,1],

(g,v+1t") € (¢)) 4 also. Suppose there is a non-Zeno run

p that satisfquU(C,OO)zﬁ in A with a state fulfillingy at a

Since every run fron{g, v + t') is a tail run from(q, v).
There are two cases to analyze.

o t' & (c,00): This implies that (¢,v + t') €
(VO ([e—t1,00)0) 4~ It is easy to see thaf, c0) C
([e = t'],00). Thus we know(q,v + t') €

{(YO(c,)®)) 4 according to the semantics of TCTL.

e t' € (c,00): Thisimplies(q, v +t') € (YO0,00)®)) 4-

This further implies thatg, v + ') € (VO (c.00)®) 4
according to the semantics of TCTL.

Thus the lemma is proven. |

F Proof for lemma 23

Lemma 23 Given a TAA, a time-convex TCTL formula,
and anintervald, d) € R=°, (300 4y¢)) 4 is time-convex.
Proof : We assume that there is a stéger) and at € R=°
such that(q, v) and(q, v + t) both satisfies(30}g, 4y @) 4-
This implies thatA, (¢,v) E ¢ and A, (¢,v +t) E ¢.
Since¢ is time-convex, we know that for every € [0, ¢],
(g,v+1') € (¢). Moreover, there is a non-Zeno rygrfrom
(q,v + t) that satisfieg]|y 4¢. This implies that along,
Ojo,q—(t—)y @ is also true. Thus the concatenation of the
time progression fronfg,v + ¢') to (¢, + t) andp is a
proof that(q, v 4 t') € (30[0,d))) 4. []

G Proof for lemma 25
Lemma 25 Given a TAA and two zone predicateg,, 7

and a TCTL formula¢ such that{(¢), = (1s) 4
{(Tbek(ng,14)) o = (Adapti ve Tbek (g, ¢, ny)) 4-

(VO (eaymla™ "N a & (YOtc.ym a-
Proof : The proofis similar to the one for lemma 8. For the
first part of the lemma, note that for the timed ineviability
of VO c,qyn2, the set runs considered in formulatiGfi])
is a superset of those considered in formulafignl). The
extra runs considered in formulatida]) are those Zeno
runs with time convergesto a value[in d). Thusitis clear
that this part is true with the semanticsw§f-formulas.

For the second part of the lemma, note that for the timed
ineviability of VO . 472, the set runs considered in formu-

lation (30J) is a superset of those considered in formulation
(30N%). The extra runs considered in formulatiGi])
are those Zeno runs that starts with
e a head segment with states of time[ihd) — (¢, d)
from the start of the run; and
¢ a middle segment with states of time(in d) from the
start of the run; and
e atail Zeno run segment.
Thus it is clear that this part is true with the semantics of

Proof: The lemma is true based on lemmas 16 to 23, the v¢o-formulas.

fact that the intersection of two time-convex state space

is still time-convex, the correct construction of predéeat
ti me_concave(¢), and lemma 13. [|

H Proof for lemma 26

Lemma 26 Given a TAA and a TCTL formulap, ((¢)) 4
(L6157) a-

Proof : The evaluation of¢]",“" differs from that of]¢] ,
only in the formulations used faiCl-formulas. Given such

a formula, say3. 4 ¢, according to the semantics of
TCTL, the formula is satisfied, if there is a run as the con-
catenation of a head run segment a middle run segment
p2, and a non-Zeno tail run segmentas described in sec-
tion 6. Then by a straightforward structural inductive anal
ysis, we find the followings are true.

e The inner-most modal formuglO ;¢ is satisfied
if and only if there is such a non-Zeno tail run segment
P3-

e The innerd| J-formulais satisfied if and only if there is
such a middle run segmept followed by a non-Zeno
tail run segmenps.

e The outer existentially quantified| J-formula is satis-
fied if and only if there is such a head run segmeant
followed by a middle run segment, and then by a
non-Zeno tail run segmenpt.

With this structural inductive analysis, it is clear thaeth
lemmais true. [|

| Proof for lemma 27

Lemma 27 Given a TA A, a zone predicate;, and
an interval (c,d) C R=°. ([VOranlW'Na &

With the two parts proven, we know the lemma is proven.
|

