
Efficient Model-Checking of Dense-Time Systems with Time-Convexity Analysis∗

Farn Wang
Dept. of Electrical Engineering & Graduate Institute of Electronic Engineering

National Taiwan University
farn@cc.ee.ntu.edu.tw; http://cc.ee.ntu.edu.tw/˜farn

RED 7.0 is available at http://sourceforge.net/projects/redlib

Proof of some lemmas can be found in the appendices.

Abstract

The evaluation of successor or predecessor state spaces
through time progress is a central component in the model-
checking algorithms of dense-time automata. The time
progress operator takes the concavity of a path condition
into consideration and usually results in high complexity
in the evaluation. Previous algorithms in this aspect usu-
ally assume that the location invariance condition of an au-
tomaton are convex in the dense-time state space and use
a more efficient algorithm for time progress evaluation. In
fact, the restriction of location invariance condition con-
vexity can be further relaxed to that of time-convexity for
a broader range of application of the more efficient algo-
rithm. In this work, we present techniques for the efficient
model-checking of dense-time automata by taking the time-
convexity of path conditions into consideration. We first
identify a class of TCTL formulas that only characterize
time-convex state spaces. The class includes several im-
portant types of TCTL formulas, including some timed in-
evitabilities (of the form like∀♦[0,d]φ) with deadlines. We
then present a new formulation for the efficient evaluation of
timed inevitabilities with time-convex path conditions. The
new formulation also leads to a new technique for the ap-
proximate evaluation of timed inevitabilities with betterpre-
cision. Finally, we report our implementation and experi-
ment.

Keywords: timed automaton, time progress, model-
checking, TCTL, verification, timed inevitability, convex,
concave

∗The work is partially supported by NSC, Taiwan, ROC under grants
NSC 95-2221-E-002-067 and NSC 95-2221-E-002-072.

1 Introduction

A popular framework for the verification of embedded
systems [1, 4, 8, 13] is the TCTL model-checking problem
[1]. In this framework, we are given a dense-time system
description as atimed automaton(TA) [3] and a specifica-
tion formula inTimed Computation Tree Logic(TCTL) [1]
and checks whether the TA satisfies the TCTL formula. To
achieve the promise of TCTL model-checking, the impor-
tance of performance enhancement of related algorithms
cannot be over-emphasized. One important algorithm in
TCTL model-checking is the time-progress evaluation al-
gorithm. For simplicity, we focus on the backward time-
progress operation. However, the ideas discussed in this
work should also apply to the forward counterpart. Usually
we are given apath conditionφ and adestination condi-
tion ψ and want to compute the condition,Tbck(φ, ψ) in
symbols, ofthose states that can go to a state satisfyingψ

through a time progression along which all states satisfyφ.
For convenience, givent ∈ R≥0 (the set of non-negative
reals), we letφ + t be the condition for states that satsifyφ
after the progression oft time units [1]. ThenTbck(φ, ψ)
can be formulated as in table 1 [7]. The outer quantifica-
tion ont specifies the “through a time progression oft time
units” part. The inner quantification specifies that every
state along the time progression satisfiesφ. As can be seen,
this formulation (T) ofTbck(φ, ψ) incurs two existential
quantifications [6], one complementation, and two conjunc-
tions. Since the time-progress algorithm is fundamental to
TCTL model-checking, such an involved formulation usu-
ally results in significant performance degradation.

One way to enhance the evaluation efficiency of formu-
lation (T) is to take the shape of the path conditionφ into
consideration. An observation is that if the path condition
φ characterizes aconvex1 state space, then formulation (T)

1A space isconvexif for any two points in the space, any point in

names formulas formulations

(T) Tbck(φ, ψ)
∃t ∈ R≥0

(

ψ + t ∧ ∀t′ ∈ R≥0 (t′ ≤ t→ φ+ t′)
)

≡ ∃t ∈ R≥0
(

ψ + t ∧ ¬∃t′ ∈ R≥0 (t′ ≤ t ∧ ¬φ + t′)
)

(T’) Tbck′(φ, ψ) ∃t ∈ R≥0 (ψ + t ∧ φ ∧ φ+ t)

Table 1. Formulations (T) and (T’) of time progress evaluation.

can be rewritten as formulation (T’) in table 1. The reason
is that for two statesν andν′, that respectively represent
the starting state and the destination state of a time progres-
sion along path conditionφ, we know that the following two
conditions are true.
• Bothν andν′ are in the convex space characterized by
φ.

• All states that happen during this time progress actu-
ally form a straight line segment betweenν andν′ in
the state space.

According to the definition of convexity, then all states in
this straight line segment (and time progression) must also
be in the space characterized byφ.

Example 1 Supposewe are in a state space of two clocksx
andy of readings inR≥0. For a state withx = 3 andy = 3,
we may use the pair(x = 3, y = 3) to represent the state.
We have a path conditionφ ≡ x ≤ 5∨y > 7. The condition
is concave since states(x = 3, y = 3) and(x = 9, y = 9)
both satisfy it but their middle point(x = 6, y = 6) does
not. Intuitively, there is a gap between(x = 5, y = 5) and
(x = 7, y = 7) that cannot be stepped into according toφ.
With the formulations in table 1,Tbck(φ, x = 8 ∧ y = 8)
is 7 < x ≤ 8∧7 < y ≤ 8∧x = y. However,Tbck′(φ, x =
8∧y = 8) is 0 ≤ x ≤ 8∧0 ≤ y ≤ 8∧x = y which extends
across the gap and is incorrect. �

As can be seen from the new formula (T’), one ex-
istential quantification and one complementation can be
avoided with convex path conditions. It will be interesting
to see to what extent in TCTL model-checking [1, 12], we
can use formulation (T’) in place of (T) for better model-
checking performance. Specifically, one important class of
TCTL formulas, calledtimed inevitabilities, are of the form
∀♦〈c,d〉φ, where〈c, d〉 is an interval inR≥0, and are impor-
tant in specifying that some good behavior should happen
within a deadline.

Example 2 We may want to specify that after a fire is de-
tected, an alarm is signaled in 5 to 10 time units. In TCTL,
such a property can be written as follows.

∀�
(

fire → ∀♦[5,10]alarm
)

the straight line segment between the two points is also in the space. A
space that is not convex isconcave. For convenience, we say a condition
is convex iff the state space that it characterizes is convex. A non-convex
condition is concave.

Here propositionsfire andalarm respectively specify
that fire is detected and that alarm is on. This property
is usually evaluated as the following equivalent formula:
¬∃true

⋃
(

fire ∧ ∃�[5,10]¬alarm
)

.
However, the traditional formulation [7, 12] for

the evaluation of such a timed inevitability is like
¬∃true

⋃

(fire ∧ ∃m∃�(m < 5 ∨m > 10 ∨ ¬alarm)),
wherem is a clock variable not used in the model. It is
obvious that such a formulation creates a concave path
condition.2 �

Thus it would be interesting to see whether we can avoid
the time progress evaluation along concave path conditions
in TCTL model-checking. In [11], the concept oftime-
convexityof path conditions was discussed to relax the ap-
plicability of the more efficient formulation (T’) to concave
path conditions. In this work, we have the following contri-
butions.
• We identify a class, calledTCTLtc, of TCTL formulas

that only characterize time-convex state spaces. The
syntax structures of formulas in this class can be rela-
tively efficiently checked.TCTLtc itself may not be
general enough for writing full specifications. But
its design purpose is to help us efficiently identifying
those subformulas in a full specification that can in-
duce efficient time progress evaluations.

• We then propose an adaptive algorithm for the time
progress evaluation. The algorithm uses several tech-
niques, including off-line analysis to recognize the
TCTLtc path conditions in a full TCTL specification,
in order to avoid time-concavity checking and to avoid
evaluation with formulation (T).

• We propose a new formulation for the evaluation of
timed inevitabilities. The new formulation breaks a
time progress path into at most three run segments and
allows us to take the convexity of each segment into
consideration for efficient time progress evaluation.

• We extend the just-mentioned new formulation for a
new formulation for the approximate evaluation of

2Suppose we use a pair(q, ν) to represent a state in this system. Here
q is a location name andν is a valuation ofm. Suppose we are given three
valuationsν1, ν2, ν3 with ν1(m) = 0, ν2(m) = 6, andν3(m) = 12.
It is true that (alarm, ν2) is the middle point between(alarm, ν1)
and (alarm, ν3). The path condition is concave since it is true that
(alarm, ν1) and(alarm, ν3) both satisfym < 5∨m > 10∨¬alarm
while (alarm, ν2) does not.

2

timed inevitabilities. This new approximate formu-
lation offers a better precision than the previous ap-
proach [12] in both theory and experiment.

• Finally, we have implemented our techniques and re-
port our experiment with our TA model-checkerRED,
version 7.0. The result shows significant performance
enhancement against many timed inevitabilities.

We have the following presentation plan. Section 2 is for
related work. Section 3 defines TAs and the TCTL model-
checking problem and reviews a symbolic algorithm for the
TCTL model-checking problem. Section 4 explains how to
use the concept of time-convexity for the efficient evalua-
tion of time progress. Section 5 introducesTCTLtc. Sec-
tion 6 presents our new formulations for evaluating timed
inevitabilities. Section 7 reports our implementation and
experiment. Section 8 is the conclusion.

2 Related work

In [7], formulation (T) was proposed for the calcula-
tion of time progress precondition for TAs through con-
cave path conditions. Various tools for reachability anal-
ysis are now available with formulation (T’) based on the
convexity assumption of the location invariance condition
of TAs [4,8,13].

In [12], performance-enhancing techniques for timed in-
evitabilities were presented. They also presented an early
decision technique for the evaluation of timed inevitabili-
ties. They also discussed how to pick the time length value
for the efficient evaluation of states that start non-Zeno runs.

In [9], a model-checking algorithm for timed inevitabil-
ities with event constraints and weak/strong fairness as-
sumptions was presented and implemented.

In [11], the concept of time-convexity was discussed.

3 TA and TCTL model-checking

3.1 Timed automata

LetN be the set of non-negative integers,Z the set of all
integers, andR≥0 the set of non-negative reals. Given two
setsX andY , X Y meansX ⊂ Y andX 6= Y . For
convenience, we may write a constraint likec ≤ A ≤ d as
a shorthand forc ≤ A ∧ A ≤ d. Also ‘iff’ means “if and
only if.”

Given a setQ of atomic propositions and a setX of
clocks, alocation predicateis a Boolean combination of
atoms of the formsq andx ∼ c, whereq ∈ Q, x ∈ X , ‘∼’
is one of≤, <,=, >,≥, andc ∈ N. The set of all location
predicates ofQ andX is denoted asL(Q,X).

Definition 3 Timed automaton (TA) A TA is a tuple
〈Q,X, I,H,E, σ, δ, τ, π〉 with the following restrictions.Q

q0

{x}

x > 3

q1 q2

x > 3

{x, y}

true

∅

IA ≡ q0 ∧ x ≤ 5
HA ≡ (q0 ∧ x ≤ 5)

∨ (q1 ∧ (x ≤ 5 ∨ y > 7))
∨ (q2 ∧ x < 10 ∧ y < 5)

.

Figure 1. An example TA

is a finite set of control locations.X is a finite set of clocks.
I ∈ L(Q,X) is the initial condition.H ∈ L(Q,X) is the
(location) invariance condition.E ⊆ Q × Q is a finite set
of transition rules.σ : E 7→ Q andδ : E 7→ Q respectively
specify the source and the destination locations of each tran-
sition. τ : E 7→ L(∅, X) defines the triggering condition of
each rule execution. For eache ∈ E, π(e) ⊆ X specifies
the set of clocks to reset during the transition. �

For convenience, given a TA A =
〈Q,X, I,H,E, σ, δ, τ, π〉, we useQA, XA, IA, HA,
EA, σA, δA, τA, andπA to denoteQ, X , I, H , E, σ, δ, τ ,
andπ respectively.

Example 4 We have the transition diagrams of an example
TA A in figure 1. The ovals represent control locationsq0,
q1, andq2. The initial location isq0. The arcs represent
transitions between locations. On each arc, we label the
triggering condition and the clock reset set. �

A valuationof a setY (domain)is a mapping fromY to
acodomain.

Definition 5 States of a TAA clock valuationof a TAA is
a total valuation fromXA to R≥0. A stateof A is a pair
(q, ν) such thatq ∈ QA andν is a clock valuation ofA. Let
VA denote the set of states ofA. �

For any clock valuationν of a TAA andt ∈ R≥0, ν + t

is a valuation identical toν except that for everyx ∈ XA,
(ν + t)(x) = ν(x) + t. Given a setX ′ ⊆ XA, we letνX ′

be a valuation that is identical toν except that all variables
in X ′ are mapped to zero.

A state(q, ν) satisfiesa location predicateη, in symbols
(q, ν) |= η, if η is evaluated true whenq is interpreted true,
all other location names are interpreted false, and all clock
variables are interpreted according toν. Given two states
(q, ν), (q′, ν′) and a transitione ∈ EA, we sayA transits
with e from (q, ν) to (q′, ν′), in symbols(q, ν)

e
−→ (q′, ν′),

if σA(e) = q, δA(e) = q′, (q, ν) |= τA(e)∧HA, νπA(e) =
ν′, and(q′, ν′) |= HA.

Definition 6 Runs Given a TA A, a run of
A is an infinite sequence of state-time pairs

3

((q0, ν0), t0)((q1, ν1), t1) . . . ((qk, νk), tk) such
that for allk ≥ 0, the following three restrictions hold. (1)
tk ≤ tk+1. (2) For allt ∈ [0, tk+1−tk], (qk, νk+t) |= HA.
(3) Either(qk, νk + tk+1 − tk) = (qk+1, νk+1) or there is
ane ∈ EA such that(qk, νk+ tk+1− tk)

e
−→ (qk+1, νk+1).

The run isinitial if (q0, ν0) |= IA. It is Zenoif there is a
c ∈ N such that for every∀k ≥ 0(tk ≤ c). �

3.2 TCTL

Given a setQ of atomic propositions, a setX of clocks,
and ab ∈ N, azone predicatewithin boundb is a Boolean
combination of atoms of the formsq andx − y ∼ c, where
q ∈ Q, x, y ∈ X ∪ {0}, ‘∼’∈ {<,≤,=, 6=,≥, >}, and
c ∈ Z ∩ [−b, b]. The set of all zone predicates ofQ andX
within boundb is denoted asZb(Q,X). The satisfaction of
zone predicates by a state can be defined similarly as that of
location predicates.

TCTL(Timed Computation Tree Logic) is a language for
the specification of timing behaviors with branching struc-
tures [1]. Here we adopt TCTL formulas, sayφ, with the
following extended syntax.

φ ::= η | φ1 ∨ φ2 | ¬φ1 | ∃�〈c,d〉φ1 | ∃φ1

⋃

〈c,d〉φ2

Hereη is a zone predicate inZ∞(Q,X)3, ‘〈’ ∈ {[, (}, and
‘〉’ ∈ {],)}. c ∈ N, d ∈ N ∪ {∞}, c ≤ d, andd =
∞ −→ ‘〉’ = ‘)’. Standard shorthands liketrue, false,
φ1 ∧ φ2, φ1 → φ2, ∃♦〈c,d〉φ1, ∀�〈c,d〉φ1, ∀♦〈c,d〉φ1, and
∀φ1

⋃

〈c,d〉φ2 are also adopted. Also interval[0,∞) an be
conveniently omitted.

For modal formulas∃�〈c,d〉φ and∃φ
⋃

〈c,d〉ψ, φ is called
thepath conditionwhile ψ is called thedestination condi-
tion.

Given a TAA and a TCTL formulaφ, we letCφA be
the biggest timing constant used inA and φ. Note that
our TCTL definition is a little extended from [1]. First,
we allow intervals instead of inequalities as the subscripts
to modal operators. Computationally, this does not affect
much in the related algorithms in model-checking. Second,
unlike the original definition in [1], we allow inequalitiesin
Z∞(Q,X) to appear in formulas. The reason is that accord-
ing to [7], in the evaluation of nested modal formulas, the
evaluation of inner modal formulas may yield predicates in
ZCφ

A

(QA, XA∪{m, z}) wherem, z are two auxiliary clock
variables not used inA. Thus, for the investigation of con-
cave path conditions in time progress evaluation, it makes
no difference to have zone predicates in TCTL formulas.

Given a state(q, ν) of a TA A and a TCTL formulaφ,
we use the notationA, (q, ν) |= φ to mean that state(q, ν)
satisfiesφ in A. The satisfaction of zone (location) pred-
icates and Boolean formulas inA are defined straightfor-

3We abuse the notation[−∞,∞] for (−∞,∞).

wardly. The satisfaction of the modal formulas is defined as
follows.
• A, (q, ν) |= ∃�〈c,d〉φ iff there is a non-Zeno run from

(q, ν) such that for all states(q′, ν′) that ist time units
from (q, ν) in the run witht ∈ 〈c, d〉, A, (q′, ν′) |= φ.

• A, (q, ν) |= ∃φ
⋃

〈c,d〉ψ iff there is a non-Zeno run
from (q, ν) such that
− there is a state(q′, ν′) that is t time units from

(q, ν) in the run witht ∈ 〈c, d〉 andA, (q′, ν′) |=
ψ; and

− for all states(q′′, ν′′) before(q′, ν′) in the run,
A, (q′′, ν′′) |= φ.

For a detailed definition, please check [1]. The TCTL
model-checking probleminstance of a TAA and a TCTL
formulaφ asks if all initial states ofA satisfyφ.

We also use〈〈φ〉〉A to denote the set of states(q, ν) ∈ VA
with A, (q, ν) |= φ. It is clear that for any(q, ν) ∈ VA,
A, (q, ν) |= φ if and only if (q, ν) ∈ 〈〈φ〉〉A.

3.3 Symbolic TCTL model-checking

A zoneof a proposition setQ and a clock setX within a
boundb is a set of states characterizable with a conjunctive
zone-predicate likeq ∧ η with a q ∈ Q andη ∈ Zb(∅, X).
The states in a zone share the same control location. A zone
is a convex space of states [5,7]. Without loss of generality,
we assume that the given characterization zone predicate
for a non-empty zone is alwaystight. That is, for every in-
equalityx − y ∼ c in the characterization zone predicate,
we cannot lower the value ofc without changing the mem-
bers of the corresponding zone. Such a tight zone predicate
for a zone can be obtained with an all-pair shortest-path al-
gorithm with cubic time complexity [5,8].

According to [7, 12], the state spaces ofA that we
need to manipulate in model-checking forφ are finite
unions of zones characterizable with zone predicates in
ZCφ

A

(QA, XA ∪ {m, z}). Specifically,m andz are clock
variables used respectively for the evaluation of timing con-
straints of modal formulas and the non-Zeno requirement of
runs. Many model-checkers for TAs are based on symbolic
manipulation algorithms ofzone predicatesrepresented in
various forms [4,8,13].

For convenience, given a formulaφ and a setX =
{x1, . . . , xn} of variables, we use∃X(φ) as the shorthand
for ∃x1 . . . ∃xn(φ). In table 2, we list the formulations for
the symbolic evaluation algorithm of TCTL formulas from
the literature [7, 12]. Given a TAA and a TCTL formula
φ, the symbolic algorithm inductively constructs zone pred-
icates that characterize states satisfying subformulas ofφ.
We use[[φ]]A to denote the zone predicate obtained from the
algorithm in tables 1 and 2 for a TCTL formulaφ.

In table 2, given a conditionψ for a set of destination
state and a transitione, Xbcke(ψ) denotes the condition

4

names formulas non-Zeno formulations
runs only?

(q) q N/A q

(x− y ∼ c) x− y ∼ c N/A x− y ∼ c

(Xbck) Xbcke(ψ) N/A
σA(e) ∧HA ∧ (

∧

q∈QA,q 6=σA(e) ¬q) ∧ τA(e)

∧∃πA(e) ∪ {σA(e), δA(e)}([[ψ]]A ∧ δA(e) ∧HA ∧
∧

x∈πA(e) x = 0)

(∨) φ ∨ ψ N/A [[φ]]A ∨ [[ψ]]A
(¬) ¬φ N/A ¬[[φ]]A
(∃) ∃x(φ) N/A ∃x([[φ]]A)
() φ ψ no lfpZ.

(

[[ψ]]A ∨
∨

e∈E Tbck([[φ]]A,Xbcke(Z))
)

(NZ) NZ(φ) yes gfpZ. (∃z (z = 0 ∧ ([[φ]]A (Z ∧ z ≥ k)))), with k ≥ 1.
(∃

⋃NZ) ∃φ
⋃

〈c,d〉ψ yes ∃m (m = 0 ∧ ([[φ]]A (m ∈ 〈c, d〉 ∧ [[ψ]]A ∧ NZ(true))))
(∃�NZ) ∃�〈c,d〉φ yes ∃m (m = 0 ∧ NZ(m ∈ 〈c, d〉 → [[φ]]A))

N/A: not applicable.

Table 2. Traditional formulation for the symbolic evaluation of TCTL formulas

for states that can directly go to states in〈〈ψ〉〉A through
transitione. Formally speaking,(q, ν) |= Xbcke(ψ) iff
there exists a(q′, ν′) |= ψ with (q, ν)

e
−→ (q′, ν′).

Also in table 2, formulation() calculates the backward
reachability to states in〈〈ψ〉〉A through a path along which
all states are in〈〈φ〉〉A. lfp is the least fixpoint operator. The
evaluation of the least fixpoint operator works by iteratively
adding states toZ until we find that there is no more ad-
dition possible.gfp is the greatest fixpoint operator. The
evaluation of the greatest fixpoint operator works by itera-
tively eliminating states fromZ until we find that there is
no more elimination possible.

Formulation(NZ), with k ≥ 1, characterizes those states
that starts a non-Zeno run along which all states satisfyφ.
Parameterk can be any chosen integer no less than one.
In [12], it was reported thatk = max(1, CφA) usually yields
reasonably good performance.

To check a TAA against a TCTL formulaφ, usually we
check ifIA ∧ [[¬φ]]A is satisfiable.A satisfiesφ if and only
if IA ∧ [[¬φ]]A is unsatisfiable.

According to [7,12], we have the following lemma.

Lemma 7 Given a TAA and a TCTL formulaφ, for any
state(q, ν) ∈ VA, (q, ν) |= [[φ]]A iff A, (q, ν) |= φ. �

It is known that formulation (∃�NZ) is needed for the
correct evaluation of timed inevitabilities so that the in-
evitabilities are not refuted by Zeno runs [12]. But for
many verification tasks, the formulation (NZ) nested inside
(∃�NZ) is expensive to carry out. It involves a double fix-
point calculation, i.e., a least fixpoint for formulation()
nested inside a greatest fixpoint. According to [12], the for-
mulations in table 3 can be used for the approximate evalu-
ation of formulations (∃

⋃NZ) and (∃�NZ) if computation
resources is limited. The approximation skips the evalua-

tion with formulation (NZ) and directly usesHA instead.
Given a TAA and a TCTL formulaφ, we use[[φ]]

app
A to de-

note the zone predicate obtained forφ from the algorithm in
tables 1 and 2 except that formulations(∃�) and(∃

⋃

) in ta-
ble 3 are respectively used in place of formulations(∃�NZ)

and(∃
⋃NZ

) in table 2. The following lemma shows that
this approximation is strictly safe for the evaluation of timed
inevitabilities.

Lemma 8 Given a TAA, a zone predicateη, and an inter-
val 〈c, d〉 ⊆ R≥0, 〈〈[[∀♦〈c,d〉η]]

app
A 〉〉A 〈〈∀♦〈c,d〉η〉〉A. �

Note that in example 2, the inner modal formula, i.e.,

∃�[5,10]¬alarm, (A)

cannot be correctly evaluated with formulation (∃�) in ta-
ble 3 which does not take non-Zenoness into consideration.
For example, the property can be violated with a Zeno run
that does not progress more than 5 time units afterfire is
true. Thus, to correctly check such properties, we cannot
use formulation (∃�) in table 3. Later in section 6, we shall
present a new approximate formulation that with enough
precision to correctly evaluate many timed inevitabilities.

4 Time-convexity

In this section, we first review the concept of time-
convexity [11]. Given a TAA and a spaceS of states with
S ⊆ VA, S is convexif for eachq ∈ QA, {(q, ν) | (q, ν) ∈
S} is convex. A state space that is not convex isconcave.
The reachable state space of a TA is usually concave. Most
state-spaces that we need to manipulate in TCTL model-
checking are likely concave. We say a TCTL formulaφ is
convex iff 〈〈φ〉〉A is convex. Ifφ is not convex, then it is
concave.

5

names formulas non-Zeno formulations
runs only?

(∃
⋃

) ∃φ
⋃

〈c,d〉ψ no ∃m (m = 0 ∧ ([[φ]]A (m ∈ 〈c, d〉 ∧ [[ψ]]A)))

(∃�) ∃�〈c,d〉φ no ∃m
(

m = 0 ∧ gfpZ
(
∨

e∈EA
Tbck (m ∈ 〈c, d〉 → [[φ]]A,Xbcke(Z))

))

Table 3. A formulation for the approximate evaluation of ∃�-formulas

Example 9 The initial conditionIA of the TA in example 4
is convex. On the other hand, the corresponding invariance
conditionHA is concave. Specifically, the following sub-
formulaḢ ≡ q1 ∧ (x ≤ 5 ∨ y > 7) is concave. For ex-
ample, we may have two states(q1, ν1) and (q1, ν2) with
ν1(x) = ν1(y) = 3 andν2(x) = ν2(y) = 9. It is clear
that (q1, ν1) and(q1, ν2) are both in〈〈Ḣ〉〉A. However, the
middle point, say(q1, ν3/2), between(q1, ν1) and(q1, ν2)

with ν3/2(x) = ν3/2(y) = 6 is not in〈〈Ḣ〉〉A.
Concavity may also happen with difference constraints

between two clocks. For example, the following zone pred-
icateḦ ≡ q1 ∧ (x− y < −3∨ x− y > 3) is also concave.
For example, we may have two states(q1, ν3) and(q1, ν4)
with ν3(x) = 9, ν3(y) = 3, ν4(x) = 3, andν4(y) = 9. It
is clear that(q1, ν3) and(q1, ν4) are both in〈〈Ḧ〉〉A. How-
ever the middle point, say(q1, ν7/2), between(q1, ν3) and
(q1, ν4) with ν7/2(x) = ν7/2(y) = 6 is not. �

It is known that formula (T’) for time progress evaluation
can be applied to convex path conditions.

Example 10 In example 4, formula (T’) is not applicable
toHA which is concave. For example,Tbck(HA, q1∧x =
8 ∧ y = 8) is q1 ∧ 7 < x ≤ 8 ∧ 7 < y ≤ 8 ∧ x = y.
However,Tbck′(HA, q1 ∧ x = 8∧ y = 8) is q1 ∧ 0 ≤ x ≤
8 ∧ 0 ≤ y ≤ 8 ∧ x = y which is incorrect. �

According to [11], the restriction of the applicability of
formula (T’) can be relaxed with the following concept.

Definition 11 Time-convexity A state spaceS is time-
convexiff for any (q, ν) ∈ S andt ∈ R≥0 with (q, ν + t) ∈
S, then for anyt′ ∈ [0, t], (q, ν + t′) ∈ S. If S is not time-
convex, it istime-concave. �

Example 12 In examples 4 and 9,IA is time-convex while
HA is time-concave. Moreover, zone predicateḦ ≡ q1 ∧
(x− y < −3∨x− y > 3) is concave and time-convex.�

We restate the following lemma from [11].

Lemma 13 Given a TA A and a time-convex path
zone predicateφ and a destination zone predicateψ,
〈〈Tbck(φ, ψ)〉〉A = 〈〈Tbck′(φ, ψ)〉〉A. �

Lemma 13 implies that we can also apply the more effi-
cient formula of (T’) to concave but time-convex path con-
ditions.

Example 14 In example 9,Tbck(Ḧ, q1 ∧ 10 ≤ x ≤ 20∧
10 ≤ y ≤ 20) andTbck′(Ḧ, q1 ∧ x = 8 ∧ y = 8) both
evaluate toq1 ∧ 0 ≤ x ≤ 20 ∧ 0 ≤ y ≤ 20 ∧ (x − y <

−3 ∨ x− y > 3). �

.
According to [11], given a zone predicateφ, we can use

the following predicate, denotedtime concave(φ), to
check ifφ is time-concave.

φ ∧ ∃t ∈ R≥0
(

φ+ t ∧ ∃t′ ∈ R≥0(t′ < t ∧ (¬φ) + t′)
)

Lemma 15 Given a zone predicateφ, time concave(φ)
is unsatisfiable if and only if〈〈φ〉〉A is time-convex. �

5 Time-convexity checking from the syntax
of TCTL formulas

Note that at the end of the last section, we present predi-
catetime concave() to check if a zone predicate is con-
cave. This checking incurs a complementation, three con-
junctions, and two existential quantifications and could still
be costly. In this section, we present techniques for avoid-
ing this checking. The first idea is to recognize the syntax
structures in TCTL that yield only time-convex zone pred-
icates. This syntax checking could be much less expensive
than invokingtime concave().

Given a TAA, two TCTL formulasφ andψ arelocation-
disjoint if there is aQ′ ⊆ QA such that〈〈φ〉〉A ⊆
〈〈

∨

q∈Q′ q〉〉A and〈〈ψ〉〉A ⊆ 〈〈
∨

q∈QA−Q′ q〉〉A.
The following lemmas characterize classes of TCTL that

only yield time-convex zone predicates.

Lemma 16 Assume we have a TAA, an interval〈c,∞) ⊆
R≥0, and two time-convex TCTL formulasφ and ψ such
thatφ andψ are location-disjoint.〈〈∃φ

⋃

〈c,∞)ψ〉〉A is time-
convex. �

Corollary 17 Assume we have a TAA, an interval
〈c,∞) ⊆ R≥0, and a TCTL formulaφ such that

• HA ∧ φ andHA ∧ ¬φ are location-disjoint; and
• φ and¬φ are both time-convex.

Then〈〈∃♦〈c,∞)φ〉〉A is time-convex.
Proof : We can prove that 〈〈∃(¬φ)

⋃

〈c,∞)φ〉〉A =

〈〈∃♦〈c,∞)φ〉〉A. Then the corollary follows lemma 16. �

6

Lemma 18 Given a TAA, a time-convex TCTL formula
φ, a TCTL formulaψ, and an interval〈c,∞) ⊆ (0,∞),
〈〈∃φ

⋃

〈c,∞)ψ〉〉A is time-convex. �

Lemma 19 Assume we have a TAA, an interval[0, d〉 ⊆
R≥0, and two time-convex TCTL formulasφ and ψ such
thatφ andψ are location-disjoint.〈〈∀φ

⋃

[0,d〉ψ〉〉A is time-
convex. �

The following corollary is important in that it cap-
tures the time-convexity of the important class of timed in-
evitabilities in TCTL formulas.

Corollary 20 Assume we have a TAA, an interval[0, d〉 ⊆
R≥0, and a TCTL formulaφ such that

• HA ∧ φ andHA ∧ ¬φ are location-disjoint; and
• φ and¬φ are both time-convex.

Then〈〈∀♦[0,d〉φ〉〉A is time-convex.
Proof : We can prove that 〈〈∀(¬φ)

⋃

[0,d〉φ〉〉A =

〈〈∀♦[0,d〉φ〉〉A. Then the corollary follows lemma 19. �

Example 21 For the TA in example 9, suppose we want to
specify that locationq2 will always happen in 10 time units.
The property can be written as∀♦[0,10]q2. According to
corollary 20, the space of the property is time-convex.�

Lemma 22 Given a TAA, a time-convex TCTL formula
φ, and an interval〈c,∞) ⊆ R≥0, 〈〈∀�〈c,∞)φ〉〉A is time-
convex. �

Lemma 23 Given a TAA, a time-convex TCTL formulaφ,
and an interval[0, d〉 ⊆ R≥0, 〈〈∃�[0,d〉φ〉〉A is time-convex.

�

Based on the lemmas in the above, we can define a new
class of TCTL formulas that yield only time-convex state
spaces. This class is calledTCTL with timed-convexity, de-
notedTCTLtc, and is defined inductively as follows.

Definition 24 TCTLtc Only TCTL formulas of the follow-
ing forms are members of TCTLtc.
• η, a zone predicate such thattime concave(η) is

unsatisfiable.
• φ1 ∧ φ2, with φ1 ∈ TCTLtc ∧ φ2 ∈ TCTLtc.
• ∃φ

⋃

〈c,∞)ψ with the following two properties.
− φ andψ are inTCTLtc.
− φ andψ are location-disjoint.

• ∃φ
⋃

〈c,∞)ψ with φ ∈ TCTLtc and〈c,∞) ⊆ (0,∞).
• ∀φ

⋃

[0,d〉ψ with the following properties.
− φ ∈ TCTLtc andψ ∈ TCTLtc.
− φ andψ are location-disjoint.

• ∀�〈c,∞)φ with 〈c,∞) ⊆ R≥0 andφ ∈ TCTLtc.
• ∃�[0,d〉φ with [0, d〉 ⊆ R≥0 andφ ∈ TCTLtc. �

Note thatTCTLtc itself may not support the full specifica-
tion of some properties. But it helps identifying subfor-
mulas in a full specification that yield only time-convex

path conditions for efficient time progress evaluation. For
example, in benchmark (H) in table 7 in page 10, the
whole property is not inTCTLtc. But the inner path
condition∀transm1

⋃

[0,52)retry1 is in TCTLtc accord-
ing to lemma 19. This implies that in the evaluation
of the outer∀

⋃

-formula, we do not have to evaluate
time concave([[∀transm1

⋃

[0,52)retry1]]A) in order
to use the more efficient formulation (T’) in place of (T).

Then we can use the following procedure for the adaptive
evaluation of time progress.

Initially Φ = ∅. /* for known convexities */
Initially Ψ = ∅. /* for known concavities */
Adaptive Tbck(ηφ, φ, ηψ) {

If HA is time-concave, returnTbck(ηφ, ηψ).
Else ifφ is a TCTLtc formula, returnTbck′(ηφ, ηψ).
Else ifφ ∈ Φ, returnTbck′(ηφ, ηψ).
Else ifφ ∈ Ψ, returnTbck(ηφ, ηψ).
Else iftime concave(ηφ) is unsatisfiable,{

Φ = Φ ∪ {φ}; returnTbck′(ηφ, ηψ).
}
Else{

Ψ = Ψ ∪ {φ}; returnTbck(ηφ, ηψ).
} }

Note that the procedure is designed to return a zone pred-
icate characterizing the same state space asTbck(ηφ, ηψ).
There is one extra argument,φ, which is the subformula
whose evaluation yieldsηφ. This extra argument is used in
the first “Else if” statement to help us checking if the path
condition is generated from aTCTLtc formula and can be
evaluated withTbck′().

Also, we use two set variablesΦ andΨ to record the re-
sults of previous invocations oftime concave(). If it has
already been recorded, then we also avoid the repeated in-
vocations oftime concave() on the same argument path
condition. Repeated time progress evaluations along the
same path condition can actually happen a lot in the least
fixpoint and greatest fixpoint evaluation.

The following lemma shows that the procedure is cor-
rect.

Lemma 25 Given a TAA and two zone predicatesηφ, ηψ
and a TCTL formulaφ such that 〈〈φ〉〉A = 〈〈ηφ〉〉A,
〈〈Tbck(ηφ, ηψ)〉〉A = 〈〈Adaptive Tbck(ηφ, φ, ηψ)〉〉A.

�

Without loss of generality, from now on, we assume
that in the model-checking, we useAdaptive Tbck() in
place ofTbck(). To check a TCTL formulaφ against a TA,
the only extra cost of usingAdaptive Tbck() is to feed a
subformulaφ′ in φ toAdaptive Tbck() as the second ar-
gument when we want to invokeAdaptive Tbck() with
the first argument being an (approximate) evaluation ofφ′.

7

∃m (m = 0 ∧ gfpZ. (∃z (z = 0 ∧ ((m < 5 ∨m > 10 ∨ ¬alarm) (Z ∧ z ≥ k)))))
≡∃m

(

m = 0 ∧ gfpZ∃z
(

z = 0 ∧ lfpZ ′.
(

Z ∧ z > k ∨
∨

e∈E Tbck(m < 5 ∨m > 10 ∨ ¬alarm,Xbcke(Z ′))
)))

Table 4. Traditional formulation for the evaluation of ∃�[5,10]¬alarm.

6 New formulation of timed inevitabilities

With formulation (∃�NZ), formula (A) in example 2 is
evaluated with the formula in table 4. As can be seen in
table 4, the path condition in time progress evaluation is
m < 5 ∨m > 10 ∨ ¬alarm which is time-concave.4 This
means that we cannot useTbck′() in place ofTbck() with
formulation (∃�NZ).

However, we can see that for a non-Zeno runρ to sat-
isfy �〈c,d〉φ, it meansρ can be decomposed into three run
segmentsρ1, ρ2, ρ3 such that
• states inρ1 happen at time in[0, d〉− 〈c, d〉 and satisfy
HA,

• states inρ2 happen at time in〈c, d〉 and satisfyφ∧HA,
and

• ρ3 is a non-Zeno run with all states happening at time
in 〈c,∞) − 〈c, d〉 and satisfyHA.

This observation leads to the new formulation for a formula
like ∃�〈c,d〉φ in table 5. The advantage of the new formula-
tion is that it may happen that for each segment ofρ1, ρ2, ρ3,
its individual path condition could be time-convex and the
corresponding time progress evaluation can be done with
the more efficient formulation (T’) in place of (T). Specifi-
cally, for example, for∃�[c,d]φ, we have the following map-
ping between the syntax structure of its new formulation in
table 5 and the three run segments.
• The path condition of the outer∃

⋃

-formula character-
izes the time progress alongρ1. It can be evaluated
with formulation (T’) if HA ∧m < c is time-convex.

• The destination condition of the outer∃
⋃

-formula and
the path condition of the inner∃

⋃

-formula together
characterize the time progress alongρ2. It can be eval-
uated with formulation (T’) ifφ∧HA∧m ≥ c∧m ≤ d

is time-convex.
• The destination condition of the inner∃

⋃

-formula and
NZ(true) together characterize the time progress along
ρ3. It can be evaluated with formulation (T’) ifHA is
time-convex.

Given a TAA and a TCTL formulaφ, we use[[φ]]newA to
denote the zone predicate obtained forφ from the algorithm
in tables 1 and 2 except that formulation (∃�̂NZ) in table 5
is used in place of formulation(∃�NZ) in table 2. The

4The path condition is time-concave since for example, givena state
(alarm, ν) with ν(m) = 0, it is true that both(alarm, ν) and
(alarm, ν+12) satisfym < 5∨m > 10∨¬alarm. But(alarm, ν+7)
does not.

following lemma establishes the correctness of the new for-
mulation in table 5.

Lemma 26 Given a TAA and a TCTL formulaφ, 〈〈φ〉〉A =
〈〈[[φ]]

new
A 〉〉A. �

In section 7, we will see that for some benchmarks,
formulation (∃�̂NZ) indeed leads to much better verifica-
tion performance. However, there is an additional advan-
tage of formulation (∃�̂NZ) in table 5 in that it links to a
safe approximation of timed inevitabilities with better pre-
cision. Intuitively, we may replace NZ(φ) in table 5 directly
with φ as an approximation for the efficient evaluation of
[[NZ(φ)]]A. Specifically, we propose the approximate for-
mulation (∃�̂) in table 6. Similarly, we use[[φ]]

new−app
A to

denote the zone predicate obtained forφ from the algorithm
in tables 1 and 2 except that formulation (∃�NZ) in table 2
for ∃�-formulas are changed to (∃�̂) in table 6. We then
have the following lemma for the desired property of our
new formulation for approximate model-checking.

Lemma 27 Given a TA A, a zone predicateη, and
an interval 〈c, d〉 ⊆ R≥0. 〈〈[[∀♦〈c,d〉η2]]

app
A 〉〉A

〈〈[[∀♦〈c,d〉η]]
new−app
A 〉〉A 〈〈∀♦〈c,d〉η〉〉A. �

This lemma shows that the new approximate formula-
tion in table 6 is not only safe but also is strictly more pre-
cise than the one in table 3 for evaluating timed inevitabili-
ties. Our experiment report in the next section corroborates
this lemma in that against all our timed inevitability bench-
marks, the approximate formulation in table 6 yields correct
evaluation while the one in table 3 does not.

7 Implementation and experiments

We have implemented procedureAdaptive Tbck() in
section 5 and the two formulations (∃�̂NZ) and (∃�̂) in sec-
tions 6 inRED 7.0, a model-checker for TAs and a paramet-
ric safety analyzer for LHAs (linear hybrid automata) [2]
based on the CRD (Clock-Restriction Diagram) and HRD
(Hybrid-Restriction Diagram) technology [8, 10]. We used
the following two parameterized benchmarks from the liter-
ature in our experiment.

1. Fischer’s timed mutual exclusion algorithm[8]: The
algorithm relies on a global lock and a local clock per
process to control access to the critical section. Three
timing constants used are 5, 10, and 19. The formulas
that we check are formulas (C), (D), and (E) in table 7.
Formula (C) says that if process 1 is in the ready mode,

8

name formulas new formulations

∃�[c,d]φ ∃m(m = 0 ∧ (m < c ((φ ∧m ≥ c ∧m ≤ d) (m > d ∧ NZ(true)))))
∃�(c,d]φ ∃m(m = 0 ∧ (m ≤ c ((φ ∧m > c ∧m ≤ d) (m > d ∧ NZ(true)))))
∃�[c,d)φ ∃m(m = 0 ∧ (m < c ((φ ∧m ≥ c ∧m < d) (m ≥ d ∧ NZ(true)))))

(∃�̂NZ) ∃�(c,d)φ ∃m(m = 0 ∧ (m ≤ c ((φ ∧m > c ∧m < d) (m ≥ d ∧ NZ(true)))))
∃�[0,d]φ ∃m(m = 0 ∧ ((φ ∧m ≤ d) (m > d ∧ NZ(true))))
∃�[0,d)φ ∃m(m = 0 ∧ ((φ ∧m < d) (m ≥ d ∧ NZ(true))))
∃�[c,∞)φ ∃m(m = 0 ∧ (m < c (m ≥ c ∧ NZ(φ))))
∃�(c,∞)φ ∃m(m = 0 ∧ (m ≤ c (m > c ∧ NZ(φ))))

Table 5. A new formulation for ∃�-formulas.

name formulas new formulations

∃�[c,d]φ ∃m(m = 0 ∧ (m < c ((φ ∧m ≥ c ∧m ≤ d) m > d)))
∃�(c,d]φ ∃m(m = 0 ∧ (m ≤ c ((φ ∧m > c ∧m ≤ d) m > d)))
∃�[c,d)φ ∃m(m = 0 ∧ (m < c ((φ ∧m ≥ c ∧m < d) m ≥ d)))

(∃�̂) ∃�(c,d)φ ∃m(m = 0 ∧ (m ≤ c ((φ ∧m > c ∧m < d) m ≥ d)))
∃�[0,d]φ ∃m(m = 0 ∧ ((φ ∧m ≤ d) m > d))
∃�[0,d)φ ∃m(m = 0 ∧ ((φ ∧m < d) m ≥ d))
∃�[c,∞)φ ∃m(m = 0 ∧ (m < c (m ≥ c ∧ φ)))
∃�(c,∞)φ ∃m(m = 0 ∧ (m ≤ c (m > c ∧ φ)))

Table 6. A new formulation for the approximate evaluation of ∃�-formulas.

then it will be in either the critical mode or the waiting
mode in 19 time units and it cannot stay in the ready
mode in the next 5 to 10 time units. This formula con-
sists of the conjunction of two timed inevitabilities.
Formula (D) says that after process 1 enters the ready
mode, in 24 to 34 time units, it will be in either the idle
mode or the critical mode. This timed inevitabilities
of this formula is fulfilled by first crossing the ready
mode and then the waiting mode.
Formula (E) says that after process 1 enters the ready
mode, it enters the waiting mode in 5 to 10 time units
and then enters either the critical section or the idle
mode in 19 to 24 time units. The formula consists of a
timed inevitability nesting another.

2. CSMA/CD[13]: This is the Ethernet bus arbitration
protocol with collision-and-retry. The timing constants
used are 26, 52, and 808. The properties that we want
to check are formulas (F), (G), and (H) in table 7.
Formula (F) says that if sender 1 is in the transmis-
sion mode for 52 time units, then in all computations,
sender 2 cannot be in the transmission mode for at least
756 time units. This formula is a safety property, not a
timed inevitability.
Formula (G) says that if senders 1 and 2 are in the
transmission mode at the same time, then sender 2 will
enter the retry mode in 26 time units. This is a simple
timed inevitability.

Formula (H) uses an outer∀
⋃

-formula that nests a
timed inevitability (expressed as another∀

⋃

-formula)
in its path condition. The outer∀

⋃

-formula is also a
timed inevitability that says if the bus is in the colli-
sion mode and sender 1 is in the transmission mode,
then the bus will enter the idle mode in 52 time uints.
Also before the outer inevitability is fulfilled, sender 1
will inevitably go to the retry mode in 52 time units.

We have collected performance data for our implementa-
tion configurations for formulations(∃�), (∃�̂), (∃�NZ),
and(∃�̂NZ) for the evaluation of timed inevitabilities. The
performance data is reported in table 8. The CPU time
used, the total memory consumption for the data-structures
in state-space representations, and the answers of model-
checking are reported. Following the suggestion in [12],
we usek = C

φ
A for all the confugurations. Also we use

the early decision techniques for the greatest fixpoint eval-
uation [12]. In general, our new formulations(∃�̂) and
(∃�̂NZ) for timed ineviatbilities yield better performance
than the traditional formulation(∃�) and(∃�NZ) do.

As for the approximation techniques, for the five bench-
marks for timed inevitabilities, formulation(∃�) also
sometimes yield performance comparable with formulation
(∃�̂). However, the traditional formulation(∃�) does not
have the precision to correctly evaluate the timed inevitabil-
ities. In contrast, our new approximate formulation(∃�̂)
is precise and efficient enough to correctly check the five

9

(C) ∀�((ready1 → ((∀♦[0,19](critical1 ∨ waiting1)) ∧ ¬(∃�[5,10]ready1)))

(D) ∀�
(

(ready1 ∧ x1 = 0) → ∀♦[24,34](critical1 ∨ idle1)
)

(E) ∀�
(

(ready1 ∧ x1 = 0) → ∀♦[5,10](waiting1 ∧ ∀♦(19,24](idle1 ∨ critical1))
)

(F) ∀�((transm1 ∧ x1 = 52) → ∀�[0,756)¬transm2)

(G) ∀�
(

(transm1 ∧ transm2) −→ ∀♦[0,26)retry2

)

(H) ∀�
(

(bus collision ∧ transm1) → ∀
(

∀transm1

⋃

[0,52)retry1

)

⋃

[0,52)bus idle
)

Table 7. Six formulas used in the experiment

Table 8. Performance data of scalability w.r.t. various strategies
non-Zeno Previous formulation New formulation

benchmarks formulas runs only ? m time memory satisfied ? time memory satisfied ?

4 7.29s 140M no 0.112s 886k
no 5 N/A 6.76s 134M yes

(C) 6 107s 701M
4 22.7s 254M yes 0.088s 896k

yes 5 N/A 3.16s 79M yes
6 58.5s 482M

Fischer’s 4 1.22s 44M 0.524s 29M
mutual no 5 29.4s 296M no 6.93s 139M yes
exclusion (D) 6 N/A 104s 689M
algorithm 4 5.22s 117M 0.092s 886k
with m yes 5 140s 919M yes 2.41s 77M yes
processes 6 N/A 45.2s 387M

4 0.076s 407k 0.096s 407k
no 5 6.98s 97M no 3.30s 93M yes

(E) 6 N/A 38.8s 356M
4 3.78s 102M 0.028s 407k

yes 5 85.0s 664M yes 0.092s 1.1M yes
6 N/A 2.38s 76M

3 0.108s 325k 0.112s 325k
no 4 6.17s 87M yes 2.65s 71M yes

(F) 5 69.8s 448M 50.0s 359M
3 0.152s 325k 0.092s 325k

yes 4 6.17s 87M yes 2.57s 71M yes
CSMA/CD 5 69.8s 448M 49.7s 359M
with 1 bus 3 0.112s 325k 0.064s 325k
andm (G) no 4 5.05s 76M no 0.108s 746k yes
senders 5 50.5s 367M 2.08s 65M

yes 3 81.3s 479M yes 56.0s 414M yes
3 0.128s 325k 0.072s 325k

(H) no 4 2.32s 77M no 0.168s 746k yes
5 48.0s 391M 2.20s 65M

yes 3 250s 1031M yes 53.8s 413M yes
data collected on a Pentium 4 1.7GHz with 2G memory running LINUX;

N/A: not available; s: seconds;
k: kilobytes of memory in diagram data-structure; M: megabytes of memory in diagram data-structure

timed inevitabilities. This may imply that when computing
budget is a concern, formulation(∃�̂) seems a good choice
for economic and effective verification configuration.

Also, we have not tuned the garbage collection capabil-
ities of RED in the experiment. In our present implemen-

tation, the garbage collection in RED is invoked regularly
with procedure calls. As a result, garbage collection may
consume excessive computation time. In the future, we may
gain more performance with a better implementation of the
garbage collector.

10

8 Concluding remarks

In this work, we discuss how to improve the perfor-
mance of TCTL model-checking algorithm with several
techniques. In our experiment, our techniques sometimes
have enhanced the performance of TCTL model-checking
dramatically against several benchmarks. We feel hopeful
that such techniques could be used as a foundation in our fu-
ture endeavor to make TCTL model-checking an industrial
strength.

References

[1] R. Alur, C. Courcoubetis, D.L. Dill. Model Checking
for Real-Time Systems, IEEE LICS, 1990.

[2] R. Alur, C.Courcoubetis, T.A. Henzinger, P.-H. Ho.
Hybrid Automata: an Algorithmic Approach to the
Specification and Verification of Hybrid Systems.
Workshop on Theory of Hybrid Systems, LNCS 736,
Springer-Verlag, 1993.

[3] R. Alur, D.L. Dill. A Theory of Timed Automata. The-
oretical Computer Science, 126:183-235, 1994.

[4] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson,
Wang Yi. UPPAAL - a Tool Suite for Automatic Ver-
ification of Real-Time Systems. Hybrid Control Sys-
tem Symposium, 1996, LNCS, Springer-Verlag.

[5] D.L. Dill. Timing Assumptions and Verification of
Finite-state Concurrent Systems. CAV’89, LNCS 407,
Springer-Verlag.

[6] J.B. Fourier. (reported in:) Analyse des travaux de
l’Académie Royale des Sciences pendant l’année
1824, Partie Mathématique, 1827.

[7] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine.
Symbolic Model Checking for Real-Time Systems,
IEEE LICS 1992.

[8] F. Wang. Efficient Verification of Timed Automata
with BDD-like Data-Structures, STTT (Software
Tools for Technology Transfer), Vol. 6, Nr. 1, June
2004, Springer-Verlag; special issue for the 4th VM-
CAI, Jan. 2003, LNCS 2575, Springer-Verlag.

[9] F. Wang. Model-Checking Distributed Real-Time Sys-
tems with States, Events, and Multiple Fairness As-
sumptions. AMAST’2004, LNCS 3116, Springer-
Verlag.

[10] F. Wang. Symbolic Parametric Safety Analysis of Lin-
ear Hybrid Systems with BDD-like Data-Structures.
IEEE Transactions on Software Engineering, Volume

31, Issue 1 (January 2005), pp. 38-51, IEEE Com-
puter Society. A preliminary version is in proceedings
of 16th CAV, 2004, LNCS 3114, Springer-Verlag.

[11] F. Wang. Time-Progress Evaluation for Dense-Time
Automata with Concave Path Conditions. ATVA 2008,
LNCS, Springer-Verlag.

[12] F. Wang, G.-D. Huang, F. Yu. TCTL Inevitability
Analysis of Dense-Time Systems: From Theory to
Engineering. IEEE Transactions on Software Engi-
neering, Vol. 32, Nr. 7, July 2006, IEEE Computer
Society.

[13] S. Yovine. Kronos: A Verification Tool for Real-Time
Systems. International Journal of Software Tools for
Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

11

APPENDICES
A Proof for lemma 8

Lemma 8 Given a TAA, a zone predicateη, and an interval
〈c, d〉 ⊆ R≥0. 〈〈[[∀♦〈c,d〉η]]

app
A 〉〉A 〈〈∀♦〈c,d〉η〉〉A.

Proof : Note that for the timed ineviability of∀♦〈c,d〉η2, the
set runs considered in formulation(∃�) is a superset of
those considered in formulation(∃�NZ). Thus it is clear
that the lemma is true with the semantics of∀♦-formulas.

�

B Proof for lemma 16

Lemma 16 Assume we have a TAA, an interval〈c,∞) ⊆
R≥0, and two time-convex TCTL formulasφ andψ such
thatφ andψ are location-disjoint.〈〈∃φ

⋃

〈c,∞)ψ〉〉A is time-
convex.
Proof : We assume there is aQ′ ⊆ QA such that〈〈φ〉〉A ⊆
〈〈

∨

q∈Q′ q〉〉A and〈〈ψ〉〉A ⊆ 〈〈
∨

q∈QA−Q′ q〉〉A. We assume
that there is a state(q, ν) and at ∈ R≥0 such that(q, ν) and
(q, ν + t) are both in〈〈∃φ

⋃

〈c,∞)ψ〉〉A. There are two cases
to analyze.
• q ∈ Q′: This implies that both(q, ν) and(q, ν + t) are

in 〈〈φ〉〉A. Since〈〈φ〉〉A is time-convex, we know that
for everyt′ ∈ [0, t], (q, ν + t′) ∈ 〈φ〉〉A also. Then the
concatenation of the time progression from(q, ν + t′)
to (q, ν+ t) and a non-Zeno run from(q, ν+ t) for the
proof of (q, ν + t) ∈ 〈〈∃φ

⋃

〈c,∞)ψ〉〉A can be used to
support that(q, ν + t′) ∈ 〈〈∃φ

⋃

〈c,∞)ψ〉〉A.
• q ∈ QA −Q′: This is possible only when〈c,∞) is

[0,∞) since (q, ν) does not satisfy the path condi-
tion of ∃φ

⋃

〈c,∞)ψ in A. In this case, we know that
(q, ν) and(q, ν + t) are both in〈〈ψ〉〉A. Since〈〈ψ〉〉A
is time-convex, we know that for everyt′ ∈ [0, t],
(q, ν + t′) ∈ 〈〈ψ〉〉A also. This implies thatA, (q, ν +
t′) ∈ 〈〈∃φ

⋃

[0,∞)ψ〉〉A.
Thus the lemma is proven. �

C Proof for lemma 18

Lemma 18 Given a TAA, a time-convex TCTL formula
φ, a TCTL formulaψ, and an interval〈c,∞) ⊆ (0,∞),
〈〈∃φ

⋃

〈c,∞)ψ〉〉A is time-convex.

Proof : We assume that there is a state(q, ν) and at ∈ R≥0

such that(q, ν) and(q, ν + t) are both in〈〈∀φ
⋃

〈c,∞)ψ〉〉A.
Since〈c,∞) 6= [0,∞), we know that0 6∈ 〈c,∞) which
implies that(q, ν) and(q, ν + t) are both in〈〈φ〉〉A. Since
〈〈φ〉〉A is time-convex, we know that for everyt′ ∈ [0, t],
(q, ν + t′) ∈ 〈〈φ〉〉A also. Suppose there is a non-Zeno run
ρ that satisfyφ

⋃

〈c,∞)ψ in A with a state fulfillingψ at a

statet̂ time units from(q, ν + t′) with t̂ ∈ 〈c,∞). Then
the concatenation of the time progression from(q, ν + t′)
to (q, ν + t) andρ can be used to support that(q, ν + t′) ∈
〈〈∃φ

⋃

〈c,∞)ψ〉〉A sincet− t′ + t̂ ≥ t̂ andt− t′ + t̂ ∈ 〈c,∞)
also. �

D Proof for lemma 19

Lemma 19 Assume we have a TAA, an interval[0, d〉 ⊆
R≥0, and two time-convex TCTL formulasφ andψ such
thatφ andψ are location-disjoint.〈〈∀φ

⋃

[0,d〉ψ〉〉A is time-
convex.
Proof : We assume there is aQ′ ⊆ QA such that〈〈φ〉〉A ⊆
〈〈

∨

q∈Q′ q〉〉A and〈〈ψ〉〉A ⊆ 〈〈
∨

q∈QA−Q′ q〉〉A. We assume
that there is a state(q, ν) and at ∈ R≥0 such that(q, ν) and
(q, ν + t) are both in〈〈∀φ

⋃

[0,d〉ψ〉〉A. There are two cases
to analyze.
• q ∈ Q′: This implies that both(q, ν) and(q, ν + t) are

in 〈〈φ〉〉A. Moreover, both(q, ν) and(q, ν+t) are not in
〈〈ψ〉〉A. This further implies thatt ∈ [0, d〉. Otherwise,
the time progression from(q, ν) to (q, ν + t) refutes
(q, ν) ∈ 〈〈∀φ

⋃

[0,d〉ψ〉〉A. Since〈〈φ〉〉A is time-convex,
we know that for everyt′ ∈ [0, t], (q, ν + t′) ∈ 〈φ〉〉A
and(q, ν + t′) 6∈ 〈ψ〉〉A also. With some arithmetic on
the time length to the fulfillment ofψ, we know that
for everyt′ ∈ [0, t], (q, ν + t′) ∈ 〈〈∀φ

⋃

[0,bd−t′c〉ψ〉〉A.
Since[0, bd− t′c〉 ⊆ [0, d〉, we know that(q, ν+ t′) ∈
〈〈∀φ

⋃

[0,d〉ψ〉〉A according to the semantics of TCTL.
• q ∈ QA −Q′: In this case, we know that(q, ν) and

(q, ν + t) are both in〈〈ψ〉〉A. Since〈〈ψ〉〉A is time-
convex, we know that for everyt′ ∈ [0, t], (q, ν +
t′) ∈ 〈〈ψ〉〉A also. This implies thatA, (q, ν + t′) ∈
〈〈∀φ

⋃

[0,d〉ψ〉〉A.
Thus the lemma is proven. �

E Proof for lemma 22

Lemma 22 Given a TAA, a time-convex TCTL formulaφ,
and an interval〈c,∞) ⊆ N, 〈〈∀�〈c,∞)φ〉〉A is time-convex.
Proof : We assume that there is a state(q, ν) and at ∈ R≥0

such that(q, ν) and (q, ν + t) are both in〈〈∀�〈c,∞)φ〉〉A.
Since every run from(q, ν + t′) is a tail run from(q, ν).
There are two cases to analyze.
• t′ 6∈ 〈c,∞): This implies that (q, ν + t′) ∈
〈〈∀�〈dc−t′e,∞)φ〉〉A. It is easy to see that〈c,∞) ⊆
〈dc − t′e,∞). Thus we know (q, ν + t′) ∈
〈〈∀�〈c,∞)φ〉〉A according to the semantics of TCTL.

• t′ ∈ 〈c,∞): This implies(q, ν + t′) ∈ 〈〈∀�[0,∞)φ〉〉A.
This further implies that(q, ν + t′) ∈ 〈〈∀�〈c,∞)φ〉〉A
according to the semantics of TCTL.

Thus the lemma is proven. �

i

F Proof for lemma 23

Lemma 23 Given a TAA, a time-convex TCTL formulaφ,
and an interval[0, d〉 ⊆ R≥0, 〈〈∃�[0,d〉φ〉〉A is time-convex.
Proof : We assume that there is a state(q, ν) and at ∈ R≥0

such that(q, ν) and(q, ν + t) both satisfies〈〈∃�[0,d〉φ〉〉A.
This implies thatA, (q, ν) |= φ andA, (q, ν + t) |= φ.
Sinceφ is time-convex, we know that for everyt′ ∈ [0, t],
(q, ν+ t′) ∈ 〈〈φ〉. Moreover, there is a non-Zeno runρ from
(q, ν + t) that satisfies�[0,d〉φ. This implies that alongρ,
�[0,d−(t−t′)〉φ is also true. Thus the concatenation of the
time progression from(q, ν + t′) to (q, ν + t) andρ is a
proof that(q, ν + t′) ∈ 〈〈∃�[0, d)φ〉〉A. �

G Proof for lemma 25

Lemma 25 Given a TAA and two zone predicatesηφ, ηψ
and a TCTL formulaφ such that 〈〈φ〉〉A = 〈〈ηφ〉〉A,
〈〈Tbck(ηφ, ηψ)〉〉A = 〈〈Adaptive Tbck(ηφ, φ, ηψ)〉〉A.
Proof : The lemma is true based on lemmas 16 to 23, the
fact that the intersection of two time-convex state space
is still time-convex, the correct construction of predicate
time concave(φ), and lemma 13. �

H Proof for lemma 26

Lemma 26 Given a TAA and a TCTL formulaφ, 〈〈φ〉〉A =
〈〈[[φ]]newA 〉〉A.
Proof : The evaluation of[[φ]]

new
A differs from that of[[φ]]A

only in the formulations used for∃�-formulas. Given such
a formula, say∃�〈c,d〉φ, according to the semantics of
TCTL, the formula is satisfied, if there is a run as the con-
catenation of a head run segmentρ1, a middle run segment
ρ2, and a non-Zeno tail run segmentρ3 as described in sec-
tion 6. Then by a straightforward structural inductive anal-
ysis, we find the followings are true.
• The inner-most modal formula∃�♦[k,∞)φ is satisfied

if and only if there is such a non-Zeno tail run segment
ρ3.

• The inner∃
⋃

-formula is satisfied if and only if there is
such a middle run segmentρ2 followed by a non-Zeno
tail run segmentρ3.

• The outer existentially quantified∃
⋃

-formula is satis-
fied if and only if there is such a head run segmentρ1

followed by a middle run segmentρ2 and then by a
non-Zeno tail run segmentρ3.

With this structural inductive analysis, it is clear that the
lemma is true. �

I Proof for lemma 27

Lemma 27 Given a TA A, a zone predicateη, and
an interval 〈c, d〉 ⊆ R≥0. 〈〈[[∀♦〈c,d〉η]]

app
A 〉〉A

〈〈[[∀♦〈c,d〉η]]
new−app
A 〉〉A 〈〈∀♦〈c,d〉η〉〉A.

Proof : The proof is similar to the one for lemma 8. For the
first part of the lemma, note that for the timed ineviability
of ∀♦〈c,d〉η2, the set runs considered in formulation(∃�)

is a superset of those considered in formulation(∃�̂). The
extra runs considered in formulation(∃�) are those Zeno
runs with time converges to a value in[0, d〉. Thus it is clear
that this part is true with the semantics of∀♦-formulas.

For the second part of the lemma, note that for the timed
ineviability of ∀♦〈c,d〉η2, the set runs considered in formu-

lation (∃�̂) is a superset of those considered in formulation
(∃�NZ). The extra runs considered in formulation(∃�̂)
are those Zeno runs that starts with
• a head segment with states of time in[0, d〉 − 〈c, d〉

from the start of the run; and
• a middle segment with states of time in〈c, d〉 from the

start of the run; and
• a tail Zeno run segment.

Thus it is clear that this part is true with the semantics of
∀♦-formulas.

With the two parts proven, we know the lemma is proven.
�

ii

