
New Response Time Bounds for Fixed Priority Multiprocessor Scheduling

Nan Guan1, Martin Stigge1, Wang Yi1 and Ge Yu2

1 Uppsala University, Sweden
2 Northeastern University, China

Abstract

Recently, there have been several promising techniques devel-
oped for schedulability analysis and response time analysis for
multiprocessor systems based on over-approximation. This pa-
per contains two contributions. First, to improve the analysis
precision, we apply Baruah’s window analysis framework [6] to
response time analysis for sporadic tasks on multiprocessor sys-
tems where the deadlines of tasks are within their periods. The
crucial observation is that for global fixed priority scheduling, a
response time bound of each task can be efficiently estimated by
fixed-point computation without enumerating all the busy win-
dow sizes as in [6] for schedulability analysis. The technique is
proven to dominate theoretically state-of-the-art techniques for
response time analysis for multiprocessor systems. Our experi-
ments also show that the technique results in significant perfor-
mance improvement compared with several existing techniques
for multiprocessor schedulability analysis. As the second main
contribution of this paper, we extend the proposed technique to
task systems with arbitrary deadlines, allowing tasks to have
deadlines beyond the end of their periods. This is a non-trivial
extension even for single-processor systems. To our best knowl-
edge, this is the first work for multiprocessor systems in this set-
ting, which involves sophisticated techniques for the characteri-
zation and computation of response time bounds.

1 Introduction

There is an increasing interest in developing real-time applica-
tions on multiprocessor platforms due to the broad introduction
of multicore chip processors. It is also one of the most chal-
lenging problems today for the real-time research community to
develop efficient techniques for the analysis of such systems.

Recently, there have been several promising techniques devel-
oped for schedulability analysis e.g. [6] and response time anal-
ysis e.g. [8] for global multiprocessor scheduling. In this paper,
we take a second look at the problem of Response Time Analy-
sis (RTA) for multiprocessor systems with global fixed-priority
scheduling. We will present a new RTA technique to further im-
prove the analysis precision of the existing techniques and also
a non-trivial extension of the technique to task systems with ar-
bitrary deadlines for multiprocessor systems.

Roughly speaking, RTA is to estimate the response time bound
for each task in a set of tasks when they are scheduled using a

given scheduling policy. It is an important technique for the de-
sign and analysis of not only hard real-time systems as it may
be used for schedulability analysis but also soft real-time sys-
tems as the response time bounds provide an indication on how
a system performs. For single processor systems, RTA has been
intensively studied in the past two decades, and extended to vari-
ous task models [11, 17, 2, 15, 20], to deal with real-life systems.
Today we have obtained a rather good understanding of RTA for
single processor scheduling. In contrast, much less work on RTA
for multiprocessor scheduling has been done by now.

Our work is mainly built upon the work of [8] and [6]. We
apply the window analysis framework of [6] to response time
analysis inspired by the work of [8] for sporadic tasks on multi-
processor systems with both constrained and arbitrary-deadline
tasks. The crucial observation is that when the earliest time
instant, after which all processors are occupied with tasks of
higher priorities, occurs just before the release of a task, it re-
sults in an upper bound of the worst-case response time of the
task for global fixed priority scheduling. This allows us to effi-
ciently compute the bound by fixed-point computation without
enumerating all the busy window sizes as in [6] for schedulabil-
ity analysis. Comparing with previous work, we contribute in
the following two ways:

• We have significantly improved the analysis precision com-
pared to the state-of-the-art techniques. It is not only shown
theoretically but also demonstrated in experiments.

• To our best knowledge, this is the first work on RTA for
global multiprocessor scheduling with arbitrary-deadline
task systems.

The paper is structured as follows: Section 2 introduces the
task model and used notations. Section 3 reviews the previous
work on RTA and outlines our contributions. Section 4 presents
our proposed RTA technique for task systems with constrained
deadlines, and then Section 5 extends the RTA technique to the
arbitrary deadline case. Section 6 presents the performance eval-
uation, and conclusions are summarized in Section 7. To im-
prove the readability, detailed proofs are given in the appendix.

2 Problem Setting

We consider global fixed priority scheduling on a multiproces-
sor platform consisting of M processors.

A sporadic task set τ consists of N sporadic tasks running on
this platform. We use τi = 〈Ci, Di, Ti〉 to denote such a task
where Ci is the worst-case execution time (WCET), Di is the

relative deadline for each release, and Ti is the minimum inter-
arrival separation time also referred to as the period of the task.
We further assume that all tasks are ordered by priorities, i.e., τi
has higher priority than τj iff i < j. The utilization of a task τi
is Ui = Ci/Ti.

A constrained-deadline task τi satisfies the restriction Di ≤
Ti, whereas an arbitrary-deadline task τi does not constrain the
relation between Di and Ti. We will consider both types.

A sporadic task τi generates a potentially infinite sequence of
jobs with successive job-arrivals separated by at least Ti time
units. We use Jhi to denote the h-th job of τi. We omit the
superscript h and just use Ji to denote a job of τi if there is
no need to identify which job it is. Each job Jhi adheres to the
conditions Ci and Di of its task τi and has additional properties
concerning absolute time points related to its execution, which
we denote with lower case letters. The release time is denoted
by rhi , the deadline by dhi which is derived by dhi = rhi + Di,
and the finish time by fhi , which is the time instant at which Jhi
just finished its execution. We define the response time of Jhi as
the difference between its release and finish times:

Rhi = fhi − rhi
The worst-case response time (WCRT)Ri of task τi is the maxi-
mal response time value among all jobs of τi in all job sequences
possible in the system.

Since Di is allowed to be larger than Ti, it is possible that sev-
eral jobs of a task are active (i.e., released but not yet finished)
simultaneously. We restrict that a job Jhi can execute only if
its precedent job Jh−1

i has been already finished, to avoid un-
necessary working space conflict. This restriction is commonly
adopted in the implementation of real-time operating systems
for multicores/multiprocessors, for instance, RTEMS [19] and
LITMUSRT [13]. Thus, we define the ready time γhi of Jhi as
γhi = max(rhi , f

h−1
i), which is the earliest time instant for a re-

leased job Jhi to execute if no higher-priority task is interfering
with it. At all time points t ∈ [γhi , f

h
i) we call Jhi ready. Note

that there is at most one ready job of each task at each time point
(also for arbitrary deadlines).

We use the discrete time concept, i.e., any time value involved
in the scheduling is a non-negative integer. This is based on the
assumption that all events in the system happen only at clock
ticks. Thus, we use time point t to represent the entire time
interval [t, t+ 1).

Without any loss of generality, we assume that tasks are strictly
periodic (i.e., that rhi = rh−1

i + Ti), unless stated otherwise.
However, all the results are also applicable to sporadic task sets
in general.

For simplicity of expression, we further use the following
notations to express that a value A is “limited” if it is below
or above a certain threshold B or C, respectively: [[A]]B =
max(A,B), [[A]]C = min(A,C), and [[A]]CB = [[[[A]]B]]C . This
expression just keeps the value A if it is within the interval
[B,C], otherwise it is B if A < B or C if A > C.

3 Previous Work and Our Contributions

Before presenting our proposed techniques, we briefly review
the previous work on RTA, to provide a primary knowledge
background to readers that are not familiar with this field, as

well as outline the contributions of this paper against previous
work.

3.1 The Basic Single-processor Case

The RTA technique was for the first time proposed in [16],
where it is only applicable to constrained-deadline task sets (i.e.,
∀τi ∈ τ : Di ≤ Ti).

RTA of a task τk is based on the concept of level-k busy period.
Intuitively, the level-k busy period is the maximum continuous
time interval during which a processor executes tasks of priority
greater than or equal to the priority of the considered task τk,
until τk finishes its active job. For single-processor fixed prior-
ity scheduling, the situation exhibiting the worst-case response
time, is known to happen at a well-defined critical instant: All
higher priority tasks are released together with the analyzed task
τk, i.e., at the same time instant. Thus, the maximal interfer-
ence suffered by τk in a level-k busy period of length x can be
computed by

∑
i<k dx/Tie · Ci. Using this, τk’s WCRT can

be calculated by finding the minimal solution of the following
recursive equation:

x =
∑
i<k

⌈
x

Ti

⌉
· Ci + Ck

This solution can be found by interpreting the RHS as a mono-
tonic function in x, whose minimal fixed point can be computed
iteratively, starting at x = Ck.

3.2 The Basic Multiprocessor Case

RTA has been applied to multiprocessor scheduling with
constrained-deadline task systems. The difference to the single-
processor case is, that the critical instant in multiprocessor
scheduling is generally unknown. This prevents calculation of
the exact interference suffered by the analyzed task τk during a
level-k busy period. Instead, one has to derive an upper bound
of the interference.

The work done by a task τi in the worst case during a level-k
busy period can be divided into three parts:

body: the contribution of all jobs (called body jobs) with both
release time and deadline in the level-k busy period;

carry-in: the contribution of at most one job (called carry-in
job) with release time earlier than the level-k busy period
and deadline in the level-k busy period;

carry-out: the contribution of at most one job (called carry-
out job) with release time in the level-k busy period and
deadline after the level-k busy period.

A naive upper bound of the workload of each task τi during a
level-k busy period of length x is obtained by assuming that the
carry-in and carry-out of τi both contribute Ci each:

Wnaive
k (τi, x) =

⌈
x

Ti

⌉
Ci + Ci

Adding the workload of all higher-priority tasks, one can use the
term 1

M

∑
i<kW

naive
k (τi, x) as an upper bound of the interfer-

ence time suffered by τk during the level-k busy period of length

x, due to all higher-priority tasks workload. Therefore, an upper
bound of the response time of τk can be obtained by finding the
minimal solution of the following recursive equation [1, 12, 18]:

x =
1
M

∑
i<k

(⌈
x

Ti

⌉
Ci + Ci

)
+ Ck

Bertogna and Cirinei [8] have significantly improved the above
result. We refer to their RTA technique as [BC-RTA] for short
in this paper and give now a short overview of their key ideas.
Firstly, rather than assuming that the carry-in and carry-out of
a task are both Ci, they derived a more precise upper bound
Wk(τi, x) of the workload for each task τi which is more pre-
cise than Wnaive

k (τi, x), by carefully identifying the worst-case
workload of each individual task.

Secondly, they observed that if the workload of a task τi is “too
large”, not necessarily all its workload can cause interference to
the analyzed task τk, since the “extra” part of τi’s workload has
to be executed in parallel with τk. This is a fundamental dif-
ference between single-processor scheduling and multiproces-
sor scheduling (since in single-processor scheduling, no parallel
execution takes place). In particular, they define the interference
of τi to τk during a level-k busy period of length x as:

Ik(τi, x) = [[Wk(τi, x)]]x−Ck+1
0 (1)

Using this observation, the recursive equation becomes:

x =

⌊
1
M

∑
i<k

Ik(τi, x)

⌋
+ Ck (2)

Note that in Equation (1), the upper bound of τi’s interference is
(x−Ck + 1) rather than (x−Ck). With (x−Ck) as the upper
bound, the solution we get from Equation (2) would not be guar-
anteed to be the upper bound of τk’s response time. Intuitively,
the “+1” is necessary to increase the right hand side of (2) as
long as there is more interference that could potentially prevent
τk from running. For example, when the iterative search for the
least fixed point is started with x = Ck, the search would stop
immediately, since min(Wk(τi, x), x−Ck) would be 0 for all i.
A formal explanation of this issue can be found in [8].

3.3 With Arbitrary Deadlines on Single-processors

The RTA for single-processor scheduling has also been ex-
tended to arbitrary-deadline task sets (i.e., Di > Ti is allowed)
[17]. The level-k busy period concept is extended in the follow-
ing way. It starts at the release time of a job whose previous jobs
have been finished at its release time. Without loss of generality,
we call the job in question J1

k with release time r1k. Note that
γ1
k = r1k, so the job is immediately ready when it is released.

The level-k busy period lasts now until a job of τk (which we
denote with JHk) is finished before the next released time, as
shown in Figure 1. Note that, it can reach over several of τk’s
periods.

To calculate the response time of each job Jhk with h ∈
{1, . . . ,H}, the following recursive equation is solved starting
with h = 1. Every time a solution is obtained, h is increased by
one:

x =
∑
i<k

⌈
x

Ti

⌉
· Ci + h · Ck (3)

k
rk

1

Rk
1 Rk

2

rk
2 rk

2 fk
1

... ...
fk

1 fk
H rk

H+1

Tk

Rk
H

rk
H time

Figure 1. level-k busy period for single-processor
scheduling with arbitrary deadlines

Let χh denote the solution in step h. The response time of the
job Jhk is

Rhk = χh − (h− 1) · Ti,
since we need to subtract the periods in which the (h − 1) pre-
ceding jobs were released. This procedure of repeatedly solving
Equation (3) with increasing h continues until the first solution
satisfying the termination condition

Term(h, k) : χh ≤ h · Tk (4)

is found. So we have H = min{h ≥ 1 | Term(h, k)}.
The WCRT of τk is the maximal response time of all jobs of τk

in the level-k busy period. Thus, τk’s WCRT may be obtained
with:

Rk = max
h∈{1,...,H}

{Rhk}

The question arises whether an indexH satisfying the termina-
tion condition Term(H, k) from (4) exists, i.e, if the procedure
terminates. Fortunately, it is easy to prove that this is the case if∑

i≤k

Ui ≤ 1.

To our best knowledge, there is no known work on the RTA
for multiprocessor scheduling with arbitrary-deadline task sets.

3.4 Our Contributions

Although [BC-RTA], the state-of-the-art RTA technique for
multiprocessor scheduling as sketched above in Section 3.2,
has exhibited better performance than other schedualbility tests
[9, 3], it still has limitations in the following two aspects: (1)
The analysis is still too pessimistic. (2) It can not handle task
sets with arbitrary deadlines. The contributions of this paper
concern both aspects:

1. In Section 4.3, we employ the idea of busy period (prob-
lem window) extension from [6] to further reduce the over-
estimation of the interference without decreasing the anal-
ysis efficiency. The proposed RTA technique theoretically
dominates [BC-RTA] (any task set accepted by [BC-RTA]
can be accepted by ours), and exhibits a significant perfor-
mance improvement over [BC-RTA] (and all other state-of-
the-art schedulability analysis techniques for this problem).

2. We extend our proposed RTA techniques to arbitrary-
deadline task sets in Section 5.3. Note that this is a non-
trivial extension even in the light of the work for single-
processors reviewed in Section 3.3. The termination prob-
lem of the analysis proved to be a notable challenge, since
it is much more difficult than in the single-processor case.

0

k

kk

Figure 2. Extended level-k busy period for
constrained-deadline task sets

4 Constrained-deadline Task Sets

4.1 Busy Period Extension

In [BC-RTA], to derive a safe upper bound of the interference
suffered by the analyzed task τk, it is assumed that every higher
priority task τi has carry-in. This is an over-pessimistic assump-
tion, since in a real scheduling sequence, it may be the case
that some task τi’s carry-in job has finished before the begin-
ning of the busy period, therefore it actually does not contribute
any carry-in to the interference of τk. To address a similar prob-
lem in schedulability tests of global EDF scheduling, Baruah [6]
extends the busy period to an earlier time instant, which allows
to bound the number of tasks doing carry-in by M − 1 (with
M being the number of processors), which is in general much
smaller than the N (the number of tasks) in [BC-RTA].

In the following we will apply Baruah’s idea of busy period
extension to RTA. It should be noted, that a trivial combination
of the busy period extension and RTA will lead to very high
computational complexity, and could fail to yield analysis re-
sults for large-scale systems in reasonable time. However, as
will be shown later, we can combine them without decreasing
the analysis efficiency.

From now on, we let Jk be a job of τk that has the worse-case
response time. As in [6], we extend the beginning of the level-k
busy period from rk (the release time of Jk), to an earlier time
instant t0, which is defined as the earliest time instant before
rk, such that at any time instant t ∈ [t0, rk) all processors are
occupied by tasks with higher priority than τk. If there is no such
a time instant, we set t0 = rk. Using this, the level-k busy period
is defined as the time interval [t0, fk), and we define ϕ = rk−t0,
which is the time span by which the busy period extends to the
left, as shown in Figure 2.

This definition of t0 is chosen to impose a bound on the num-
ber of tasks contributing carry-in, since at time point t0−1, there
have to be strictly less than M higher priority tasks active. We
state that property as the following lemma:

Lemma 1. There are at most M − 1 tasks having carry-in, and
for each task τi, the carry-in is at most Ci − 1.

Proof. By discussion above, similar to [6].

Comparing with the original level-k busy period, with which
one has to assume that all higher-priority tasks have carry-in,
the over-estimation of the interference has been significantly re-
duced.

However, as introduced here, this busy period extension tech-
nique is not for free, since it is generally unknown when t0 actu-
ally is, i.e., ϕ is an unknown variable. To solve this, [6] derives

an upper bound (denoted by ΦB) of all ϕ’s values that need to
be checked. The schedulability test is then conducted by enu-
merating every value of ϕ in [0,ΦB]. Finally, Jk (and therefore
τk) is determined to be schedulable if the test can succeed with
every value in [0,ΦB].

The upper bound ΦB is pseudo-polynomial in the values of the
task parameters, and in practise usually very large – especially
for task sets with large parameter scales and/or with high utiliza-
tions. The RTA procedure itself (finding the fixed point) is also
generally of pseudo-polynomial complexity, and requires quite a
number of iterations in practise. Therefore, if one trivially con-
ducts the RTA on each value of ϕ in [0,ΦB], the complexity of
the analysis would be very high in practise, and thus not practi-
cally usable. However, as we will see, the RTA procedure in our
setting actually needs to be conducted only one single time with
ϕ = 0, to get the same safe WCRT upper bound as enumerating
all possible values of ϕ.

4.2 Workload and Interference

Before introducing the RTA procedure in detail, we will show
bounds for workload and interference of tasks τi in a busy period
of length x. These will later be used in the analysis.

Workload

The workload of a task in a certain busy period is the length
of the accumulated execution time of that task within the busy
period. We useWk(τi, x) to denote an upper bound of the work-
load of each task τi with higher priority than the analyzed task
τk in the level-k busy period of length x. From Lemma 1, we
already know that there is at most M − 1 tasks doing carry-in,
and all other tasks do not provide carry-in. So we define two
types of workload:

• WNC
k (τi, x) denotes the workload bound if τi does not have

a carry-in job;

• WCI
k (τi, x) is the workload bound if τi has a carry-in job.

To compute them, we have the following lemma.

Lemma 2. The workload bounds can be computed with

WNC
k (τi, x) =

⌊
x

Ti

⌋
· Ci + [[x mod Ti]]

Ci (5)

WCI
k (τi, x) =

⌊
[[x− Ci]]0

Ti

⌋
· Ci + Ci + α (6)

where α = [[[[x− Ci]]0 mod Ti − (Ti −Ri)]]Ci−1
0

.

Proof. Similar to reasoning in [6, 14], see Figure 3.

Due to space limitations, we chose not to present a detailed
proof and just show some intuition for the computation in Fig-
ure 3. We would like to point out two important issues:

First, α in the computation of WCI
k (τi, x) represents the carry-

in of τi, which is limited to Ci − 1 according to Lemma 1.
Further, the carry-in job is guaranteed to finish its computation
within its response time Ri. Since we do the RTA for each task
in their priority order, a bound of Ri is already known for each
higher-priority task τi when computing WCI

k (τi, x) for τk.
Second, and most important, we see from Equations (5)

and (6) that both WNC
k (τi, x) and WCI

k (τi, x) are independent

t0
ri

j

x

Ti

time

Ti

t0

Ji
j

ri
j+1
Ji

j+1

ri
j+2
Ji

j+2

(a) WNC
k (τi, x)

x

Ji
j+1

Ti

time
Ji

j+2 Ji
j+3

Ti

Ji
j

Ri

t0ri
j ri

j+1 ri
j+2 ri

j+3

Ti

t0+x
(t0+x-Ci)

(b) WCI
k (τi, x)

Figure 3. Computing WNC
k (τi, x) and WCI

k (τi, x)

of ϕ. This means that, given only the length x of the level-k
busy period, we always get the same result of WNC

k (τi, x) and
WCI
k (τi, x), no matter when t0 is (i.e., how large ϕ is). This

key observation enables us to greatly reduce the computational
efforts necessary do derive the safe WCRT bound.

Interference

As in [BC-RTA], we define the interference Ik(τi, x) of τi in the
level-k busy period of length x. The interference denotes the
part of the workload that can actually interfere with τk, i.e., can
prevent it from running. It can be less than the workload as we
already discussed in Section 3.2. By carefully setting bounds,
the analysis precision can be greatly improved.

Similar to the workload, we also use two types of Ik(τi, x):
We use INC

k (τi, x) to denote the bound on the interference of
τi to τk during a busy period of length x if τi does not have a
carry-in job, while we use ICI

k (τi, x) if τi has a carry-in job. Both
values can be calculated with:

INC
k (τi, x) =

[[
WNC
k (τi, x)

]]x−Ck+1

0
(7)

ICI
k (τi, x) =

[[
WCI
k (τi, x)

]]x−Ck+1

0
(8)

As discussed in Section 3.2, the upper bound of the interference
needs to be x− Ck + 1 rather than x− Ck.

We now define the total interference Ωk(x), as the maximal
value of the sum of all higher-priority tasks’ interference among
all possible cases with

Ωk(x) = max
(τNC,τCI)∈Z

 ∑
τi∈τNC

INC
k (τi, x) +

∑
τi∈τCI

ICI
k (τi, x)

 ,

(9)
where Z ⊆ τ × τ is the set of all partitions of the set τ<k =
{τ1, . . . , τk−1} into τNC and τCI, such that τNC ∪ τCI = τ<k,
τNC∩τCI = ∅ and |τCI| ≤M −1. By taking the maximum over
this set, Ωk(x) describes the maximal total interference when at
most M − 1 are having carry-in, and all the others do not have
carry-in. According to Lemma 1, M − 1 is the maximal number
of tasks with carry-in, so indeed, Ωk(x) expresses the maximal
interference of higher-priority tasks to a task τk during a level-k
busy period of length x.

Note that Ωk(x) can be computed in linear time, since it is
sufficient to find the M − 1 maximal values of the difference
ICI
k (τi, x)− INC

k (τi, x), as pointed out in [6].

We state an important lemma about Ωk(x).

Lemma 3. For all jobs Jk and all x < fk − t0, the following
holds: ⌊

Ωk(x)
M

⌋
> x− Ck (10)

Proof. The proof is given in Appendix A.1.

Intuitively, the lemma states that, if we let the level-k busy
period end before Jk’s finish time, the total interference of all
higher-priority tasks is large enough to prevent Jk from being
finished within the level-k busy period. This in turn indicates
that the level-k busy period actually has not reached its end,
and thereby should continue to increase. Thus, this property of
Ωk(x) enables the iterative RTA procedure as will be presented
in the next section.

4.3 The RTA procedure

After defining an upper bound Ωk(x) of the total interference
to a task τk in a level-k busy period of length x, we present now
how to use this for conducting the response time analysis for τk.
The level-k busy period begins at the time point t0, which is ϕ
time units before rk, the release of τk’s job (see Section 4.1). In
general, ϕ is an open variable. For a moment, we assume that the
length ϕ of the busy period extension is given, and consider the
particular t0 = rk − ϕ derived from that. The following lemma
expresses the response time analysis for such a particular t0.

Lemma 4. Given a ϕ ≥ 0, let χ be the minimal solution of the
recursive equation

x =
⌊

Ωk(x)
M

⌋
+ Ck. (11)

Then χ − ϕ is an upper bound of τk’s response time with this
particular t0 = rk − ϕ.

Proof. Suppose the real worst-case response time of τk with
t0 = rk − ϕ is R, and assume χ − ϕ < R for the sake of
contradiction. SinceR is the real WCRT, there is a job sequence
in which a job Jk exhibits this response time, i.e., fk − rk = R.
It follows:

χ < R+ ϕ = fk − rk + ϕ = fk − t0

Thus, Lemma 3 applies, and therefore (10) holds with x = χ.
This contradicts the assumption of χ being a solution of (11).

Note that for all k ≤ M , the minimal solution of (11) is triv-
ially Ck, since in that case, Ωk(x) < M for x ≤ Ck by defini-
tion. This matches the intuition that the M highest priority tasks
don’t suffer any interference, since M processors are available
to accommodate them independently.

We have now seen how an upper bound of the response time of
τk can be derived, if a particular ϕ is given. Since ϕ is an open
variable, we need to find an upper bound of all response times
for all ϕ to get a safe bound for the response time in general.
Naively, it would seem that we have to enumerate all possible
values of ϕ and solve (11), to obtain a safe upper bound of τk’s
WCRT.

However, as mentioned in Section 4.2, the computation of
WNC
k (τi, x) and WCI

k (τi, x) is independent of ϕ. Thus, it turns
out that Ωk(x) is also independent of ϕ. Therefore, no mat-
ter what value of ϕ we are dealing with, the solution of Equa-
tion (11) is always the same. And since χ−ϕ is the upper bound
of τk’s response time (with that particular ϕ), the maximal value
and therefore general response time bound is χ. Thus, we only
need to do the RTA according to Lemma 4 with t0 = rk (i.e.,
ϕ = 0). The derived solution is guaranteed to be the upper
bound of τk’s WCRT.

Note that this observation can be regarded as a kind of critical
instant for multiprocessor fixed-priority scheduling. In the con-
text of our analysis, ϕ = 0 is guaranteed to be worst among
all cases. Namely, we get the worst case when the earliest
time instant after which all processors are occupied by higher-
priority tasks occurs just before the release of τk. Still, since
this does not provide precise information about the worst-case
release times of the higher priority tasks, we are left with a set
among which the real critical instant is found – but this set is
significantly smaller than the whole space of possible job se-
quences.

We summarize the conclusion as the following theorem.

Theorem 1 ([OUR-RTA]). Let χ be the minimal solution of the
following Equation (12) by doing an iterative fixed point search
of the right hand side starting with x = Ck.

x =
⌊

Ωk(x)
M

⌋
+ Ck (12)

Then χ is an upper bound of τk’s WCRT.

Proof. By Lemma 4 and the above discussion.

Note that the iterative fixed point search should terminate with
an “unschedulable” result as soon as x > Tk, since Dk ≤ Tk.
This also ensures termination of the procedure, even without
concrete values of Dk being given.

Since Ωk(x) in [OUR-RTA] is no larger than
∑
i<k Ik(τi, x)

in [BC-RTA], [OUR-RTA] dominates [BC-RTA] in the sense
that the upper bound of the WCRT derived by [OUR-RTA] is
guaranteed to be no larger than the one derived by [BC-RTA].

5 Arbitrary-deadline Task Sets

We will now extend our RTA technique to the arbitrary-
deadlines setting, i.e., the constraint “Di ≤ Ti” is dropped now.

5.1 Busy Period

As in the constrained-deadline case from the previous section,
we will use a busy period whose beginning is extended to an
earlier time point t0 (as in Section 4.1). In addition, we need to
extend also its end, since, like in Section 3.3, several jobs could
be delayed beyond the next period.

In particular:

• Let J1
k be a job of τk satisfying γ1

k = r1k, i.e., all previous
jobs (if any) have been finished at the release of J1

k .

t0

level k busy period

φ

rk
1

Rk
1 Rk

2

rk
2 rk

2 fk
1

... ...
fk

1 fk
H rk

H+1

Tk

Rk
H

rk
H time

Figure 4. Extended level-k busy period for
arbitrary-deadline task sets.

x

Ji
j+1

Ti

time
Ji

j+2 Ji
j+3

Ti

Ji
j

Ri

t0ri
j ri

j+1 ri
j+2

Ti

t0+x
(t0+x-Ci)

ri
j+3

Figure 5. Computing WCI
k (τi, x) with Ri > Ti

• Let t0 be the earliest time instant before r1k, such that at
any time instant t ∈ [t0, r1k) all processors are occupied
by tasks with higher priority than τk, as before. (Again, if
there is no such a time instant, we set t0 = r1k.) We also let
ϕ = r1k − t0.

• Finally, let JHk (with H ≥ 1) be the first job of τk after J1
k ,

whose response time is at most τk’s period, i.e., RHk ≤ Tk.
See Figure 4.

For now, we just assume that such a job JHk exists. In Section 5.4
we will discuss under which conditions it can be proven to exist.

Using the above, the level-k busy period is defined as the time
interval [t0, fHk), which spans over the busy period extension ϕ,
plusH−1 periods of length Tk each, plus the response timeRHk
of job JHk .

Note that Lemma 1 still holds here, i.e., there are at mostM−1
tasks having carry-in, and the carry-in of each task τi is at most
Ci − 1.

5.2 Workload and Interference

The workload calculation of WNC
k (τi, x) and WCI

k (τi, x) is
the same as the constrained-deadline case, shown in Lemma 2.
The only difference we notice here is that in the computation of
WCI
k (τi, x), it can be the case that a task’s response time Ri is

larger than Ti, as shown in Figure 5. However, the computation
of WCI

k (τi, x) considering this case is still the same as Equa-
tion (6).

For the interference calculation, the only additional concern is
that the extended level-k busy period may contain several jobs of
τk. Thus, let h be the number of jobs of τk in a level-k busy pe-
riod of length x, then we extend the interference bounds for the
arbitrary-deadline case (c.f. Equation (7) and (8) in Section 4.2)
as follows:

INC
k (τi, x, h) =

[[
WNC
k (τi, x)

]]x−h·Ck+1

0
(13)

ICI
k (τi, x, h) =

[[
WCI
k (τi, x)

]]x−h·Ck+1

0
(14)

Using these, a bound for the total interference Ωk(x, h) to h
instances of τk during a level-k busy period of length x is calcu-
lated just as before (c.f. Equation (9)):

Ωk(x, h) = max
(τNC,τCI)∈Z

0@ X
τi∈τNC

INC
k (τi, x, h) +

X
τi∈τCI

ICI
k (τi, x, h)

1A
(15)

5.3 The RTA procedure

In this section, we generalize the response time analysis pro-
cedure of Section 4.3 to the arbitrary-deadline setting. We
will again first assume a given ϕ, so we consider a particular
t0 = r1k − ϕ. The following lemma is the generalization of
Lemma 4.

Lemma 5. Given a t0 = r1k − ϕ, let for each h ≥ 1 denote χh

the minimal solution of the recursive equation

x =
⌊

Ωk(x, h)
M

⌋
+ h · Ck. (16)

Let further H(ϕ) be the minimal index satisfying

χH(ϕ) ≤ H(ϕ) · Tk + ϕ. (17)

Then
Rϕk = max

h∈[1,H(ϕ)]
{χh − (h− 1) · Tk − ϕ} (18)

is an upper bound of τk’s response time with this particular t0.

Proof. Similar to Lemma 4, using a generalized version of
Lemma 3.

As in the constrained-deadlines case of Section 4.3, the above
was first dealing with the case of a given ϕ. Again, this is an
open variable in general, so naively, the maximal Rϕk over all ϕ
needs to be found to derive a safe upper bound for the response
time in general. It turns out that, as before, it will be only nec-
essary to consider the case ϕ = 0 to get a safe bound, without
checking other values for the open variable ϕ.

For the arbitrary-deadlines case in this section, this conclusion
is a little bit more involved than the constrained-deadlines case
in Section 4.3. The reason is that we are dealing with a set of
solutions for the recursive equation (16), which could in general
look different for different values of ϕ. Thus, for ϕ1 > ϕ2, we
don’t have a straight forward derivation for a relation between
Rϕ1
k and Rϕ2

k as in the constrained-deadlines case (Section 4.3).
However, we still have the property that Ωk(x, h) is inde-

pendent of ϕ. Thus, for each h, the minimal solution found
for Equation (16) will be independent of ϕ. Therefore, it fol-
lows from (17), that ϕ1 > ϕ2 implies H(ϕ1) ≤ H(ϕ2), since
the condition is “looser” for larger ϕ. But this means that for
ϕ1 > ϕ2, the maximum in (18) for calculating Rϕ1

k is taken
over a set whose elements all have a larger counterpart in the set
for calculating Rϕ2

k . Thus, we have the following implication:

ϕ1 > ϕ2 ⇒ Rϕ1
k ≤ R

ϕ2
k

It follows directly that, in order to maximize Rϕk , only ϕ = 0
needs to be considered, since it is the minimal possible value.

We conclude with a formulation of our response time analysis
procedure for arbitrary-deadline task sets in the following the-
orem, that directly follows from the above discussion. We will
use the following two predicates as termination conditions:

• Termination because of job finishing before next period:

Term(h, k) ≡
[
χh ≤ h · Tk

]
• Termination because of detected possible deadline miss:

Miss(h, k) ≡
[
χh > (h− 1) · Tk +Dk

]
Theorem 2 ([OUR-RTA-arb]). For each h ≥ 1, let χh be the
minimal solution of the following Equation (19) by doing an it-
erative fixed point search of the right hand side starting with
x = h · Ck.

x =
⌊

Ωk(x, h)
M

⌋
+ h · Ck (19)

Let H be the minimal index satisfying Term(H, k), then

Rk = max
h∈[1,H]

{χh − (h− 1) · Tk}

is an upper bound of τk’s WCRT.

Proof. By Lemma 5 and the above discussion.

The procedure can be implemented by conducting the fixed
point search for (19) starting with h = 1, and repeating with
increased h until the termination condition Term(h, k) holds.
Note that during the fixed point search, the procedure should
terminate with a “unschedulable” result, as soon as a deadline
miss is detected, i.e. x > (h − 1) · Tk + Dk (which is similar
to Miss(h, k)). This guarantees termination for the fixed point
searches.

5.4 Termination

The response time calculation is guaranteed to calculate a safe
bound for the WCRT if it terminates with Term(h, k). We will
show now, that it can be guaranteed to terminate with that condi-
tion in certain cases. In other cases, this can not be guaranteed,
but then at least the condition Miss(h, k) holds eventually, as
we will see. (Note that we already showed how to guarantee ter-
mination for the fixed point searches themselves. What we are
concerned about now is the termination of the whole procedure
with repeated invokation of fixed point searches.)

To discuss this termination problem, we define a new metric,
the Interfering Utilization of τi with respect to task τk:

V ki = min(Ui, 1− Uk). (20)

It can be seen as a generalization of the original utilization met-
ric Ui to the multiprocessor case. Intuitively, it restricts the uti-
lization which is relevant for interference to the part that is not
running in parallel to the task in question. (Recall the discussion
in Section 3.2 about deriving Ik by limiting Wk.)

With this new metric, we can formulate and prove the follow-
ing theorem concerning the termination of [OUR-RTA-arb].

Theorem 3. For each task τk satisfying∑
i<k

V ki +M · Uk 6= M (21)

the [OUR-RTA-arb] procedure always terminates, i.e., the fol-
lowing holds:

∃h ≥ 1 : Term(h, k) ∨Miss(h, k)

Proof. The proof is given in Appendix A.2.

The theorem states that, provided Condition (21), if
Term(h, k) does not hold for any h, then there will be a dead-
line violation detected (at least overapproximated). Note that
even though a deadline specification for τk needs to be supplied
in order to be able to do that, the termination is not dependent
on the actual value of Dk. So in particular, if Term(h, k) does
not hold for any h, then there is no bound of the response time
(at least by our over-approximation).

There is one case remaining:∑
i<k

V ki +M · Uk = M

In this case, there are task sets for which [OUR-RTA-arb] ter-
minates and others for which it does not, so termination can not
be guaraneed. Since this is a rather special corner case that can
be checked before starting the procedure (and possibly the pa-
rameters slightly adjusted to fit one of the other two cases), this
is not considered a practical problem.

6 Performance Evaluation

We evaluate the performance of the proposed RTA technique
in terms of acceptance ratio. We follow the method in [4] to
generate task sets: A task set of M + 1 tasks is generated and
tested. Then we iteratively increase the number of tasks by 1
to generate a new task set, and all the schedulability tests are
run on the new task set. This process is iterated until the total
processor utilization exceeds M . The whole procedure is then
repeated, starting with a new task set of M + 1 tasks, until a
reasonable sample space has been generated and tested. This
method of generating random task sets produces a fairly uniform
distribution of total utilizations, except at the extreme end of low
utilization.

The default setting of the experiments whose results we show
in Figure 6 is as follows: the priorities are assigned according to
global Deadline Monotonic scheduling; the number of proces-
sors is 6; for each task τi, Ti is uniformly distributed in [10, 30].
For each subfigure, the range of Ui and Di/Ti is tuned (see the
caption of each subfigure), to get task sets with different charac-
teristics.

In all the figures, the curve “Sim” denotes the acceptance ra-
tio of simulations. Since it is not computationally feasible to
try all possible task release offsets and inter-release separations
exhaustively in simulations, all task release offsets are set to be
zero and all tasks are released periodically, and simulation is run
for the hyper-period of all task periods. Simulation results ob-
tained under this assumption may sometimes determine a task
set to be schedulable even though it is not, but they can serve as
a coarse upper bound of the ratio of all schedulable task sets.

Figure 6-(a)(b)(c) shows the comparison between [OUR-RTA]
and previous work for constrained-deadline task sets. In [8],
[BC-RTA] has been compared with all state-of-the-art analysis
for constrained-deadline task sets at that time, and shown clear
performance improvement. Thus, for the constrained-deadline
case, we compare our analysis [OUR-RTA] (denoted by “Our”)
with [BC-RTA] (denoted by “BC”) and the schedulability test
from [6]1 (denoted by “Bar”), which is not included in the com-

1[6] works on global EDF scheduling, however, it can be easily adapted to
global fixed priority scheduling.

parison in [8]. Another recent work by Bertogna et al. [10] is not
included in Figure 6 because it is outperformed by [BC-RTA]. It
can be seen from the evaluation that [OUR-RTA] has non-trivial
performance improvement over the others, especially with task
sets with low utilizations.

Figure 6-(d)(e)(f) shows the comparison between
[OUR-RTA-arb] and previous work for arbitrary-deadline
task sets. In the figures, “Our” denotes [OUR-RTA-arb], “Bak”
denotes the schedulabilty test in [3], “Load” denotes the two
schedulability tests based on the LOAD function in [5] and [7]
(a task is accepted if it can be accepted by one of these two
tests). It can be seen that the performance improvement of
[OUR-RTA-arb] over the previous work is significant. Espe-
cially in (d) with task sets with low utilizations, the acceptance
ratio of [OUR-RTA-arb] is quite close to the simulation. Recall
that the simulation curve in the figure is just a coarse upper
bound of the acceptance ratio of the exact schedulability test, so
it is fair to say that [OUR-RTA-arb] is actually very precise for
task sets consisting of low-utilization tasks.

We also evaluated the scalability of [OUR-RTA-arb]. We did
experiments with parameters as follows: the number of proces-
sors is 100; the number of tasks in each task set is uniformly
distributed in [100, 500]; the period of each task is uniformly dis-
tributed in [100, 1000]; the utilization of each task is uniformly
distributed in [0.1, 0.3] and the ratio between Di and Ti is uni-
formly distributed in [0.8, 4]. We conducted [OUR-RTA-arb]
on 1000 such task sets on a server computer with AMD Opteron
844 (1.8GHz) CPU, and the experiment was finished in about
30 minutes, which indicates that [OUR-RTA-arb] can handle a
real-life-scale task system on average in a few seconds.

7 Conclusions

We have developed a new technique to derive response time
bounds for global fixed priority scheduling on multiprocessors.
This work made contributions in two folds: (1) The analysis
precision has been significantly improved against previous work
and, (2) To our best knowledge, this is the first work to study the
RTA problem of arbitrary-deadline systems on multiprocessors.
We have used intensive experiments with randomly generated
task sets to evaluate the performance of the proposed analysis
techniques, in terms of both precision and efficiency. Experi-
ments show that the proposed analysis has significant improve-
ment of the analysis precision over existing methods, and can
easily handle real-life-scale task systems. For future work, we
will extend the proposed techniques to deal with platforms and
task systems with shared resources and task synchronization.

References

[1] B. Andersson and J. Jonsson. Some insights on fixed-priority preemptive
non-partitioned multiprocessor scheduling. Technical Report, Chalmers
University of Technology., 2001.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Ap-
plying new scheduling theory to static priority preemptive scheduling. In
Software Engineering Journal, 1993.

[3] T. P. Baker and M. Cirinei. A unified analysis of global edf and fixed-
task-priority schedulability of sporadic task systems on multiprocessors.
In Journal of Embedded Computing, 2007.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Our

s s s s s s s s s s s s s s s
s s s s s

s
BC

? ? ? ? ? ? ? ? ? ? ? ?

?

? ? ? ? ? ? ?

?

Bar

c c c c c c c c c c c c
c
c c c c c c cc

Sim

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?

?
? ? ?

?

(a) Ui ∈ [0.05, 0.1], Di
Ti
∈ [0.8, 1]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Our

s s s s s s s s s s s s s
s
s s s s s s

s
BC

? ? ? ? ? ? ? ? ? ? ?

?

?
? ? ? ? ? ? ?

?

Bar

c c c c c c c c c c c
c
c c c c c c c cc

Sim

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?

? ? ? ?
?

(b) Ui ∈ [0.05, 0.15], Di
Ti
∈ [0.8, 1]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Our

s s s s s s s s s s s s
s
s s s s s s s

s
BC

? ? ? ? ? ? ? ? ? ?
?

?

? ? ? ? ? ? ? ?

?

Bar

c c c c c c c c c c c
c
c c c c c c c cc

Sim

? ? ? ? ? ? ? ? ? ? ? ? ? ?

?

?

? ? ? ?
?

(c) Ui ∈ [0.05, 0.2], Di
Ti
∈ [0.8, 1]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Our

s s s s s s s s s s s s s s s s s

s s s
s

Bak

♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦

♦
Load

44444444

4

44444444444

4
Sim

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?

? ?
?

(d) Ui ∈ [0.05, 0.1], Di
Ti
∈ [0.8, 2]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Our

s s s s s s s s s s s s s s s
s
s s s s

s
Bak

♦♦♦♦♦♦♦♦♦♦♦

♦

♦
♦♦♦♦♦♦♦

♦
Load

44444444

4

44444444444

4
Sim

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
?

?

? ?
?

(e) Ui ∈ [0.05, 0.2], Di
Ti
∈ [0.8, 2]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Our

s s s s s s s s s s s s s s s s
s
s s s

s
Bak

♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦

♦
Load

44444444

4

44444444444

4
Sim

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?

?

?
?

(f) Ui ∈ [0.05, 0.2], Di
Ti
∈ [0.8, 4]

Figure 6. Acceptance Ratio: X-axis is total utilization
∑
i Ui; Y-axis is acceptance ratio.

[4] Theodore P. Baker. A comparison of global and partitioned edf schedula-
bility tests for multiprocessors. In Technical Report, Department of Com-
puter Science, Florida State University, FL, 2005.

[5] Sanjoy Baruah and Nathan Fisher. Global deadline-monotonic scheduling
of arbitrary-deadline sporadic task systems. In OPODIS, 2007.

[6] Sanjoy K. Baruah. Techniques for multiprocessor global schedulability
analysis. In RTSS, 2007.

[7] Sanjoy K. Baruah and Nathan Fisher. Global fixed-priority scheduling of
arbitrary-deadline sporadic task system. In ICDCN, 2008.

[8] Marko Bertogna and Michele Cirinei. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In RTSS, 2007.

[9] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. New schedulabil-
ity tests for real-time task sets scheduled by deadline monotonic on multi-
processors. In OPODIS, 2005.

[10] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability
analysis of global scheduling algorithms on multiprocessor platforms. In
IEEE Transactions on Parallel and Distributed Systems, 2008.

[11] Enrico Bini, Thi Huyen Châu Nguyen, Pascal Richard, and Sanjoy K.
Baruah. A response-time bound in fixed-priority scheduling with arbitrary
deadlines. IEEE Trans. Comput., 58(2):279–286, 2009.

[12] A. Burns and A. Wellings. Real-time systems and programming languages.
In Addison-Wesley, 3rd edition, 2001.

[13] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. Litmusrt:
A testbed for empirically comparing real-time multiprocessor schedulers.
In RTSS, 2006.

[14] Nan Guan, Wang Yi, Zonghua Gu, Qingxu Deng, and Ge Yu. New schedu-
lability test conditions for non-preemptive scheduling on multiprocessor
platforms. In RTSS, 2008.

[15] M. Gonzalez Harbour J. Palencia Gutierrez. Schedulability analysis for
tasks with static and dynamic offsets. In RTSS, 1998.

[16] M. Joseph and P.K. Pandya. Finding response times in a real-time system.
In The Computer Journal, 1986.

[17] John P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In RTSS, 1990.

[18] L. Lundberg. Multiprocessor scheduling of age constraint processes. In
RTCSA, 1998.

[19] On-Line Applications Research Corporation (OAR). Rtems applications c
user’s guide. 2001.

[20] K. Tindell, H. Hansson, and A. Wellings. Analysing realtime communica-
tions: Controller area network (can). In RTSS, 1994.

A APPENDIX

A.1 Proof of Lemma 3

Proof. We recall that by definition, Ωk(x) consists of two sums over the sets
τNC and τCI which are a partitioning of τ such that Ωk(x) is maximal:

Ωk(x) =
X
τi∈τCI

ICI
k (τi, x, h) +

X
τi∈τNC

INC
k (τi, x, h)

Let ϑCI ⊆ τCI and ϑNC ⊆ τNC be subsets of both partitions, such that:

∀τi ∈ ϑCI : WCI
k (τi, x) > x− Ck + 1

∀τi ∈ ϑNC : WNC
k (τi, x) > x− Ck + 1

Thus, ϑ := ϑCI ∪ ϑNC captures the relatively “dense” tasks of τ . Using
this, ICI

k (τi, x, h) and INC
k (τi, x, h) can be rewritten using WCI

k (τi, x) and
WNC
k (τi, x) in the definition of Ωk(x):

Ωk(x) = |ϑ|·(x−Ci+1)+
X

τi∈τCI\ϑCI

WCI
k (τi, x)+

X
τi∈τNC\ϑNC

WNC
k (τi, x)

(22)
We consider the case of |ϑ| < M . (Otherwise, the lemma obviously holds.)

Now let x < fk − t0, as in the assumption of the lemma, so the Job Jk
is still active at time point x. Thus, only at strictly less than Ck time points
of the interval [t0, t0 + x), Jk was able to run. Now we know, that all tasks
from ϑ could keep at most |ϑ| processors busy at each time unit during the
interval. It follows, that the remaining tasks (those from τ\ϑ) kept the remaining
M − |ϑ| processors busy for at least x− Ck + 1 time units during the interval
(otherwise, Jk would have been able to execute forCk time units and thus finish
until t0+x). Consequently, the tasks from τ \ϑmust have generated a workload
of at least (M − |ϑ|) · (x − Ck + 1) over the considered x time units. Since
WCI
k (τi, x) and WNC

k (τi, x) are upper bounds of their workloads, we have:X
τi∈τCI\ϑCI

WCI
k (τi, x)+

X
τi∈τNC\ϑNC

WNC
k (τi, x) ≥ (M−|ϑ|) ·(x−Ck+1)

(23)
From (22) and (23) it follows

Ωk(x) ≥M · (x− Ck + 1),

which is equivalent to the lemma.

A.2 Proof of Theorem 3

Proof. We do a case distinction for the inequality, concerning the relation be-
tween left-hand side (LHS) and right-hand side (RHS).

First Case “LHS < RHS”: We assumeX
i<k

V ki +M · Uk < M (24)

and want to show that there exists h ≥ 1 such that at least one of the conditions
Term(h, k) and Miss(h, k) holds. Let’s assume that Miss(h, k) does not hold
for any h ≥ 1, which implies that (19) always has a minimal solution.

Let’s also assume that Term(h, k) never holds, i.e. ∀h ≥ 1 : χh > h · Tk ,
and let’s pick an arbitrary such h. Thus, we know:

ε := χh − h · Tk > 0. (25)

We will now first bound Ωk(χh, h) from above and then use this to bound χh.
Since h was chosen arbitrarily and (χh)h≥1 is a strictly increasing sequence,
this will be the sufficient contradiction.

From the definition of Ωk(x, h), we can derive:

Ωk(χh, h) ≤
X
i<k

ICI
k (τi, χ

h, h)

⇐⇒ Ωk(χh, h) ≤
X
i<k

min(WCI
k (τi, χ

h), χh − h · Ck + 1)

From the definition of ε we can derive h ·Ck = (χh − ε) ·Uk . Using both that
and WCI

k (τi, x) ≤ x · Ui + 2 · Ci, we get:

Ωk(χh, h) ≤
X
i<k

min(χh · Ui + 2 · Ci, χh − (χh − ε) · Uk + 1)

⇐⇒ Ωk(χh, h) ≤
X
i<k

min(χh · Ui + 2 · Ci, χh · (1− Uk) + ε · Uk + 1)

We use the property min(a+ b, c) ≤ min(b, c) + a, and get:

Ωk(χh, h) ≤
X
i<k

min(χh · Ui, χh · (1− Uk) + ε · Uk + 1) + 2 ·
X
i<k

Ci

Further, it holds min(a+ b, c) ≤ min(b, c) if b ≥ c. Using that, and setting η
to be the number of tasks satisfying Ui > 1− Uk , we get:

Ωk(χh, h) ≤
X
i<k

min(χh · Ui, χh · (1− Uk)) + 2 ·
X
i<k

Ci + (ε · Uk + 1) · η

From the initial assumption (24), we know η ≤M − 1, so we get:

Ωk(χh, h) ≤ χh
X
i<k

min(Ui, 1− Uk) + 2 ·
X
i<k

Ci + (ε · Uk + 1) · (M − 1)

Finally, using that ε > 0, we get the upper bound on Ωk(χh, h):

Ωk(χh, h) < χh
X
i<k

V ki + 2 ·
X
i<k

Ci + (ε · Uk + 1) ·M (26)

Now, to turn this into an upper bound for χh, we use that χh is a solution of
the recursive Equation (19), i.e., it holds that:

χh =

—
Ωk(χh, h)

M

�
+ h · Ck ≤

Ωk(χh, h)

M
+ h · Ck

Applying (26) to that, we get:

χh <
χh
P
i<k V

k
i + 2 ·

P
i<k Ci + (ε · Uk + 1) ·M
M

+ h · Ck

We now recall ε · Uk = χh · Uk − h · Ck , thus:

χh <
χh
P
i<k V

k
i + 2 ·

P
i<k Ci + (χh · Uk − h · Ck + 1) ·M

M
+ h · Ck

We simplify the inequality such that χh only appears on one side:

χh · (M −
X
i<k

V ki −M · Uk) < 2 ·
X
i<k

Ci +M

From assumption (24) we know that M −
P
i<k V

k
i −M · Uk > 0, so we

finally get:

χh <
2 ·
P
i<k Ci +M

M −
P
i<k V

k
i −M · Uk

Second Case “LHS > RHS”: We now assumeX
i<k

V ki +M · Uk > M (27)

and want to show that there exists h ≥ 1 such that at least one of the conditions
Term(h, k) and Miss(h, k) holds, i.e., that χh ≤ h ·Tk or χh > (h−1) ·Tk+
Dk . (Note that this is trivially true for Dk ≤ Tk , so we focus on the Dk > Tk
case.)

Let’s assume on the contrary, that neither of them holds for any h ≥ 1, i.e.,
that

∀h ≥ 1 : χh ∈
`
h · Tk, (h− 1) · Tk +Dk

´
. (28)

We will now first bound Ωk(χh, h) from below and then use this to bound χh

from above. Since h was chosen arbitrarily and (χh)h≥1 is a strictly increasing
sequence, this will be the sufficient contradiction.

From the definition of Ωk(x, h), we can derive:

Ωk(χh, h) ≥
X
i<k

INC
k (τi, χ

h, h)

⇐⇒ Ωk(χh, h) ≥
X
i<k

min(WNC
k (τi, χ

h), χh − h · Ck + 1)

Using WNC
k (τi, x) ≥ x · Ui, we get:

Ωk(χh, h) ≥
X
i<k

min(χh · Ui, χh − h · Ck + 1)

From the assumption (28) we further know χh > h · Tk , from which we can
derive:

χh − h · Ck + 1 > χh(1− Uk) + 1

Using that in the above, we get:

Ωk(χh, h) ≥
X
i<k

min(χh · Ui, χh(1− Uk))

Finally, cleaning up using the definition of V ki :

Ωk(χh, h) ≥ χh
X
i<k

V ki (29)

Now, to turn this into an upper bound for χh, we use that χh is a solution of
Equation (19), i.e., it holds that:

χh =

—
Ωk(χh, h)

M

�
+ h · Ck >

Ωk(χh, h)

M
+ h · Ck − 1

Applying (29) to that, we get:

χh >
χh
P
i<k V

k
i

M
+ h · Ck − 1

Or, equivalently:

χh
X
i<k

V ki +M · h · Ck −M < M · χh

From assumption (28), we further know that χh < (h − 1)Tk + Dk , so we
have 1 + (χh −Dk)/Tk < h. We apply that:

χh
X
i<k

V ki +M · (1 + (χh −Dk)/Tk) · Ck −M < M · χh

After ordering the operands, we have:

χh(
X
i<k

V ki +M · Uk −M) < M(1 +Dk · Uk − Ck)

Finally, assumption (27) allows us to get an upper bound for χh:

χh <
M(1 +Dk · Uk − Ck)P
i<k V

k
i +M · Uk −M

