
A framework for hierarchical scheduling on multiprocessors: from application

requirements to run-time allocation

Giuseppe Lipari, Enrico Bini

Scuola Superiore Sant’Anna, Pisa, Italy

Email: {g.lipari,e.bini}@sssup.it

Abstract—Hierarchical scheduling is a promising methodol-
ogy for designing and deploying real-time applications, since
it enables component-based design and analysis, and supports
temporal isolation among competing applications. In hierar-
chical scheduling an application is described by means of a
temporal interface. The designer faces the problem of how
to derive the interface parameters so to make the applica-
tion schedulable, at the same time minimizing the waste of
computational resources. The problem is particularly relevant
in multiprocessor systems, where it is not clear yet how
the interface parameters influence the schedulability of the
application and allocation on the physical platform.

In this paper we present three novel contributions to
hierarchical scheduling for multiprocessor systems. First, we
propose the Bounded-Delay Multipartition (BDM), a new in-
terface specification model that allows the designer to balance
resource usage versus flexibility in selecting the virtual platform
parameters. Second, we explore the schedulability region of a
real-time application on top of a generic virtual platform, and
derive the interface parameter. Finally, we propose Fluid Best-
Fit, an algorithm that takes advantage of the extra degree
of flexibility provided by the BDM to compute the virtual
platform parameters and allocate it on the physical platform.
The performance of the algorithm is evaluated by simulations.

I. INTRODUCTION

Multiprocessor systems are becoming increasingly com-

monplace, not only in desktop/laptop PCs and in servers, but

also in embedded systems [1], [2]. This trend is expected

to increase in the near future. Following the trend, real-

time researchers focused on multiprocessor scheduling and

schedulability analysis, in some cases extending existing

techniques proposed for single processors to multiproces-

sors. It is the case of hierarchical scheduling methodolo-

gies [3], [4], [5], [6], which are regarded as useful tools to

handle the complexity of medium to large-sized applications

and enable a component-based approach to schedulability

analysis; also, such techniques are helpful for providing

temporal isolation and timing guarantees in open systems,

and for enabling application-specific schedulers (also called

local schedulers).

In the hierarchical scheduling model, the computational

requirement of an application A is described by a temporal

The research leading to these results has received funding from the
European Communitys Seventh Framework Programme FP7 under grant
agreement n.248465 “S(o)OS Service-oriented Operating Systems.”

not admitted

admitted

Application A

Interface selection Interface model

Application Interface I

Admission control

Virtual platform Π Other applications

Root-level Scheduler

Figure 1: Design phases of a hierarchical scheduling system.

interface I. After the application is admitted into the system,

a root-level scheduler is in charge to accommodate all

interfaces onto the available physical resources. The design

of a hierarchical scheduling system involves the following

phases summarized in Figure 1.

1) Interface Specification: At design time, the application

designer must characterize the temporal requirements of the

application, and derive an appropriate temporal interface

specification that summarizes the requirements. We distin-

guish two aspects here: the choice of an interface model,

and the selection of the parameters in accordance with the

chosen model.

Given an interface model, the designer needs to instantiate

an interface I so that the application is guaranteed on it.

When selecting the “optimal” interface parameters for an

application, the designer must trade-off different goals. For

example, in [7], we proposed a methodology for single

processor systems that, starting from the worst-case require-

ments of the application tasks, derives an interface based

on the bounded partition model (α, ∆) from the application

requirements, trading off the maximum delay ∆ (that we

want as large as possible to reduce overhead) versus the

maximum bandwidth α, (that we want as little as possible

to reduce usage of resource). When the application is a set

of tasks scheduled by EDF, the optimal design problem has

2010 31st IEEE Real-Time Systems Symposium

1052-8725/10 $26.00 © 2010 IEEE

DOI 10.1109/RTSS.2010.12

249

been analytically solved [8].

2) Run-time allocation: In this paper we assume an

open system, where applications can dynamically join and

leave. When an application joins the system, it presents its

interface to the admission control policy, which performs

a feasibility analysis to check if the application can be

safely admitted without compromising the guarantees of the

existing applications. If the answer is positive, the system

instantiates a virtual platform Π that respects the temporal

interface. The virtual platform is then scheduled on the

physical platform together with the other virtual platforms

of already running applications.

If the application cannot be admitted, the designer must go

back to the interface specification and derive new interface

parameters that enables a wider search in the design space.

In this paper, we investigate how the selection of the

interface parameters influence the schedulability of the appli-

cation on the virtual platform on one side, and the problem

of allocating the virtual platforms on the physical processors,

on the other side.

A. Related Work

In single processors, Mok et al. [9] proposed the bounded-

delay partition, Shin and Lee [6] proposed the periodic

resource model, Easwaran et al. [10] extended the periodic

resource model by allowing deadline different from period.

Recently, some authors have addressed the problem of

how to specify the application interface for an application

to be executed on multiprocessor systems, and provide

appropriate schedulability analysis to check if the application

is schedulable on the interface.

Leontyev and Anderson [11] proposed to use the only

overall bandwidth requirement w as interface for soft real-

time applications. The authors propose to allocate a band-

width requirement of w onto ⌊w⌋ dedicated processors, plus

an amount of w−⌊w⌋ provided by a periodic server globally

scheduled onto the remaining processors. An upper bound

of the tardiness of tasks scheduled on such interface was

provided.

Shin, Easwaran and Lee [12] proposed the multiprocessor

periodic resource model (MPR): each application is assigned

a set of periodic m reservations {(Qi, P)} all with the

same period. This interface model is quite intuitive, but it

has a drawback: it implicitly requires the synchronization

between reservations running on different processors that is

difficult to implement in a real system; when periods are not

synchronized, it does not exist a worst-case scenario of the

resource allocation, as explained in Section IV-A.

Chang et al. [13] proposed to partition the resource

available from a multiprocessor by a static periodic scheme.

The amount of resource is then provided to the application

through a contract specification.

Bini et al. [14] proposed the Parallel Supply Function

(PSF) interface of a virtual multiprocessor and developed

a global EDF test developed on top of it. However the

assignment of the parameters of the virtual platforms is not

investigated.

B. Contributions of this paper

In this paper we propose a framework for designing

hierarchical scheduling systems that covers both phases

of the design. First, we propose a novel interface model,

called bounded-delay multipartition (BDM) interface that

allows the designer to balance the amount of consumed

bandwidth vs. the flexibility of the interface, making easier

the admission control problem. Second, rather than simply

checking the schedulability of an application, as all past

works did, we mostly focus on the derivation of the interface

starting from the application requirement. For this purpose,

we propose a schedulability test from which the impact of

the interface is more apparent.

Third, we propose an allocation policy, called fluid best-

fit that performs admission control and, at the same time,

instantiates the virtual platform parameters from the inter-

face specification so as to optimize the underlying resource

allocation. In addition, our model is suitable for a number

of extension and modifications, so to cope with additional

constraints and goals. We demonstrate by experiments that,

thanks to the extra level of flexibility allowed by the interface

model, our allocation policy performs better that existing

policies.

II. SYSTEM MODEL

The overall system is composed of a set of real-time

applications {Aℓ} that run concurrently onto a multipro-

cessor constituted by M processors. Some applications are

always running, while some others dynamically join and

leave the system. To enable composability and isolation,

each application Aℓ is executed onto a dedicated virtual

platform Πℓ. The real-time requirements of the application

Aℓ are guaranteed onto the platform Πℓ by a guarantee test

T ℓ.

In the rest of this section we provide a more detailed

model of each notion we introduced above. Since we focus

on each application in isolation, from now on we drop the

index ℓ of the application. We denote max{0, ·} with (·)0.

A. Application model

The application A is composed of a set of n independent

sporadic tasks {τ1, . . . , τn}. Every time a task is activated,

a job must be executed. The minimum interarrival time Ti

is the minimum separation between two consecutive jobs of

τi. Each job of τi has a computation time Ci and must be

completed within a deadline Di from its activation.

B. Platform model

The virtual platform Π is modeled by a set of virtual

processors {π1, . . . , πm} that we also call virtual multipro-

cessor.

250

A platform interface I is a predicate on the values that the

virtual platform parameters may have. Hence, an interface

I yields naturally the subset of all virtual platforms that

are compliant with it. We denote this subset of platforms

by ΠΠΠ(I). Examples of interface specifications are: “all the

platforms with an overall bandwidth of 2.5”, or “all the

platforms in which one virtual processor has a bandwidth of

at least 0.8”, etc. An interface that specifies many constraints

yields a small set ΠΠΠ(I). On the other hand, if we specify

only loose constraints in I, the set ΠΠΠ(I) becomes larger.

In this paper, we assume that the virtual platform is de-

ployed on the physical platform using partitioning. Once the

application is admitted and the virtual platform is created,

each one of the virtual processors is allocated on one of the

physical processors. We choose the partitioning approach

for practical and theoretical issues. From a practical point

of view, partitioning is easier to implement in a multicore

operating system, as it reduces the amount of shared data

structures. Also, it can be advantageous for applications.

In facts, many multiprocessor systems have a non-uniform

memory architecture (NUMA machines), and it is desirable

that tasks belonging to the same application do not arbitrarily

migrate across the entire physical platform, but only on the

subset of processors that have the same latency in accessing

the memory. In our model, this can be achieved by allocating

all the virtual processors of the same virtual platform on a

group of “neighbor” processors.

Also, as we will show in Section VI, the partition ap-

proach coupled with our the flexible interface specification

that we will introduce in Section IV allows a high density

of packing for the virtual platforms. This property leads to

a better utilization of the overall system, as well as to the

possibility to power-off or put in stand-by mode non used

processors.

C. Model of the guarantee test

We model a guarantee test T (A, Π) as a boolean function

that returns TRUE if the application A is guaranteed on

platform Π, FALSE otherwise. We also extend a guarantee

test to an interface I as follows

T (A, I) =
∧

Π∈ΠΠΠ(I)

T (A, Π). (1)

Guaranteeing an application over an interface I would

require to test it over all the platforms in ΠΠΠ(I) unless it

exists a worst-case platform.

Definition 1: Given an interface I and a test T , we say

that Πwc is the worst-case platform of I when:

Πwc ∈ ΠΠΠ(I) (2)

∀A T (A, Πwc)⇒ T (A, I). (3)

For example, in the uni-processor case the worst-case

platform Πwc of a periodic interface I that provides a budget

Q every period P occurs when there is an idle interval

[0, 2(P − Q)], and the budget Q is provided at the end

of the server period [7], [6]. The existence of the worst-

case platform Πwc for an interface I justifies the advantages

of an interface-based analysis, since if the application is

guaranteed on Πwc then it is guaranteed on any platform

in ΠΠΠ(I), so that during the allocation phase the designer

can freely select any platform in ΠΠΠ(I).
In the context of real-time applications, the guarantee test

T is also called schedulability test: if T (A, Π) returns TRUE

then no task deadline will be missed when A runs on Π.

On the other hand the test T can also encode other kinds

of requirements: the minimum throughput of an MPEG

decoder, an average response time with some confidence

level, etc.

III. SCHEDULABILITY TEST ON A VIRTUAL PLATFORM

Applications must be guaranteed on the corresponding

platforms. In the next section we recall a tight description

of a platform that is well suited for schedulability tests.

A. The Parallel Supply Functions of a platform

To introduce the minimum possible pessimism in abstract-

ing the amount of resource provided by a platform, we

first adopt the Parallel Supply Function (PSF) abstraction,

recently introduced by Bini et al. [14]. Without entering

all the details of the definition (that can indeed be found

in [14]), we recall here the basic concepts.

Definition 2: Given a virtual platform Π composed by the

m virtual processors {π1, . . . , πm}, its PSF is composed by

the set of functions {Yk}
m
k=1, where Yk(t) is the minimum

amount of resource provided in any interval of length t with

a parallelism at most k.

To clarify this definition we propose an example (please

refer to Figure 2). Suppose that in the interval [0, 11] the

three virtual processors {π1, π2, π3} composing the virtual

platform, provides resource in accordance to the schedule

drawn in gray.

10 2 3 4 5 6 7 8 9 10 11

π1

π2

π3

Figure 2: From a resource schedule to the PSF.

In this case Y1(11) = 10 because there is always at

least one processor available in [0, 11] except in [8, 9]. Then

Y2(11) = 16, that is found by summing up all the resource

except one with parallelism 3 (provided only in [4, 5]).
Finally Y3(11) = 17 that is achieved by summing all the

resources provided in [0, 11].
In general, the parallel supply functions are computed also

by sliding the time window of length t and by searching for

the most pessimistic scenario of resource allocation. This

251

minimization is somehow equivalent to the one performed

on uni-processor hierarchical scheduling [7], [6].

B. A schedulability test on the PSF interface

Since we aim at describing all possible interfaces I that

can guarantee the given application A, we find it useful

to propose a schedulability condition that is equivalent to

Theorem 2 in [14]. We choose this condition because it

applies to several different local schedulers such as global

EDF or global FP, but it applies to constrained deadline

tasks, i.e. for all tasks τi Di ≤ Ti. While choosing other

tests is possible [15], the proposed (equivalent) formulation

has the advantage of highlighting the constraint on the

interface.

Theorem 1: An application A = {τi}
n
i=1 is schedulable

on a virtual platform Π modeled by the PSF {Yk}
m
k=1, if

∧

i=1,...,n

∨

k=1...,m

k Ci + Wi ≤ Yk(Di), (4)

where Wi is the maximum interfering workload that can be

experienced by task τi in the interval [0, Di], defined as

Wi =

n∑

j=1,j 6=i

⌊
Di

Tj

⌋

Cj + min

{

Cj , Di −

⌊
Di

Tj

⌋

Tj

}

, (5)

if the application tasks are scheduled by global EDF. Instead

if the application tasks are scheduled by global FP

Wi =
∑

j∈hp(i)

Wji, (6)

where hp denotes the set of indices of tasks with higher pri-

ority than i, and Wji is the amount of interfering workload

caused by τj on τi, that is

Wji = NjiCj + min {Cj , Di + Dj − Cj −NjiTj} (7)

with Nji =
⌊

Di+Dj−Cj

Tj

⌋

.

Proof: The interfering workload Wi is an upper bound

to the amount of work that can be requested in [0, Di]
by tasks with priority higher than τi [16]. The workload

Wi interferes on τi only if it occupies all the available

processors (otherwise τi could execute). The interference

Ii is maximized when the work Wi is executed at the

lowest possible parallelism. In the example of Figure 3, the

workload Wi = 8 causes the maximum interference when

it is executed for one time unit on a single processor, for 2
units at parallelism of 2 and for one last unit at parallelism

3. To reach the interference Ii = 6 we must also account

for the two time units with no resource available.

If we call k∗ the highest degree of parallelism that is

occupied by Wi, then

k∗Di − k∗Ii = Yk∗(Di)−Wi. (8)

This relationship can be explained in Figure 3, by expressing

the work represented in the dashed box by k∗Di − k∗Ii

and by Yk∗(Di) −Wi. In the figure k∗ = 3, on top of the

Di

Ci

Ii

0

Y1(Di) Y2(Di) Y3(Di) Y4(Di)

Wi

Figure 3: Schedulability of task τi onto the virtual platform.

figure a legend explains how Yk(Di) and Wi are depicted.

Equation (8) can be rewritten as

Ii = Di −
Yk∗(Di)−Wi

k∗
. (9)

By observing that the evaluation of the RHS of (9) for

any other index k 6= k∗ is not smaller than Ii, it follows

Ii = min
k=1,...,m

{

Di −
Yk(Di)−Wi

k

}

= Di − max
k=1,...,m

{
Yk(Di)−Wi

k

}

. (10)

Hence the classic interference-based schedulability test [16]

∀i = 1, . . . , n Ci + Ii ≤ Di,

becomes

∀i = 1, . . . , n Ci ≤ max
k=1,...,m

{
Yk(Di)−Wi

k

}

,

which can be rewritten with the AND (∧) and OR (∨) as

∧

i=1,...,n

∨

k=1,...,m

Ci ≤
Yk(Di)−Wi

k
,

from which the Theorem follows.

IV. THE BOUNDED-DELAY MULTIPARTITION MODEL

The PSF could be indeed used a tight interface model.

However it is too detailed to be intuitively handled by the

designers, whereas it is often highly desirable to provide a

simpler and more manageable interface.

A. Inappropriateness of the periodic interface

A natural candidate for a simple interface is the specifica-

tion of a common period P among all the virtual processors

{π1, . . . , πm} and an overall budget Q that is shared by all

the πk’s. Following this idea, Shin et al. [12] proposed the

multiprocessor periodic resource model (MPR).

According to the MPR interface the virtual multiprocessor

is abstracted by three parameters: a period P , an overall

budget Q, and a maximum parallelism m ≤M . In [12], the

252

authors implicitly assumed a tight synchronization among

the virtual processors πk that ensures that all virtual pro-

cessor implementation (that we call servers) are activated

simultaneously on all the processors. Unfortunately, due

to the difficulty of synchronizing clocks among different

processors, this hypothesis often cannot be guaranteed. If

this hypothesis is removed, the periodic interface becomes

inappropriate for a very subtle reason that may however

cause a deadline miss: The worst-case platform Πwc does not

exist for the MPR interface. We show this by an example.

Suppose an MPR interface I specifies a virtual platform

composed by 2 virtual processors that provide an overall

budget of Q = 8 time units with a period of P = 8. The

interface does not specify how the budget is split between Q1

and Q2 on the two virtual processors π1 and π2, respectively.

In Figure 4 we show some possible scenarios of distribution

of the budget Q = 8. At the bottom of the figure we report

the worst-case resource schedule as Q1 ranges from 8 to 4
(and Q2 varies accordingly from 0 to 4). These schedules

are worst in the sense that the overall resource provided in

[0, t] is minimal. In the resource schedule, a vertical thick

black line is drawn at each server period. In the upper part

we show the cumulative supply function Y2 that measures

the amount of resource provided in each scenario.

0 2 4 6 8 10 12 14 16 18 20 22

Y2(t)

t

Q1 = 8
Q1 = 7
Q1 = 6
Q1 = 5
Q1 = 4

π1

π1

π1

π1

π1

π2

π2

π2

π2

π2

Figure 4: A periodic interface is inappropriate for multipro-

cessor.

It can be noticed that almost always the worst case of

the parallel supply function Y2 happens when the budget is

evenly divided between the two virtual processors (Q1 =
Q2 = 4). This result would be in accordance to well-

known results on uniform multiprocessor scheduling, where

the worst-case speed distribution over a multiprocessor is the

case when all the speeds are equal to each other [17]. Un-

expectedly, assigning the two budgets Q1 = 6 and Q2 = 2
leads to the most pessimistic condition (minimum value of

Y2) for an interval of length 12. Hence, an application that

is schedulable on a “more difficult” platform (the one with

Q1 = Q2 = 4) may be not schedulable on an apparently

“easier” platform (the one with Q1 = 6 and Q2 = 2). It

follows that there is no worst-case platform Πwc for the non-

synchronized MPR interface.

In the next Section we propose an interface that does

not suffer this drawback, and we formalize the concept

of concavity of the platform which measures the intuitive

concept of “difficulty” of schedulability on the platform.

B. The proposed interface model

The problem highlighted in Section IV-A happens be-

cause the supply functions grow discontinuously. If the

supply functions of the virtual processors are linear, this

phenomenon does not happen. This observation leads us

to formulate the following interface model of a multipro-

cessor, based on an extension of the bounded-delay time

partition [9].

Definition 3: An interface I is a bounded-delay multipar-

tition (BDM) interface I = (m, ∆, [β1, . . . , βm]) with

∆ ≥ 0,

∀k = 1, . . . , m 0 ≤ βk − βk−1 ≤ 1, (11)

∀k = 1, . . . , m βk − βk−1 ≥ βk+1 − βk, (12)

when the following two statements are equivalent

• Π ∈ ΠΠΠ(I)
• the PSFs {Yk} of Π are

∀k = 1, . . . , m, ∀t ≥ 0 Yk(t) ≥ βk(t−∆)0. (13)

For notational convenience, we define β0 = 0 and βk = βm

for all k > m.

The BDM offers a greater simplicity compared with

the PSF interface. However, it certainly introduces some

resource waste similarly to what happens with the uni-

processor bounded-delay time partition.

The main difference between the BDM interface and the

MPR interface is that the time granularity is specified by a

common delay ∆ (that represents the length of the longest

interval with no resource) rather than by a common period P
among the virtual processors. However this small difference

enables the statement of the following Theorem that would

be otherwise impossible to prove.

Theorem 2: Let I = (m, ∆, [β1, . . . , βm]) be a BDM

interface. Its worts-case virtual platform Πwc is the set of

253

m bounded-delay virtual uni-processors [9]

Πwc = [(α1, ∆), . . . , (αm, ∆)] (14)

with

∀k = 1, . . . , m αk = βk − βk−1. (15)

Proof: From (11) and (12) it follows that

1 ≥ α1 ≥ α2 ≥ . . . ≥ αm ≥ 0. (16)

Because of the ordering (16), the PSFs {Y wc
k } of the

platform Πwc defined by (15), are

Y wc
k (t) =

k∑

i=1

αi(t−∆)0 = βk(t−∆)0,

from which it follows directly that Πwc ∈ ΠΠΠ(I).
If a real-time application {τ1, . . . , τn} is schedulable over

Πwc by Theorem 1, we have:
∧

i=1,...,n

∨

k=1...,m

kCi + Wi ≤ βk(Di −∆)0,

from which it follows the schedulability on any other plat-

form Π′ ∈ ΠΠΠ(I), by the property (13). Hence Πwc is the

worst-case platform.

As explained in Section IV-A, Theorem 2 cannot be stated

for the MPR interface, since it is not possible to define a

worst-case platform for it.

Since from now on we will only consider platforms with

the same delay ∆, for notational convenience we identify

a virtual platform Π only by the array of bandwidths

[α1, . . . , αm]. Without loss of generality we assume the αk

to be sorted non-increasingly.

For the purpose of an intuitive design space exploration,

the BDM model enables a simple description of ΠΠΠ(I).
Corollary 1: Let I = (m, ∆, [β1, . . . , βm]) be a BDM

interface. A platform Π = [α1, . . . , αm] belongs to ΠΠΠ(I)
when

∀k = 1, . . . , m

k∑

i=1

αi ≥ βk. (17)

Proof: The corollary follows from the observation that

a platform with bandwidths defined in accordance to (17)

has the PSFs {Yk} that respect (13).

In practice, if we test our application on the platform

Πwc, then at run-time we can choose any other virtual

platform Π ∈ ΠΠΠ(I) by simply moving bandwidth from

a virtual processor πk to another one πℓ with αk ≤ αℓ.

This can be viewed as a sort of compacting the bandwidth

on the “heaviest” virtual processors. This adjustment of the

platform allows a degree of flexibility at run-time that can

be exploited by the allocation algorithm. In Section VI we

will present an algorithm that will take advantage of this

flexibility.

The proposed interface has several additional advantages:

it does not rely on synchronization of the virtual resources;

it does not rely on a specific underlying mechanisms (i.e.

periodic servers), and can be applied to any bounded-delay

partition (e.g. P-fair [18], static time partition [9]).

C. Example

To better clarify the BDM interface model and the appli-

cation of Theorem 2 and Corollary 1, we present a simple

example. Let us suppose that our application presents a

BDM interface I = (3, 6, [0.7, 1.2, 1.4]).
From (15) it follows that the worst-case platform is Πwc =

[0.7, 0.5, 0.2] (we recall that these values are the bandwidths

of the virtual processors πk ∈ Π). Thanks to Corollary 1 it

is possible to move some bandwidth from π3 to π2 achiving,

for example, a platform Π′ = [0.7, 0.7], compatible with I.

Moreover it is possible to move again bandwidth from π2

to π1 achieving another compatible platform Π′′ = [1, 0.4].
If instead, starting from Πwc we move bandwidth from π2

to π3 we can find a platform incompatible with I such as

Π′′′ = [0.7, 0.4, 0.3]. In fact, in this case the constraint (17)

for k = 2 is violated since α′′′
1 + α′′′

2 = 1.1 < β2 = 1.2.

D. Application schedulability vs. allocation flexibility

The amount of resource consumed by an interface can be

roughly summarized by overall bandwidth βm. It is however

convenient also to formally represent the accuracy of an

interface I. For this reason we introduce the following index.

Definition 4: The concavity index (or simply concavity)

of virtual platform Π = [α1, . . . , αm], is defined as:

c(Π) = max
k=1,...,m−1

(αk − αk+1). (18)

Definition 5: The concavity index (or simply concavity)

of interface I = (m, ∆, [β1, . . . , βm]) is defined as:

c(I) = c(Πwc) = max
k=1,...,m−1

(2βk − βk−1 − βk+1), (19)

where Πwc is the worst-case platform of the interface I.

As an example, the concavity of the interface of the exam-

ple in Section IV-C is c(I) = max{0.7− 0.5, 0.5− 0.2} =
0.3, while the concavity of the more compact platform Π′′

is c(Π′′) = 0.6.

For any interface, the minimum value that the concavity

index can assume is 0, and it corresponds to an interface with

∀k, βk = k
m

βm and a worst-case platform with αk = βm

m
, ∀k

(from Theorem 2). Therefore, we can say that a smaller

concavity implies a more “difficult” interface for the applica-

tion, since the application must be schedulable on a platform

where all virtual processors have similar bandwidth. Notice

also that when concavity is zero, the number of virtual

platforms compliant with the interface is the largest (from

Corollary 1). Hence this interface corresponds to a scenario

with minimum schedulability and maximum platform flexi-

bility.

When the concavity index is large, instead, the virtual

platform is unbalanced, having some virtual processors with

large bandwidth, and others with small bandwidth. Consider

254

the case of an interface with total bandwidth βm /∈ N,

distributed as follows: I = {⌈βm⌉ , ∆, [1, 2, . . . , ⌊βm⌋ , βm].
It is easy to show that the concavity of this interface is

c(I) = ⌊βm⌋− βm +1. In this case, no platform other than

Πwc = [1, 1, . . . , ⌈βm⌉−βm] is compliant with the interface.

The interface is “easier” from a schedulability point of view

(larger values of Yk(t)), however its flexibility is minimal,

since it requires the availability of ⌊βm⌋ empty processors.

Summarizing, the concavity index is a measure of the

trade-off between “schedulability” and “flexibility” of the

interface. A small concavity index is more difficult from

a schedulability point of view (thus it might imply more

wasted bandwidth), but it allows a high number of compliant

virtual platforms and possibly a more effective allocation; a

large concavity index implies a higher degree of schedula-

bility of the application (allowing to spare some bandwidth)

but a minor number of compliant virtual platforms.

V. FROM THE APPLICATION TO THE INTERFACE

To enable an allocation phase onto larger exploration

spaces, it is always convenient to select the interface I
with the largest possible set of platforms ΠΠΠ(I), among the

ones that can guarantee the application. For this reason we

introduce the following definition.

Definition 6: Given an application A and a guarantee test

T , we say that an interface I is maximal when:

T (A, I),

(T (A, I ′) ∧ ΠΠΠ(I) ⊆ ΠΠΠ(I ′))⇒ I = I ′.
(20)

Hence the interface selection should be performed onto

maximal interfaces. For real-time applications, the schedu-

lability test of Theorem 1 can be used to readily derive the

maximal BDM interfaces I = (m, ∆, [β1, . . . , βm]) that can

guarantee the real-time requirement of the application.

From Theorem 1 and the PSF of an interface I (reported

in (13)), it immediately follows that the application is

guaranteed when
∧

i=1,...,n

∨

k=1...,m

kCi + Wi ≤ βk(Di −∆)0

or, by writing the constraint on the bandwidths αk, equiva-

lently

∧

i=1,...,n

∨

k=1...,m

k∑

j=1

αj(Di −∆)0 ≥ kCi + Wi (21)

keeping in mind that the αk are sorted decreasingly.

To provide a deeper understanding of the space of possible

selections for the interface I, we illustrate (21) by an exam-

ple. Suppose we have the real-time application A whose

parameters are reported in Table I. Let us schedule this

application by local fixed priority. In this case the interfering

workload Wi of each task τi can be computed according

to (6).

i Ci Ti Di Wi

1 1 6 6 0
2 15 27 27 5
3 9 52 52 39

Table I: An example of application.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

i = 1 i = 2 i = 3

∀i ∈ {1, 2, 3}

α1

α1α1α1

α2

α2α2α2

Figure 5: The space of α1 and α2.

First of all, we set m = 2 and ∆ = 2. By writing explicitly

(21), we find the following relationships on α1 and α2

i = 1 k = 1 α1 ≥
1
4

k = 2 α1 + α2 ≥
1
2

i = 2 k = 1 α1 ≥
4
5

k = 2 α1 + α2 ≥
7
5

i = 3 k = 1 α1 ≥
48
50

k = 2 α1 + α2 ≥
57
50

Moreover we assume that all αk’s are sorted decreasingly.

Hence α1 ≥ α2. In Figure 5 we draw in gray the space of

all feasible selections of the array [α1, α2] of an interface

with m = 2 and ∆ = 2.

β1 = α1 β2 α2 = β2 − β1 c(Π)
0.7 1.4 0.7 0
0.8 1.14 0.34 0.46
0.96 0.96 0 0.96

Table II: Candidate interfaces of the application.

In this case there are three maximal candidate interfaces

to represent the application requirement whose parameters

are reported in Table II. In Figure 5 the maximal interfaces

are graphically represented as the left corners of the bottom

figure. The first choice consumes the maximum bandwidth,

although it leaves to the allocation phase the maximum

degree of freedom. On the other hand, the last one consumes

indeed the minimum amount of bandwidth, however it may

be harder to allocate, since it requires a bandwidth of 0.96
on a single processor.

We highlight that (21) defines the design space of the

bandwidths of virtual processors belonging to the platform.

Instead we let the designer to freely choose the value of ∆

255

1: procedure FLUIDBESTFIT(I, ALLOCATED)

2: ∀k U ′
k ← Uk ⊲ make a copy

3: if ALLOCATED is FALSE then

4: compute Πwc = {αi} from I ⊲ Eq. (15)

5: ∀i cpuIDi ← −1 ⊲ all πi are unallocated

6: ALLOCATED ← TRUE

7: end if

8: l← −∞ ⊲ initialization

9: for h ∈ {1, . . . , m} do ⊲ πh to be allocated

10: if cpuIDh = −1 then

11: cpuIDh = BESTFIT({U ′
k}, αh)

12: if cpuIDh = −1 then

13: ALLOCATED ← FALSE

14: return

15: end if

16: end if

17: k ← cpuIDh

18: U ′
k ← U ′

k + αh

19: l ← max(l, h + 1)
20: while 1− U ′

k > 0 and l ≤ m do

21: δ ← min(1 − U ′
k, (l − h)(αl − αl+1))

22: U ′
h ← U ′

h + δ
23: for j ∈ {h + 1, . . . , l} do
24: αj ← αj −

δ
l−h

25: if cpuIDj 6= −1 then

26: U ′
cpuIDj

← U ′
cpuIDj

− δ
l−h

27: end if

28: end for

29: l← l + 1
30: end while

31: end for

32: ∀k Uk = U ′
k

33: end procedure

Figure 6: The FLUIDBESTFIT algorithm

to balance between schedulability and overhead cost. In the

future we plan to solve analytically this step as well as it

was done in the uniprocessor case [8].

VI. FROM INTERFACE TO ALLOCATION

In this section, we present an on-line algorithm called

FLUIDBESTFIT that, given an interface specification I,

selects one platform Π ∈ ΠΠΠ(I) and allocates it on the

physical platform.

The algorithm is described in Figure 6. In short, the

algorithm performs a Best-Fit Decreasing partitioning of the

Πwc platform of the interface I. Then, it tries to find a more

compact platform Π ∈ ΠΠΠ(I), by moving bandwidth from

virtual processors with higher index to the ones with lower

index (thanks to Theorem 2 this move always preserves the

schedulability of the application).

We assume that the real platform consists of M identical

processors, and we denote by Uk the amount of bandwidth

allocated on the physical processor k. Initially the physical

multiprocessor is empty, so all Uk = 0. The procedure

takes as parameters the interface specification I and a

boolean variable ALLOCATED. The procedure is called with

ALLOCATED set to FALSE when the application joins the

system, and it sets ALLOCATED to TRUE if the application

has been successfully allocated onto the available physical

platform. The array [cpuID1, . . . , cpuIDm] contains the pro-

cessor index where πi has been allocated.

Initially, the procedure makes a local copy of all Uk (line

2). Then, if the application is joining the system for the first

time, it computes the worst-case platform Πwc and sets all

elements of the array cpuIDi to −1 (lines 3–7). We assume

that all πi are ordered in non-decreasing order of αi.

Then, for each virtual processor πh, it first tries to allocate

it on one of the physical processors, using the best-fit

strategy (line 11). If the bandwidth αh does not fit in any

of the physical processors, the allocation fails, and sets

ALLOCATED to FALSE (lines 12–15). Otherwise, let k be

the physical processor on which the virtual processor has

been allocated.

It may happen that after the allocation, some free space

is left on processor k. At this point we try to modify the

virtual platform by increasing the αh and decreasing the

bandwidth of successive virtual processors, until we fill

processor k (while cycle in lines 20–30). This transformation

preserves the platform Π ∈ ΠΠΠ(I): in fact, if the condition

∀j,
∑j

i=1 αi ≥ βj is respected before the transformation, it

is still respected after the transformation (see Corollary 1).

The bandwidth of which virtual processors can we de-

crease? In our algorithm, we choose to decrease the band-

widths [αh+1, . . . , αl], with l > h, taking care of preserving

the decreasing order (lines 21–28). While it would be

possible to select differently the indexes of virtual proces-

sors from which we steal bandwidth, our choice has the

advantage of reducing the maximum bandwidth across all

following virtual processors, thus favoring their allocation

with the best-fit strategy.

When an application leaves the system, it is possible

to further compact the existing applications enabling them

to fill the available bandwidth caused by the departure of

applications. This can be made by invoking the algorithm

with ALLOCATED set to TRUE. In this case the algorithm

does not perform the initial allocation anymore, but just tries

to fill the available bandwidth.

In the case of a new application entering the system, the

complexity of the algorithm is O(m log M), where m is the

number of virtual processors (due to the for cycle at line

9), and M is the number of physical processors (due to the

BESTFIT algorithm invoked at line 11). In the latter case

(ALLOCATED set to true), the complexity reduces to O(m).

A. Example of allocation

We now present a very simple example. Consider three

interfaces, each one presents a total bandwidth of 1.53

256

c)

b)

a)

Application 1

Application 2

Application 3

Figure 7: Different strategies for allocating interfaces.

equally distributed on 3 different virtual processors: I1 =
I2 = I3 = (3, ∆, [0.51, 1.02, 1.53]). If we apply a simple

best-fit strategy to the 3 interfaces, we end up with requiring

9 processors (see Figure 7a, where each rectangle represent

a processor, and the filled part represent the percentage of

allocated bandwidth).

Inspired by the work by Leontyev and Anderson [11], for

any interface I with an overall bandwidth requirement of

βm, we could use a platform with bandwidths

[1, . . . , 1
︸ ︷︷ ︸

⌊βm⌋

, βm − ⌊βm⌋].

This chosen Π is always, by construction, in ΠΠΠ(I). In

this example, for each interface I we must prepare a

virtual platform Πi = [1, 0.53]. However, it is easy to see

that a partitioned scheme cannot use less than 6 physical

processors (see Figure 7b).

Finally, we apply our algorithm to the same example.

For all the three interfaces the worst-case platform Πwc is

[0.51, 0.51, 0.51]. The algorithm is first called on I1. After

the first iteration of the loop of lines 9–31 with h = 1,

it allocates α1
1 = 1, leaving α1

2 = α1
3 = 0.265. Then, it

compacts the third virtual processor on the second, obtaining

α1
2 = 0.53 and α1

3 = 0. Now, the algorithm is called

on the second interface I2: 1) it allocates α2
1 = 1 on

the third physical processor, leaving α2
2 = α2

3 = 0.265,

and U = [1, 0.53, 1]; 2) since U2 = 0.53, it allocates the

second virtual processor on the second physical processor,

and compacts it, obtaining α2
2 = 0.47, α2

3 = 0.06 and

U = [1, 1, 1, 0.06]; 3) Finally, α2
3 = 0.06 is allocated on

the fourth processor. It is easy to see that the last interface

is allocated on physical processor 4 and 5, with α3
1 = 0.94

and α3
2 = 0.59 and U = [1, 1, 1, 1, 0.59]. The final situation

is depicted in Figure 7c. In total, our algorithm uses only 5
processors (which is the minimal possible), against 9 of the

best-fit and 6 of the strategy inspired by [11].

VII. SIMULATIONS

In this section, we compare our proposed algorithm FLU-

IDBESTFIT with BESTFIT and FIRSTFIT.

In the experiments, we assumed a physical processor with

an unlimited amount of processors. The goal of the three

algorithms is simply to use the least number of processors.

We have performed two sets of simulations, one with “light”

interfaces, the other one with “heavy” interfaces.

Every interface was randomly generated as follows. We

first extracted the maximum interface parallelism m as an

random number uniformly distributed in [2, 5]. We also set

the overall bandwidth requirement of the interface βm =
r · m, where r is a random number uniformly distributed

between [0.2, 0.5] in the “light” experiment, and [0.3, 0.7] in

the “heavy” experiment. The other interface parameters βi

were calculated so that the interface had a certain concavity

index1. We defined the Concavity ratio, a parameter of the

random generation algorithm, as the ratio between the actual

concavity and the maximum possible concavity.

For each value of the concavity ratio in [0, 1], with steps of

0.1, we generated 500 interfaces, that were submitted to each

of the three algorithms. A maximum of 5 applications were

allowed in the system at any time. This means that, after the

first 5 interfaces, whenever an interface was submitted one

application was removed from the system. After the removal,

algorithm FLUIDBESTFIT was run again with ALLOCATED

set to TRUE, in order to compact existing applications.

After each allocation, we computed the Compaction Index

for each algorithm, defined as the ratio between the number

of processors used by the algorithm and the (theoretical)

minimal number of processors ⌈Utot⌉.
In Figures 8 and 9 we show the average Compaction Index

for the “light” and the “heavy” experiments, respectively. As

expected, for small values of the concavity index Algorithm

FLUIDBESTFIT (lines labeled with FBF in the figures)

performs much better than BESTFIT and FIRSTFIT (labeled

with BF and FF, respectively), because the extra flexibility

allowed by the interface model can be used to obtain a

more compact allocation. As the concavity ratio increases,

the performance of FBF becomes similar to that of BF and

FF, because when there is little or no flexibility, FBF is

basically coincident with BF.

Notice that allocating interfaces according to the band-

width distribution of [11] (and explained in the example of

Section VI-A) consists simply in applying the best-fit algo-

rithm to a platform Π′ ∈ ΠΠΠ(I) with maximum concavity.

Hence its performance is similar to the performance of BF

at maximum concavity.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a framework for the hierar-

chical scheduling of real-time applications onto multipro-

cessors. In particular, we addressed the problem of trading-

off resource utilization versus flexibility in specifying the

interface parameters.

1For space constraints, we do not report here the algorithm for generating
an interface with the desired concavity index. The interested reader can
download the source code of the simulator from http://retis.sssup.it/∼lipari/
abf.tgz

257

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

C
o
m

p
ac

ti
o
n
 i

n
d
ex

Concavity ratio

FF
BF

FBF

Figure 8: Compaction index for light interfaces

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

C
o
m

p
ac

ti
o
n
 i

n
d
ex

Concavity ratio

FF
BF

FBF

Figure 9: Compaction index for heavy interfaces

Due to the generality of the methodology, we foresee sig-

nificant space for improvements. First, we want to account

for more realistic application model, including, for example,

task dependencies. Also, we want to further explore the allo-

cation problem, by devising an algorithm with a guaranteed

approximation ratio w.r.t. an optimal algorithm.

Acknowledgements: We gratefully thank the anony-

mous reviewers for having contributed to greatly improve

the paper with their keen and precise comments.

REFERENCES

[1] “Automotive market overview,” ARM website, http://www.
arm.com/markets/automotive/index.html, Sep. 2004.

[2] Freescale semiconductors, “A smarter approach to multi-
core: Freescales next-generation communications platform,”
Freescale, http://www.freescale.com/files/32bit/doc/white
paper/MULTICOREFTFWP.pdf, Tech. Rep., 2008.

[3] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves: Operating system support for multimedia applica-
tions,” in Proceedings of IEEE International Conference on
Multimedia Computing and Systems, Boston, MA, U.S.A.,
May 1994, pp. 90–99.

[4] Z. Deng, J. w.-s. Liu, and J. Sun, “A scheme for scheduling
hard real-time applications in open system environment,” in
Proceedings of the 9th Euromicro Workshop on Real-Time
Systems, Toledo, Spain, Jun. 1997, pp. 191–199.

[5] G. Lipari and E. Bini, “Resource partitioning among real-
time applications,” in Proceedings of the 15th Euromicro
Conference on Real-Time Systems, Porto, Portugal, Jul. 2003,
pp. 151–158.

[6] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in Proceedings of the 24th Real-Time
Systems Symposium, Cancun, Mexico, Dec. 2003, pp. 2–13.

[7] G. Lipari and E. Bini, “A methodology for designing hier-
archical scheduling systems,” Journal Embedded Computing,
vol. 1, no. 2, pp. 257–269, 2005.

[8] E. Bini, G. Buttazzo, and Y. Wu, “Selecting the minimum
consumed bandwidth of an EDF task set,” in 2nd Workshop on
Compositional Real-Time Systems, Washington (DC), USA,
Dec. 2009, available at http://retis.sssup.it/∼bini/publications/.

[9] A. K. Mok, X. Feng, and D. Chen, “Resource partition for
real-time systems,” in Proceedings of the 7th IEEE Real-Time
Technology and Applications Symposium, Taipei, Taiwan,
May 2001, pp. 75–84.

[10] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis
framework using EDP resource models,” in Proceedings of
the 28th IEEE International Real-Time Systems Symposium,
Tucson, AZ, USA, 2007, pp. 129–138.

[11] H. Leontyev and J. H. Anderson, “A hierarchical multiproces-
sor bandwidth reservation scheme with timing guarantees,” in
Proceedings of the 20th Euromicro Conference on Real-Time
Systems, Prague, Czech Republic, Jul. 2008, pp. 191–200.

[12] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling
framework for virtual clustering multiprocessors,” in Proceed-
ings of the 20th Euromicro Conference on Real-Time Systems,
Prague, Czech Republic, Jul. 2008, pp. 181–190.

[13] Y. Chang, R. Davis, and A. Wellings, “Schedulability anal-
ysis for a real-time multiprocessor system based on service
contracts and resource partitioning,” University of York, Tech.
Rep. YCS 432, 2008, available at http://www.cs.york.ac.uk/
ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf.

[14] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor
platforms: Specification and use,” in Proceedings of the
30th IEEE Real-Time Systems Symposium, Washinghton, DC,
USA, Dec. 2009, pp. 437–446.

[15] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and
S. Stiller, “Implementation of a speedup-optimal global EDF
schedulability test,” in Proceedings of the EuroMicro Confer-
ence on Real-Time Systems. Dublin: IEEE Computer Society
Press, July 2009.

[16] E. Bini, G. C. Buttazzo, and M. Bertogna, “The multy supply
function abstraction for multiprocessors,” in Proceedings of
the 15th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, Beijing,
China, Aug. 2009, pp. 294–302.

[17] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on
uniform multiprocessors,” in Proceedings of the 22nd IEEE
Real-Time Systems Symposium, London, United Kingdom,
Dec. 2001, pp. 183–192.

[18] S. K. Baruah, N. K. Cohen, G. Plaxton, and D. A. Varvel,
“Proportionate progress: a notion of fairness in resource
allocation,” Algorithmica, vol. 15, no. 6, pp. 600–625, Jun.
1996.

258

