
ar
X

iv
:1

00
7.

06
83

v1
 [

cs
.O

H
]

 2
1

Ju
n

20
10

Scheduling Periodic Real-Time Tasks with
Heterogeneous Reward Requirements

I-Hong Hou
CSL and Department of CS

University of Illinois

Urbana, IL 61801, USA

ihou2@illinois.edu

P. R. Kumar
CSL and Department of ECE

University of Illinois

Urbana, IL 61801, USA

prkumar@illinois.edu

Abstract—We study the problem of scheduling periodic
real-time tasks so as to meet their individual minimum
reward requirements. A task generates jobs that can be
given arbitrary service times before their deadlines. A task
then obtains rewards based on the service times received
by its jobs. We show that this model is compatible to the
imprecise computation models and the increasing reward
with increasing service models. In contrast to previous work
on these models, which mainly focus on maximize the total
reward in the system, we aim to fulfill different reward
requirements by different tasks, which offers better fairness
and allows fine-grained tradeoff between tasks. We first
derive a necessary and sufficient condition for a system,
along with reward requirements of tasks, to be feasible. We
also obtain an off-line feasibility optimal scheduling policy.
We then studies a sufficient condition for a policy to be
feasibility optimal or achieves some approximation bound.
This condition can serve as a guideline for designing on-
line scheduling policy and we obtains a greedy policy based
on it. We prove that the on-line policy is feasibility optimal
when all tasks have the same periods and also obtain an
approximation bound for the policy under general cases.

I. INTRODUCTION

In classical hard real-time systems, every job needs to
be completed before its deadline, or the system suffers
from a timing fault. In practice, many applications allow
approximate results and partially completed jobs only
degrade the overall performance rather than causing a
fault. Imprecise computation models [2], [3] and increas-
ing reward with increasing service (IRIS) models [10]
have been proposed to deal with such applications. Most
work on these models only aims to minimize the total
error, or, equivalently, maximize the total reward of the
system without any considerations on fairness. However,
in many applications, rewards of different tasks are not
additive and satisfying individual reward requirements
is more important than maximizing total rewards. For
example, consider a server that provides video streams
to subscribers. Deadline misses will only cause losses on

This material is based upon work partially supported by USARO un-
der Contract Nos. W911NF-08-1-0238 and W-911-NF-0710287, AFOSR
under Contract FA9550-09-0121, and NSF under Contract No. CNS-07-
21992. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not
necessarily reflect the views of the above agencies.

some frames and degrade the video quality, which is usu-
ally tolerable as long as such losses happen infrequently.
In such an application, a policy that aims to maximize
total reward may end up providing perfect video quality
for some subscribers while only offering poor quality
for others. In contrast, a desirable policy should aim at
providing reasonably good quality to all of its subscribers.

In this paper, we describe a model that considers the
hard delay bounds of tasks as well as rewards for partially
completed jobs, in a system with a set of periodic tasks.
The relationship between service times and rewards can
be any arbitrary increasing and concave function and may
differ from task to task. We allow each task to have its own
individual requirement on the average reward it obtains.
We show that both the imprecise computation model and
the IRIS model are special cases of our model.

Based on the model, we first analyze the conditions
for feasibility, that is, whether there exists a scheduling
policy that meets the individual reward requirements of
all tasks in the system. We prove a necessary and sufficient
condition for feasibility. We also propose a linear time
algorithm for evaluating whether a system is feasible.
Along with the feasibility condition, we also derive an off-
line scheduling policy that is feasibility optimal, meaning
that it fulfills all feasible systems.

We then study the problem of designing on-line
scheduling policies. We derive a sufficient condition for
a policy to be feasibility optimal, or, serve as an approx-
imation policy with some approximation bound. Using
this condition as a guideline, we propose an on-line
scheduling policy. We prove that this on-line policy fulfills
every feasible system in which periods are the same for
all tasks. We also obtain an approximation bound for this
policy when periods of tasks may be different.

In addition to theoretical studies, we also conduct
simulations to verify our results. We compare our policy
against one proposed by Aydin et al [1], which is proved
to be an optimal off-line policy that maximizes the total
reward in any system. Simulation results suggest that al-
though the policy proposed by [1] achieves maximum to-
tal reward, it can result in severe unfairness and does not
allow fine-grained tradeoffs between the performances of
different tasks.

http://arxiv.org/abs/1007.0683v1

2

The rest of the paper is organized as follows. Section
II summaries some existing work and, in particular, in-
troduces the basic concepts in the imprecise computation
model and the IRIS model. Section III formally describes
our proposed model and discusses how it can capture
the imprecise computation model and the IRIS model.
Section IV analyzes the necessary and sufficient condition
for a system to be feasible, and proposes a linear time
algorithm for evaluating feasibility. Section V studies the
problem of scheduling jobs and obtains a sufficient con-
dition for a policy to achieve an approximation bound
or to be feasibility optimal. Based on this condition,
Section VI proposes a simple on-line scheduling policy and
analyzes its performance under different cases. Section VII
demonstrates our simulation results. Finally, Section VIII
concludes this paper.

II. RELATED WORK

The imprecise computation models [2], [3] have been
proposed to handle applications in which partially com-
pleted jobs are useful. In this model, all jobs consist
of two parts: a mandatory part and an optional part.
The mandatory part needs to be completed before its
deadline, or else the system suffers from a timing fault.
On the other hand, the optional part is used to further
enhance performance by either reducing errors or in-
creasing rewards. The relations between the errors, or
rewards, and the time spent on the optional parts, are
described through error functions or reward functions.
Chung, Liu, and Lin [2] have proposed scheduling policies
that aim to minimize the total average error in the system
for this model. Their result is optimal only when the
error functions are linear and tasks generate jobs with
the same period. Shih and Liu [4] have proposed policies
that minimize the maximum error among all tasks in the
system when error functions are linear. Feiler and Walker
[5] have used feedback to opportunistically schedule
optional parts when the lengths of mandatory parts may
be time-varying. Mejia-Alvarez, Melhem, and Mosse [6]
have studied the problem of maximizing total rewards in
the system when job generations are dynamic. Chen et al
[7] have proposed scheduling policies that defer optional
parts so as to provide more timely response for mandatory
parts. Zu and Chang [8] have studied the scheduling
problem when optional parts are hierarchical. Aydin et
al [1] have proposed an off-line scheduling policy that
maximizes total rewards when the reward functions are
increasing and concave. Most of these works only concern
the maximization of the total reward in a system. Amir-
ijoo, Hansson, and Son [9] have considered the tradeoff
between data errors and transaction errors in a real-time
database. The IRIS models can be thought of as special
cases of the imprecise computation models where the
lengths of mandatory parts are zero. Scheduling policies
aimed at maximizing total rewards have been studied for
such models [10], [11].

III. SYSTEM MODEL

Consider a system with a set S = {A,B, . . . } of
real-time tasks. Time is slotted and expressed by t ∈
{0, 1, 2, . . .}. Each task X generates a job periodically with
period τX . A job can be executed multiple times in the
period that it is generated; the execution of a job does not
mean its completion. The job is removed from the system
when the next period begins. In other words, the relative
deadline of a job generated by task X is also τX . We
assume that all tasks in S generate a job at time t = 0. We
denote a frame as the time between two consecutive time
slots where all tasks generate a job. The length of a frame,
which we denote by T , is the least common multiple of
{τX |X ∈ S}. Thus, a frame consists of T/τX periods of
task X .

As noted above, each job can be executed an arbitrary
number of time slots before its deadline. Each task obtains
a certain reward each time that its job is executed. The
total amount of reward obtained by a task in a period
depends on the number of times that its job has been
executed in the period. More formally, task X obtains
reward riX ≥ 0 when it executes its job for the ith time in
a period. For example, if a job of task X is executed a total
of n time slots, then the total reward obtained by task X
in this period is r1X + r2X + · · · + rnX . We further assume
that the marginal reward of executing a job decreases as
the number of executions increases, that is, ri+1

X ≤ riX ,
for all i and X . Thus, the total reward that a task obtains
in a period is an increasing and concave function of the
number of time slots that its job is executed.

A scheduling policy η for the system is one that chooses
an action in each time slot. The action taken by η at time
t is described by η(t) = (X, i), meaning that the policy
executes the job of task X at time t and that this is the
ith time that the job is being executed in the period. Fig. 1
shows an example with two tasks over one frame, which
consists of two periods of task A and three periods of
task B. In this example, action (A, 1) is executed twice
and (A, 2) is executed once. Thus, the reward obtained
by task A in this frame is 2r1A + r2A. On the other hand,
the reward obtained by task B in this frame is 3r1B.

The performance of the system is described by the long-
term average reward per frame of each task in the system.

Definition 1: Let sX(t) be the total reward obtained by
task X between time 0 and time t under some scheduling
policy η. The average reward of task X is defined as qX :=
lim inft→∞

sX (t)
t/T .

We assume that there is a minimum average reward
requirement for each task X , q∗X > 0. We wish to verify
whether a system is feasible, that is, whether each task can
have its minimum average reward requirement satisfied.

Definition 2: A system is fulfilled by a scheduling policy
η if, under η, qX ≥ q∗X with probability 1, for all X ∈ S.

Definition 3: A system is feasible if there exists some
scheduling policy that fulfills it.

A natural metric to evaluate a scheduling policy is
the set of systems that the policy fulfills. For ease of

3

Fig. 1: An example of the system and scheduling policy
over a frame of six slots, which consists of two period of
task A and three periods of task B. Arrows in the figure
indicate the beginning of a new period.

discussion, we only consider systems that are strictly
feasible

Definition 4: A system with minimum reward require-
ments [q∗X |X ∈ S] is strictly feasible if there exists some
ǫ > 0 such that the same system with minimum reward
requirements [(1 + ǫ)q∗X] is feasible.

Definition 5: A scheduling policy is feasibility optimal if
it fulfills all strictly feasible systems.

Moreover, since the overhead for computing a feasibility
optimal policy may be too high in certain scenarios, we
also need to consider simple approximation policies.

Definition 6: A scheduling policy is a p-approximation
policy, p ≥ 1, if it fulfills all systems with minimum
reward requirements [q∗X] such that the same system with
minimum reward requirements [pq∗X] is strictly feasible.

A. Extensions for Imprecise Computation Models

In this section, we discuss how our proposed model
can be used to handle imprecise computation models and
IRIS models. In such models, a task consists of two parts:
a mandatory part and an optional part. The mandatory
part is required to be completed in each period, or else the
system fails. After the mandatory part is completed, the
optional part can be executed to improve performance.
The more optional parts executed for a task, the more
rewards it gets.

Let mX be the length of the mandatory part of task X ,
that is, it is required that each job of X is executed at
least mX time slots in each of its period. Let oX be the
length of the optional part of task X . To accommodate this
scenario, we define a symbolic value M with the following
arithmetic reminiscent of the “Big-M Method” in linear
programming: 0×M = 0, aM+bM = (a+b)M , a×(bM) =
(ab)M , aM + c > bM + d, if a > b, and aM + c > aM + d
if c > d, for all real numbers a, b, c, d. Loosely speaking,
M can be thought of as a huge positive number. For each
task X , we set r1X = r2X = · · · = rmX

X = M , we then
set rmX+1

X , rmX+2
X , . . . , rmX+oX

X according to the rewards
obtained by X for its optional part, and riX = 0, for all
i > mX+oX . The minimum reward requirement of task X
is set to be T

τX
mXM+ q̂∗X with q̂∗X ≥ 0. Thus, a scheduling

policy that fulfills such a system is guaranteed to complete
each mandatory part with probability one.

IV. FEASIBILITY ANALYSIS

In this section, we establish a necessary and sufficient
condition for a system to be feasible. Consider a feasible
system that is fulfilled by a policy η. Suppose that, on
average, there are f i

X periods of task X in a frame in
which the action (X, i) is taken by η. The average reward
of task X can then be expressed as qX =

∑τX
i=1 f

i
XriX .

We can immediately obtain a necessary condition for
feasibility.

Lemma 1: A system with a set of tasks S = {A,B, . . . }
is feasible only if there exists {f i

X |X ∈ S, 1 ≤ i ≤ τX}
such that

q∗X ≤

τX
∑

i=1

f i
XriX , ∀X ∈ S, (1)

0 ≤ f i
X ≤

T

τX
, ∀X ∈ S, 1 ≤ i ≤ τX , (2)

∑

X∈S

τX
∑

i=1

f i
X ≤ T. (3)

Proof: Condition (1) holds because task X requires
that q∗X ≤ qX . Condition (2) holds because there are
T/τX periods of task X in a frame and thus f i

X is upper-
bounded by T/τX . Finally, the total average number of
time slots that the system executes one of the jobs in
a frame can be expressed as

∑

X∈S

∑τX
i=1 f

i
X , which is

upper-bounded by the number of time slots in a frame,
T . Thus, condition (3) follows.

Next, we show that the conditions (1)–(3) are
also sufficient for feasibility. To prove this, we first
show that the polytope, which contains all points
f = (f1

A, f
2
A, . . . , f

τA
A , f1

B, . . .) that satisfy conditions
(2) and (3), is a convex hull of several integer
points. We then show that for all integer points n =
(n1

A, n
2
A, . . . , n

τA
A , n1

B, . . .) in the polytope, there is a sched-
ule under which the reward obtained by task X is at least
∑τX

i=1 n
i
XriX . We then prove sufficiency using these two

results.

Define a matrix H = [hi,j] with 2
∑

X∈S τX + 1 rows
and

∑

X∈S τX columns as follows:

hi,j =











1, if i = 1,
1, if i = 2j,
−1, if i = 2j + 1,
0, else.

(4)

Define b = [bi] to be a column vector with 2
∑

X∈S τX +
1 elements so that b1 = T ; the first τA elements with
even indices are set to T/τA, that is, b2 = b4 = · · · =
b2τA = T/τA; the next τB elements with even indices are
set to T/τB, and so on. All other elements are set to 0.

4

For example, the system shown in Fig. 1 would have

H =

























1, 1, 1, 1, . . .
1, 0, 0, 0, . . .
−1, 0, 0, 0, . . .
0, 1, 0, 0, . . .
0, −1, 0, 0, . . .
0, 0, 1, 0, . . .
0, 0, −1, 0, . . .

...

























, b =































T
T/τA
0

T/τA
0
...

T/τB
0
...































.

Thus, conditions (2) and (3) can be described as Hf ≤
b. Theorem 5.20 and Theorem 5.24 in [12] shows the
following:

Theorem 1: The polytope defined by {f |Hf ≤ b},
where b is an integer vector, is a convex hull of several
integer points if for every subset R of rows in H , there ex-
ists a partition of R = R1∪R2 such that for every column
j in H , we have

∑

i1∈R1
hi1,j−

∑

i2∈R2
hi2,j ∈ {1, 0,−1}.

1

Since all elements in b are integers, we obtain the
following:

Theorem 2: The polytope defined by {f |Hf ≤ b},
where H and b are derived using conditions (2) and (3)
as above, is a convex hull of several integer points.

Proof: Let R = {r1, r2, . . . } be the indices of some
subset of rows in H . If the first row is in R, we choose
R1 = {r|r ∈ R, r is odd} and R2 = {r|r ∈ R, r is even}.
Since for all columns j in H , h1,j = 1, h2j,j = 1,
h2j+1,j = −1, and all other elements in column j are zero,
we have

∑

i1∈R1
hi1,j −

∑

i2∈R2
hi2,j ∈ {1, 0,−1}. On the

other hand, if the first row is not in R, we choose R1 = R
and R2 = ∅. Again, we have

∑

i1∈R1
hi1,j−

∑

i2∈R2
hi2,j =

∑

i1∈R1
hi1,j ∈ {1, 0,−1}. Thus, by Theorem 1, the poly-

tope defined by {f |Hf ≤ b} is a convex hull of several
integer points.

Next we show that all integer points in the polytope
can be carried out by some scheduling policy as follows:

Theorem 3: Let n = (n1
A, n

2
A, . . . , n

τA
A , n1

B, . . .) be an
integer point in the polytope {f |Hf ≤ b}. Then, there
exists a scheduling policy so that qX ≥

∑τX
i=1 n

i
XriX .

Proof: We prove this theorem by constructing a
scheduling policy that achieves the aforementioned re-
quirement. We begin by marking deadlines of actions.
Ideally, we wish to schedule the action (X, i) ni

X times
in a frame. Without loss of generality, we assume that
the frame starts at time 0 and ends at time T . Since
there is at most one (X, i) action in a period of task
X , we can mark the deadlines of these actions as T, T −
τX , . . . , T−(ni

X−1)τX , respectively. The scheduling policy
will schedule the action with the earliest deadline that has
neither been executed in its period (that is, it does not
schedule two actions of the same type in the same period)
nor missed its deadline, with ties broken arbitrarily. Fig.
2a shows how the deadlines are marked in an example

1Such matrix H is called a totally unimodular matrix in combinatorial
optimization theory.

(a) The deadlines that are marked

(b) The actions scheduled before renumbering

(c) The actions scheduled after renumbering

Fig. 2: An example of the scheduling policy in Theorem
3. Deadlines of actions are marked by putting the action
above the arrow of its deadline.

with n1
A = 1, n2

A = 2, n1
B = 2, and n2

B = 1. Fig. 2b shows
the resulting schedule for this example. Note that, under
this policy, there are time slots where the policy schedules
an action (X, i), but it is instead the jth time that the
job of X is executed in the period. Thus, we may need
to renumber these actions as in Fig. 2c and define n̄i

X

as the actual number of times that the action (X, i) is
executed in the frame. In the example of Fig. 2, we have
n̄1
A = 2, n̄2

A = 1, n̄1
B = 3, and n̄2

B = 0. Since the policy does
not schedule two identical actions in a period, as long as
all actions are executed before their respective deadlines,

we have
∑k

i=1 n̄
i
X ≥

∑k
i=1 n

i
X , for all k and X ∈ S. Thus,

qX =
∑τX

i=1 n̄
i
XriX ≥

∑τX
i=1 n

i
XriX , since r1X ≥ r2X ≥ . . . ,

for all X ∈ S. To avoid confusion, we refer actions by its
type before renumbering throughout the rest of the proof.

It remains to show that none of the actions miss their
deadlines under this policy. We prove this by contradic-
tion. Let dX(t) be the number of actions of task X whose
deadlines are smaller or equal to t. By the way that

we mark deadlines of actions, we have that
dX(τX)

τX
≤

dX(2τX)
2τX

≤ · · · ≤ dX(T)
T . We also have dX(t) = dX(kτX),

for all t ∈ [kτX , (k+1)τX). For any t, let kX = ⌊ t
τX
⌋, and

5

we then have
∑

X∈S
dX (t)

t =
∑

X∈S
dX(kXτX)

t

≤
∑

X∈S
dX(kXτX)

kXτX

≤
∑

X∈S
dX(T)

T ≤ 1,

(5)

where the last inequality follows by condition (3).

Suppose there is an action (X, i) that misses its deadline
at time t under our policy. We first consider the case where
the policy schedules an action with deadline smaller or
equal to t in all time slots between 0 and t, with no time
slot left idle. In this case, we have

∑

X∈S dX(t) ≥ t + 1

and thus
∑

X∈S
dX(t)

t > 1, which contradicts Eq. (5).

Next we consider the case where at some time t′ < t
the policy does not schedule an action with deadline
smaller or equal to t. That is, at time t′, the policy either
schedules an action whose deadline is strictly larger than
t or stays idle. Now we first claim that t and t′ cannot
belong to the same period of X , that is, the case with
t′ > t − τX is not possible. The only reason that (X, i)
is not in fact scheduled at t′ is that there is already one
identical action in the corresponding period containing
t′. This other action would have a deadline at either
t or t − kτX for some k ≥ 1. The former case is not
possible because two identical actions cannot have the
same deadline. The latter is also not possible because no
action is scheduled after its deadline and t − kτX < t′ if
t and t′ belong to the same period.

As shown above, the interval [t − τX + 1, t] has the
property that all actions scheduled in this interval have
deadlines smaller or equal to t. Now we proceed to show
that t′ ≤ t − τX is also not possible. We do this by
expanding this interval while preserving this property.
Pick any action, (X ′, i′), scheduled at time tX′ in the
interval and assume that the period of X ′ containing tX′

is [t1X′ , t2X′]. We have t2X′ ≤ t since the deadline of (X ′, i′)
is no larger than t and the deadline of this action is at
the end of some period of X ′. Now, by the design of
the scheduling policy, for any t̄X′ in [t1X′ , tX′], the action
scheduled in t̄X′ should have deadline smaller or equal
to the deadline of (X ′, i′), or otherwise (X ′, i′) should
have been scheduled in t̄X′ . The deadline of the action
scheduled in t̄X′ is thus also smaller or equal to t. Thus,
if t1X′ is smaller than the beginning of the interval, we can
expand the interval to [t1X′ , t] while preserving the desired
property. We keep expanding the interval until no more
expansions are possible.

Let (Y, j) be the action in the resulting interval with the
largest period, τY , and suppose that it is scheduled at time
tY . Assume that the period of Y containing tY is [t1Y , t

2
Y].

By the way we expand the interval, [t1Y , t
2
Y] is within the

expanded interval and all actions scheduled in [t1Y , t
2
Y]

have deadlines smaller or equal to t. For each action in
[t1Y , t

2
Y], the reason that it has not been scheduled earlier

at time t′ is because there is already one identical action
scheduled in its period that contains t′. This identical
action, also with deadline earlier than t, must have been
scheduled before time t′. Since the period of this action is

smaller or equal to τY , its identical counterpart must have
been scheduled in [t′−τY +1, t′−1]. However, there are at
most τY − 1 actions scheduled in [t′− τY +1, t′− 1], while
there are τY actions in [t1Y , t

2
Y], leading to a contradiction.

Thus, this case is also not possible.
In sum, all actions are scheduled before their deadlines

using this policy, and the proof is completed.
Now we can derive the necessary and sufficient condi-

tion for a system to be feasible.
Theorem 4: A system with a set of tasks S = {A,B, . . . }

is feasible if and only if there exists {f i
X |X ∈ S, 1 ≤ i ≤

τX} such that (1) - (3) are satisfied.
Proof: Lemma 1 has established that these conditions

are necessary. It remains to show that they are also
sufficient. Suppose there exists f = {f i

X |X ∈ S, 1 ≤
i ≤ τX} that satisfy (1) - (3), then Theorem 2 shows
that there exists integer vectors n[1], n[2], . . . , n[v] such
that f =

∑v
u=1 αun[u], where αu’s are positive numbers

with
∑v

u=1 αu = 1. Let ηu be the scheduling policy for
the integer vector n[u] as in the proof of Theorem 3,
for each u. Theorem 3 have shown that for each u, the
average reward obtained by X under ηu, qX [ηu], is at
least

∑τX
i=1 n[u]

i
XriX . Finally, we can design a policy as

a weighted round robin policy that switches among the
policies η1, η2, . . . , ηv , with policy ηu being chosen in
αu of the frames. The average reward obtained by X
is hence qX =

∑

u αuqX [ηu] ≥
∑

u αu(
∑τX

i=1 n[u]
i
XriX) =

∑τX
i=1 f

i
XriX ≥ q∗X . Thus, this policy fulfills the system and

so the conditions are also sufficient.
Using Theorem 4, checking whether a system is feasible

can be done by any linear programming solver. The
computational overhead for checking feasibility can be
further reduced by using the fact that riX ≥ rjX , for all
i < j. Given a system and {f i

X} that satisfies conditions

(1) - (3) with f j
Y < T

τY
and fk

Y > 0 for some j < k and

Y ∈ S. Let δ = min{ T
τY
− f j

Y , f
k
Y }. Construct {f̂ i

X} such

that f̂ j
Y = f j

Y + δ, f̂k
Y = fk

Y − δ, and f̂ i
X = f i

X for all

other elements. Then {f̂ i
X} also satisfies conditions (1) -

(3). Based on this observation, we derive an algorithm
for checking feasibility as shown in Algorithm 1. This
essentially transfers slots from less reward earning actions
to more reward earning actions. The running time of
this algorithm is O(

∑

X∈S τX). Since a specification of a
system involves at least the

∑

X∈S τX variables of {riX},
Algorithm 1 is essentially a linear time algorithm.

In addition to evaluating feasibility, the proof of The-
orem 4 also demonstrates an off-line feasibility optimal
policy. In many scenarios, however, on-line policies are
preferred. In the next section, we introduce a guideline
for designing scheduling policies that turns out to suggest
simple on-line policies.

V. DESIGNING SCHEDULING POLICIES

In this section, we study the problem of designing
scheduling policies. We establish sufficient conditions for
a policy to be either feasibility optimal or p-approximately
so.

6

Algorithm 1 Feasibility Checker

Require: S, {τX |X ∈ S}, {riX |X ∈ S, 1 ≤ i ≤ τX},
{q∗X |X ∈ S}

1: for X ∈ S do
2: if q∗X > T

τX

∑τX
i=1 r

i
X then

3: return Infeasible
4: end if
5: end for
6: for X ∈ S do
7: i← 1
8: while q∗X > 0 do
9: if q∗X > T

τX
riX then

10: f i
X ← T/τX

11: q∗X ← q∗X −
T
τX

riX
12: else
13: f i

X ← q∗X/riX
14: q∗X ← 0
15: end if
16: i← i+ 1
17: end while
18: end for
19: if

∑

X∈S

∑i=1
τX

f i
X ≤ T then

20: return Feasible
21: else
22: return Infeasible
23: end if

We start by introducing a metric to evaluate the per-
formance of a policy η. Let q̃X(k) be the total reward
obtained by task X during the frame ((k − 1)T, kT]. We

then have qX = lim infk→∞

∑
k

i=1
q̃X (i)

k . We also define the
debt of task X .

Definition 7: The debt of task X in the frame ((k −
1)T, kT], dX(k) is defined recursively as follows:

dX(0) = 0,

dX(k) = [dX(k − 1) + q∗X − q̃X(k)]+, ∀k > 0.

Lemma 2: A system is fulfilled by a policy η if
limk→∞ dX(k)/k = 0 with probability 1.

Proof: We have dX(k) ≥ kq∗X −
∑k

i=1 q̃X(i) and

dX(k)/k ≥ q∗X−
1
k

∑k
i=1 q̃X(i). Thus, if limk→∞ dX(k)/k =

0, then qX = lim infk→∞

∑
k

i=1
q̃X (i)

k ≥ q∗X and the system
is fulfilled.

We can describe the state of the system in the kth frame
by the debts of tasks, [dX(k)|X ∈ S]. Consider a policy
that schedules jobs solely based on the requirements and
the state of the system. The evolution of the state of the
system can then be described as a Markov chain.

Lemma 3: Suppose the evolution of the state of a sys-
tem can be described as a Markov chain under some
policy η. The system is fulfilled by η if this Markov chain
is irreducible and positive recurrent.

Proof: Since the Markov chain is positive recurrent,
the state {dX(k) = 0, ∀X ∈ S} is visited infinitely many
times. Further, assuming that the system is in this state at

frames k1, k2, k3, . . . , then [kn+1 − kn] is a series of i.i.d.
random variables with finite mean. Let In be the indicator
variable that there exists some k̃n between frame kn and
frame kn+1 such that dX(k̃n)/k̃n > δ for some X ∈ S, for
some arbitrary δ > 0. Let q∗max = maxX∈S q∗X . If In = 1,

we have that k̃n ≥ kn ≥ n and thus dX(k̃n) > nδ, for
some X ∈ S. Since dX(k) can be incremented by at most
q∗max in a frame and dX(kn) = 0, k̃n − kn > nδ/q∗max and
kn+1 − kn > k̃n − kn > nδ/q∗max. Thus,

Prob{In = 1} < Prob{kn+1 − kn > nδ/q∗max}

= Prob{k2 − k1 > nδ/q∗max},

and

∞
∑

n=1

Prob{In = 1} <

∞
∑

n=1

Prob{k2 − k1 > nδ/q∗max}

≤ E[k2 − k1] <∞,

By Borel-Cantelli Lemma, the probability that In = 1
for infinitely many n’s is zero, and so is the proba-
bility that dX(k)/k > δ for infinitely many k’s. Thus,
lim supk→∞

dX(k)/k < δ with probability 1, for all
X ∈ S and any arbitrary δ > 0. Finally, we have
limk→∞ dX(k)/k = 0 with probability 1 since dX(k) ≥ 0
by definition.

Based on the above lemmas, we determine a sufficient
condition for a policy to be a p-approximation policy. The
proof is based on the Foster-Lyapunov Theorem:

Theorem 5 (Foster-Lyapunov Theorem): Consider a
Markov chain with state space D. Let D(k) be the state
of the Markov chain at the kth step. If there exists a
non-negative function L : D → R, a positive number δ,
and a finite subset D0 of D such that:

E[L(D(k + 1))− L(D(k))|D(k)] ≤ −δ, if D(k) /∈ D0,

E[L(D(k + 1))|D(k)] <∞, if D(k) ∈ D0,

then the Markov chain is positive recurrent. �
Theorem 6: A policy η is a p-approximation policy, for

some p > 1, if it schedules jobs solely based on the
requirements and the state of a system and, for each k,
the following holds:
∑

X∈S

q̃X(k)dX(k) ≥ (max
[qX]: [qX] is feasible

∑

X∈S

qXdX(k))/p.

Proof: Consider a system with minimum reward re-
quirements [q∗X] such that the same system with minimum
reward requirements [pq∗X] is also strictly feasible. By
Lemma 3, it suffices to show that under the policy η,
the resulting Markov chain is positive recurrent. Consider
the Lyapunov function L(k) :=

∑

X∈S d2X(k)/2. The Lya-
punov drift function can be written as:

∆L(k + 1) :=L(k + 1)− L(k) =
1

2

∑

X∈S

[d2X(k + 1)− d2X(k)]

≤
∑

X∈S

(q∗X − q̃X(k))dX(k) + C,

7

where C is a bounded constant. Since [pq∗X] is
also strictly feasible and dX(k) ≥ 0, there ex-
ists ǫ > 0 such that (1 + ǫ)

∑

X∈S pq∗XdX(k) ≤
max[qX]: [qX] is feasible

∑

X∈S qXdX(k), and hence (1 +

ǫ)
∑

X∈S q∗XdX(k) ≤
∑

X∈S q̃X(k)dX(k). Thus, we have

∆L(k + 1) ≤ −ǫ
∑

X∈S

q∗XdX(k) + C. (6)

Let D0 be the set of states [dX(k)|X ∈ S] with
∑

X∈S q∗XdX(k) < (C + δ)/ǫ, for some positive finite
number δ. Then, D0 is a finite set (since q∗X > 0 for all
x ∈ S), with ∆L(k + 1) < −δ when the state of frame
k is not in D0. Further, since dX(k) can be increased by
at most q∗X in each frame, L(k + 1) is finite if the state
of frame k is in D0. By Theorem 5, this Markov chain is
positive recurrent and policy η fulfills this system.

Since a 1-approximation policy is also a feasibility
optimal one, a similar proof yields the following:

Theorem 7: A policy η fulfills a strictly feasible system
if it maximizes

∑

X∈S q̃X(k)dX(k) among all feasible [qX]
in every frame k. It is a feasibility optimal policy if the
above holds for all strictly feasible systems.

VI. AN ON-LINE SCHEDULING POLICY

While Section V has described a sufficient condition
for designing feasibility optimal policies, the overhead
for computing such a feasibility optimal scheduling pol-
icy may be too high to implement. In this section, we
introduce a simple on-line policy. We also analyze the
performance of this policy under different scenarios.

Theorem 7 has shown that a policy that maximizes
∑

X∈S q̃X(k)dX(k) among all feasible [qX] in every frame
k is feasibility optimal. The on-line policy follows this
guideline by greedily selecting the job with the highest
rixdX(k) in each time slot. Assume that, at some time t
in frame k, task X has already been scheduled iX times
in its period. The on-line policy then schedules the task
Y so that riY +1

Y dY (k) is maximized among all X ∈ S. A
more detailed description of this policy, which we call the
Greedy Maximizer, is shown in Algorithm 2.

Next, we evaluate the performance of the Greedy Max-
imizer. We show that this policy is feasibility optimal if
the periods of all tasks are the same, and that it is 2-
approximation in general.

Theorem 8: The Greedy Maximizer fulfills all strictly
feasible systems with τX ≡ τ , for all X ∈ S.

Proof: It suffices to prove that the Greedy Maximizer
indeed maximizes

∑

X∈S dX(k)q̃X(k) in every frame. Sup-
pose at some frame k, the debts are {dX(k)} and the
schedule generated by the Greedy Maximizer is ηGM (t),
t ∈ (kT, (k + 1)T]. Let GM :=

∑

X∈S dX(k)q̃X(k) when
ηGM is applied. Consider another schedule, ηOPT (t), that
achieves Max

∑

X∈S dX(k)q̃X(k) =: OPT in this frame.
We need to show that GM ≥ OPT .

We are going to modify ηOPT (t) slot by slot until it
is the same as ηGM . Let ηiOPT (t) be the schedule after
we have made sure ηiOPT (t) = ηGM (t) for all t between
kT and i, and let OPT i :=

∑

X∈S dX(k)q̃X(k) when

Algorithm 2 Greedy Maximizer

Require: S, {τX |X ∈ S}, {riX |X ∈ S, 1 ≤ i ≤ τX},
{q∗X |X ∈ S}

1: T ← least common multiplier of {τX |X ∈ S}
2: for X ∈ S do
3: dX ← 0
4: end for
5: k ← 0
6: t← 0
7: loop
8: t← t+ 1
9: if t mod T = 1{A new frame} then

10: k ← k + 1
11: for X ∈ S do
12: dX ← [dX + q∗X − q̃X]+

13: q̃X ← 0
14: end for
15: end if
16: for X ∈ S do
17: if t mod τX = 1{A new period for X} then
18: iX ← 0
19: end if
20: end for
21: Y ← argmaxX∈S riX+1

X dX
22: iY ← iY + 1
23: q̃Y ← q̃Y + riYY
24: execute the job of Y at time t
25: end loop

ηiOPT (t) is applied. We then have ηOPT ≡ ηkTOPT and

ηGM ≡ η
(k+1)T
OPT . The process of modification is as follows:

If ηiOPT (i + 1) = ηGM (i + 1), then we do not need
to modify anything and we simply set ηi+1

OPT ≡ ηiOPT .
On the other hand, if ηiOPT (i + 1) 6= ηGM (i + 1), say,
ηGM (i + 1) = (A, jA) and ηiOPT (i + 1) = (B, jB), then
we modify ηiOPT (t) under two different cases. The first
case is that ηiOPT is going to schedule the action (A, jA)
some time after i + 1 in this frame. In this case ηi+1

OPT is
obtained by switching the two actions (A, jA) and (B, jB)
in ηiOPT . One such example is shown in Fig. 3a. Since
interchanging the order of actions does not influence the
value of

∑

X∈S dX(k)q̃X(k), we have OPT i+1 = OPT i

for this case. The second case is that ηiOPT does not
schedule the action (A, jA) in the frame. Then ηi+1

OPT is
obtained by setting ηi+1

OPT (i+1) = (A, jA) and scheduling
the same jobs as ηiOPT for all succeeding time slots. Since
the Greedy Maximizer schedules (A, jA) in this slot, we
have rjAA dA(k) ≥ rjBB dB(k). Also, for all succeeding time
slots, if job B is scheduled, then the reward for that slot
is going to be increased since the number of executions
of job B has been decreased by 1; if a job C other than
A and B is scheduled, then the reward for that slot is not
influenced by the modification. Fig. 3b has illustrated one
such example. In sum, we have that OPT i+1 ≥ OPT i.

We have established that OPT i+1 ≥ OPT i for all
i ∈ [kT, (k + 1)T]. Since OPT = OPT kT and GM =

8

(a) First case

(b) Second case

Fig. 3: Examples of modification in Theorem 8

(a) Greedy Maximizer

(b) Feasibility optimal scheduler

Fig. 4: An example of the resulting schedule by the Greedy
Maximizer and a feasibility optimal scheduler, respectively
in Example 1.

OPT (k+1)T , we have GM ≥ OPT and thus the Greedy
Maximizer indeed maximizes

∑

X∈S dX(k)q̃X(k).

However, when the periods of tasks are not the
same, the Greedy Maximizer does not always maximize
∑

X∈S dX(k)q̃X(k) and thus may not be feasibility opti-
mal. An example is given below.

Example 1: Consider a system with two tasks, A and
B, with τA = 6, τB = 3. Assume that r1A = r2A = r3A =
r4A = 100, r5A = r6A = 1, r1B = 10, and r2B = r3B = 0.
Suppose, at some frame k, dA(k) = dB(k) = 1. The
Greedy Maximizer would schedule jobs as in Fig. 4a, and
yield dA(k)q̃A(k)+dB(k)q̃B(k) = 411. On the other hand,
a feasibility optimal scheduler would schedule jobs as in
Fig. 4b, and yield dA(k)q̃A(k) + dB(k)q̃B(k) = 420. �

Although the Greedy Maximizer is not feasibility opti-
mal, we can still derive an approximation bound for this
policy.

Theorem 9: The Greedy Maximizer is a 2-
approximation policy.

Proof: The proof is similar to that of Theorem 8.
Define ηGM , ηOPT , η

i
OPT , GM,OPT, and OPT i in the

same way as in the proof of Theorem 8. By Theorem 6,
it suffices to show that GM ≥ OPT/2.

We obtain ηiOPT as follows: If ηGM (i+1) = ηiOPT (i+1),
then we set ηi+1

OPT ≡ ηiOPT . If ηGM (i + 1) = (A, jA) 6=
(B, jB) = ηiOPT (i), then we consider three possible
cases. The first case is that the job (A, jA) is not sched-
uled by ηiOPT in this period of A. In this case, we set
ηi+1
OPT (i + 1) = (A, jA) and use the same schedule as
ηiOPT for all succeeding time slots. An example is shown
in Fig. 5a. The same analysis in Theorem 8 shows that
OPT i+1 ≥ OPT i. The second case is that the job (A, jA)
is scheduled by ηiOPT in this period of A and there
is no deadline of B before the deadline of A. In this
case, we obtain ηi+1

OPT by switching the jobs (A, jA) and
(B, jB) in ηiOPT . An example is shown in Fig. 5b. We
have OPT i = OPT i+1 for this case. The last case is that
the job (A, jA) is scheduled by ηiOPT in this period of A,
and there is a deadline of B before the deadline of A.
In this case also, we obtain ηi+1

OPT by switching the two
jobs and renumbering these jobs if necessary. The rewards
obtained by all tasks other than B are not influenced by
this modification. However, as the example shown in Fig.
5c, the job (B, jB) in ηiOPT may become a job (B, j′B) in
ηi+1
OPT with j′B > jB. Thus, the reward obtained by B may

be decreased. However, since rewards are non-negative,
the amount of loss for B is at most rjBB . By the design

of Greedy Maximizer, we have rjAA dA(k) ≥ rjBB dB(k) and

thus OPT i+1 ≥ OPT i − rjAA dA(k).
In sum, for all i, if the Greedy Maximizer schedules

(A, jA) at time slot i + 1, we have OPT i+1 ≥ OPT i −
rjAA dA(k). Thus, GM = OPT (k+1)T ≥ OPT kT − GM =
OPT −GM and GM ≥ OPT/2.

VII. SIMULATION RESULTS

In this section, we present our simulation results. We
first consider a system with six tasks, each with different
period, τX , length of mandatory part, mX , and optional
part, oX . Let fX(t) be the total reward X obtained in a
period if it executes t time slots of its optional part in the
period. Thus, per our model, we have

riX =











M, if i ≤ mX ,
fX(i−mX + 1)
− fX(i−mX), if mX < i ≤ mX + oX ,

0, if i > mX + oX .

As in [1], we consider three different types of function
fX : exponential, logarithmic, and linear. The reward re-
quirement of X is T

τX
mXM + q̂∗X . We compare the set of

requirements of tasks that can be fulfilled by the Greedy
Maximizer against the set of all feasible requirements.
We also compare the optimal policy (OPT) introduced in
[1], which aims to maximize the total per period reward,
∑

X∈S qX/ T
τX

. To better illustrate the results, we assume
that all q̂∗X ’s are linear functions of two variables, α and
β. We then find all pairs of (α, β) so that the resulting
requirements are fulfilled by the evaluated policies and
plot the boundaries of all such pairs. We call all pairs of
(α, β) that are fulfilled by a policy as the achievable region

9

(a) First case

(b) Second case

(c) Third case

Fig. 5: Examples of modification in Theorem 9

of the policy. We also call the set of all feasible pairs of
(α, β) as the feasible region. The complete simulation pa-
rameters are shown in Table I, in which most parameters
are derived from the simulation set up of [1].

In each simulation of the Greedy Maximizer, we initiate
the debt of X to be M + 1 and run the simulation for 20
frames to ensure that it has converged. We then continue
to run the simulation for 500 additional frames. The
system is considered fulfilled by the Greedy Maximizer
if none of the mandatory parts miss their deadlines in the
500 frames, and the total reward obtained by each task
exceeds its requirements.

The simulation results are shown in Fig. 6. For
both cases of exponential and logarithmic functions, the
achievable regions of the OPT policy are rectangles. That
is because the OPT policy only aims at maximizing the to-
tal per-period rewards and does not allow any tradeoff be-
tween rewards of different tasks. The achievable regions
of the OPT policy are also much smaller than the feasible
regions. On the other hand, the achievable regions of the
Greedy Maximizer are very close to the feasible region for
both the cases of exponential and logarithmic functions.
Also, its achievable regions are strictly larger than that of
the OPT policy. This also shows that the Greedy Maximizer
can provide fine-grained tradeoff between tasks.

The most surprising result is that for linear functions.
In this case, the OPT policy fails to fulfill any pairs of
(α, β) except (0, 0). A closer examination on the simula-
tion result shows that, besides mandatory parts, the OPT

Task id f1

X(t) f2

X(t) f3

X(t) q̂∗X
A 15(1 − e−t/15) 7 ln(3t + 1) 5t 5α

B 20(1 − e−3t/8) 10 ln(10t + 1) 7t 7α

C 4(1 − e−t/5) 2 ln(3t + 1) t α

D 10(1 − e−t/30) 5 ln(15t + 1) 4t 4β

E 5(1 − e−t/5) 3 ln(20t + 1) 2t 2β

F 8(1− e−t/20) 4 ln(6t + 1) 3t 3β

TABLE II: Task parameters for a system in which all tasks
have the same period.

policy only schedules optional parts of tasks D and F . This
example shows that, in addition to restricted achievable
regions, the OPT policy can also be extremely unfair. Thus,
the OPT policy is not desirable when fairness is concerned.
On the other hand, the achievable region of the Greedy
Maximizer is almost the same as the feasible region.
These simulation results also suggest that although we
have only proved that the Greedy Maximizer is a 2-
approximation policy, this approximation bound is indeed
very pessimistic. In most cases, the performance of the
Greedy Maximizer is not too far from that of a feasibility
optimal policy.

Next, we simulate a system in which all tasks have the
same period. We assume that τX = 120, mX = 0, and
oX = 120 for all X ∈ S. We also simulate all the three
functions, exponential, logarithmic, and linear. Detailed
parameters are shown in Table II.

The simulation results are shown in Fig. 7. As in the
previous simulations, the achievable regions of the Greedy
Maximizer are always larger than those of the OPT policy,
for all functions. Further, the achievable regions of the
Greedy Maximizer are exactly the same as the feasible
regions. This demonstrates that the Greedy Maximizer
fulfills every strictly feasible system when the periods of
all tasks are the same.

VIII. CONCLUDING REMARKS

We have studied a model in which a system consists of
several periodic real-time tasks that have their individual
reward requirements. This model is compatible with both
the imprecise computation models and IRIS models. By
making each task specify its own reward requirement,
our model can offer better fairness, and it allows trade-
off between tasks. Under this model, we have proved
a necessary and sufficient condition for feasibility, and
designed a linear time algorithm for verifying feasibility.
We have also studied the problem of designing on-line
scheduling policies and obtained a sufficient condition
for a policy to be feasibility optimal, or to achieve an
approximation bound. We have then proposed a simple
on-line scheduling policy. We have analyzed the perfor-
mance of the on-line scheduling policy and proved that
it fulfills all feasible systems in which the periods of all
tasks are the same. For general systems where periods
may be different for different tasks, we have proved that
the on-line policy is a 2-approximation policy. We have
also conducted simulations and compared our on-line

10

Task id τX mX oX f1

X(t) f2

X(t) f3

X(t) q̂∗X
A 20 1 10 15(1 − e−t/2) 7 ln(20t + 1) 5t 5α

B 30 1 15 20(1 − e−3t/2) 10 ln(50t + 1) 7t 7α

C 40 2 20 4(1 − e−t/2) 2 ln(10t + 1) t α

D 60 3 30 10(1 − e−t/10) 5 ln(25t + 1) 4t 4β

E 80 4 40 5(1 − e−t/2) 3 ln(30t + 1) 2t 2β

F 120 6 60 8(1− e−t/20) 4 ln(6t + 1) 3t 3β

TABLE I: Task parameters for a system in which tasks have different periods. f1
X , f2

X , and f3
X correspond to the

functions for exponential, logarithmic, and linear functions, respectively.

(a) Exponential functions (b) Logarithmic functions (c) Linear functions

Fig. 6: Achievable regions of scheduling policies for the system in Table I.

(a) Exponential functions (b) Logarithmic functions (c) Linear functions

Fig. 7: Achievable regions of scheduling policies for the system in Table II.

policy against a policy that maximizes the total reward
in the system. Simulation results show that the on-line
policy has much larger achievable regions than that of
the compared policy.

ACKNOWLEDGEMENT

The authors are grateful to Prof. Marco Caccamo for
introducing us to this line of work.

REFERENCES

[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal
reward-based scheduling for periodic real-time tasks,” IEEE Trans-
actions on Computers, vol. 50, pp. 111–130, February 2001.

[2] J.-T. Chung, J. W. S. Liu, and K.-J. Lin, “Scheduling periodic
jobs that allow imprecise results,” IEEE Transactions on Computers,
vol. 39, pp. 1156–1174, September 1990.

[3] J. W. Liu, K.-J. Lin, W.-K. Shih, and A. C.-S. Yu, “Algorithms for
scheduling imprecise computations,” Computers, vol. 24, pp. 58–
68, May 1991.

[4] W.-K. Shih and J. W. Liu, “Algorithms for scheduling imprecise
computations with timing constraints to minimize maximum er-
ror,” IEEE Transactions on Computers, vol. 44, pp. 466–471, March
1995.

[5] P. H. Feiler and J. J. Walker, “Adaptive feedback scheduling of
incremental and design-to-time tasks,” in Proceedings of the 23rd
International Conference on Software Engineering, pp. 318–326,
2001.

[6] P. Mejia-Alvarez, R. Melhem, and D. Mosse, “An incremental
approach to scheduling during overloads in real-time systems,”
in Proceedings of the 21st IEEE Real-Time Systems Symposium,
pp. 283–293, 2000.

[7] J.-M. Chen, W.-C. Lu, W.-K. Shih, and M.-C. Tang, “Imprecise
computations with deferred optional tasks,” Journal of Information
Science and Enginnering, vol. 25, no. 1, pp. 185–200, 2009.

[8] M. Zu and A. M. K. Chang, “Real-time scheduling of hierarchical
reward-based tasks,” in Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 2–9, 2003.

[9] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and
management of QoS in real-time databases supporting imprecise
computations,” IEEE Transactions on Computers, vol. 55, pp. 304–
319, March 2006.

[10] J. K. Dey, J. Kurose, and D. Towsley, “On-line scheduling policies
for a class of IRIS (increasing reward with increasing service) real-
time tasks,” IEEE Transactions on Computers, vol. 45, pp. 802–813,
July 1996.

[11] H. Cam, “An on-line scheudling policy for IRIS real-time composite
tasks,” The Journal of Systems and Software, vol. 52, pp. 25–32,
2000.

[12] B. Korte and J. Vygen, Combinatorial Optimization, Theory and
Algorithms. Springer-Verlag Berlin Heifelberg, 2008.

ar
X

iv
:1

00
7.

06
83

v1
 [

cs
.O

H
]

 2
1

Ju
n

20
10

Scheduling Periodic Real-Time Tasks with
Heterogeneous Reward Requirements

I-Hong Hou
CSL and Department of CS

University of Illinois

Urbana, IL 61801, USA

ihou2@illinois.edu

P. R. Kumar
CSL and Department of ECE

University of Illinois

Urbana, IL 61801, USA

prkumar@illinois.edu

Abstract—We study the problem of scheduling periodic
real-time tasks so as to meet their individual minimum
reward requirements. A task generates jobs that can be
given arbitrary service times before their deadlines. A task
then obtains rewards based on the service times received
by its jobs. We show that this model is compatible to the
imprecise computation models and the increasing reward
with increasing service models. In contrast to previous work
on these models, which mainly focus on maximize the total
reward in the system, we aim to fulfill different reward
requirements by different tasks, which offers better fairness
and allows fine-grained tradeoff between tasks. We first
derive a necessary and sufficient condition for a system,
along with reward requirements of tasks, to be feasible. We
also obtain an off-line feasibility optimal scheduling policy.
We then studies a sufficient condition for a policy to be
feasibility optimal or achieves some approximation bound.
This condition can serve as a guideline for designing on-
line scheduling policy and we obtains a greedy policy based
on it. We prove that the on-line policy is feasibility optimal
when all tasks have the same periods and also obtain an
approximation bound for the policy under general cases.

I. INTRODUCTION

In classical hard real-time systems, every job needs to
be completed before its deadline, or the system suffers
from a timing fault. In practice, many applications allow
approximate results and partially completed jobs only
degrade the overall performance rather than causing a
fault. Imprecise computation models [?], [?] and increas-
ing reward with increasing service (IRIS) models [?]
have been proposed to deal with such applications. Most
work on these models only aims to minimize the total
error, or, equivalently, maximize the total reward of the
system without any considerations on fairness. However,
in many applications, rewards of different tasks are not
additive and satisfying individual reward requirements
is more important than maximizing total rewards. For
example, consider a server that provides video streams
to subscribers. Deadline misses will only cause losses on

This material is based upon work partially supported by USARO un-
der Contract Nos. W911NF-08-1-0238 and W-911-NF-0710287, AFOSR
under Contract FA9550-09-0121, and NSF under Contract No. CNS-07-
21992. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not
necessarily reflect the views of the above agencies.

some frames and degrade the video quality, which is usu-
ally tolerable as long as such losses happen infrequently.
In such an application, a policy that aims to maximize
total reward may end up providing perfect video quality
for some subscribers while only offering poor quality
for others. In contrast, a desirable policy should aim at
providing reasonably good quality to all of its subscribers.

In this paper, we describe a model that considers the
hard delay bounds of tasks as well as rewards for partially
completed jobs, in a system with a set of periodic tasks.
The relationship between service times and rewards can
be any arbitrary increasing and concave function and may
differ from task to task. We allow each task to have its own
individual requirement on the average reward it obtains.
We show that both the imprecise computation model and
the IRIS model are special cases of our model.

Based on the model, we first analyze the conditions
for feasibility, that is, whether there exists a scheduling
policy that meets the individual reward requirements of
all tasks in the system. We prove a necessary and sufficient
condition for feasibility. We also propose a linear time
algorithm for evaluating whether a system is feasible.
Along with the feasibility condition, we also derive an off-
line scheduling policy that is feasibility optimal, meaning
that it fulfills all feasible systems.

We then study the problem of designing on-line
scheduling policies. We derive a sufficient condition for
a policy to be feasibility optimal, or, serve as an approx-
imation policy with some approximation bound. Using
this condition as a guideline, we propose an on-line
scheduling policy. We prove that this on-line policy fulfills
every feasible system in which periods are the same for
all tasks. We also obtain an approximation bound for this
policy when periods of tasks may be different.

In addition to theoretical studies, we also conduct
simulations to verify our results. We compare our policy
against one proposed by Aydin et al [?], which is proved
to be an optimal off-line policy that maximizes the total
reward in any system. Simulation results suggest that al-
though the policy proposed by [?] achieves maximum to-
tal reward, it can result in severe unfairness and does not
allow fine-grained tradeoffs between the performances of
different tasks.

http://arxiv.org/abs/1007.0683v1

2

The rest of the paper is organized as follows. Section
II summaries some existing work and, in particular, in-
troduces the basic concepts in the imprecise computation
model and the IRIS model. Section III formally describes
our proposed model and discusses how it can capture
the imprecise computation model and the IRIS model.
Section IV analyzes the necessary and sufficient condition
for a system to be feasible, and proposes a linear time
algorithm for evaluating feasibility. Section V studies the
problem of scheduling jobs and obtains a sufficient con-
dition for a policy to achieve an approximation bound
or to be feasibility optimal. Based on this condition,
Section VI proposes a simple on-line scheduling policy and
analyzes its performance under different cases. Section VII
demonstrates our simulation results. Finally, Section VIII
concludes this paper.

II. RELATED WORK

The imprecise computation models [?], [?] have been
proposed to handle applications in which partially com-
pleted jobs are useful. In this model, all jobs consist
of two parts: a mandatory part and an optional part.
The mandatory part needs to be completed before its
deadline, or else the system suffers from a timing fault.
On the other hand, the optional part is used to further
enhance performance by either reducing errors or in-
creasing rewards. The relations between the errors, or
rewards, and the time spent on the optional parts, are
described through error functions or reward functions.
Chung, Liu, and Lin [?] have proposed scheduling policies
that aim to minimize the total average error in the system
for this model. Their result is optimal only when the
error functions are linear and tasks generate jobs with
the same period. Shih and Liu [?] have proposed policies
that minimize the maximum error among all tasks in the
system when error functions are linear. Feiler and Walker
[?] have used feedback to opportunistically schedule op-
tional parts when the lengths of mandatory parts may
be time-varying. Mejia-Alvarez, Melhem, and Mosse [?]
have studied the problem of maximizing total rewards in
the system when job generations are dynamic. Chen et al
[?] have proposed scheduling policies that defer optional
parts so as to provide more timely response for mandatory
parts. Zu and Chang [?] have studied the scheduling
problem when optional parts are hierarchical. Aydin et
al [?] have proposed an off-line scheduling policy that
maximizes total rewards when the reward functions are
increasing and concave. Most of these works only concern
the maximization of the total reward in a system. Amir-
ijoo, Hansson, and Son [?] have considered the tradeoff
between data errors and transaction errors in a real-time
database. The IRIS models can be thought of as special
cases of the imprecise computation models where the
lengths of mandatory parts are zero. Scheduling policies
aimed at maximizing total rewards have been studied for
such models [?], [?].

III. SYSTEM MODEL

Consider a system with a set S = {A,B, . . . } of
real-time tasks. Time is slotted and expressed by t ∈
{0, 1, 2, . . .}. Each task X generates a job periodically with
period τX . A job can be executed multiple times in the
period that it is generated; the execution of a job does not
mean its completion. The job is removed from the system
when the next period begins. In other words, the relative
deadline of a job generated by task X is also τX . We
assume that all tasks in S generate a job at time t = 0. We
denote a frame as the time between two consecutive time
slots where all tasks generate a job. The length of a frame,
which we denote by T , is the least common multiple of
{τX |X ∈ S}. Thus, a frame consists of T/τX periods of
task X .

As noted above, each job can be executed an arbitrary
number of time slots before its deadline. Each task obtains
a certain reward each time that its job is executed. The
total amount of reward obtained by a task in a period
depends on the number of times that its job has been
executed in the period. More formally, task X obtains
reward riX ≥ 0 when it executes its job for the ith time in
a period. For example, if a job of task X is executed a total
of n time slots, then the total reward obtained by task X
in this period is r1X + r2X + · · · + rnX . We further assume
that the marginal reward of executing a job decreases as
the number of executions increases, that is, ri+1

X ≥ riX ,
for all i and X . Thus, the total reward that a task obtains
in a period is an increasing and concave function of the
number of time slots that its job is executed.

A scheduling policy η for the system is one that chooses
an action in each time slot. The action taken by η at time
t is described by η(t) = (X, i), meaning that the policy
executes the job of task X at time t and that this is the
ith time that the job is being executed in the period. Fig. 1
shows an example with two tasks over one frame, which
consists of two periods of task A and three periods of
task B. In this example, action (A, 1) is executed twice
and (A, 2) is executed once. Thus, the reward obtained
by task A in this frame is 2r1A + r2A. On the other hand,
the reward obtained by task B in this frame is 3r1B.

The performance of the system is described by the long-
term average reward per frame of each task in the system.

Definition 1: Let sX(t) be the total reward obtained by
task X between time 0 and time t under some scheduling
policy η. The average reward of task X is defined as qX :=
lim inft→∞

sX (t)
t/T .

We assume that there is a minimum average reward
requirement for each task X , q∗X > 0. We wish to verify
whether a system is feasible, that is, whether each task can
have its minimum average reward requirement satisfied.

Definition 2: A system is fulfilled by a scheduling policy
η if, under η, qX ≥ q∗X with probability 1, for all X ∈ S.

Definition 3: A system is feasible if there exists some
scheduling policy that fulfills it.

A natural metric to evaluate a scheduling policy is
the set of systems that the policy fulfills. For ease of

3

Fig. 1: An example of the system and scheduling policy
over a frame of six slots, which consists of two period of
task A and three periods of task B. Arrows in the figure
indicate the beginning of a new period.

discussion, we only consider systems that are strictly
feasible

Definition 4: A system with minimum reward require-
ments [q∗X |X ∈ S] is strictly feasible if there exists some
ǫ > 0 such that the same system with minimum reward
requirements [(1 + ǫ)q∗X] is feasible.

Definition 5: A scheduling policy is feasibility optimal if
it fulfills all strictly feasible systems.

Moreover, since the overhead for computing a feasibility
optimal policy may be too high in certain scenarios, we
also need to consider simple approximation policies.

Definition 6: A scheduling policy is a p-approximation
policy, p ≥ 1, if it fulfills all systems with minimum
reward requirements [q∗X] such that the same system with
minimum reward requirements [pq∗X] is strictly feasible.

A. Extensions for Imprecise Computation Models

In this section, we discuss how our proposed model
can be used to handle imprecise computation models and
IRIS models. In such models, a task consists of two parts:
a mandatory part and an optional part. The mandatory
part is required to be completed in each period, or else the
system fails. After the mandatory part is completed, the
optional part can be executed to improve performance.
The more optional parts executed for a task, the more
rewards it gets.

Let mX be the length of the mandatory part of task X ,
that is, it is required that each job of X is executed at
least mX time slots in each of its period. Let oX be the
length of the optional part of task X . To accommodate this
scenario, we define a symbolic value M with the following
arithmetic reminiscent of the “Big-M Method” in linear
programming: 0×M = 0, aM+bM = (a+b)M , a×(bM) =
(ab)M , aM + c > bM + d, if a > b, and aM + c > aM + d
if c > d, for all real numbers a, b, c, d. Loosely speaking,
M can be thought of as a huge positive number. For each
task X , we set r1X = r2X = · · · = rmX

X = M , we then
set rmX+1

X , rmX+2
X , . . . , rmX+oX

X according to the rewards
obtained by X for its optional part, and riX = 0, for all
i > mX + oX . The minimum reward requirement of task
X is set to be mXM+ q̂∗X with q̂∗X ≥ 0. Thus, a scheduling

policy that fulfills such a system is guaranteed to complete
each mandatory part with probability one.

IV. FEASIBILITY ANALYSIS

In this section, we establish a necessary and sufficient
condition for a system to be feasible. Consider a feasible
system that is fulfilled by a policy η. Suppose that, on
average, there are f i

X periods of task X in a frame in
which the action (X, i) is taken by η. The average reward
of task X can then be expressed as qX =

∑τX
i=1 f

i
XriX .

We can immediately obtain a necessary condition for
feasibility.

Lemma 1: A system with a set of tasks S = {A,B, . . . }
is feasible only if there exists {f i

X |X ∈ S, 1 ≤ i ≤ τX}
such that

q∗X ≤

τX
∑

i=1

f i
XriX , ∀X ∈ S, (1)

0 ≤ f i
X ≤

T

τX
, ∀X ∈ S, 1 ≤ i ≤ τX , (2)

∑

X∈S

τX
∑

i=1

f i
X ≤ T. (3)

Proof: Condition (1) holds because task X requires
that q∗X ≤ qX . Condition (2) holds because there are
T/τX periods of task X in a frame and thus f i

X is upper-
bounded by T/τX . Finally, the total average number of
time slots that the system executes one of the jobs in
a frame can be expressed as

∑

X∈S

∑τX
i=1 f

i
X , which is

upper-bounded by the number of time slots in a frame,
T . Thus, condition (3) follows.

Next, we show that the conditions (1)–(3) are
also sufficient for feasibility. To prove this, we first
show that the polytope, which contains all points
f = (f1

A, f
2
A, . . . , f

τA
A , f1

B, . . .) that satisfy conditions
(2) and (3), is a convex hull of several integer
points. We then show that for all integer points n =
(n1

A, n
2
A, . . . , n

τA
A , n1

B, . . .) in the polytope, there is a sched-
ule under which the reward obtained by task X is at least
∑τX

i=1 n
i
XriX . We then prove sufficiency using these two

results.

Define a matrix M = [mi,j] with 2
∑

X∈S τX + 1 rows
and

∑

X∈S τX columns as follows:

mi,j =











1, if i = 1,
1, if i = 2j,
−1, if i = 2j + 1,
0, else.

(4)

Define b = [bi] to be a column vector with 2
∑

X∈S τX +
1 elements so that b1 = T ; the first τA elements with
even indices are set to T/τA, that is, b2 = b4 = · · · =
b2τA = T/τA; the next τB elements with even indices are
set to T/τB, and so on. All other elements are set to 0.

4

For example, the system shown in Fig. 1 would have

M =

























1, 1, 1, 1, . . .
1, 0, 0, 0, . . .
−1, 0, 0, 0, . . .
0, 1, 0, 0, . . .
0, −1, 0, 0, . . .
0, 0, 1, 0, . . .
0, 0, −1, 0, . . .

...

























, b =































T
T/τA
0

T/τA
0
...

T/τB
0
...































.

Thus, conditions (2) and (3) can be described as Mf ≤ b.
Theorem 5.20 and Theorem 5.24 in [?] shows the follow-
ing:

Theorem 1: The polytope defined by {f |Mf ≤ b},
where b is an integer vector, is a convex hull of several in-
teger points if for every subset R of rows in M , there exists
a partition of R = R1 ∪ R2 such that for every column j
in M , we have

∑

i1∈R1
mi1,j−

∑

i2∈R2
mi2,j ∈ {1, 0,−1}.

1

Since all elements in b are integers, we obtain the
following:

Theorem 2: The polytope defined by {f |Mf ≤ b},
where M and b are derived using conditions (2) and (3)
as above, is a convex hull of several integer points.

Proof: Let R = {r1, r2, . . . } be the indices of some
subset of rows in M . If the first row is in R, we choose
R1 = {r|r ∈ R, r is odd} and R2 = {r|r ∈ R, r is even}.
Since for all columns j in M , m1,j = 1, m2j,j = 1,
m2j+1,j = −1, and all other elements in column j are
zero, we have

∑

i1∈R1
mi1,j −

∑

i2∈R2
mi2,j ∈ {1, 0,−1}.

On the other hand, if the first row is not in R, we choose
R1 = R and R2 = ∅. Again, we have

∑

i1∈R1
mi1,j −

∑

i2∈R2
mi2,j =

∑

i1∈R1
mi1,j ∈ {1, 0,−1}. Thus, by

Theorem 1, the polytope defined by {f |Mf ≤ b} is a
convex hull of several integer points.

Next we show that all integer points in the polytope
can be carried out by some scheduling policy as follows:

Theorem 3: Let n = (n1
A, n

2
A, . . . , n

τA
A , n1

B, . . .) be an
integer point in the polytope {f |Mf ≤ b}. Then, there
exists a scheduling policy so that qX ≥

∑τX
i=1 n

i
XriX .

Proof: We prove this theorem by constructing a
scheduling policy that achieves the aforementioned re-
quirement. We begin by marking deadlines of actions.
Ideally, we wish to schedule the action (X, i) ni

X times
in a frame. Without loss of generality, we assume that
the frame starts at time 0 and ends at time T . Since
there is at most one (X, i) action in a period of task
X , we can mark the deadlines of these actions as T, T −
τX , . . . , T−(ni

X−1)τX , respectively. The scheduling policy
will schedule the action with the earliest deadline that has
neither been executed in its period (that is, it does not
schedule two actions of the same type in the same period)
nor missed its deadline, with ties broken arbitrarily. Fig.
2a shows how the deadlines are marked in an example

1Such matrix M is called a totally unimodular matrix in combinatorial
optimization theory.

(a) The deadlines that are marked

(b) The actions scheduled before renumbering

(c) The actions scheduled after renumbering

Fig. 2: An example of the scheduling policy in Theorem
3. Deadlines of actions are marked by putting the action
above the arrow of its deadline.

with n1
A = 1, n2

A = 2, n1
B = 2, and n2

B = 1. Fig. 2b shows
the resulting schedule for this example. Note that, under
this policy, there are time slots where the policy schedules
an action (X, i), but it is instead the jth time that the
job of X is executed in the period. Thus, we may need
to renumber these actions as in Fig. 2c and define n̄i

X

as the actual number of times that the action (X, i) is
executed in the frame. In the example of Fig. 2, we have
n̄1
A = 2, n̄2

A = 1, n̄1
B = 3, and n̄2

B = 0. Since the policy does
not schedule two identical actions in a period, as long as
all actions are executed before their respective deadlines,

we have
∑k

i=1 n̄
i
X ≥

∑k
i=1 n

i
X , for all k and X ∈ S. Thus,

qX =
∑τX

i=1 n̄
i
XriX ≥

∑τX
i=1 n

i
XriX , since r1X ≥ r2X ≥ . . . ,

for all X ∈ S. To avoid confusion, we refer actions by its
type before renumbering throughout the rest of the proof.

It remains to show that none of the actions miss their
deadlines under this policy. We prove this by contradic-
tion. Let dX(t) be the number of actions of task X whose
deadlines are smaller or equal to t. By the way that

we mark deadlines of actions, we have that
dX(τX)

τX
≤

dX(2τX)
2τX

≤ · · · ≤ dX(T)
T . We also have dX(t) = dX(kτX),

for all t ∈ [kτX , (k+1)τX). For any t, let kX = ⌊ t
τX
⌋, and

5

we then have
∑

X∈S
dX (t)

t =
∑

X∈S
dX(kXτX)

t

≤
∑

X∈S
dX(kXτX)

kXτX

≤
∑

X∈S
dX(T)

T ≤ 1,

(5)

where the last inequality follows by condition (3).

Suppose there is an action (X, i) that misses its deadline
at time t under our policy. We first consider the case where
the policy schedules an action with deadline smaller or
equal to t in all time slots between 0 and t, with no time
slot left idleS. In this case, we have

∑

X∈S dX(t) ≥ t+ 1

and thus
∑

X∈S
dX(t)

t > 1, which contradicts Eq. (5).

Next we consider the case where at some time t′ < t
the policy does not schedule an action with deadline
smaller or equal to t. That is, at time t′, the policy either
schedules an action whose deadline is strictly larger than
t or stays idle. Now we first claim that t and t′ cannot
belong to the same period of X , that is, the case with
t′ > t − τX is not possible. The only reason that (X, i)
is not in fact scheduled at t′ is that there is already one
identical action in the corresponding period containing
t′. This other action would have a deadline at either
t or t − kτX for some k ≥ 1. The former case is not
possible because two identical actions cannot have the
same deadline. The latter is also not possible because no
action is scheduled after its deadline and t − kτX < t′ if
t and t′ belong to the same period.

As shown above, the interval [t − τX + 1, t] has the
property that all actions scheduled in this interval have
deadlines smaller or equal to t. Now we proceed to show
that t′ ≤ t − τX is also not possible. We do this by
expanding this interval while preserving this property.
Pick any action, (X ′, i′), scheduled at time tX′ in the
interval and assume that the period of X ′ containing tX′

is [t1X′ , t2X′]. We have t2X′ ≤ t since the deadline of (X ′, i′)
is before t and the deadline of this action is at the end of
some period of X ′. Now, by the design of the scheduling
policy, for any t̄X′ in [t1X′ , tX′], the action scheduled in t̄X′

should have deadline smaller or equal to the deadline of
(X ′, i′), or otherwise (X ′, i′) should have been scheduled
in t̄X′ . The deadline of the action scheduled in t̄X′ is
thus also smaller or equal to t. Thus, if t1X′ is smaller
than the beginning of the interval, we can expand the
interval to [t1X′ , t] while preserving the desired property.
We keep expanding the interval until no more expansions
are possible.

Let (Y, j) be the action in the resulting interval with the
largest period, τY , and suppose that it is scheduled at time
tY . Assume that the period of Y containing tY is [t1Y , t

2
Y].

By the way we expand the interval, [t1Y , t
2
Y] is within the

expanded interval and all actions scheduled in [t1Y , t
2
Y]

have deadlines smaller or equal to t. For each action in
[t1Y , t

2
Y], the reason that it has not been scheduled earlier

at time t′ is because there is already one identical action
scheduled in its period that contains t′. This identical
action, also with deadline earlier than t, must have been
scheduled before time t′. Since the period of this action is

smaller or equal to τY , its identical counterpart must have
been scheduled in [t′−τY +1, t′−1]. However, there are at
most τY − 1 actions scheduled in [t′− τY +1, t′− 1], while
there are τY actions in [t1Y , t

2
Y], leading to a contradiction.

Thus, this case is also not possible.
In sum, all actions are scheduled before their deadlines

using this policy, and the proof is completed.
Now we can derive the necessary and sufficient condi-

tion for a system to be feasible.
Theorem 4: A system with a set of tasks S = {A,B, . . . }

is feasible if and only if there exists {f i
X |X ∈ S, 1 ≤ i ≤

τX} such that (1) - (3) are satisfied.
Proof: Lemma 1 has established that these conditions

are necessary. It remains to show that they are also
sufficient. Suppose there exists f = {f i

X |X ∈ S, 1 ≤
i ≤ τX} that satisfy (1) - (3), then Theorem 2 shows
that there exists integer vectors n[1], n[2], . . . , n[v] such
that f =

∑v
u=1 αun[u], where αu’s are positive numbers

with
∑v

u=1 αu = 1. Let ηu be the scheduling policy for
the integer vector n[u] as in the proof of Theorem 3,
for each u. Theorem 3 have shown that for each u, the
average reward obtained by X under ηu, qX [ηu], is at
least

∑τX
i=1 n[u]

i
XriX . Finally, we can design a policy as

a weighted round robin policy that switches among the
policies η1, η2, . . . , ηv , with policy ηu being chosen in
αu of the frames. The average reward obtained by X
is hence qX =

∑

u αuqX [ηu] ≥
∑

u αu(
∑τX

i=1 n[u]
i
XriX) =

∑τX
i=1 f

i
XriX ≥ q∗X . Thus, this policy fulfills the system and

so the conditions are also sufficient.
Using Theorem 4, checking whether a system is feasible

can be done by any linear programming solver. The
computational overhead for checking feasibility can be
further reduced by using the fact that riX ≥ rjX , for all
i < j. Given a system and {f i

X} that satisfies conditions

(1) - (3) with f j
X < T

τX
and fk

X > 0 for some j < k and

X ∈ S. Let δ = min{ T
τX
− f j

X , fk
X}. Construct {f̂ i

X} such

that f̂ j
X = f j

X + δ, f̂k
X = fk

X − δ, and f̂ i
X = f i

X for all

other elements. Then {f̂ i
X} also satisfies conditions (1) -

(3). Based on this observation, we derive an algorithm
for checking feasibility as shown in Algorithm 1. This
essentially transfers slots from less reward earning actions
to more reward earning actions. The running time of
this algorithm is O(

∑

X∈S τX). Since a specification of a
system involves at least the

∑

X∈S τX variables of {riX},
Algorithm 1 is essentially a linear time algorithm.

In addition to evaluating feasibility, the proof of The-
orem 4 also demonstrates an off-line feasibility optimal
policy. In many scenarios, however, on-line policies are
preferred. In the next section, we introduce a guideline
for designing scheduling policies that turns out to suggest
simple on-line policies.

V. DESIGNING SCHEDULING POLICIES

In this section, we study the problem of designing
scheduling policies. We establish sufficient conditions
for a policy to be either feasibility optimal or a p-
approximately so.

6

Algorithm 1 Feasibility Checker

Require: S, {τX |X ∈ S}, {riX |X ∈ S, 1 ≤ i ≤ τX},
{q∗X |X ∈ S}

1: for X ∈ S do
2: if q∗X > T

τX

∑τX
i=1 r

i
X then

3: return Infeasible
4: end if
5: end for
6: for X ∈ S do
7: i← 1
8: while q∗X > 0 do
9: if q∗X > T

τX
riX then

10: f i
X ← T/τX

11: q∗X ← q∗X −
T
τX

riX
12: else
13: f i

X ← q∗X/riX
14: q∗X ← 0
15: end if
16: i← i+ 1
17: end while
18: end for
19: if

∑

X∈S

∑i=1
τX

f i
X ≤ T then

20: return Feasible
21: else
22: return Infeasible
23: end if

We start by introducing a metric to evaluate the per-
formance of a policy η. Let q̃X(k) be the total reward
obtained by task X during the frame ((k − 1)T, kT]. We

then have qX = lim infk→∞

∑
k

i=1
q̃X (i)

k . We also define the
reward debt of task X .

Definition 7: The reward debt of task X in the frame
((k − 1)T, kT], dX(k) is defined recursively as follows:

dX(0) = 0,

dX(k) = [dX(k − 1) + q∗X − q̃X(k)]+, ∀k > 0.

Lemma 2: A system is fulfilled by a policy η if
limk→∞ dX(k)/k = 0 with probability 1.

Proof: We have dX(k) ≥ kq∗X −
∑k

i=1 q̃X(i) and

dX(k)/k ≥ q∗X−
1
k

∑k
i=1 q̃X(i). Thus, if limk→∞ dX(k)/k =

0, then qX = lim infk→∞

∑
k

i=1
q̃X (i)

k ≥ q∗X and the system
is fulfilled.

We can describe the state of the system in the kth

frame by the reward debts of tasks, [dX(k)|X ∈ S].
Consider a policy that schedules jobs solely based on the
requirements and the state of the system. The evolution of
the state of the system can then be described as a Markov
chain.

Lemma 3: Suppose the evolution of the state of a sys-
tem can be described as a Markov chain under some
policy η. The system is fulfilled by η if this Markov chain
is irreducible and positive recurrent.

Proof: Since the Markov chain is positive recurrent,
the state {dX(k) = 0, ∀X ∈ S} is visited infinitely many

times. Further, assuming that the system is in this state at
frames k1, k2, k3, . . . , then [kn+1 − kn] is a series of i.i.d.
random variables with finite mean. Let In be the indicator
variable that there exists some k̃n between frame kn and
frame kn+1 such that dX(k̃n)/k̃n > δ for some X ∈ S, for
some arbitrary δ > 0. Let q∗max = maxX∈S q∗X . If In = 1,

we have that k̃n ≥ kn ≥ n and thus dX(k̃n) > nδ, for
some X ∈ S. Since dX(k) can be incremented by at most
q∗max in a frame and dX(kn) = 0, k̃n − kn > nδ/q∗max and
kn+1 − kn > k̃n − kn > nδ/q∗max. Thus,

Prob{In = 1} < Prob{kn+1 − kn > nδ/q∗max}

= Prob{k2 − k1 > nδ/q∗max},

and
∞
∑

n=1

Prob{In = 1} <

∞
∑

n=1

Prob{k2 − k1 > nδ/q∗max}

≤ E[k2 − k1] <∞,

By Borel-Cantelli Lemma, the probability that In = 1
for infinitely many n’s is zero, and so is the proba-
bility that dX(k)/k > δ for infinitely many k’s. Thus,
lim supk→∞

dX(k)/k < δ with probability 1, for all
X ∈ S and any arbitrary δ > 0. Finally, we have
limk→∞ dX(k)/k = 0 with probability 1 since dX(k) ≥ 0
by definition.

Based on the above lemmas, we determine a sufficient
condition for a policy to be a p-approximation policy. The
proof is based on the Foster-Lyapunov Theorem:

Theorem 5 (Foster-Lyapunov Theorem): Consider a
Markov chain with state space D. Let D(k) be the state
of the Markov chain at the kth step. If there exists a
non-negative function L : D → R, a positive number δ,
and a finite subset D0 of D such that:

E[L(D(k + 1))− L(D(k))|D(k)] ≤ −δ, if D(k) /∈ D0,
(6)

E[L(D(k + 1))|D(k)] <∞, if D(k) ∈ D0,
(7)

then the Markov chain is positive recurrent.
Theorem 6: A policy η is a p-approximation policy, for

some p > 1, if it schedules jobs solely based on the
requirements and the state of a system and, for each k,
the following holds:
∑

X∈S

q̃X(k)dX(k) ≥ (max
[qX]: [qX] is feasible

∑

X∈S

qXdX(k))/p.

Proof: Consider a system with minimum reward re-
quirements [q∗X] such that the same system with minimum
reward requirements [pq∗X] is also strictly feasible. By
Lemma 3, it suffices to show that under the policy η,
the resulting Markov chain is positive recurrent. Consider
the Lyapunov function L(k) :=

∑

X∈S d2X(k)/2. The Lya-
punov drift function can be written as:

∆L(k + 1) :=L(k + 1)− L(k) =
1

2

∑

X∈S

[d2X(k + 1)− d2X(k)]

≤
∑

X∈S

(q∗X − q̃X(k))dX(k) + C,

7

where C is a bounded constant. Since [pq∗X] is
also strictly feasible and dX(k) ≥ 0, there ex-
ists ǫ > 0 such that (1 + ǫ)

∑

X∈S pq∗XdX(k) ≤
max[qX]: [qX] is feasible

∑

X∈S qXdX(k), and hence (1 +

ǫ)
∑

X∈S q∗XdX(k) ≤
∑

X∈S q̃X(k)dX(k). Thus, we have

∆L(k + 1) ≤ −ǫ
∑

X∈S

q∗XdX(k) + C. (8)

Let D0 be the set of states {dX(k)} with
∑

X∈S q∗XdX(k) <
(C+δ)/ǫ, for some positive finite number δ. Then, D0 is a
finite set (since q∗X > 0 for all x ∈ S), with ∆L(k+1) < −δ
when the state of frame k is not in D0. Further, since
dX(k) can be increased by at most q∗X in each frame, L(k+
1) is finite if the state of frame k is in D0. By Theorem 5,
this Markov chain is positive recurrent and policy η fulfills
this system.

Since a 1-approximation policy is also a feasibility
optimal one, a similar proof yields the following:

Theorem 7: A policy η fulfills a strictly feasible system
if it maximizes

∑

X∈S q̃X(k)dX(k) among all feasible [qX]
in every frame k. It is a feasibility optimal policy if the
above holds for all strictly feasible systems.

VI. AN ON-LINE SCHEDULING POLICY

While Section V has described a sufficient condition
for designing feasibility optimal policies, the overhead
for computing such a feasibility optimal scheduling pol-
icy may be too high to implement. In this section, we
introduce a simple on-line policy. We also analyze the
performance of this policy under different scenarios.

Theorem 7 has shown that a policy that maximizes
∑

X∈S q̃X(k)dX(k) among all feasible [qX] in every frame
k is feasibility optimal. The on-line policy follows this
guideline by greedily selecting the job with the highest
rixdX(k) in each time slot. Assume that, at some time t
in frame k, task X has already been scheduled iX times
in its period. The on-line policy then schedules the task
Y so that riYY dY (k) is maximized among all X ∈ S. A
more detailed description of this policy, which we call the
Greedy Maximizer, is shown in Algorithm 2.

Next, we evaluate the performance of the Greedy Max-
imizer. We show that this policy is feasibility optimal if
the periods of all tasks are the same, and that it is 2-
approximation in general.

Theorem 8: The Greedy Maximizer fulfills all strictly
feasible systems with τX ≡ τ , for all X ∈ S.

Proof: It suffices to prove that the Greedy Maximizer
indeed maximizes

∑

X∈S dX(k)q̃X(k) in every frame. Sup-
pose at some frame k, the reward debts are {dX(k)}
and the schedule generated by the Greedy Maximizer is
ηGM (t), t ∈ (kT, (k+1)T]. Let GM :=

∑

X∈S dX(k)q̃X(k)
when ηGM is applied. Consider another schedule,
ηOPT (t), that achieves Max

∑

X∈S dX(k)q̃X(k) =: OPT
in this frame. We need to show that GM ≥ OPT .

We are going to modify ηOPT (t) slot by slot until it
is the same as ηGM . Let ηiOPT (t) be the schedule after
we have made sure ηiOPT (t) = ηGM (t) for all t between
kT and i, and let OPT i :=

∑

X∈S dX(k)q̃X(k) when

Algorithm 2 Greedy Maximizer

Require: S, {τX |X ∈ S}, {riX |X ∈ S, 1 ≤ i ≤ τX},
{q∗X |X ∈ S}

1: T ← least common multiplier of {τX |X ∈ S}
2: for X ∈ S do
3: dX ← 0
4: end for
5: k ← 0
6: t← 0
7: loop
8: t← t+ 1
9: if t mod T = 1{A new frame} then

10: k ← k + 1
11: for X ∈ S do
12: dX ← [dX + q∗X − q̃X]+

13: q̃X ← 0
14: end for
15: end if
16: for X ∈ S do
17: if t mod τX = 1{A new period for X} then
18: iX ← 0
19: end if
20: end for
21: Y ← argmaxX∈S riX+1

X dX
22: iY ← iY + 1
23: q̃Y ← q̃Y + riYY
24: execute the job of Y at time t
25: end loop

ηiOPT (t) is applied. We then have ηOPT ≡ ηkTOPT and
ηGM ≡ η(k+1)T . The process of modification is as follows:
If ηiOPT (i + 1) = ηGM (i + 1), then we do not need
to modify anything and we simply set ηi+1

OPT ≡ ηiOPT .
On the other hand, if ηiOPT (i + 1) 6= ηGM (i + 1), say,
ηGM (i + 1) = (A, jA) and ηiOPT (i + 1) = (B, jB), then
we modify ηiOPT (t) under two different cases. The first
case is that ηiOPT is going to schedule the action (A, jA)
some time after i + 1 in this frame. In this case ηi+1

OPT is
obtained by switching the two actions (A, jA) and (B, jB)
in ηiOPT . One such example is shown in Fig. 3a. Since
interchanging the order of actions does not influence the
value of

∑

X∈S dX(k)q̃X(k), we have OPT i+1 = OPT i

for this case. The second case is that ηiOPT does not
schedule the action (A, jA) in the frame. Then ηi+1

OPT is
obtained by setting ηi+1

OPT (i+1) = (A, jA) and scheduling
the same jobs as ηiOPT for all succeeding time slots. Since
the Greedy Maximizer schedules (A, jA) in this slot, we
have rjAA dA(k) ≥ rjBB dB(k). Also, for all succeeding time
slots, if job B is scheduled, then the reward for that slot
is going to be increased since the number of executions
of job B has been decreased by 1; if a job C other than
A and B is scheduled, then the reward for that slot is not
influenced by the modification. Fig. 3b has illustrated one
such example. In sum, we have that OPT i+1 ≥ OPT i.

We have established that OPT i+1 ≥ OPT i for all
i ∈ [kT, (k + 1)T]. Since OPT = OPT kT and GM =

8

(a) First case

(b) Second case

Fig. 3: Examples of modification in Theorem 8

(a) Greedy Maximizer

(b) Feasibility optimal scheduler

Fig. 4: An example of the resulting schedule by the Greedy
Maximizer and a feasibility optimal scheduler, respectively
in Example 1.

OPT (k+1)T , we have GM ≥ OPT and thus the Greedy
Maximizer indeed maximizes

∑

X∈S dX(k)q̃X(k).

However, when the periods of tasks are not the
same, the Greedy Maximizer does not always maximize
∑

X∈S dX(k)q̃X(k) and thus may not be feasibility opti-
mal. An example is given below.

Example 1: Consider a system with two tasks, A and
B, with τA = 6, τB = 3. Assume that r1A = r2A = r3A =
r4A = 100, r5A = r6A = 1, r1B = 10, and r2B = r3B = 0.
Suppose, at some frame k, dA(k) = dB(k) = 1. The
Greedy Maximizer would schedule jobs as in Fig. 4a, and
yield dA(k)q̃A(k)+dB(k)q̃B(k) = 411. On the other hand,
a feasibility optimal scheduler would schedule jobs as in
Fig. 4b, and yield dA(k)q̃A(k) + dB(k)q̃B(k) = 420. �

Although the Greedy Maximizer is not feasibility opti-
mal, we can still derive an approximation bound for this
policy.

Theorem 9: The Greedy Maximizer is a 2-
approximation policy.

Proof: The proof is similar to that of Theorem 8.
Define ηGM , ηOPT , η

i
OPT , GM,OPT, and OPT i in the

same way as in the proof of Theorem 8. By Theorem 6,
it suffices to show that GM ≥ OPT/2.

We obtain ηiOPT as follows: If ηGM (i+1) = ηiOPT (i+1),
then we set ηi+1

OPT ≡ ηiOPT . If ηGM (i + 1) = (A, jA) 6=
(B, jB) = ηiOPT (i), then we consider three possible
cases. The first case is that the job (A, jA) is not sched-
uled by ηiOPT in this period of A. In this case, we set
ηi+1
OPT (i + 1) = (A, jA) and use the same schedule as
ηiOPT for all succeeding time slots. An example is shown
in Fig. 5a. The same analysis in Theorem 8 shows that
OPT i+1 ≥ OPT i. The second case is that the job (A, jA)
is scheduled by ηiOPT in this period of A and there
is no deadline of B before the deadline of A. In this
case, we obtain ηi+1

OPT by switching the jobs (A, jA) and
(B, jB) in ηiOPT . An example is shown in Fig. 5b. We
have OPT i = OPT i+1 for this case. The last case is that
the job (A, jA) is scheduled by ηiOPT in this period of A,
and there is a deadline of B before the deadline of A.
In this case also, we obtain ηi+1

OPT by switching the two
jobs and renumbering these jobs if necessary. The rewards
obtained by all tasks other than B are not influenced by
this modification. However, as the example shown in Fig.
5c, the job (B, jB) in ηiOPT may become a job (B, j′B) in
ηi+1
OPT with j′B > jB. Thus, the reward obtained by B may

be decreased. However, since rewards are non-negative,
the amount of loss for B is at most rjBB . By the design

of Greedy Maximizer, we have rjAA dA(k) ≥ rjBB dB(k) and

thus OPT i+1 ≥ OPT i − rjAA dA(k).
In sum, for all i, if the Greedy Maximizer schedules

(A, jA) at time slot i + 1, we have OPT i+1 ≥ OPT i −
rjAA dA(k). Thus, GM = OPT (k+1)T ≥ OPT kT − GM =
OPT −GM and GM ≥ OPT/2.

VII. SIMULATION RESULTS

In this section, we present our simulation results. We
first consider a system with six tasks, each with different
period, τX , length of mandatory part, mX , and optional
part, oX . Let fX(t) be the total reward X obtained in a
period if it executes t time slots of its optional part in the
period. Thus, per our model, we have

riX =











H, if i ≤ mX ,
fX(i−mX + 1)
− fX(i−mX), if mX < i ≤ mX + oX ,

0, if i > mX + oX .

As in [?], we consider three different types of function
fX : exponential, logarithmic, and linear. The reward re-
quirement of X is mXH + q̂∗X . We compare the set of
requirements of tasks that can be fulfilled by the Greedy
Maximizer against the set of all feasible requirements.
We also compare the optimal policy (OPT) introduced in
[?], which aims to maximize the total per period reward,
∑

X∈S qX/ T
τX

. To better illustrate the results, we assume
that all q̂∗X ’s are linear functions of two variables, α and
β. We then find all pairs of (α, β) so that the resulting
requirements are fulfilled by the evaluated policies and
plot the boundaries of all such pairs. We call all pairs of
(α, β) that are fulfilled by a policy as the achievable region

9

(a) First case

(b) Second case

(c) Third case

Fig. 5: Examples of modification in Theorem 9

of the policy. We also call the set of all feasible pairs of
(α, β) as the feasible region. The complete simulation pa-
rameters are shown in Table I, in which most parameters
are derived from the simulation set up of [?].

In each simulation of the Greedy Maximizer, we initiate
the debt of X to be H + 1 and run the simulation for 20
frames to ensure that it has converged. We then continue
to run the simulation for 500 additional frames. The
system is considered fulfilled by the Greedy Maximizer
if none of the mandatory parts miss their deadlines in the
500 frames, and the total reward obtained by each task
exceeds its requirements.

The simulation results are shown in Fig. 6. For
both cases of exponential and logarithmic functions, the
achievable regions of the OPT policy are rectangles. That
is because the OPT policy only aims at maximizing the to-
tal per-period rewards and does not allow any tradeoff be-
tween rewards of different tasks. The achievable regions
of the OPT policy are also much smaller than the feasible
regions. On the other hand, the achievable regions of the
Greedy Maximizer are very close to the feasible region for
both the cases of exponential and logarithmic functions.
Also, its achievable regions are strictly larger than that of
the OPT policy. This also shows that the Greedy Maximizer
can provide fine-grained tradeoff between tasks.

The most surprising result is that for linear functions.
In this case, the OPT policy fails to fulfill any pairs of
(α, β) except (0, 0). A closer examination on the simula-
tion result shows that, besides mandatory parts, the OPT

Task id f1

X(t) f2

X(t) f3

X(t) q̂∗X
A 15(1 − e−t/15) 7 ln(3t + 1) 5t 5α

B 20(1 − e−3t/8) 10 ln(10t + 1) 7t 7α

C 4(1 − e−t/5) 2 ln(3t + 1) t α

D 10(1 − e−t/30) 5 ln(15t + 1) 4t 4β

E 5(1 − e−t/5) 3 ln(20t + 1) 2t 2β

F 8(1− e−t/20) 4 ln(6t + 1) 3t 3β

TABLE II: Task parameters for a system in which all tasks
have the same period.

policy only schedules optional parts of tasks D and F . This
example shows that, in addition to restricted achievable
regions, the OPT policy can also be extremely unfair. Thus,
the OPT policy is not desirable when fairness is concerned.
On the other hand, the achievable region of the Greedy
Maximizer is almost the same as the feasible region.
These simulation results also suggest that although we
have only proved that the Greedy Maximizer is a 2-
approximation policy, this approximation bound is indeed
very pessimistic. In most cases, the performance of the
Greedy Maximizer is not too far from that of a feasibility
optimal policy.

Next, we simulate a system in which all tasks have the
same period. We assume that τX = 120, mX = 0, and
oX = 120 for all X ∈ S. We also simulate all the three
functions, exponential, logarithmic, and linear. Detailed
parameters are shown in Table II.

The simulation results are shown in Fig. 7. As in the
previous simulations, the achievable regions of the Greedy
Maximizer are always larger than those of the OPT policy,
for all functions. Further, the achievable regions of the
Greedy Maximizer are exactly the same as the feasible
regions. This demonstrates that the Greedy Maximizer
fulfills every strictly feasible system when the periods of
all tasks are the same.

VIII. CONCLUDING REMARKS

We have studied a model in which a system consists of
several periodic real-time tasks that have their individual
reward requirements. This model is compatible with both
the imprecise computation models and IRIS models. By
making each task specify its own reward requirement,
our model can offer better fairness, and it allows trade-
off between tasks. Under this model, we have proved
a necessary and sufficient condition for feasibility, and
designed a linear time algorithm for verifying feasibility.
We have also studied the problem of designing on-line
scheduling policies and obtained a sufficient condition
for a policy to be feasibility optimal, or to achieve an
approximation bound. We have then proposed a simple
on-line scheduling policy. We have analyzed the perfor-
mance of the on-line scheduling policy and proved that
it fulfills all feasible systems in which the periods of all
tasks are the same. For general systems where periods
may be different for different tasks, we have proved that
the on-line policy is a 2-approximation policy. We have
also conducted simulations and compared our on-line

10

Task id τX mX oX f1

X(t) f2

X(t) f3

X(t) q̂∗X
A 20 1 10 15(1 − e−t/2) 7 ln(20t + 1) 5t 5α

B 30 1 15 20(1 − e−3t/2) 10 ln(50t + 1) 7t 7α

C 40 2 20 4(1 − e−t/2) 2 ln(10t + 1) t α

D 60 3 30 10(1 − e−t/10) 5 ln(25t + 1) 4t 4β

E 80 4 40 5(1 − e−t/2) 3 ln(30t + 1) 2t 2β

F 120 6 60 8(1− e−t/20) 4 ln(6t + 1) 3t 3β

TABLE I: Task parameters for a system in which tasks have different periods. f1
X , f2

X , and f3
X correspond to the

functions for exponential, logarithmic, and linear functions, respectively.

(a) Exponential functions (b) Logarithmic functions (c) Linear functions

Fig. 6: Achievable regions of scheduling policies for the system in Table I.

(a) Exponential functions (b) Logarithmic functions (c) Linear functions

Fig. 7: Achievable regions of scheduling policies for the system in Table II.

policy against a policy that maximizes the total reward
in the system. Simulation results show that the on-line
policy has much larger achievable regions than that of
the compared policy.

ACKNOWLEDGEMENT

The authors are grateful to Prof. Marco Caccamo for
introducing us to this line of work.

	I Introduction
	II Related Work
	III System Model
	III-A Extensions for Imprecise Computation Models

	IV Feasibility Analysis
	V Designing Scheduling Policies
	VI An On-Line Scheduling Policy
	VII Simulation Results
	VIII Concluding Remarks
	References
	I Introduction
	II Related Work
	III System Model
	III-A Extensions for Imprecise Computation Models

	IV Feasibility Analysis
	V Designing Scheduling Policies
	VI An On-Line Scheduling Policy
	VII Simulation Results
	VIII Concluding Remarks

