1007.0683v1 [cs.OH] 21 Jun 2010

arxXiv

Scheduling Periodic Real-Time Tasks with
Heterogeneous Reward Requirements

I-Hong Hou
CSL and Department of CS
University of Illinois
Urbana, IL 61801, USA
ihou2@illinois.edu

Abstract—We study the problem of scheduling periodic
real-time tasks so as to meet their individual minimum
reward requirements. A task generates jobs that can be
given arbitrary service times before their deadlines. A task
then obtains rewards based on the service times received
by its jobs. We show that this model is compatible to the
imprecise computation models and the increasing reward
with increasing service models. In contrast to previous work
on these models, which mainly focus on maximize the total
reward in the system, we aim to fulfill different reward
requirements by different tasks, which offers better fairness
and allows fine-grained tradeoff between tasks. We first
derive a necessary and sufficient condition for a system,
along with reward requirements of tasks, to be feasible. We
also obtain an off-line feasibility optimal scheduling policy.
We then studies a sufficient condition for a policy to be
feasibility optimal or achieves some approximation bound.
This condition can serve as a guideline for designing on-
line scheduling policy and we obtains a greedy policy based
on it. We prove that the on-line policy is feasibility optimal
when all tasks have the same periods and also obtain an
approximation bound for the policy under general cases.

I. INTRODUCTION

In classical hard real-time systems, every job needs to
be completed before its deadline, or the system suffers
from a timing fault. In practice, many applications allow
approximate results and partially completed jobs only
degrade the overall performance rather than causing a
fault. Imprecise computation models [2], [3] and increas-
ing reward with increasing service (IRIS) models [10]
have been proposed to deal with such applications. Most
work on these models only aims to minimize the total
error, or, equivalently, maximize the total reward of the
system without any considerations on fairness. However,
in many applications, rewards of different tasks are not
additive and satisfying individual reward requirements
is more important than maximizing total rewards. For
example, consider a server that provides video streams
to subscribers. Deadline misses will only cause losses on

This material is based upon work partially supported by USARO un-
der Contract Nos. W911NF-08-1-0238 and W-911-NF-0710287, AFOSR
under Contract FA9550-09-0121, and NSF under Contract No. CNS-07-
21992. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not
necessarily reflect the views of the above agencies.

P. R. Kumar
CSL and Department of ECE
University of Illinois
Urbana, IL 61801, USA
prkumar@illinois.edu

some frames and degrade the video quality, which is usu-
ally tolerable as long as such losses happen infrequently.
In such an application, a policy that aims to maximize
total reward may end up providing perfect video quality
for some subscribers while only offering poor quality
for others. In contrast, a desirable policy should aim at
providing reasonably good quality to all of its subscribers.

In this paper, we describe a model that considers the
hard delay bounds of tasks as well as rewards for partially
completed jobs, in a system with a set of periodic tasks.
The relationship between service times and rewards can
be any arbitrary increasing and concave function and may
differ from task to task. We allow each task to have its own
individual requirement on the average reward it obtains.
We show that both the imprecise computation model and
the IRIS model are special cases of our model.

Based on the model, we first analyze the conditions
for feasibility, that is, whether there exists a scheduling
policy that meets the individual reward requirements of
all tasks in the system. We prove a necessary and sufficient
condition for feasibility. We also propose a linear time
algorithm for evaluating whether a system is feasible.
Along with the feasibility condition, we also derive an off-
line scheduling policy that is feasibility optimal, meaning
that it fulfills all feasible systems.

We then study the problem of designing on-line
scheduling policies. We derive a sufficient condition for
a policy to be feasibility optimal, or, serve as an approx-
imation policy with some approximation bound. Using
this condition as a guideline, we propose an on-line
scheduling policy. We prove that this on-line policy fulfills
every feasible system in which periods are the same for
all tasks. We also obtain an approximation bound for this
policy when periods of tasks may be different.

In addition to theoretical studies, we also conduct
simulations to verify our results. We compare our policy
against one proposed by Aydin et al [1]], which is proved
to be an optimal off-line policy that maximizes the total
reward in any system. Simulation results suggest that al-
though the policy proposed by [1]] achieves maximum to-
tal reward, it can result in severe unfairness and does not
allow fine-grained tradeoffs between the performances of
different tasks.

http://arxiv.org/abs/1007.0683v1

The rest of the paper is organized as follows. Section
M summaries some existing work and, in particular, in-
troduces the basic concepts in the imprecise computation
model and the IRIS model. Section [IIl formally describes
our proposed model and discusses how it can capture
the imprecise computation model and the IRIS model.
Section [[V] analyzes the necessary and sufficient condition
for a system to be feasible, and proposes a linear time
algorithm for evaluating feasibility. Section [V] studies the
problem of scheduling jobs and obtains a sufficient con-
dition for a policy to achieve an approximation bound
or to be feasibility optimal. Based on this condition,
Section [V proposes a simple on-line scheduling policy and
analyzes its performance under different cases. Section [VII|
demonstrates our simulation results. Finally, Section [VIII|
concludes this paper.

I1I. RELATED WORK

The imprecise computation models [2], [3]] have been
proposed to handle applications in which partially com-
pleted jobs are useful. In this model, all jobs consist
of two parts: a mandatory part and an optional part.
The mandatory part needs to be completed before its
deadline, or else the system suffers from a timing fault.
On the other hand, the optional part is used to further
enhance performance by either reducing errors or in-
creasing rewards. The relations between the errors, or
rewards, and the time spent on the optional parts, are
described through error functions or reward functions.
Chung, Liu, and Lin [2] have proposed scheduling policies
that aim to minimize the total average error in the system
for this model. Their result is optimal only when the
error functions are linear and tasks generate jobs with
the same period. Shih and Liu [4] have proposed policies
that minimize the maximum error among all tasks in the
system when error functions are linear. Feiler and Walker
[5] have used feedback to opportunistically schedule
optional parts when the lengths of mandatory parts may
be time-varying. Mejia-Alvarez, Melhem, and Mosse [6]]
have studied the problem of maximizing total rewards in
the system when job generations are dynamic. Chen et al
[[7]1 have proposed scheduling policies that defer optional
parts so as to provide more timely response for mandatory
parts. Zu and Chang [8] have studied the scheduling
problem when optional parts are hierarchical. Aydin et
al [1] have proposed an off-line scheduling policy that
maximizes total rewards when the reward functions are
increasing and concave. Most of these works only concern
the maximization of the total reward in a system. Amir-
ijoo, Hansson, and Son [[9] have considered the tradeoff
between data errors and transaction errors in a real-time
database. The IRIS models can be thought of as special
cases of the imprecise computation models where the
lengths of mandatory parts are zero. Scheduling policies
aimed at maximizing total rewards have been studied for
such models [10], [11].

III. SYSTEM MODEL

Consider a system with a set S = {A4,B,...} of
real-time tasks. Time is slotted and expressed by ¢ €
{0,1,2,...}. Each task X generates a job periodically with
period 7x. A job can be executed multiple times in the
period that it is generated; the execution of a job does not
mean its completion. The job is removed from the system
when the next period begins. In other words, the relative
deadline of a job generated by task X is also 7x. We
assume that all tasks in S generate a job at time ¢t = 0. We
denote a frame as the time between two consecutive time
slots where all tasks generate a job. The length of a frame,
which we denote by T, is the least common multiple of
{rx|X € S}. Thus, a frame consists of T'/7x periods of
task X.

As noted above, each job can be executed an arbitrary
number of time slots before its deadline. Each task obtains
a certain reward each time that its job is executed. The
total amount of reward obtained by a task in a period
depends on the number of times that its job has been
executed in the period. More formally, task X obtains
reward ré(> 0 when it executes its job for the i*" time in
a period. For example, if a job of task X is executed a total
of n time slots, then the total reward obtained by task X
in this period is ri + r% + - + r%. We further assume
that the marginal reward of executing a job decreases as
the number of executions increases, that is, rf{l < ré,
for all 7 and X . Thus, the total reward that a task obtains
in a period is an increasing and concave function of the
number of time slots that its job is executed.

A scheduling policy n for the system is one that chooses
an action in each time slot. The action taken by # at time
t is described by 7n(t) = (X,i), meaning that the policy
executes the job of task X at time ¢ and that this is the
i*" time that the job is being executed in the period. Fig. [T
shows an example with two tasks over one frame, which
consists of two periods of task A and three periods of
task B. In this example, action (A, 1) is executed twice
and (4,2) is executed once. Thus, the reward obtained
by task A in this frame is 2r}; + r%. On the other hand,
the reward obtained by task B in this frame is 3r,.

The performance of the system is described by the long-
term average reward per frame of each task in the system.

Definition 1: Let sx(t) be the total reward obtained by
task X between time 0 and time ¢ under some scheduling
policy 7. The average reward of task X is defined as ¢x :=
lim inf; oo StX/—gf)

We assume that there is a minimum average reward
requirement for each task X, ¢% > 0. We wish to verify
whether a system is feasible, that is, whether each task can
have its minimum average reward requirement satisfied.

Definition 2: A system is fulfilled by a scheduling policy
n if, under 7, gx > ¢% with probability 1, for all X € S.

Definition 3: A system is feasible if there exists some
scheduling policy that fulfills it.

A natural metric to evaluate a scheduling policy is
the set of systems that the policy fulfills. For ease of

TA:3
A »A A
(A1) (A, 2) (A1)
752
B Be—2 " 5B B
B 1 B, 1
o ®.1) ®.1) 1)
T=6

Fig. 1: An example of the system and scheduling policy
over a frame of six slots, which consists of two period of
task A and three periods of task B. Arrows in the figure
indicate the beginning of a new period.

discussion, we only consider systems that are strictly
feasible

Definition 4: A system with minimum reward require-
ments [¢%|X € 5] is strictly feasible if there exists some
€ > 0 such that the same system with minimum reward
requirements [(1 + €)q%] is feasible.

Definition 5: A scheduling policy is feasibility optimal if
it fulfills all strictly feasible systems.

Moreover, since the overhead for computing a feasibility
optimal policy may be too high in certain scenarios, we
also need to consider simple approximation policies.

Definition 6: A scheduling policy is a p-approximation
policy, p > 1, if it fulfills all systems with minimum
reward requirements [¢%] such that the same system with
minimum reward requirements [pq%] is strictly feasible.

A. Extensions for Imprecise Computation Models

In this section, we discuss how our proposed model
can be used to handle imprecise computation models and
IRIS models. In such models, a task consists of two parts:
a mandatory part and an optional part. The mandatory
part is required to be completed in each period, or else the
system fails. After the mandatory part is completed, the
optional part can be executed to improve performance.
The more optional parts executed for a task, the more
rewards it gets.

Let mx be the length of the mandatory part of task X,
that is, it is required that each job of X is executed at
least mx time slots in each of its period. Let ox be the
length of the optional part of task X. To accommodate this
scenario, we define a symbolic value M with the following
arithmetic reminiscent of the “Big-M Method” in linear
programming: 0x M = 0, aM+bM = (a+b)M, ax (bM) =
(ab)M, aM +c¢ > bM +d, if a > b, and aM +c > aM +d
if ¢ > d, for all real numbers a,b, ¢, d. Loosely speaking,
M can be thought of as a huge positive number. For each

task X, we set 7% = r¥% = -+ = r¥X = M, we then
set me+1 PRX TR XX according to the rewards

obtalned by X for its optional part, and r% = 0, for all
i > mx+ox. The minimum reward requirement of task X
is set to be %mXM—i—(jj(with ¢% > 0. Thus, a scheduling

policy that fulfills such a system is guaranteed to complete
each mandatory part with probability one.

IV. FEASIBILITY ANALYSIS

In this section, we establish a necessary and sufficient
condition for a system to be feasible. Consider a feasible
system that is fulfilled by a policy 7. Suppose that, on
average, there are fi periods of task X in a frame in
which the action (X,) is taken by 7. The average reward
of task X can then be expressed as gx = > .~ firk.
We can immediately obtain a necessary condition for
feasibility.

Lemma 1: A system with a set of tasks S = {A, B, ...}
is feasible only if there exists {f{|X € 5,1 < i < 7x}
such that

TX
ax <Y firk, VX €S, (D
=1
. T)
0< fx < —, VXeS1<i<tx, (2)
TX
TX,
SN ST (3)
XeSi=1

Proof: Condition (1) holds because task X requires
that ¢% < ¢x. Condition (2) holds because there are
T/Tx periods of task X in a frame and thus f% is upper-
bounded by T'/7x. Finally, the total average number of
time slots that the system executes one of the jobs in
a frame can be expressed as ers P 3'(, which is
upper-bounded by the number of time slots in a frame,
T. Thus, condition follows. []

Next, we show that the conditions ([A)-(@) are
also sufficient for feasibility To prove this, we first
show that the polytope which contains all points
f = (i fa,--. . fh,...) that satisfy conditions
(@) and (@), is a convex hull of several integer
points. We then show that for all integer points n =
(nY,n?%,...,n%*, nk,...) in the polytope, there is a sched-
ule under which the reward obtained by task X is at least
SorX nir’. We then prove sufficiency using these two
results.

Define a matrix H = [h; ;] with 2}y _¢7x + 1 rows
and)y g 7x columns as follows:

1, ifi=1,
)1, ifi=2j,
hig =90 21 ifi=2j+1, 4)
0, else.

Define b = [b;] to be a column vector with 2} "y ¢ 7x +
1 elements so that b; = T; the first 74 elements with
even indices are set to T'/74, that is, by = by = -+ =
bar, = T'/7a; the next 75 elements with even indices are
set to T'/7p, and so on. All other elements are set to 0.

For example, the system shown in Fig. [I] would have

©oT 7
[17 17 11 17 1 T/TA
1, 0, 0, 0 0
_15 07 07 07 T/TA
07 17 07 07 0
H=1| o0 -1, o0, 0, b=
0, 0, 1, 0, :
0, 0, -1, 0, T/OTB

Thus, conditions (2) and (8) can be described as H f <
b. Theorem 5.20 and Theorem 5.24 in [12] shows the
following:

Theorem 1: The polytope defined by {f|Hf < b},
where b is an integer vector, is a convex hull of several
integer points if for every subset R of rows in H, there ex-
ists a partition of R = Ry U Ry such that for every column
j in H, we have ZheRl i1, = Diyer, Pinj € {1,0, -1}

Since all elements in b are integers, we obtain the
following:

Theorem 2: The polytope defined by {f|Hf < b},
where H and b are derived using conditions (2) and
as above, is a convex hull of several integer points.

Proof: Let R = {ry,r2,...} be the indices of some
subset of rows in H. If the first row is in R, we choose
Ry = {rlr € R,r is odd} and Ry = {r|r € R,r is even}.
Since for all columns j in H, hi; = 1, hyj; = 1,
haj+1,; = —1, and all other elements in column j are zero,
we have ZHGRI i1d = DineRy Minj € {1,0,—1}. On the
other hand, if the first row is not in R we choose R1 R
and Ry = @. Again, we have) 3, . hi, ; hiyj =
> iver, Pinj € {1,0,—1}. Thus, by Theoremﬁl, tfle poly-
tope defined by {f |H f < b} is a convex hull of several
integer points. |

Next we show that all integer points in the polytope
can be carried out by some scheduling policy as follows:

Theorem 3: Let n = (nk,n%,...,n’*,nk,...) be an
integer point in the polytope {f|H f < b}. Then, there
exists a scheduling policy so that gx > >"7 %, niri.

Proof: We prove this theorem by constructing a
scheduling policy that achieves the aforementioned re-
quirement. We begin by marking deadlines of actions.
Ideally, we wish to schedule the action (X,i) n’ times
in a frame. Without loss of generality, we assume that
the frame starts at time 0 and ends at time 7. Since
there is at most one (X,i) action in a period of task
X, we can mark the deadlines of these actions as T, T —
Tx,...,T—(n% —1)7x, respectively. The scheduling policy
will schedule the action with the earliest deadline that has
neither been executed in its period (that is, it does not
schedule two actions of the same type in the same period)
nor missed its deadline, with ties broken arbitrarily. Fig.
[2al shows how the deadlines are marked in an example

1Such matrix H is called a totally unimodular matrix in combinatorial
optimization theory.

(A 2)
) 7,73 ({\; 2) (A1)
A
(B,2)
B, 1 B, 1
2 (l) (l)
B ° . * 2

(a) The deadlines that are marked

(A, 2)
(A, 2) (A, 1)
A 2 A1 A 2
A (A, 2) (A1) (A 2)
(B,2)
B, 1) B, 1)
(B,1) (B,1) (B,2)
B
(b) The actions scheduled before renumbering
(A, 2)
(A, 2) (A, 1)
A1 A 2 A1
A (A1) (A, 2) (A1)
(B,2)
B, 1) B, 1)
(B,1) (B,1) (B, 1)
B

(c) The actions scheduled after renumbering

Fig. 2: An example of the scheduling policy in Theorem
Bl Deadlines of actions are marked by putting the action
above the arrow of its deadline.

with nly = 1,n% = 2,nL =2, and n% = 1. Fig. 2D shows
the resulting schedule for this example. Note that, under
this policy, there are time slots where the policy schedules
an action (X,i), but it is instead the j** time that the
job of X is executed in the period. Thus, we may need
to renumber these actions as in Fig. and define i’
as the actual number of times that the action (X,i) is
executed in the frame. In the example of Fig. 2] we have
nY =2,n% =1,n} = 3,and n% = 0. Since the policy does
not schedule two identical actions in a period, as long as
all actions are executed before their respective deadlines,
we have 37 i=1 iy > S n', for all k and X € S Thus,
gx = Y. X akry > S TX nirl, since vk > 1% > ...,
for all X € S. To avoid confusion, we refer actions by its
type before renumbering throughout the rest of the proof.

It remains to show that none of the actions miss their
deadlines under this policy. We prove this by contradic-
tion. Let dx (t) be the number of actions of task X whose
deadlines are smaller or equal to ¢t. By the way that
we mark deadlines of actions, we have that %}:") <

M <o < dX:;). We also have dx(t) = dx(kx),
for allt e [k7x, (k+1)7x). For any ¢, let kx = | -], and

we then have

dx (t dx (kxT
> xes Xt() =2 xes xllc)

t
dx (kx7x)
S ZXES kxTx

(5)

)

where the last inequality follows by condition (3).
Suppose there is an action (X, 7) that misses its deadline
at time ¢ under our policy. We first consider the case where
the policy schedules an action with deadline smaller or
equal to ¢ in all time slots between 0 and ¢, with no time
slot left idle. In this case, we have)y o dx(t) >t +1

and thus)y ¢ dXt(t) > 1, which contradicts Eq. (5).

Next we consider the case where at some time ¢’ < ¢
the policy does not schedule an action with deadline
smaller or equal to ¢. That is, at time ¢’, the policy either
schedules an action whose deadline is strictly larger than
t or stays idle. Now we first claim that ¢ and ¢’ cannot
belong to the same period of X, that is, the case with
t" > t — 7x is not possible. The only reason that (X,1)
is not in fact scheduled at ¢’ is that there is already one
identical action in the corresponding period containing
t’. This other action would have a deadline at either
t or t — ktxy for some k > 1. The former case is not
possible because two identical actions cannot have the
same deadline. The latter is also not possible because no
action is scheduled after its deadline and t — krx < t’ if
t and ¢’ belong to the same period.

As shown above, the interval [t — 7x + 1,¢] has the
property that all actions scheduled in this interval have
deadlines smaller or equal to ¢. Now we proceed to show
that ¢ < t — 7x is also not possible. We do this by
expanding this interval while preserving this property.
Pick any action, (X’,i’), scheduled at time tx/ in the
interval and assume that the period of X’ containing ¢y
is [t.,t%.]. We have t%, <t since the deadline of (X’,i’)
is no larger than ¢ and the deadline of this action is at
the end of some period of X’. Now, by the design of
the scheduling policy, for any tx- in [t/ tx/], the action
scheduled in ¢y should have deadline smaller or equal
to the deadline of (X’,i’), or otherwise (X’,i’) should
have been scheduled in ¢x.. The deadline of the action
scheduled in ¢y is thus also smaller or equal to ¢. Thus,
if t%;, is smaller than the beginning of the interval, we can
expand the interval to [t} t] while preserving the desired
property. We keep expanding the interval until no more
expansions are possible.

Let (Y, j) be the action in the resulting interval with the
largest period, Ty, and suppose that it is scheduled at time
ty. Assume that the period of Y containing ty is [ty t3].
By the way we expand the interval, [ti.,#3] is within the
expanded interval and all actions scheduled in [t} %]
have deadlines smaller or equal to t. For each action in
[t3-, 3], the reason that it has not been scheduled earlier
at time ¢’ is because there is already one identical action
scheduled in its period that contains ¢. This identical
action, also with deadline earlier than ¢, must have been
scheduled before time ¢'. Since the period of this action is

smaller or equal to 7y, its identical counterpart must have
been scheduled in [t' — 7y +1,¢ —1]. However, there are at
most 7y — 1 actions scheduled in [t — 7y +1,¢' — 1], while
there are 7y actions in [t,, 3], leading to a contradiction.
Thus, this case is also not possible.

In sum, all actions are scheduled before their deadlines
using this policy, and the proof is completed. [|

Now we can derive the necessary and sufficient condi-
tion for a system to be feasible.

Theorem 4: A system with asetof tasks S = {4, B,...}
is feasible if and only if there exists {f%|X € 5,1 <i <
7x } such that () - @) are satisfied.

Proof: Lemma [I] has established that these conditions
are necessary. It remains to show that they are also
sufficient. Suppose there exists f = {fi|X € 5,1 <
1 < 7x} that satisfy (I) - @D, then Theorem (] shows
that there exists integer vectors n[l],n[2],...,n[v] such
that f = >"_, ay,nfu], where a,’s are positive numbers
with >V _, o, = 1. Let 5, be the scheduling policy for
the integer vector nf[u] as in the proof of Theorem [3]
for each u. Theorem [3] have shown that for each u, the
average reward obtained by X under 7,, g¢x[n.], is at
least Y% nlu]irY. Finally, we can design a policy as
a weighted round robin policy that switches among the
policies 71,72,...,m, , with policy 7, being chosen in
a,, of the frames. The average reward obtained by X
is hence gx = 3, auqxlmd > 3, au (S0, nluliry) =
SorX fers > g% Thus, this policy fulfills the system and
so the conditions are also sufficient.]

Using Theorem[] checking whether a system is feasible
can be done by any linear programming solver. The
computational overhead for checking feasibility can be
further reduced by using the fact that ri, > r’, for all
i < j. Given a system and {f%} that satisfies conditions
@ - @ with f{ < X and f} > 0 for some j < k and
Y €S Letd = min{A% — fi, R Construct {fi} such
that f), = f}, + 0, ff = ff — 94, and fi = fi for all
other elements. Then { f}(} also satisfies conditions () -
([@D. Based on this observation, we derive an algorithm
for checking feasibility as shown in Algorithm [This
essentially transfers slots from less reward earning actions
to more reward earning actions. The running time of
this algorithm is O(3_y g 7x). Since a specification of a
system involves at least the), ¢ 7x variables of {7},
Algorithm [T] is essentially a linear time algorithm.

In addition to evaluating feasibility, the proof of The-
orem [4] also demonstrates an off-line feasibility optimal
policy. In many scenarios, however, on-line policies are
preferred. In the next section, we introduce a guideline
for designing scheduling policies that turns out to suggest
simple on-line policies.

V. DESIGNING SCHEDULING POLICIES

In this section, we study the problem of designing
scheduling policies. We establish sufficient conditions for
a policy to be either feasibility optimal or p-approximately
sO.

Algorithm 1 Feasibility Checker
Require: S, {rx|X € S}, {r|X € S,1 < i < 7x},

{a%|X € 5)
1: for X € S do
2 if g > £ 77X, r then
3: return Infeasible
4. end if
5: end for
6: for X € S do
7: 741
8: while ¢% > 0 do
9: if ¢% > %T‘ZX then
10: fi—T/rx
11: Oy dx — 7T
12: else
13: Fi = ax/r
14: gx <0
15: end if
16: 141+ 1
17: end while
18: end for

19: if Yoo SO0 f < T then
20: return Feasible

21: else

22: return Infeasible

23: end if

We start by introducing a metric to evaluate the per-
formance of a policy 7. Let gx (k) be the total reward
obtained by task X during the frame ((k — 1)7, kT]. W

then have gx = liminfy_, M We also define the
debt of task X.

Definition 7: The debt of task X in the frame ((k —
T, kT], dx (k) is defined recursively as follows:

dx(0) =0,
dx(k) =[d

Lemma 2: A system is fulfilled by a policy n if
limg o dx (k)/k = 0 with probability 1.

Proof: We have dx(k) > kqy — Zf 1Gx (i) and
dx(k)/k > gk —+ Zz 1 Gx (1). Thus, if limy o dx (k) /k =
0, then gx = liminfy_, o M > ¢% and the system
is fulfilled. [|

We can describe the state of the system in the k" frame
by the debts of tasks, [dx(k)|X € S]. Consider a policy
that schedules jobs solely based on the requirements and
the state of the system. The evolution of the state of the
system can then be described as a Markov chain.

Lemma 3: Suppose the evolution of the state of a sys-
tem can be described as a Markov chain under some
policy n. The system is fulfilled by 7 if this Markov chain
is irreducible and positive recurrent.

Proof: Since the Markov chain is positive recurrent,
the state {dx (k) = 0,VX € S} is visited infinitely many
times. Further, assuming that the system is in this state at

x(k=1)+ax — ax(k)]", vk > 0.

frames ki, ko, ks, ..., then [k,41 — k] is a series of i.i.d.
random variables with finite mean. Let I,, be the indicator
variable that there exists some k,, between frame k,, and
frame k,,11 such that dx (k)/k > ¢ for some X € S, for
some arbitrary § > 0. Let g;,,,, = maxxesqx. If I, = 1,
we have that k, > k, > n and thus dx(k,) > nd, for
some X € S. Since dx (k) can be incremented by at most
in a frame and dx (k.) = 0, k,, — kn, > nd/q;,,, and
kn > kn — ky > n0/¢,,.- Thus,

Prob{I, =1} < Prob{kyi1 — kn > nd/q}as}
= Prob{ky — k1 > nd/qpq0}

*
qm(l(ﬂ

knJrl -

and

> Prob{I, =1} <> Prob{ks — ki > nd/qa,}
n=1 n=1

< E[kz — kl] < 00,

By Borel-Cantelli Lemma, the probability that I,, = 1
for infinitely many n’s is zero, and so is the proba-
bility that dx(k)/k > § for infinitely many %’s. Thus,
limsup,_,., dx(k)/k < ¢ with probability 1, for all
X € S and any arbitrary § > 0. Finally, we have
limg—, 00 dx (k)/k = 0 with probability 1 since dx (k) > 0
by definition. [|

Based on the above lemmas, we determine a sufficient
condition for a policy to be a p-approximation policy. The
proof is based on the Foster-Lyapunov Theorem:

Theorem 5 (Foster-Lyapunov Theorem): Consider a
Markov chain with state space D. Let D(k) be the state
of the Markov chain at the k** step. If there exists a
non-negative function L : D — R, a positive number J,
and a finite subset Dy of D such that:

E[L(D(k + 1)) — L(D(k))|D(k)] < -6, if D(k) ¢ Do,
E[L(D(k + 1))|D(k)] < oo, if D(k) € D,

then the Markov chain is positive recurrent. B

Theorem 6: A policy n is a p-approximation policy, for
some p > 1, if it schedules jobs solely based on the
requirements and the state of a system and, for each &,
the following holds:

S ax(R)dx (k) = (

Xes

qxdx (k))/p.

Ina,X
x| is feasible ;¢

lax]: [q

Proof: Consider a system with minimum reward re-
quirements [g%] such that the same system with minimum
reward requirements [pg] is also strictly feasible. By
Lemma [3] it suffices to show that under the policy 7,
the resulting Markov chain is positive recurrent. Consider
the Lyapunov function L(k) := Y v g d% (k)/2. The Lya-
punov drift function can be written as:

5 S e+ 1) — ()]

Xes
< 3 (% — ax(h)dx (k) + C,
Xes

AL(k+1):=L(k+1)— L(k) =

where C is a bounded constant. Since [pg%] is
also strictly feasible and dx(k) > 0, there ex-
ists ¢ > 0 such that (1 + €)> v gpakdx(k) <

max[qx] [gx] is feasible ZXES gxdx(k), and hence (1 +
€)Y xesUxdx (k) < ers gx (k)dx (k). Thus, we have

AL(k+1) < =€ > qxdx(k (6)
Xes

Let Dy be the set of states [dx(k)|X € S] with
Y xesdxdx (k) < (C + d)/e, for some positive finite
number o. Then, Dy is a finite set (since ¢% > 0 for all
x € S), with AL(k + 1) < —¢ when the state of frame
k is not in Dy. Further, since dx (k) can be increased by
at most ¢% in each frame, L(k + 1) is finite if the state
of frame k is in Dy. By Theorem [5] this Markov chain is
positive recurrent and policy n fulfills this system. [|

Since a 1-approximation policy is also a feasibility
optimal one, a similar proof yields the following:

Theorem 7: A policy n fulfills a strictly feasible system
if it maximizes) ¢ ¢x (k)dx (k) among all feasible [gx]
in every frame k. It is a feasibility optimal policy if the
above holds for all strictly feasible systems.

VI. AN ON-LINE SCHEDULING PoLICY

While Section [V] has described a sufficient condition
for designing feasibility optimal policies, the overhead
for computing such a feasibility optimal scheduling pol-
icy may be too high to implement. In this section, we
introduce a simple on-line policy. We also analyze the
performance of this policy under different scenarios.

Theorem [/] has shown that a policy that maximizes
> xegdx(k)dx (k) among all feasible [gx] in every frame
k is feasibility optimal. The on-line policy follows this
guideline by greedily selecting the job with the highest
ridx (k) in each time slot. Assume that, at some time ¢
in frame k, task X has already been scheduled ix times
in its period. The on-line policy then schedules the task
Y so that ri¥ T'dy (k) is maximized among all X € S. A
more detailed description of this policy, which we call the
Greedy Maximiger, is shown in Algorithm [2

Next, we evaluate the performance of the Greedy Max-
imizer. We show that this policy is feasibility optimal if
the periods of all tasks are the same, and that it is 2-
approximation in general.

Theorem 8: The Greedy Maximizer fulfills all strictly
feasible systems with 7x = 7, for all X € S.

Proof: It suffices to prove that the Greedy Maximizer
indeed maximizes) | y . g dx (k)Gx (k) in every frame. Sup-
pose at some frame k, the debts are {dx(k)} and the
schedule generated by the Greedy Maximizer is ngas(¢),

€ (KT, (k+1)T]. Let GM :=)y gdx(k)Gx (k) when
nea is applied. Consider another schedule, nopr(t), that
achieves Max) ¢ dx(k)Gx (k) =: OPT in this frame.
We need to show that GM > OPT.

We are going to modify nopr(t) slot by slot until it
is the same as ngar. Let n5pp(t) be the schedule after
we have made sure n},p;(t) = nea(t) for all ¢ between
kT and 4, and let OPT" := Y sdx(k)ix (k) when

Algorithm 2 Greedy Maximizer
Require: S, {rx|X € S}, {rk|X € S,1 < i < 7x},
{¢gk|X € S}

1: T « least common multiplier of {rx|X € S}
2: for X € S do

3: dx <0

4: end for

5: k<0

6: 1< 0

7: loop

8 t—1t+1

9: if t mod T = 1{A new frame} then

10: kE+—k+1

11: for X € S do

12: dx < [dx+q§(—(jx]+

13: gx <0

14: end for

15: end if

16: for X € S do

17: if ¢ mod 7x = 1{A new period for X'} then
18: ix 0

19: end if

20: end for

21: Y(—argmaxXGSTXHdX

22: 1y <1ty +1)

230 Gy < Gy + 1y

24: execute the job of Y at time ¢
25: end loop

nhpr(t) is applied. We then have nopr = nkk, and
nem = no;%)T. The process of modification is as follows:
If nbpr(i +1) = nem(i + 1), then we do not need
to modify anything and we simply set 755, = 15 p7-
On the other hand, if 0\, (i + 1) # nem(i + 1), say,
nem (i + 1) = (A,ja) and nhpp(i + 1) = (B,jp), then
we modify 770 pr(t) under two different cases. The first
case is that 0}, pp is going to schedule the action (A ja)
some time after i + 1 in this frame. In this case 1p; is
obtained by switching the two actions (A, j4) and (B, jp)
in n,,pp. One such example is shown in Fig. Bal Since
interchanging the order of actions does not influence the
value of)y ¢ dx(k)ix(k), we have OPT**! = OPT"
for this case. The second case is that 1}, does not
schedule the action (A,j4) in the frame. Then n)p, is
obtained by setting 1’5, (i +1) = (A, j4) and scheduling
the same jobs as 7y, for all succeeding time slots. Since
the Greedy Maximizer schedules (A, j4) in this slot, we
have /¢ d4(k) > 2 dg(k). Also, for all succeeding time
slots, if job B is scheduled, then the reward for that slot
is going to be increased since the number of executions
of job B has been decreased by 1; if a job C' other than
A and B is scheduled, then the reward for that slot is not
influenced by the modification. Fig.[3bl has illustrated one
such example. In sum, we have that OPT*! > OPT".
We have established that OPT'*! > OPT* for all

i € [kT,(k + 1)T). Since OPT = OPT*" and GM =

(B.jg) (A

oy *** (Ada) (Bjs) (C) (Do)

(a) First case

opr (C.Jo) (D, o)

Weopr *** (Big) (Bis*t1) (C.ic) (D, jp)
ey *** (A (Bs) (Cc) (D.p)

(b) Second case

Fig. 3: Examples of modification in Theorem

AB B AB
A1 A2) (A3 [(A4) (B,1) (AD)
(a) Greedy Maximizer
AB B AB
A1) (A2 B, 1) (A3 (A4 (B 1)

(b) Feasibility optimal scheduler

Fig. 4: An example of the resulting schedule by the Greedy
Maximizer and a feasibility optimal scheduler, respectively
in Example [Tl

OPT* DT "we have GM > OPT and thus the Greedy
Maximizer indeed maximizes |y g dx(k)Gx (k).
|

However, when the periods of tasks are not the
same, the Greedy Maximizer does not always maximize
> xesdx(k)gx (k) and thus may not be feasibility opti-
mal. An example is given below.

Example 1: Consider a system with two tasks, A and
B, with 74 = 6, 7 = 3. Assume that r}y = 73 = r =
rd =100, 75 = 1% = 1, r5 = 10, and r4 = 3 = 0.
Suppose, at some frame k, ds(k) = dp(k) = 1. The
Greedy Maximizer would schedule jobs as in Fig. [4al and
yield da(k)Ga(k)+dp(k)Gs (k) = 411. On the other hand,
a feasibility optimal scheduler would schedule jobs as in
Fig. [4b] and yield d4(k)Ga(k) + dp(k)js(k) = 420. &

Although the Greedy Maximizer is not feasibility opti-
mal, we can still derive an approximation bound for this
policy.

Theorem 9: The
approximation policy.

Proof: The proof is similar to that of Theorem [8
Define nga, noprnypp, GM,OPT, and OPT" in the

Greedy Maximizer is a 2-

same way as in the proof of Theorem [8l By Theorem [6]
it suffices to show that GM > OPT/2.

We obtain n}, o as follows: If ngas (i+1) = nb pp(i+1),
then we set n5pr = nhpr. If nan(i +1) = (A, ja) #
(B,jB) = mnypr(i), then we consider three possible
cases. The first case is that the job (A4, j4) is not sched-
uled by 1§, p in this period of A. In this case, we set
ngrplT(i + 1) = (A,ja) and use the same schedule as
ng pr for all succeeding time slots. An example is shown
in Fig. Gal The same analysis in Theorem [8] shows that
OPT*! > OPT". The second case is that the job (4,54)
is scheduled by n,p in this period of A and there
is no deadline of B before the deadline of A. In this
case, we obtain 7,p, by switching the jobs (4,;4) and
(B,jp) in npp. An example is shown in Fig. We
have OPT? = OPT**! for this case. The last case is that
the job (A, ja) is scheduled by 1}, pr in this period of A,
and there is a deadline of B before the deadline of A.
In this case also, we obtain 155, by switching the two
jobs and renumbering these jobs if necessary. The rewards
obtained by all tasks other than B are not influenced by
this modification. However, as the example shown in Fig.
[5d, the job (B, jg) in n,pr may become a job (B, j5) in
nitpr with j% > jp. Thus, the reward obtained by B may
be decreased. However, since rewards are non-negative,
the amount of loss for B is at most 7. By the design
of Greedy Maximizer, we have r’*da(k) > 3’ dp(k) and
thus OPT™! > OPT' — 17 d (k).

In sum, for all ¢, if the Greedy Maximizer schedules
(A,ja) at time slot i + 1, we have OPT**' > OPT" —
r&da(k). Thus, GM = OPT*+VT > OpPT*T — GM =
OPT — GM and GM > OPT/2. n

VII. SIMULATION RESULTS

In this section, we present our simulation results. We
first consider a system with six tasks, each with different
period, 7x, length of mandatory part, mx, and optional
part, ox. Let fx(¢) be the total reward X obtained in a
period if it executes ¢ time slots of its optional part in the
period. Thus, per our model, we have

M,
fx(i—mx +1)
—fx(i—mx), if my <i<mx +ox,
0, if i >mx +ox.

ifigmx,

-
Ty =

As in [[1]], we consider three different types of function
fx: exponential, logarithmic, and linear. The reward re-
quirement of X is %m xM + ¢%. We compare the set of
requirements of tasks that can be fulfilled by the Greedy
Maximizer against the set of all feasible requirements.
We also compare the optimal policy (OPT) introduced in
[1], which aims to maximize the total per period reward,
Y oxesdx/ % To better illustrate the results, we assume
that all ¢%’s are linear functions of two variables, o and
B. We then find all pairs of («,) so that the resulting
requirements are fulfilled by the evaluated policies and
plot the boundaries of all such pairs. We call all pairs of
(o, B) that are fulfilled by a policy as the achievable region

A
' opr eee (Bjg) Bijsgt) (Cic) [(A, 1) ee e
. 2
)7H]OPT eee (Aj) B (Ci)lAa1) eee
(a) First case
A
Wopr *** (Bls) Bigt) (Clo) (Ajy) | e e e
.
Pl ®ee (AQ) (Bl (Clo) Bigt) e
(b) Second case
B A
,71'0” ese (B IB,1) (B,2) (Aju) |oee
B A
P eee ML) 1B B2 (B3)]eee

(¢) Third case

Fig. 5: Examples of modification in Theorem [9]

of the policy. We also call the set of all feasible pairs of
(a, B) as the feasible region. The complete simulation pa-
rameters are shown in Table[l, in which most parameters
are derived from the simulation set up of [1].

In each simulation of the Greedy Maximizer, we initiate
the debt of X to be M + 1 and run the simulation for 20
frames to ensure that it has converged. We then continue
to run the simulation for 500 additional frames. The
system is considered fulfilled by the Greedy Maximizer
if none of the mandatory parts miss their deadlines in the
500 frames, and the total reward obtained by each task
exceeds its requirements.

The simulation results are shown in Fig. [6l For
both cases of exponential and logarithmic functions, the
achievable regions of the OPT policy are rectangles. That
is because the OPT policy only aims at maximizing the to-
tal per-period rewards and does not allow any tradeoff be-
tween rewards of different tasks. The achievable regions
of the OPT policy are also much smaller than the feasible
regions. On the other hand, the achievable regions of the
Greedy Maximizer are very close to the feasible region for
both the cases