PhotoNet: A Similarity-aware Picture Delivery
Service for Situation Awareness

Md Yusuf Sarwar Uddin, Hongyan Wang, Fatemeh Saremi, Guo-Jun Qi, Tarek Abdelzaher and Thomas Huang
University of Illinois at Urbana-Champaign
{mduddin2, wang44, saremil, qi4, zaher, huang} @illinois.edu

Abstract—We propose PhotoNet, a picture delivery service for
camera sensor networks. PhotoNet is motivated by the needs
of disaster-response applications, where a group of survivors
and first responders may survey damage and send images to
a rescue center in the absence of a functional communication
infrastructure. The protocol runs on mobile devices, handling
opportunistic forwarding (when they come in contact) and in-
network storage. It assigns priorities to images for forwarding
and replacement depending on the degree of similarity (or
dissimilarity) among them, such that scarce resources are as-
signed to delivery of most ‘“deserving” content first. Prioritization
aims at reducing semantic redundancy such as that between
pictures of the same scene at the same location taken from
slightly different angles. This is in contrast to redundancy among
identical objects and among time series data. PhotoNet delivers
more diverse pictures in terms of event coverage suppressing
logically redundant content belonging to the same event. We
show that, in resource constrained networks, reducing semantic
redundancy can significantly improve the utility of the service.

I. INTRODUCTION

In this paper, we develop a picture delivery service for cam-
era sensor networks, called PhotoNet. The service is geared for
disaster recovery scenarios where survivors and first respon-
ders survey post-disaster damage and send pictures of it from
their mobile devices (such as camera phones) to a command
or rescue center. We assume that infrastructure (such as power
and cell towers) is down, making communication possible only
opportunistically between nearby wireless battery-operated
devices. As nodes move and meet other nodes, data spreads,
leading to a disruption-tolerant network (DTN) model. We
are interested in scenarios where bandwidth, contact oppor-
tunities between nodes, or node storage is limited, leading to
resource bottlenecks that prevent delivery of all pictures to
the destination. The service aims at maximizing awareness
of locations that need attention. We call this metric event
coverage. Hence, delivery of pictures from many different
locations is preferred to delivery of many pictures from the
same location. Similarly, delivery of dissimilar pictures from
a given location (likely covering different events) is prefered
to delivery of very similar pictures from that location. In
the paper, we show that by prioritizing image storage and
transmission depending on possible overlap with other images,
one can make significantly better use of scarce resources
thereby substantially improving overall event coverage at the
sink. Overlap is estimated by comparing the visual content of
images as well as their locations and timestamps. The service

is made possible thanks to the proliferation of mobile devices
with digital cameras, which makes deployment feasible.

The main contribution of PhotoNet lies in its message
prioritization scheme, called CAP (Content-Aware Prioritiza-
tion) that aims to maximize delivered content diversity. By
maximizing diversity, the network has a better chance at giving
the sink the “big picture” quicker, as opposed to delivering lots
of pictorial coverage of more populated locales and none on
more isolated ones.

PhotoNet’s content-based prioritization scheme, CAP, bears
an interesting difference from traditional traffic prioritization
schemes (e.g., those discussed in network QoS literature [1],
[2]). While prior schemes associate priority with each message
independently (e.g., based on its content type, class, source,
or destination), CAP considers the relations between different
objects in assigning priority to each. Specifically, it tries to
maximize a measure of distance between reported objects,
hence favoring dissimilar content.

Understanding relations between objects is a necessity, not
a choice, whenever network utility is not additive in utility
derived from delivery of individual objects from different
sources. For example, delivering the first picture of a damage
scene may have high utility. Delivering more pictures of the
same scene from other sources has progressively lower utility,
since the information becomes partially redundant. This utility
saturation effect calls for content prioritization schemes in
which priority is not a value defined inherently for each object
in isolation, but rather is a function of relations between
objects (such as whether a new picture is similar to, and from
the same location as, a previously delivered one).

The above observation leads to an important concern. If
priority cannot generally be determined for each object in
isolation, it becomes expensive to assign priorities. For ex-
ample, if pairwise combinations of N objects need to be
considered, the worst-case overhead is O(N?). Fortunately,
in DTNs, a node spends most of its time between encounters
(e.g., spends minutes or tens of minutes). Hence, the bulk
of similarity processing can be done in between encounters,
leading to efficient prioritization of forwarding when nodes
meet. Indeed, much of the design of PhotoNet intends to
minimize prioritization overhead. Our evaluation shows that
despite the overhead, network performance is improved.

We simulate PhotoNet using the ONE (Opportunistic Net-
work Environment) simulator and show that PhotoNet achieves
higher event coverage compared to traditional content-agnostic
protocols in the presence of scarce resources, such as poor

bandwidth, low contact durations, or limited storage. We
also implemented the service on mobile phones to verify its
feasibility and overheads in practice.

The rest of the paper is organized as follows. Section II
describes the content storage and query mechanisms in Pho-
toNet. Section III describes the proritization scheme. Sim-
ulation results and performance evaluation are presented in
Section IV. Section V reviews existing literature on content-
based networking, data fusion problems and data forwarding
techniques in DTNs. Section VI concludes the paper and
presents future research directions.

II. DESIGN OF PHOTONET

In DTN, content is usually replicated on multiple devices
creating a distributed in-network storage system. Each node
may carry pictures generated by the node itself or obtained
from others via a replication process. Each stored picture is
accompanied by meta-data that enables computing semantic
redundancy. In PhotoNet, pictures are delivered against a
query, issued by an authorized entity such as the command
station. These queries are long-lived and stored in a query
table. The default query is to obtain all pictures from all
sources. In the rest of this paper, we focus on the default
query. To prioritize message transmission and storage, each
node also runs CAP, the content-aware prioritization scheme.
It generates the order in which pictures are replicated to other
nodes and the order in which they are dropped from the storage
when capacity is exceeded. The components of PhotoNet are
shown in Figure 1. In this section, we describe how pictures
are stored, named and represented for computing semantic
redundancy among them. In the following section, we detail
our prioritization scheme.

A. Picture Organization and Naming

PhotoNet organizes pictures in a way that facilitates prior-
itization. A very general way of doing so is inspired by the
content-centric networking paradigm, recently articulated by
Van Jacobson [3]. In this paradigm, networks name content
chunks, not machines, and queries express interest in content
collections by name.

Following conventions of content-centric networking, all
pictures managed by PhotoNet fall into a global naming
structure that looks like a UNIX directory tree. Pictures taken
by source nodes have names that place them in one of the
“directories”. For example, a rescue worker might take a
picture, called ‘/rescue/pictures/volunteerA/picl.jpg’. A fully
quantified name refers to a unique item. Names can also be
partially quantified to designate a collection of items that have
the named prefix. Pictures have unique IDs, computed as a
combination of device-dependent identifier (for example, IMEI
of mobile devices, physical MAC address, or a long hash of
the picture itself or a random string) and the local timestamp
when the picture is generated. These IDs are used in detecting
duplicate pictures in local storage, not as a part of their names.

Queries (interests) are expressed in terms of content identi-
fiers or prefixes, such as ‘/rescue/pictures’, that define a subtree
in the global naming structure. The collection of pictures

that belongs in that subtree is said to match the query. This
collection is denoted by pics(q) for a query g. Each query is
associated with a sink node, to which pictures of the query
are due.

In PhotoNet, queries are long-lived. They can even be
issued prior to mission launch at initialization (for example,
before volunteers are deployed in the field). Queries flood the
network. Source and intermediate nodes determine whether a
particular picture in their buffer belongs to a particular query
based on whether the queried name is a prefix of the picture’s
name. Pictures matching each query are logically grouped by
two types of linked lists, sorted by priority. One list is sorted
by forwarding priority and the other list is by dropping priority.
The objective from both priority orders is to reduce semantic
redundancy based on content similarity. The priority order
for forwarding and dropping are different because dropping
priority is a function of local content only, whereas forwarding
priority to an encountered node is a function of content on both
nodes and needs to be computed on the fly when a node is at
contact with another node. We describe the details of content
prioritization in subsequent sections. Figure 1 describes, at a
conceptual level, data structures used by PhotoNet.

Picture storage Feature vector space
/
—
/s ‘\/u map(xs)
Query table Jx
name |sink|pics | pivots | delivered Jxly
Wjefy | U | —r] I NER
O N I
| —
New picture
Picture Drop distance
CAP
Query
‘Repl%gion policy H Dropping policy ‘

Communication subsystem ‘

01

Picture Query

Fig. 1. PhotoNet architecture.

B. Vector Representation of Pictures

PhotoNet extracts features of pictures and expresses them
as multi-dimensional vectors that we call feature vectors. We
define a function, map(z), that maps a picture, x, into a
fixed-length vector in the feature vector space. Once mapped,
the semantic similarity between pictures is simply reflected
in distance between the associated points in space. Items that
have similar content and taken at nearby locations are closer in
the feature vector space, whereas dissimilar objects or objects
from different locations lie farther apart. Any suitable distance
function, say Euclidean, can be used to measure distance or
degrees of similarity among items.

The components of a feature vector associated with a picture
can be attributed to a set of physical properties of the picture
or some raw features extracted from the image data, such
as color histograms. Since we are interested in information
on geographic locales, meta-data such as location and time
associated with data items also serves as features in the feature

vector. Those features are very important in determining
semantic redundancy. For example, different buildings may
look alike in pictures. However, if their locations are different,
then there is no semantic redundancy because these pictures
carry information on different events. In addition, human
assessment can also serve as useful input for the vector space.
For example, the photographer can label his images with
tags or keywords for organization purposes. In the current
implementation human tags are not used.

To this end, we define T = {x1,z2,...,2r} to be the
feature vector of picture x. We use both spatio-temporal at-
tributes and image-features. Thus, the vector can be expressed
as: T = {t(x) | I(x) | f(z)}, where t(z) and I(z) denote
time and location of the picture (when and where originated)
respectively and f(x) denotes the vector of visual image-
features. In the current implementation, we simply use the
color histogram.

C. Semantic Distance among Pictures

We define semantic distance to be the level of dissimilarity
between pictures: larger distance means highly dissimilar
and shorter distance means fairly similar. In our application
context, pictures are taken of physical events. Hence, we
say that pictures are similar if they can be associated with
the same physical event. Accordingly, pictures generated in
two relatively remote locations (say, lkm apart) or at two
largely different times (say, 6 hours apart) are “dissimilar”
(high spatio-temporal distance). When pictures are closer in
spatio-temporal space, their similarity is further decided by
the distance in the image-feature space.

In our implementation of distance between pictures, we first
use the time gap between two pictures as a binary decider. If
it is beyond some threshold (say, 6 hours), we assume these
two pictures belong to different events and assign a very large
distance value. Otherwise, the distance is given by location and
image-features. Semantic distance due to location is simply
Euclidean distance between location coordinates. For image-
features, we compute the distribution of colors in a picture,
commonly known as color histogram. For a certain color (or
a color bin), 4, of picture z, let f;(x) be the fraction of pixels in
the picture that has color ¢ or any color in that bin. Obviously,
>, fi(x) = 1. We compute KL-divergence (Kullback-Leibler
divergence) distance between the corresponding histograms for
two pictures = and y as follows:

h

- 7 fi(z) fi(y)
IF(x) = F(w)ll Z Ji(w)log 5. > fily)log O
where [u,v] = max(u,v). By proper weighting, as shown in
the evaluation (Figure 4), we can ensure that the numerical
value of image-feature distance is very small compared to lo-
cation distances. Therefore, location predominantly defines the
semantic distance between pictures. When pictures originate
near one another, the image-features further refine the semantic
distance. Therefore, we use the following distance function:

Iz - 71 = alli@) — IW)IP + (1 -) F@) - FIP O

where « is a scaling factor and is given by: a =
T2
xp (*\Zm—i(y)u? . ,)
nored above a certain location threshold, but become in-
creasingly more important below that threshold when the
location distance itself is ignored. The parameter 7 defines
this threshold and we use 7 = 100 meters. In the following,
we use the same symbol to represent a picture and its feature
vector, and use ||« — y|| to denote the corresponding distance.

). It indicates that image-features are ig-

Although we build the service explicitly for pictures, the
same architecture can be adopted for delivery of other content
types, such as text, audio and video, provided that an appropri-
ate map function and an associated distance function are de-
fined. Since we adopt content-centric networking abstractions,
content format should be implicit in its name. For example,
‘/rescue/audio/” could refer to audio data. A different map()
function should be associated with every “directory” in the
content tree that knows how to map content in that directory
into a space where semantic distance represents (dis)similarity.
Extension of PhotoNet to other content types, however, is
outside the scope of this paper.

III. THE PICTURE PRIORITIZATION SCHEME

In this section, we describe CAP (content-aware prioriti-
zation), the picture prioritization scheme used by PhotoNet.
We describe the diversity measure of a picture collection and
show how pictures are prioritized for storage and forwarding
to achieve greater diversity at the final collection point.

A. The Diversity Measure of a Picture Set

The goal of PhotoNet is to maximize event coverage. It
does so by maximizing the diversity of delivered content. This
maximization requires a measure of diversity. Hence, given a
set I of n pictures, its diversity, denoted as ¥ ([I), is computed
as the average of squares of pairwise distances between all
pictures.

Zm,yel ||:E - y||2

vi) nx(n—1)

2)

Note that pictures that are farther from each other produce a
larger W(T) because they improve diversity, whereas data items
that are clustered together produce a lower ¥ (I) because they
cover a smaller region of the data space. To reduce semantic
redundancy, the network should always make forwarding and
dropping decisions that generate a higher W (I) for a collection
of pictures, 1.

It is also useful to measure the contribution of a given
individual picture to the diversity measure of the collection.
This quantity, denoted by ¢ (x), is simply given by the average
of square of distances with other pictures in the set, i.e.,

U(@) = 715 Xz llz =yl Obviously, (1) = 1 3=, ¥(x).

B. A Prioritized Dropping Policy

In cases where storage space becomes a bottleneck, a node
may need to decide which picture to drop. A node never

deletes pictures that the node itself produces (for which the
node is the source). We assume that nodes have enough space
to hold their own pictures, but the storage for pictures that
are replicated from other nodes is limited. Hence, some of
these pictures may be dropped due to storage constraints. The
question is to which picture to drop when storage capacity is
exceeded.

The notion of the diversity W([I) of picture set, I, offers an
answer. Namely, pictures should be dropped in an order that
maximizes the diversity of the remaining set. Since different
pictures have different length, it is best to normalize diversity
by storage requirements. For example, removal of a long
picture is preferred to removal of a short picture, if diversity of
the remaining set is the same. Hence, we drop the picture that
maximizes the diversity of the remaining set per byte stored.
More formally, let the set of pictures stored locally at node
X, that match query g, be called picsx (g). Let the total space
needed to store picsx(q) be S;"ml and let the size of picture
x be denoted by s(x). For each query, ¢, the next picture to
drop, z, among those locally stored pictures that match the
query, picsx(q), is computed as follows:

U(picsx(q) — {95})) (3)

T = arngPiCSX(‘I) max (Stota,l _ S(Z‘)
q

In the presence of multiple queries, CAP first drops pictures
that do not match any query. If no such picture exists, it
chooses one query at a time and drops the picture computed
from Equation (3). Observe that the order in which pictures
will be dropped from a given set picsx(q) depends only on
local information. This order can therefore be precomputed in
advance. Since nodes in DTNs spend a lot of time between
encounters when they apparently remain idle, there is enough
time to compute the order in which pictures are to be dropped.
The dropping policy pre-marks some content as deleted to
create enough free buffer space to accept content from newly
encountered nodes, and creates a single linked list in the order
these pictures are to be removed. During an encounter, marked
content is replaced if space is needed. After an encounter,
the dropping policy pre-computes the order of deletion again.
Locally generated content triggers periodic recomputation of
the dropping order. The above algorithm implicitly assumes
that the total amount of content delivered to a node during an
encounter is not a significant fraction of its storage capacity.
Hence, the odds that the newly received content is a better
candidate for dropping than the pre-marked content is low.
These odds are further reduced by the fact that the forwarding
policy prioritizes content such that the most “useful” content
is forwarded first. This mechanism is described next.

In case CAP needs to make dropping decisions on the
fly upon a contact, an efficient implementation of computing
dropping order can be made. Equation 3 suggests that pictures
can be dropped at an ascending order of 1 (x)/s(x), that is,
the least diverse content first. When a particular picture, say v,
is dropped, ¥ (x)’s of remaining items are updated as follows:
subtract ||z —y||? from 1 (z) (and normalize by the size of the
collection; the same is added when a new picture is added to
the set). Then, the remaining pictures are again sorted to find

the candidate for the next drop. This can be implemented by
a min heap that returns elements with minimum ¢ (x)/s(x).

C. A Prioritized Replication Policy

In DTNs, upon a contact, a node decides which messages
it needs to replicate to the other peer, in some particular
order. The term replication is slightly different than traditional
forwarding. Here, the sending node refains the copy of the
message that it transfers to the peer. This allows the same
message to be transferred onto another node, opportunistically
increasing the chance that at least one of these messages
would be eventually delivered to the destination. CAP follows
a simple replication policy “most diverse content first”, that
is, pictures that maximize diversity W(I) of the receiver’s
collection should be replicated first. In the following, we use
the terms transfer, forward and replication interchangeably.

Hence, when node X meets Y, it needs to know exactly
what pictures node Y currently holds for a given query so
that X does not send similar content to Y. In other words,
for each query, ¢, node X should forward to Y the pictures
that maximize ¥(picsy (¢q)) at Y. A naive approach could be
that Y sends the feature vectors of all pictures in picsy (q) to
X for each query g. Hence, X could choose those pictures
that, if forwarded, will maximize ¥(picsy (q)). Intuitively,
these pictures are the most distant in its vector space from
Y’s current picture set. Obviously, exchanging vectors for
all stored pictures is costly, especially when the vector size
is large and the number of pictures is many. This is also
computationally expensive to compute distances from all pair
of pictures. Instead, each node partitions its picture collection
into clusters.

1) Clustering Pictures: Every node, X, clusters each of its
picture collections, picsx (g) (one per outstanding query) and
computes the centroid of each cluster, called a pivor. Hence,
only pivots need to be exchanged. The above clustering is a
function of only local information on the node, and hence can
be done in free time in between encounters (i.e., before the
node actually gets in contact with another). The clustering
operation is done for each query in the query table. For
a given number of pivots k, an optimal position for pivot
points would be such that the sum of distances from non-
pivot points to the nearest pivot is minimized over all other
possible choices of pivot locations. This problem, known as k-
mean clustering and reportedly NP-Hard, can be approximated
by Lloyd’s algorithm [4]. Lloyd algorithm starts with a random
k pivots and then iteratively adjusts pivot locations based on
assignment of pictures to the their respective nearest pivot.
The clustering stops when the diameter of each cluster reaches
within some threshold. The query table at each node stores the
list of computed pivots, called P(q), for each query g. These
pivots are computed over all pictures, picsx (g), at node X.

2) Priority Order for Forwarding: Once pivots are com-
puted, CAP’s forward ordering of pictures matching query ¢
is fairly simple. When two nodes meet, they exchange their
pivot vectors for all queries. Let Px (q) and Py (g) be the pivot
vectors of nodes X and Y respectively, for query q. After
these vectors are exchanged, node X computes the possible

diversity that a picture x (matching query ¢) can introduce to
the existing picture set at Y. This is computed as the average
square distance from the picture to the pivot vectors:

Y(x, Py(q) = ﬁ Soollz-yl* @

YL 4y (o)

The picture that is farther away from the corresponding
pivots of Y introduces greater diversity than other pictures
with smaller distances. This is however obtained at the cost
of transferring the picture itself to the peer node, which costs
(in terms of energy or bandwidth occupancy) in proportion to
the size of the picture (the length of the message in bytes).
Therefore, whichever picture produces the largest gain per
byte, ¥(x, Py (q))/s(z), is given the highest priority. When
the pivot set Py (q) is well understood from the context, we
drop Py (q) from the diversity expression (Equation 4), to

write ¥ (z).

Algorithm 1 replicate-messages(Contact ¢ : X — Y)

1: exchange query tables, i.e., name(q)’s

2: for each query q in query table do

3: send Px(q) to Y, receive Py (q) from Y

4: populate picsx(q)

5. P(g) = Pr(q)

6: if P(q) = () then

7 P(p) = arg, , max||z — yl|,z,y € picsx(q)
8 end if

9: end for

10: while connection c persists do

11: pick the next query, ¢, in RR or WFQ manner
12: et P = arg,cpics () MAXY(x) /()

13: send-picture(p, c)

14: if picture p is transferred then

15: P(q) = P(q) U{p}
16: end if
17: end while

3) A note on optimization: As an optimization, when
computing pivots, we in fact compute them based on clus-
tering the union of sets picsx(q) U picsh™ (q), where the
latter set denotes the pictures that match query ¢ that have
been previously forwarded by X to other nodes and erased.
There is a good chance the query sink will receive these
pictures. Hence, this retention of “previous memory” prevents
forwarding semantically redundant objects to a destination
if they arrive at the forwarder at different times. Other-
wise, if the forwarder forgets such evicted content, it can
end up subsequently forwarding similar content to the same
destination, hence contributing to needless redundancy. To
remember set picsy**(g), When a message is deleted that
has previously been forwarded to another node, CAP retains
the feature vector of the deleted picture. These vectors can be
eventually removed from picsg’f St(q), although, in the current
implementation, we do not expire such vectors. Feature vectors
are considerably smaller in size than the original content.
Therefore, they do not produce much storage overhead.

D. Additional mechanisms and Implementation issues

For more efficient replication, PhotoNet performs some ad-
ditional work. While replicating onward, each picture contains

a list of nodes that the picture has already passed through. In
that case, the picture would not be replicated onto the same
node again. Each node also maintains a list of picture IDs (not
feature vectors) that have been delivered to the collection point
for a given query. This list is exchanged when two nodes meet
and is propagated into the network. When the list is updated
upon a contact, the corresponding pictures are exempted from
being replicated anymore since they are already delivered.
They can still remain in the picture store, because some future
query may look for them. If not, they can be deleted from the
store.

CAP realizes its own replication and dropping policy as it
maintains its content. It can be implemented in one of two
possible ways. The first one is to augment the underlying
routing protocol with a callback routine to be called when the
router sends or drops messages, so it chooses the next message
for transmission or dropping correctly. Another approach is to
implement CAP as an application overlay. Thus, when nodes
meet, they talk to their CAP-instances. This design requires
the underlying routing layer to forward all received messages
to the application layer, enabling CAP to implement its own
routing and prioritization policies on top. We use the latter
approach.

E. Handling Noise and Outliers

CAP prefers pictures to be scattered across the vector space
allowing more dissimilar content to pass through. This is very
much befitting the objective of maximizing event coverage.
However, it makes CAP vulnerable to noise and outliers be-
cause noise and outliers may be different from usual pictures,
or may be taken at locales from which no other pictures are
reported. CAP identifies them as dissimilar objects and assigns
higher priority to them in the transmission queue. This can be
remedied penalizing transmission of messages from singleton
clusters (i.e., clusters containing only one message).

IV. EVALUATION

We evaluate PhotoNet in a post-disaster situation assessment
scenario. We use ONE simulator [5] to emulate a post-disaster
rescue operations based on a previously published post-disaster
mobility (PDM) model [6]. Admittedly, reconstructing a re-
alistic situation is hard in a simulator. Instead, we try to
capture key aspects and elements of the scenario and compare
all competing approaches on the same grounds. We compare
our proposed picture delivery service with two other DTN
protocols, namely Prophet and SprayAndWait (henceforth we
refer to as Spray), and observe how our scheme improves
performance in terms of coverage-related performance metrics.

DTN routing protocols are of two main types: flooding-
based and quota-based. Prophet is a flooding-based scheme
that computes path metric in terms of probability of delivery
by using histories of encounters in a mobile DTN. It directs
message propagation toward the direction where probability
of delivery only increases. Spray is a quota-based protocol
that limits the number of replica of a given message. Every
message starts with a replica count header, which is halved
at every replication upon a contact until the count becomes

1, when the message can only be delivered directly to the
destination without being replicated anymore. Both Prophet
and Spray use drop-tail policy of dropping messages (drops
the earliest message first). We chose these two protocols, one
from each type, to compare with PhotoNet.

As an instance of a functional prototype, we also imple-
mented the service on a small mobile testbed with a few
handheld Android phones. Since large scale communication
as envisioned by the application scenario can hardly be emu-
lated in such a small testbed, we better do communication
experiments on simulation and show results of node level
experiences from testbed. We also set a few parameters of
the simulation from testbed measurements (Section IV-C). We
leave a real large scale deployment of PhotoNet to future work.

We split our evaluation section into three parts. First, we
detail our simulation environment, then present performance
results and comparison, and finally describe our experiences
of building the service on a mobile platform.

A. Simulation Environment

There are two key elements of the simulation: i) simulating
the mobility of agents, ii) simulating the generation of events.

1) Mobility Model: PDM models movement of various
agents, mainly humans and vehicles, in a post-disaster recov-
ery situation. PDM is implemented on top of ONE’s Map-
Based Mobility Model that uses map data of roads and streets.
It first places a few neighborhoods scattered on the map and
then puts houses and survivors in those neighborhoods. It
then randomly places a specified number of relief camps,
police stations, command stations and other entities on the
map (provided in a configuration file). After that, it deploys
moving agents of four major types: center to center (recurrent
back-and-forth motion of supplies between centers), rescue
workers and volunteers (localized random motion within a cer-
tain neighborhood), cyclic patrols (recurrently patrolled paths
through multiple neighborhoods), and emergency responses
(dispatch of vehicles from a center to a random destination
and back). All static and mobile agents are equipped with
wireless routers capable of running DTN protocols. Figure 2
depicts a small city map (that comes with ONE) to describe
an urban disaster area.

The underlying mobility model forms some kind of an
aggregation tree for collecting pictures. Rescue workers and
volunteers, instrumented with cameras, move in neighbor-
hood areas and shoot pictures, and occasionally report to
some neighboring relief camps. Supply vehicles and police
patrols visit neighborhoods. There are a few vehicles that
visit the main command station and the relief camps at each
neighborhood. The later moving nodes work as “data mules”
that collect pictures from neighborhoods and deliver to the
command station. In our deployment, we have 100 houses and
100 rescue workers in 5 neighborhoods and 5 relief centers
with 5-10 supply vehicles. We have a few, say 2-5, data
mules to connect neighborhoods with the command station.
These mules constitute communication bottlenecks in picture
collection.

house5
house15.
house10
housels

housel? 158

housel2

wI20 paise2s eaE 133
- N3-106 pellodssls
w4128 ouses 165
arbidéRinand4 e 691 ol 1
w163 WlEds0
h"ifgrigq 9% HioEe vLsY
Aolie o
i ‘119 ;mﬂ%{é&emeruonwsezg
- PRI 6
ousEZ4 Uze, & ,\?é 42
e housel 9 hg\?ﬂfféa BT
we_ghouseld o oe house2 7
w273 A3 4
o g - douses) w0447
w287 ol Folicestation131 srhoon
- 276 house?
Hibidisenodz W37 brenamman1z2

st BT

house22 Wo_31

Fig. 2. The city map used by the simulator

2) Generation of Events and Pictures: PDM simulates
movements of agents, but not events. We extend PDM to
incorporate event generation and event reporting activities. To
model events, we randomly choose a few locations on the map
as event locations. These points are preferably at neighborhood
locations where occurring of events is likely and where agents
frequently visit. We then associate each location with a certain
set of events that “occurred” at that location. Events, in this
case, correspond to instances of damage, collapse, fires, or
other hazards.

Each event is supposed to have a distinct appearance. Since
we do not have real events happening in the simulation, we
pre-take a set of real pictures of a few distinct landmarks
and objects around our campus, and map each landmark to
a certain event. We take several pictures for each landmark
from different angles and zoom levels to mimic the reality
that several users take the same picture differently. Figure 3
shows five sample pictures of event “fallen rocks”. We then
assign specific sets of pictures of landmarks to locations.
We argue that there could be some events that are seen by
many observers (popular events), whereas others may be less
popular. To emulate this effect, we use Zipf distribution to
determine the number of different images assigned to certain
events for each neighborhood. We assign a popularity index
(1 means highly popular) to each event and generate |2z |
number of pictures for an event with an index . We used
Nmaz = 90.

When an agent happens to pass or stop by a certain event
location, it randomly chooses one or more pictures from the
pre-arranged set, as if it just “took” pictures of this event and
a message is created in the network. Once taken, the picture is
deleted from the set so that no other agents report exactly the
same picture. Once stored, a certain preprocessing time needs
to elapse (compressing, reducing the dimension and extracting
features from the picture; Section IV-C presents the timing
results) before the picture is eligible to be forwarded onto
others upon contacts.

We use color histogram and KL-divergence distances for
image-features. Figure 4 shows the cumulative distributions of
KL-distances among pictures used in the simulation for a total
of 32, 64 and 128 color bins. We see that dissimilar pictures are
further away from similar pictures in histogram space, which
enables CAP to cluster them separately, if image-features are

Fig. 3. Five similar pictures of an event “fallen rocks”

1

SIM(32)
SIM(64)
SIM(128)
DISSIM(32) .
DISSIM(64)
DISSIM(128)

08 |

06 [

CDF

0.4 (i

0.2

0 + L L L L L L L

0 05 1 15 2 2.5 3 35 4
Distance

Fig. 4. CDF of KL-distances among similar and dissimilar pictures

TABLE I
SIMULATION PARAMETERS
Parameter Value Parameter Value
Storage capacity 1-10MB | Picture size 100KB
Picture proc time 4s Conn estab. time 2s
Trans radius 20m Trans rate 250 KB/sec
Spray quota 50 Prophet const (0.75, 80) [7]

used. We used 32 color bins, which makes meta-data overhead
per picture quite small (8 4+ 8 + 32 x 4 = 144 bytes).

B. Performance Evaluation

Next, we evaluate PhotoNet with two DTN routing pro-
tocols, Prophet and Spray. Table I shows default parameters
used in the simulation. We are interested in results in an
operating condition when resources are so limited that usual
network performance is very poor. For example, in almost
all experiments, if not otherwise shown explicitly, picture
delivery ratio, the fraction of total pictures delivered over total
generated, is very low, around 10%-20%. PhotoNet intends to
serve as many diverse pictures as possible out of these very
limited delivery. We focus on evaluating the performance of
the default query (collecting all images from all sources).

We compare performance of PhotoNet to other protocols
under resource constraints. To see that the underlying DTN’
are constrained, consider a network of 5000 nodes (e.g.,
relief workers and volunteers in a disaster recovery scenario),
generating 100KB pictures from head-mounted cameras at the
rate of approximately 50 pictures per hour. If a data mule
eventually delivers these pictures to the destination every four
hours, the mule will need to have a storage capacity sufficient
for 4x50x 5000 = 10 pictures, or about 100GB. This amount
of storage is challenging, considering that the mule may be just
a mobile handheld. To keep simulation time low, we do not
generate thousands of pictures. Instead, we reduce the number
of pictures as well as the assumed device storage capacity

proportionally. To this end, we generate nearly 25 pictures per
hour for a network of 100 nodes, reducing the above storage
requirements to 10MB (to hold 100 pictures in lieu of 10°).
On the same ground, in order to scale communication capacity,
we set smaller radio transmission range (20 m) as well as low
link transmission rate (sometimes 50KB/sec).

14 " PhotoNet —+—
12 PhotoNet (DR)
1l Spray (DR)
Prophet (DR)

Fraction of events reported

Hours
Hourly event collection for PhotoNet, Prophet and Spray

Fig. 5.

PhotoNet intends to collect as many different events (i.e.,
pictures) as possible. We define two performance metrics,
event coverage and precision. Event coverage computes the
fraction of total distinct events that have been successfully
reported at the sink to the total number of distinct events
generated. We say that an event is reported if at least one
picture pertaining to that event has been delivered to the sink.
Precision measures what fraction of delivered pictures were
unique, that is, the first picture that contributed to reporting
an event. PhotoNet aims at achieving higher event coverage
as well as higher precision. Note that higher precision means
lower overhead.

Figure 5 shows the fraction of total events reported to those
generated as a function of time for PhotoNet as well as for
Prophet and Spray within some defined deadline, reportedly
10 hours. For this experiment, we generate all pictures at
sometime around 1 hour, and see what fractions are delivered
by the deadline. We observe that the PhotoNet reports more
events (30-40% more) than regular Prophet and Spray in a
any given time. We also plot delivery ratio, the fraction of
total pictures delivered to total generated, in every hour. It is
observed that the delivery ratio of PhotoNet is slightly low
(compared to Prophet), still its event coverage is higher than
others. It is also to note that although delivery ratio is within
20%, PhotoNet delivers nearly 80% of total generated events.
This is due to the prioritization scheme applied by PhotoNet.

The number of data mules connecting neighborhoods with
the command station affects the connectivity of the deployed
area, hence the picture collection efficiency. Figure 6(a, b)

1 — — ‘
N ‘\/\\
. %o r
¢ 06} fan
o k.
[
S o4} "
%
02 F photoNet —+—]
Spray
o L Prophet -
100 9 8 7 6 5 4 3 2 1
Number of mules
(a) Coverage (Mules)
1
0.8 ¢
g 06
I
[
3
O 04 -
0.2 r PhotoNet —+— |
Spray
0 Prophet -

10 9 8 7 6 5 4 3 2 1
Storage size (MB)

(c) Coverage (Buffer)

0.5

PhotoNet —+—
Spray
04 | Prophet -
c
x=]
@
[
<
o
O L L L L L L L L
100 9 8 7 6 5 4 3 2 1
Number of mules
(b) Precision (Mules)
1 T T T T
PhotoNet —+—
Spray
08| Prophet -
c
o
@2
Q
o
a

0 9 8 7 6 5 4 3 2 1
Storage size (MB)

(d) Precision (Buffer)

Fig. 6. Event coverage and precision at (a, b) varying number of mules, (c, d) varying storage capacity

show event coverage and precision at varying number of data
mules at storage capacity 5SMB. We see that when the number
of data mules is large, event coverage is moderately high for
all protocols and it then declines for other protocols except
for PhotoNet when fewer mules are deployed. Fewer number
of mules causes less carrying capacity, thus more events
failed to be reported to the sink. Since PhotoNet uses CAP
(content-aware prioritization), it exploits connection resources
and delivers diverse content first. Therefore, its event coverage
does not decrease much with decreasing number of mules. But
at certain point (say at 1 mule), poor connectivity dominates
other constraints and PhotoNet’s event coverage also declines.
As relay capacity becomes weak, PhotoNet’s precision rises
whereas others remain quite the same. This is because CAP
chooses diverse pictures to go first and consequently raises
the ratio of the number of distinct pictures delivered to total
delivered.

Figure 6(c, d) show the same set of results when storage
capacity is varied. In case, storage becomes a bottleneck, more
and more pictures would be dropped from nodes. Dropping
pictures in some discriminate fashion would simply drop dif-
ferent events altogether possibly serving only most replicated
popular ones. In contrast, PhotoNet gives priority to diverse
content among stored pictures and drop most redundant (less
diverse) content first. It thus holds as many different events as
possible. Figure 6(c) depicts that at a high storage all protocols
start at a good event coverage, but for others event coverage
eventually declines as storage becomes scare, but PhotoNet
still offers higher event coverage as well as higher precision.

At some extreme poor state though (at 1MB storage that can
hold only 10 pictures), it also suffers.

Figure 7(a) shows event coverage and precision at varying
link bandwidth and transmission range. In these cases too,
PhotoNet outperforms others both in coverage and in pre-
cision. We observe that despite bandwidth gets low, event
coverage is not affected that much. This is because, in our
mobility model, there are a few static points where nodes
stay for a while and those contacts are relatively large. If
not otherwise constrained by the storage capacity, this allows
nodes to exchange their pictures where only prioritization does
not help much.

C. A Testbed Implementation

We implemented PhotoNet as a small but functional proto-
type on a mobile testbed with a few Android phones. In our
testbed implementation, phones are allowed to take pictures
and communicate with other devices for exchanging pictures.
To test the service, we visited various places and shot pictures
using different phones. All pictures were tagged with GPS
coordinates of places they were taken. We then set these
phones to exchange pictures in an emulated DTN environment.
This was done manually by repeatedly connecting and dis-
connecting pairs of devices via a special-purpose application
GUI. We were interested in seeing that after a several rounds
of exchange, the devices end up having pictures that are
considerably diverse, when each device is allowed to store
only a limited number of pictures.

1.4 | PhotoNet (Coverége) — J
PhotoNet (Precision)
12 | Spray (Coverage) - |
s . Spray (Precision) -
@ 1r 1
(%]
o
a 08¢ T
Q
[=2)
g 0.6 - 1
2 F L S
8 0.4 + E I Wvesecrsensnmannes %
02 T ; - - o
0 L L L
250 100 50 25 10
Bandwidth (KB/sec)
(a) Bandwidth
14 PhotoNet (Coverage) —+— J
PhotoNet (Precision)
12+ Spray (Coverage) ¥ |
5 . Spray (Precision) -
@ 14 1
IS
<
a 08¢ E
Q
g 06%- T
9] DT Ko,
P
8 o4} o O
B = . o
024) f 1
O L L L
50 40 20 10 5
Range (m)

(b) Transmission range

Fig. 7. Coverage/precision at varying link bandwidth and trans range
TABLE II

VARIOUS TIMING VALUES ON ANDROID PHONES

Component Average time
Taking picture, compress and store 2264.55 ms
Computing color histograms 1981.0 ms
Discovery and connection establishment | 2656.76 ms

Other than serving as a functional prototype of the PhotoNet
service, the phone based implementation gives us node-level
measurements (for example, time to extract image features).
The implementation also helped determine some of the simu-
lation parameters used in the earlier section (e.g., connection
setting time). In this section, we report on a few timing
characteristics that were not captured by the network simulator
presented in earlier. We present all computed timing values in
Table II. These activities are mainly offline operations that
occur when nodes do not communicate with others.

Once a picture is captured in our implementation, it is
compressed into JPEG form, tagged with GPS location and
then stored in the local storage. This compression is re-
quired because raw bitmap data is usually very large (av-
erage 1.21MB). Compressed images average 135KB, nearly
11% of the raw data. Once compressed, image-features (i.e.,
color histograms) are extracted from the captured pictures.
This computation occurs only once. The resulting vector is
then added to the application-level message header as meta
information. We implemented feature extraction on an Android
phone and computed the average time required to populate
color histogram features. We show the average histogram
computation times for pictures with different sizes in Table III.

Finally, the user is prompted to name the picture in the
hierarchical content tree structure. The picture is now ready
to be served against a query.

TABLE III
AVERAGE FEATURE EXTRACTION TIME FROM PICTURES

Picture size | Avg. time (ms)
360x480 719.7
600x800 1981.0
1200x1000 4898.2

In DTNs, nodes need to discover other nodes to do op-
portunistic communication. Once discovered, the associated
devices establish connection between them. This discovery
and connection establishment take some time, based on dis-
tance between devices, surrounding environmental conditions
and other factors. We measured the average time elapsed in
discovery, pairing, and connection establishment time over
bluetooth (the communication medium used in the current
implementation) at each contact between a pair of Android
phones. We manually pair each pair of phones beforehand
and keep them listening on a connection socket. Once a pair
of devices establishes a connection between them, the timing
is recorded. We used this time as a connection establishment
overhead in each contact in the simulation.

There is another important offline computation overhead
in PhotoNet, which is to compute pivots. Pivots (per query)
produce a summary of pictures on a node and are computed
on all stored or ever replicated pictures (for a given query).
We show the average clustering time for a set of pictures in
Figure 8. It is shown that as the number of pictures increases,
clustering time increases, somewhat non-linearly: more time
for larger image set. This computation although costly happens
only when nodes are otherwise idle.

4000 ——————
Clustering time —+—
3500
3000
2500
2000
1500
1000

500

Cluster computation time (ms)

4
o L
10 20 30 40 50 60 70 80 90 100
of pictures
Avg clustering time at varying # of pictures on an Android phone

Fig. 8.

V. RELATED WORK

PhotoNet runs on DTNs. Due to intermittent connectivity
in DTNs, messages are usually replicated to ensure better
delivery. Based on the level of replication, DTN routing proto-
cols are of two types: flooding- and quota-based. Prophet [7],
MaxProp [8], Delegation routing [9], RAPID [10] are a
few flooding based protocols to name, whereas Spray [11],
EBR [12] and IC-Routing [13] are quota-based. The above
previous protocols are all content-agnostic.

PhotoNet belongs to content-aware networking services.
Content-based data forwarding has been explored in previous
literature. In [14], a content service model was proposed with

content brokers, so that content can be stored and dissemi-
nated efficiently based on users’ requests. CNF (cache-and-
forward) [15], proposed a similar idea where a few gateway
nodes at the edge of the network store data items so that mobile
agents can obtain their data once they are online. Other work
addressed content caching [16] and content aware routing [17],
[18]. CCN [3] introduced networking of named content, in
place of IP networking by hosts. The above schemes, despite
their efficient retrieval and dissemination of content, are not
content-aware in that they do not explore semantics of content.

Data fusion literature described semantic-aware content
fusion methods. Semantic fusion has usually two phases:
knowledge base construction and pattern matching [19]. At
first phase, a suitable abstraction for representing semantic
information is chosen, which is then used in second phase
for matching and fusing relevant attributes. This fusion runs
in-network inference processes so that nodes only exchange
semantic interpretations. In [19], authors applied semantic
fusion for target classification. Another work [20] integrates
sensor data into formal languages, and then matches data
with some stored knowledge base based on the hypothesis
that data represented by similar languages are semantically
similar. Semantic streaming [21] allows users to formulate
queries over semantic values without specifying data or opera-
tions. SONGS architecture, proposed in [22], uses declarative
queries and converts queries into service composition graph.
Similar to semantic fusion, our proposed technique, CAP, also
has two phases: vector representation of content for semantic
abstraction and content matching by computing distances in
vector space. Unlike other fusion methods, CAP does not
perform vertical integration by fusing items, instead it does
vertical comparison. CAP compares data content in storage
for semantic similarity and prioritizes content for transmission
and dropping so that a certain quality objective is met.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose and build a picture delivery
service, PhotoNet, for resource-constrained DTNs. PhotoNet
addresses the challenge that when pictures are generated
and serviced by a mission-driven network, there could be
significant overlap between their content. To improve resource
efficiency PhotoNet computes semantic similarity and priori-
tizes content accordingly so that delivered messages maximize
event coverage.

The paper is a first step that presents a proof-of-concept
investigation towards a more comprehensive study of content-
aware protocols for different resource-constrained environ-
ments, applications, and content types. The investigation sug-
gests that the approach could have great impact on improving
resource efficiency in appropriate scenarios. Future work of
the authors will focus on exploring the limits of usability of
the approach, as well as on generalizing it to heterogeneous
content, more complex application goals, and multiple concur-
rent applications. Ease of network customization to application
goals will also be investigated.

ACKNOWLEDGEMENTS

Research reported in this paper was sponsored by the Army Re-

search Laboratory and was accomplished under Cooperative Agree-
ment Number W911NF-09-2-0053. The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation here on.

REFERENCES

[1] L. L. Peterson and B. S. Davie, Computer Networks: A Systems
Approach. Elsevier, 2007.

[2] J. N. de Souza and R. B. (Eds.), Managing QoS in Multimedia Networks
and Services, ser. IFIP Advances in Information and Communication
Technology. Springer, 2000.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. of CONEXT,
New York, NY, 2009.

[4] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations:
applications and algorithms,” SIAM Review, vol. 41, pp. 637-676, 1999.

[5] A. Keridnen, J. Ott, and T. Kérkkdinen, “The ONE simulator for dtn
protocol evaluation,” in Proc. of the 2nd International Conference on
Simulation Tools and Techniques, Brussels, Belgium, 2009.

[6] M. Y. S. Uddin, D. Nicol, T. Abdelzaher, and R. Kravets, “A post-
disaster mobility model for delay-tolerant networking,” in Proc.of Winter
Simulation Conference, Austin, TX, December 2009.

[71 O. S. Anders Lindgren, Avri Doria, “Probabilistic routing in intermit-
tently connected networks,” ACM SIGMOBILE Mobile Computing and
Communications Review, 2003.

[8] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp:
Routing for vehicle-based disruption-tolerant networks,” in Proc. of
INFOCOM), April 2006.

[91 V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation

forwarding,” in Proc. of ACM MobiHoc, 2007.

A. Balasubramanian, B. Levine, and A. Venkataramani, “DTN routing

as a resource allocation problem,” in Proc. of ACM SIGCOMM, 2007,

pp. 373-384.

[11] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and wait: an

efficient routing scheme for intermittently connected mobile networks,”

in Proc. of the 2005 ACM SIGCOMM workshop on Delay-tolerant

networking (WDTN ’05), Philadelphia, PA, 2005, pp. 252-259.

S. Nelson, M. Bakht, and R. Kravets, “Encounter-based routing in

DTNSs,” in Proc. of IEEE INFOCOM, 2009.

[13] M. S. Uddin, H. Ahmadi, T. Abdelzaher, and R. Kravets, “A low-energy

multicopy inter-contact routing protocol for disaster response networks,”

in Proc. of IEEE SECON, 2009.

B. Subbiah and Z. A. Uzmi, “Content aware networking in the internet:

issues and challenges,” in Proc. of ICC, Helsinki , Finland, 2001.

S. Paul, R. Yates, D. Raychaudhuri, and J. Kurose, “The cache-

and-forward network architecture for efficient mobile content delivery

services in the future internet,” in Proc. of Innovations in NGN: Future

Network and Services, 2008.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a

scalable wide-area Web cache sharing protocol,” IEEE/ACM Trans on

Networking, 2000.

[17] E. Kang, S. Lee, and M.-S. Park, “Efficient prioritized service recovery

using content-aware routing mechanism in web server cluster,” in

Networking - ICN. Springer Berlin / Heidelberg, 2005, pp. 297-306.

S. Eichler, “MDRP: A content-aware data exchange protocol for mobile

ad hoc networks,” in Proc. of International Symposium on Wireless

Communication Systems, 2007.

D. S. Friedlander and S. Phoha, “Semantic information fusion for

coordinated signal processing in mobile sensor networks,” Int. Journal

of High Perf. Comput. Appl., vol. 16, pp. 235-241, 2002.

D. Friedlander, Semantic information extraction, S. S. lyengar and

E. R. R. Brooks, Eds. CRC Press, 2005.

K. Whitehouse, J. Liu, and F. Zhao, “Semantic streams: A framework

for composable inference over sensor data,” in Proc. of EWSN, Zurich,

Switzerland, 2006.

[22] J. Liu, E. Cheong, and F. Zhao, “Semantics-based optimization across
uncoordinated tasks in networked embedded systems,” in Proc. of
ACM international conference on Embedded software, Jersey City, NJ,
September 2005.

[10]

[12]

[14]

[15]

(16]

(18]

[19]

[20]

[21]

