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Abstract—Most algorithms are run-to-completion and provide
one answer upon completion and no answer if interrupted before
completion. On the other hand, anytime algorithms have a
monotonic increasing utility with the length of execution time.
Our investigation focuses on the development of time-bounded
anytime algorithms on Graphics Processing Units (GPUs) to
trade-off the quality of output with execution time. Given a
time-varying workload, the algorithm continually measures its
progress and the remaining contract time to decide its execution
pathway and select system resources required to maximize
the quality of the result. To exploit the quality-time trade-
off, the focus is on the construction, instrumentation, on-line
measurement and decision making of algorithms capable of
efficiently managing GPU resources. We demonstrate this with
a Parallel A* routing algorithm on a CUDA-enabled GPU. The
algorithm execution time and resource usage is described in
terms of CUDA kernels constructed at design-time. At runtime,
the algorithm selects a subset of kernels and composes them
to maximize the quality for the remaining contract time. We
demonstrate the feedback-control between the GPU-CPU to
achieve controllable computation tardiness by throttling request
admissions and the processing precision. As a case study, we
have implemented AutoMatrix, a GPU-based vehicle traffic
simulator for real-time congestion management which scales
up to 16 million vehicles on a US street map. This is an
early effort to enable imprecise and approximate real-time
computation on parallel architectures for stream-based time-
bounded applications such as traffic congestion prediction and
route allocation for large transportation networks.

I.. INTRODUCTION

Performance scaling of single-thread processors stopped in
2002 and has fueled the use of multicore Graphics Processing
Units (GPUs) which have been growing in transistor count
by 65% annually. The current generation of NVIDIA’s Fermi
GPU consists of 512 cores and is capable of executing 24,576
concurrent thread kernels for efficient stream processing.
GPUs will, in the year 2015, use 11nm technology and con-
tain around 5,000 cores, which should render them capable
of around 20 Teraflops [1]. In the past few years, the GPU
has evolved into an increasingly convincing computational
platform for non-graphics applications [2]. Our goal is to
investigate time-bounded algorithms on GPUs to effectively
trade-off execution time with output quality. This will enable
a large class of data-dependent and dynamical applications
with a large number of variables to leverage the high-
throughput concurrent computation of GPUs. Algorithms in
this category include real-time estimation, prediction and
decision making in weather science, nation-wide traffic man-
agement and electronic trading.

As such data-dependent applications are increasingly sub-
ject to larger workloads, it is often not possible to compute
results in real-time. Furthermore, it is often better to have
an imprecise or approximate result within a time-bound
rather than a precise answer that is outdated. Algorithms for
such applications must therefore adaptively allocate resources
appropriate to the goals and loads and evaluate their progress
with execution time to deliver intermediate results. Such
results may be in the form of estimated values, a range of
answers or measurements.

This paper presents an early investigation of time-bounded
algorithms on the NVIDIA CUDA General Purpose GPU
programming platform [3], [4], [5]. The Compute Unified
Device Architecture (CUDA) provides a programming model
for general purpose programming on GPUs. The interface
uses standard C code with parallel features. Using CUDA, we
investigate the design of time-bounded algorithms that con-
tinually measure the quality of the output with the remaining
time and dynamically adjust their execution path to optimize
the outcome of the computation by a specified deadline. Such
Anytime Algorithms allow for approximate and imprecise
computation with an output quality metric that is monotonic
with the available execution time [6], [7]. The focus of this
investigation is on the construction, instrumentation, runtime
progress measurement and adaptive selection of execution
paths for anytime algorithms on GPUs.

A.. Anytime Algorithms

Anytime Algorithms may be considered in two variations:
Interruptible algorithms and Contract-time algorithms. Inter-
ruptible algorithms can be interrupted at any time to deliver
the best result obtained so far. They are convenient to use
as the results may be requested in an on-demand manner.
Contract-time algorithms are specified an execution time a
priori and decide on the best strategy to maximize the quality
of the output within that duration. Contract algorithms are
often more intuitive to design, and typically use simpler
data structures and control structures, making them easier
to implement and maintain. Our focus is on contract-time
algorithms for soft real-time stream processing on GPUs. In
general, Anytime Algorithms have four properties:

1. Quality & Execution Time trade-off -To measure the
runtime performance, anytime algorithms generally introduce
a quality function which is a monotonic function of the
amount of time available to the algorithm. It is therefore
necessary to construct a performance profile of output quality
at design-time and select a set of operating points along the



trade-off curve at runtime. A task is monotone if the quality of
its intermediate result does not decrease as it executes longer.
Such monotone tasks are available in many problem domains,
including numerical computation, statistical estimation and
prediction [7], heuristic search [8], sorting, and database
query processing [9]. In this study, we will consider the
parallel execution of a Parallel A* search algorithm that is
executed with a specified contract time.

2. Performance Predictability - Anytime Algorithms
must expose control or tuning knobs to traverse the quality-
time tradeoff. Such knobs may be in the form of sampling
rates and iterative improvement functions which affect the
quality in terms of metrics such as accuracy, coverage
area, certainty, and resolution (level of detail). Quality-time
tradeoffs may be achieved by several techniques such as
milestone method, sieve functions and selecting between
multiple versions of the algorithm [10]. With the milestone
method, the algorithm executes for a minimum duration and
then evaluates its progress at checkpoints within the control-
flow graph. Based on the remaining time, the algorithm may
decide to execute both the mandatory and optional operations,
or just the mandatory operations. Sieve functions allow for
computation steps to be skipped such that a minimum sam-
pling may be achieved over a shorter duration. Alternatively,
the application may be implemented with multiple versions of
the same algorithm such that computationally intensive im-
plementations may be swapped with quicker but less precise
versions. For each of the above techniques, it is necessary
that alternative execution approaches have the facility to
measure the quality with explicit metrics in the current mode.
Languages such as Flex provide language primitives with
which the programmer can specify the intermediate result
variables and error indicators, as well as the time instants to
record them [11], [12].

3. Correctness measure - As the execution pathway of
an anytime algorithm is a function of the workload and
application goals, it is only determined at runtime. Thus,
the outcome may be among a range of possibilities, and it
is essential to ensure that outcome is correct. Consider the
example in Fig. 1, where the application has a contract-time
of 11s. At runtime, the algorithm may choose among any
of the alternate execution paths, where paths on the left are
more computationally intensive (time consuming) but more
accurate than those to the right. In this example, the algorithm
chooses path 1A which consumes 8.2s. As the remaining time
is relatively small for the rest of the execution, the algorithm
decides at intermediate checkpoints to execute less accurate
and faster paths in later phases (i.e. 2C followed by 3D)
to finish by the deadline. In order to check the correctness
of combinations of alternate execution paths, one approach
would be to verify if the string 1A−2C−3D is a subset in the
language of acceptable sequences. More generally, anytime
algorithms require a result evaluator to ensure the correctness
during the course of execution.

4. Suspend and Resume Execution Anytime algorithms
must have the capability to be interrupted either at anytime
or at pre-determined checkpoints to output an intermediate

result. In addition, they must be able to continue operation
using intermediate results.

B.. Anytime Algorithms for Parallel Computing

Anytime algorithms have been largely studied on sequen-
tial and single execution-path architectures. While early in-
vestigations have explored multi-processor architectures [13],
our efforts are with parallel GPU computing architectures.
This introduces three differences from earlier approaches:
(a) The algorithm must be mapped spatially across multiple
processing resources (grids, blocks and warps) and this intro-
duces platform-dependent variations in the quality-time trade-
off; (b) Alternative implementations of the algorithm must be
compiled into kernels at design time and appropriate kernels
must be composed to select an operating point along the
quality-time curve; (c) The algorithm specifies the execution
of a single thread and the kernel executes hundreds to
thousands of threads concurrently. Thus, it is necessary to
wait until all threads complete in one kernel till the next
kernel is loaded. A primary challenge of kernel composition
with the current GPU architectures is to execute similar
threads within one kernel and restrict the set of concurrently
executing kernels on the GPU.

Our framework has four key elements: (a) profiling the al-
gorithm by timing analysis to partition execution across mul-
tiple exploration and exploitation phases, (b) instrumentation
for on-line measurement of the progress of the algorithm and
the remaining time, (c) interfacing control knobs (or control
dimensions) which trade-off output quality with time so that
the algorithm can adapt its behavior along those dimensions
when needed, and (d) policies for runtime selection of the
most appropriate execution path based on (a) and (b).

Figure 1. Anytime algorithm with multiple optional paths.



C.. Quality and Resource Profiles

To profile and explore the quality-time trade-off, we em-
ploy a framework similar to Quality of Service Resource
Manager (Q-RAM) [14]. Q-RAM is an optimization frame-
work to maximize the output quality, given multiple resources
and multiple control knobs (control dimensions). The quality-
time and resource-time profiles are computed at design-time
and pruned by extracting the convex hull of the quality-
resource-time profile for an application. We apply this meta-
approach to time-bound computation of Parallel A* searches
executed in parallel (PAP*) across a mesh graph on a GPU.
Our current study only explores a single resource (time) and
single quality metric (map resolution) as our goal is to stream
output for a large number of vehicles continually as the
weights of the graph change due to congestion. Other quality
metrics such as route update rate and the incremental length
(e.g. 0.5, 1, 3km) for which the route must be calculated,
may be included.

D.. Organization

This paper is organized as follows: The next section pro-
vides a brief background on the GPU architecture and timing
analysis for sample algorithms. Section 3, describes the con-
struction of the PAP* algorithm followed by its quality-time
profiling and runtime kernel composition. Section 4 presents
performance results of the anytime implementation of the
PAP* algorithm and its effectiveness in exploiting the quality-
time trade-off. We conclude with a case-study followed by a
summary of the related work and future directions.

II.. GENERAL PURPOSE GPU TIMING ANALYSIS

In recent years graphics processing units (GPUs) have pro-
vided us inexpensive highly parallel computation power [2],
[5]. Harnessing this power was relatively difficult until GPU
architectures started to support general purpose programming
languages (e.g. C, C++, Python) in addition to graphics
APIs [3], [4], [15]. So instead of expressing algorithms in
terms of programmable shaders, they can be constructed
using more general programming models like CUDA.

A.. CUDA GPU Architecture

CUDA provides parallel programming extensions to the
C programming language. It gives the programmer direct
access to the virtual instruction set and explicit control of
the memory in the device. The programmer specifies the
CPU and GPU functions in terms of thread and thread-block
layouts. The finest unit of execution in CUDA is one thread.
Threads are grouped into blocks and blocks are organized into
a grid (Figure 2). Each multiprocessor executes one block at
a time, and each block runs on just one multiprocessor. The
CPU and GPU run different code. The CPU executes the
main program and sends tasks to GPU in form of kernel
functions. While there can be many kernel functions defined
in a program, there can be only one kernel running on the
device at any point in time. This restriction may be relaxed
with newer GPUs.

In our measurements, from the CPUs perspective, kernel
invocation endures small overhead (<0.12ms). Thus, in the

Figure 2. CUDA programming model: showing CPU (host) to GPU (device)
communication. Kernels are mapped to grids on the device, which execute
blocks of threads concurrently.

rest the experiments we ignore this overhead by repeating the
experiments 100 times on the device with just one invocation
and then divide the measured time by 100. This way, the
overhead is amortized and excluded from our measurements.

B.. An Example of GPU WCET Measurement

We now discuss the specifics of Worst Case Execution
Time (WCET) measurement for an example CUDA program
for vehicle routing across a street map. For the timing
analysis, we use the AutoMatrix vehicle traffic simulator
(described later in the case-study section) which executes on
the GPU. This step is required to construct the quality and
execution time profile of an algorithm at design-time. Figure
3(a) depicts the high-level Control Flow Graph (CFG) which
is largely the decision paths a vehicle takes when it reaches
an intersection. The left side of the control flow graph, which
consists of the outer and inner loops, depicts the worst-case
execution path for the program. The outer loop determines
the high level routing for all the vehicles in the grid, while the
inner loops calculate the finer routing details for each vehicle
in the grid. The execution time for the program is largely
influenced by the behavior of these two loops, since most of
the time is spent performing these calculations. Hence, there
is a need to obtain good estimates of the WCETs for both of
these loops.

We achieve this by instrumenting the code and observing
the clock during the instrumentation points. The CUDA
architecture has a special register, named %physid, that
keeps track of the multiprocessor on which the current thread
is executing. Each multiprocessor has its own individual clock
that can be easily read from the kernel using the clock()
system call. The instrumentation checkpoints (timestamp
capture) are shown in Figure 3(a) by the red triangles placed
at various points along the CFG. Each instance of the inner
loop was forced to execute for eight iterations since each
vehicle’s routing has at most eight road segments to choose
from at an intersection. The outer loop was run for 100
iterations to capture the average and worst case. When we
plotted the behavior of the application for a varying number
of iterations of the outer loop we noticed that a run of 100
iterations captured most of the vehicle routing scenarios.



C.. Timing results

Fig. 3(b) shows the execution times for the inner loops
for each thread that executes on the CUDA processor. While
the graph shows a fair distribution of the execution times for
the inner loop (largely due to map data fetches from global
memory on the device), the results are fairly well bounded
within 0.5ms. Hence this can be considered the WCET profile
for the inner loop. As was the case for the inner loop, we
find an upper bound for the execution of the outer loop is
approximately 3.6ms. Fig. 3(c) shows the absolute execution
times from the start of the kernel for all warps. A warp is
a group of 32 threads scheduled concurrently on a single
stream processor. The execution profile of the thread closely
follows that of the outer loop, except that the time taken
is two orders of magnitude higher. The execution times for
the complete thread is dominated by the the times for the
outer loop. We obtain an upper limit for the execution times
for entire program to be 349.4ms. Since we schedule 850
threads at a time on the CUDA processor (this is a constraint
of this particular processor model), the first batch takes at
most 349.4ms, the second takes a further 349.4 ms, and so on.
Using this approach, we can instrument the entire application
and extract timing measurements (see Fig. 3(d)) for both
design-time analysis and runtime adaptation.

We adopt the same measurement technique for the Parallel
A* search algorithm we use as a case-study for the remainder
of this paper.

III. PAP* PARALLEL SEARCH ALGORITHM

We step through the construction of a Parallel A* algorithm
that is capable of trading-off execution time for output quality.
To enable the contract-time capability, the algorithm must
expose one or more control knobs (control dimensions)
such that the execution time and quality are profiled for all
operating points at design time. At runtime, the algorithm
must be capable of adjusting the operating point based on
the remaining time and goals of the application. This case
study provides a simple walkthrough of this process. A
fundamental limitation of the CUDA device is that each of
its multiprocessors follows a SIMD architecture. This limits
the efficiency for algorithms with divergent thread processes.
Our goal is to adapt the A* algorithm to run efficiently on
GPU given these limitations. The adaptation of this algorithm
to CUDA was inspired by the work done in [16] and [17].

A. Graph representation

Graphs are commonly represented by their adjacency ma-
trices. However since we are mostly dealing with sparse
graphs of street topologies, such a representation will be
very wasteful in terms of memory space. We therefore store
the graph in memory using adjacency lists which are more
compact. Adjacency lists of the vertices of each graph are
packed into a single array. In addition, different graphs are
packed together into a single compact adjacency list. So on
a higher level it may look like we a have a graph with
several connected components, i.e. a jungle. Each query is
confined to one of these connected components. Each vertex
stores the starting index of of its adjacency list in the global

compact adjacency list. Vertices of all graphs Gi(Vi, Ei) are
represented as an array V . An array E stores the adjacency
lists of all vertices of all graphs. Each entry of the edge array
E refers to a vertex in vertex array V .

B. Parallel A* searches in Parallel (PAP*)

In PAP*, the goal is to run multiple instances of the A*
search algorithms while each of them can take advantage of
the parallel nature of the GPU. The problem is thus: given

(a) Structure of example code showing instrumentation points

(b) Measured Execution Time for the Inner Loop

(c) Execution Time from Beginning of Kernel

(d) Total execution time of instrumented code sections

Figure 3. GPU Worst Case Execution Time Measurement



a weighted directed graph G(V,E,W ) with non-negative
weights, and a set of source vertices S, and a set of the
corresponding destination vertices D, find the shortest path
from each vertex in S to its corresponding destination in D.

C. CUDA implementation of PAP*

In our implementation we use a set of arrays for each of
the graphs we have: a vertex array V , and edge array E,
boolean masks F and C of size |V | which record the search
frontier and the finalized nodes, and also a weight array W
of size |E|. Also we have a cost array C which keeps record
of the shortest path from the source to the expanded nodes.

Each thread on the device is assigned to one node of a
graph (see Fig. 4). In each iteration, each vertex checks to
see if it is in the frontier list. If yes, it fetches its current
cost from the cost array C and its neighbors weights from
the weight array W . The cost of each neighbor is updated
if it is greater than the cost of the current vertex plus the
edge weight to that neighbor (relaxation). At the end of the
execution of the kernel, a second kernel compares cost C
with updating cost. It updates the cost C only if its cost is
higher. The updating cost array reflects the cost array after
each kernel execution for consistency.

The second stage of kernel execution, shown in Fig. 4,
is required as there is no synchronization between CUDA
blocks. To find the minimum cost vertices in the search
frontier of each graph we first find the minimums per CUDA
block and then find the global minimums in a separate kernel
execution.

Another decision that should be made in the runtime con-
figuration of the kernels is the way the threads are organized
into blocks and the grid. The next section briefly explains the
idea.

D. Multiple parallel queries

For the experiments in this paper, we use fixed and
identical queries with the source and destination being the
two opposite corners of the mesh (worst case), while the edge
weights are chosen randomly and are different in different
meshes. There are different modes in which each query can be
run. For example, we can run a single query with maximum

Figure 4. PAP* consists of four CUDA kernels. Three of them, relaxation,
find minimums, and accumulate/update run in a tight loop until the target
node is found.

parallelism (maximum number of blocks). Another option
is to pack multiple queries together and run them together
as if we are running one query on a larger graph. The
implementation structure of the PAP* allows us to do this on
a single graph or multiple graphs seamlessly. This decreases
the amount of parallelism as seen by each individual query
(see Fig. 5), but as will be explained later, it might increase
the overall performance of the system, as there might be more
parallelism to exploit in multiple queries than in a single one.

IV. PAP* - CONTROL DIMENSIONS

For the query processing routine to adapt to the available
time, we provide degrees of freedom along which the query
processor can change the operating point in the algorithm to
trade-off route accuracy and execution time.

A.. Platform Independent Control Dimensions

In this case study, we have used a regular mesh graph,
along with three lower resolution versions of it ranging from
1024 nodes down to 16 nodes, as shown in Fig. 6. Level 0, is
the original graph and Levels 1, 2, and 3 are lower resolution
meshes derived from the original graph. These abstractions
speed up execution and provide partial results in lieu of a
complete path. The higher level meshes hide the details of
the graph and thus shrink the search space. Lower levels
with more details lead to a larger search space, but provide
more accurate search results. In this experiment, we assigned
scores 6, 4, 2, and 1 for routes calculated in the layers 0
to 3 respectively. These scores are application dependent but
generally illustrate that the more detailed paths are assigned
higher scores to maintain monotonic quality with increasing
processing. For each search query we consider these different
versions of that graph. It is possible to change the level at
runtime. The experiments are repeated for a number of runs
to distinguish the measurements from the noise.

B.. Platform-dependent Control Dimensions

The PAP* algorithm is very flexible in terms of mapping
execution to the thread-block level architecture on the device.
We observe that for the GPU, architecture-specific constraints
provide a large dynamic range for effectively scheduling
threads for a given workload. It can be run with different
thread/block numbers given any search graph size. This
becomes a problem of optimization parameters to schedule
parallel searches together on the device. Fig. 7, shows the
variation in execution time of a single A* search with

Figure 5. Merging queries together and running them together in parallel
versus running maximally parallelized single queries, serially.



Figure 6. Multi-level graph: we maintain 4 different layers for the graph
that we are using. Each higher layer represents a coarser level approximation
of the lower level graph. This figure is not to the scale and is just for
demonstration of the idea.

different graph sizes and blocks numbers. The sweet spot for
a single isolated search is when we have as many blocks
as possible, provided that the number of threads on each
multiprocessor doesn’t go below the number of cores per
multiprocessor. In this figure the number of multiprocessors
is 27, with 8 cores per multiprocessor. Thus, spreading
the computation to maximally use all multiprocessors while
running at least 8 threads per multiprocessor allows for the
highest throughput for this algorithm. Fig. 8 is a plot of the
algorithm’s execution time using different number of blocks.
Here the number of threads per multiprocessor would be
number of vertices divided by the block count.

C. Kernel Composition

For an anytime application, a pool of kernels with fixed
time-quality trade-offs are aggregated in the host at design-
time. At runtime, based on the load and quality-level goals of
the application, the appropriate kernel is selected on-demand
and queued to execute on the device. As shown in Fig. 9(a),
when we compose a kernel in this manner from several
smaller kernels, the running time of the composed kernel
is equal to the sum of the running times of the kernels in

Figure 7. PAP* execution time for the multilevel graph of Fig. 6.

the longest path from start to completion (critical path). So,
on a device that has M multiprocessors, a kernel composed
of M parallel 1-block search kernels takes the same amount
of time to complete as a single 1-block search. Thus, given
the information in Fig. 7 the best way to run 32 searches is
to compose a new kernel from 32 1-block searches, rather
than running 32 32-block searches sequentially. However, if
we have just a single query then we are better off running a
single kernel with 32 blocks.

Each of these searches is one CUDA kernel and the CUDA
device doesn’t allow us to run more than one kernel at a
time. So, to run multiple kernels (e.g. 1-block A* searches)
concurrently, we would have to make a new kernel that can
effectively emulate multiple parallel kernels at runtime, while
from the viewpoint of the device there is just one kernel
executing [18].

In this scheme the number of blocks is equal to or
less than the number of multiprocessors on the device.
So, to assign blocks of a kernel to different multiproces-
sors, we can use block indices. So we’ll have a nested
IF . . . THEN . . . ELSE structure that runs specific code
based on the block ID. We don’t assign more than one
kernel to a single block as far as possible. More specifically,
the overall structure of each thread looks like the following
pseudo code:

Algorithm 1: Kernel composition example.

input: Ki(.);
bid← blockIdx.x;
if bid< K1.size then

K1();
K2();
if bid< K3.size then

K3();
else if bid≥ K3.size then

K4();
K5();

end
else if bid≥ K1.size then

K6();
end

So, assuming that Ki.size is the number of blocks that kernel
K − i requires, blocks 0, 1, . . . ,K1.size − 1 run kernel K1

Figure 8. PAP* execution time for different block numbers



(a) (b)
Figure 9. (a) Each block represents one kernel queued on the host. Kernels are executed sequentially. The same kernels are then combined together to
form composed kernels that emulate simultaneous execution of kernels. (b) Demonstration of critical path in a composed kernel.

and then K2 and then blocks 0, 1, . . . ,K3.size−1 run kernel
K3, and so on. Fig. 9(b) demonstrates how these base kernels
are packed together. So we have effectively made a new
kernel that contains at its core six basic kernels. Creating
combinations of kernels incurs a static compilation cost plus
a negligible constant run-time cost. So at any point of time we
can invoke one of these six kernels, or any kernel composed
using a subset of them. Using these combinations increases
the flexibility of the scheduling. We can run kernels in parallel
to increase device utilization when a single kernel cannot
guarantee high occupancy of the device.

V. ANYTIME PAP* EVALUATION

A. Offline scheduling: quality vs. execution time trade-off

Based on the timing information for different operation
modes as summarized in Fig. 6 and Fig. 7, we developed
a dynamic CUDA thread-kernel scheduler which selects
parameters for different queries based on the available time,
to maximize the overall query response quality. We have
designed a scheduler that given the total amount of time
available, finds the best scheme to combine and schedule the
required kernels to run the queries. This scheduler, named
offline, creates batches of queries and runs all queries in
that batch in one of the levels of the multilevel graph.

However, due to variations in actual kernel execution times
and those estimated at design time we need to be able to adapt
to the variation in the available time. So, after each batch
completion, the scheduler optimizes the current schedule
given the actual amount of time left to finish the queries.
Fig. 10 shows the quality versus contract time for scheduler
offline, along with the overall quality score that static

Figure 10. The offline scheduling algorithm can change the execution
parameters of the query execution routines to adapt to the available resources,
and maximize the overall quality of the query responses.

schedules can achieve, while running a total of 6,144 search
queries. The static level scores are consistently lower than
the offline scheduler as the scheduler cannot adapt and
misses the deadlines for queries with contract time below the
minimum time required for the specified level of the graph.
offline finds the optimal graph levels and composition to
run the kernels so as to meet the deadline while maximizing
the overall quality of results.

B. Online Scheduling with Quality Control

Since the scheduler might create very large kernels in its
optimization of the quality score, variation in actual kernel
execution times can be large. So if for some reason one of
the batches takes much longer than was anticipated by the
scheduler, then the deviation from the optimal plan might be
so large that forces us to unduly decrease the quality of the
subsequent batches which will hurt the overall quality of the
results. So the scheduler will have more flexibility if it had
the option of modifying a schedule while it is running. We
design a new scheduler, named online that can do this. If
the scheduler detects that a query is taking longer than the
projected amount of time, it can adapt to the new situation
and make sure that the system will succeed in responding to
all queries in a timely manner while having a larger search
space to optimize the schedule. For this purpose, online
probes the the system continually and determines when the
projected time bounds have been violated by some predefined
margin. In that case, a new schedule is composed based on
the new time bounds, and put into effect immediately. So, it
can change the execution time of a query batch even after it
has been dispatched by the host CPU by changing the level
in the graph from the current location on the map.

Figure 11. Projected versus the actual execution time of the 7 sub-kernels
to execute three batches of 6,144 queries each.



(a) (b)
Figure 12. (a) Execution times by offline and online schedulers. (b) Quality scores of schedules composed by offline and online schedulers.

Fig. 11 shows the projected and the actual execution times
for three query batches each consisting of 6,144 queries. We
have manually forced the actual execution of the kernels
to take longer to demonstrate the ability of the system to
adapt to new time bounds. Fig. 12(a) shows the accumulated
execution times of kernels running in the order proposed by
the scheduler. As can be seen in Fig. 12(a), when dispatching
kernel 3, offline detects that we are short of time based on
the actual execution times, we make a new execution plan that
finishes the query processing within the given time bounds.
However, online detects the situation while running kernel
2 and changes the execution plan accordingly to meet the time
bounds. As we expect, the sooner we detect an execution plan
that has gone awry the better we can fix it because more time
is left and we have more candidate execution plans to choose
from. Thus as can be seen in Fig. 12(b), online has been
able to score higher than offline.

VI.. ONLINE SCHEDULING WITH FEEDBACK CONTROL

In the previous section we described the approach to trade-
off application-level quality for execution-time. In several
classes of applications the response time is a primary measure
of service quality. Consider for example a stock market
application where users request portfolio updates as well
as make buy/sell transactions. In this case, if the server is
overloaded it is better not to process additional requests to
guarantee a low maximum response time. In this overload
case, the server refuses service to a fraction of requests to
maintain a tardiness bound [19]. Similarly, in the case of
the GPU we have developed a feedback-controller in the
CPU which periodically measures the processing time and
quality of the process on the GPU and accordingly throttles
the admission of new requests.

We have implemented a method where a Proportional
Integral (PI) controller executes on the CPU in closed-loop
operation with the GPU (see Fig. 13). For a given task, we
can set the quality set-point and tardiness set-point and the

Figure 13. PI control loop executes on the CPU to throttle requests on the
GPU so the desired tardiness may be maintained on the GPU

controller will throttle the input request rate. Consider the
example in Fig. 14, where we request route queries to the
mesh-based PAP* routing engine on the GPU. In this setup,
routing queries can request a minimum quality level for each
route. In other words, if a request wants a detailed map
on Level0 and Level1 only, then it will result in heavier
processing. In the figure, after the system has settled to
the first phase of stream queries, there is a sudden spike
in the number of queries and a majority of requests now
request heavier processing per request. As the system is now
overloaded, you can observe the tardiness overshoots for a
few cycles, and then the controller fixes the situation by
changing the set-point of the load.

From the PI controller’s perspective (see Fig. 15), the
controller initially settles on a set-point of 39 requests per
time step. After the spike in the request load, the controller
throttles the request rate to settle at 31. In this experiment the
setpoint for tardiness is 0.9, Proportional controller gain is 0.3
and the Integral controller gain is 0.01. We can observe that
even though the controller and plant execute on two separate
processors, the response time for the applications of interest
are both effective and controllable to finer granularity. In this
example, we use tardiness as opposed to deadline miss rate
as the applications of interest are both soft real-time and a
continuous metric is more useful than a binary one. If we
employ a deadline miss as the metric, we observe in Fig. 16
the deadline misses initially settle down to about 10% and
then temporarily rises to a peak of 50% during the onset
of the spike and settles to the minimum miss rate shortly
afterwards. In general, the execution time is a stochastic
process at runtime and statistical approaches to adaptive
control would be more effective. The example shown is to

Figure 14. Feedback-based admission control maintains tardiness set-point
of 0.9. There is a spike in the request rate at the 800th request. The controller
restores tardiness by throttling the admission.



Figure 15. The PI controller’s adapts its set-point for admission rate after
there is a spike in requests

demonstrate a feedback control knob to anytime algorithms
on the GPU. We thus observe that both quality and admission
control can be combined in a single feedback controller to
provide effective soft real-time performance on GPUs.

VII.. CASE STUDY: AUTOMATRIX TRAFFIC CONGESTION
SIMULATOR

We have developed AutoMatrix, a vehicle traffic conges-
tion simulator to further explore anytime algorithms on GPUs
(see Fig. 17). AutoMatrix is implemented in CUDA and can
simulate over 16 million vehicles on any US street map while
operating faster than wall-clock time. It is a microsimulation
such that each vehicle is represented by a thread. Periodically
all vehicles report their speed, position and direction so
that the speed weight may be determined for each street
segment. We use the fundamental traffic flow diagram [20] to
determine the weight of each segment based on the number
of vehicles on that segment. Vehicles are well-behaved in
the sense that they use a car-following algorithm and specify
random walk or origin-destination routing requests. The goal
of AutoMatrix is to explore real-time traffic prediction and
fastest-path routing based on the current state of the street
network.

AutoMatrix implements the parallel A* routing algorithm
and is able to route vehicles with hierarchal routing and
adaptive routes. In the former case, vehicles can request
for a coarse-grained route based on a current snapshot of
the network at the initial time. Once the vehicle begins the
journey, the street network weights are periodically updated
(e.g. every 5sec) and an incremental adapted route for a
short distance ahead (e.g. 1Km) is computed. As the ve-
hicle traverses the network, it continually receives updated
routes based on the current traffic conditions. We observe
in Fig. 17(left), a microsimulation of 800,000 vehicles in
Washington D.C. representing the congested segments in red
color. In Fig. 17(middle), a single vehicle has been assigned
a course-grained path from North Philadelphia to downtown.
In this and the next case, there are 500,000 vehicles randomly
walking to provide background traffic. We also observe
a short 1Km fine-grained path from the vehicle’s current
position that is computed every 5sec to provide an adaptive
route based on real-time traffic congestion. In Fig. 17(right)
we observe hundreds of PAP* routed vehicles with fine-
grained adaptive routes being updated every 5sec.

We are currently using AutoMatrix to explore resource-
adaptive routing that can scale to hundreds of thousand of

Figure 16. The deadline miss rate for routing requests during initialization,
a request spike and after settling to a steady state

vehicles. As all the above experiments utilize synthetically
generated traffic, we plan to use the real-time traffic data
from INRIX to execute on the AutoMatrix setup.

VIII.. RELATED WORK

The term “Anytime algorithm” was introduced by Dean
and Boddy[6] in their work on time-dependent planning
during the late 1980’s. Horvitz[7] introduced the flexible
computing model for time-critical decision making and plan-
ning algorithms in Artificial Intelligence. Following this,
several studies in the AI community focused on composing
anytime algorithms to more complex systems for sensor
interpretation and path planning[21], [22], search[8], and
evaluation of belief networks [23]. In the early 1990s, the
real-time community explored scheduling approaches for
imprecise and approximate computing[10], [13]. The Flex
language was developed with time as a first-class citizen
to specify timing and performance requirements within the
algorithm[11], [12]. This contributed to approaches for per-
formance polymorphism[24] such that mandatory and op-
tional computations may be selectively executed based on the
available execution time. These efforts were seldom evaluated
on computing platforms or applied to complex problems.

Within the computer architecture and programming lan-
guages communities, general techniques for execution time
speed-up have been proposed. Loop perforation[25], incre-
ments loop iterators to globally expedite computation while
trading accuracy in return for (speed) performance. This
approach executes every n-th iteration and does not require
customized or surgical modification of the algorithm. While
the class of applications this can be applied to is limited,
loop perforation has been used to speed-up video and audio
encoders, Monte Carlo simulations, and machine learning.
The results show that the transformed applications can run
as much as two to three times faster than the original
applications while distorting the output by less than 10%.
Other approaches, such as PetaBricks, offer runtime algo-
rithm choice [26], [27], [28] where multiple implementations
of multiple algorithms are selectively exploited to solve a
problem is the natural way of programming. Choices also
include different automatic parallelization techniques, data
distributions, algorithmic parameters, transformations, and
blocking. These approaches do not adhere to any contract-
time requirements and are equivalent to a ‘better than best
effort’ speedup approach in trading-off execution time for



Figure 17. AutoMatrix CUDA-based vehicle traffic simulator showing scalable, hierarchal and adaptive parallel routing for real-time congestion management

quality. More recently, [18] used static compilation tech-
niques to create efficient kernel implementations for multiple
tasks. Our approach builds on this for runtime adaptation to
contract time constraints.

IX.. CONCLUSION

We present early efforts in time-bounded algorithm ex-
ecution on a GPU’s parallel architecture. The focus of
this work was on the construction of anytime algorithms
which effectively trade-off output quality and admission rate
for execution time to provide approximate results within a
contract-time. We present the construction, instrumentation,
on-line measurement and runtime scheduling of such anytime
algorithms. Through a case study with Parallel A* search, we
demonstrate the feasibility and effectiveness of the proposed
approach. For a case-study, we developed AutoMatrix, a
GPU-based vehicle traffic simulator that can scale to over 16
million vehicles. We use AutoMatrix to explore implemen-
tations of the PAP* algorithm on real street maps. We have
currently considered feedback-based quality-controlled and
admission-controlled parallel algorithms and plan to extend
our efforts to auto-tuning algorithms. This effort presents
a new approach to real-time computing on very parallel
processor architectures.1
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