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Abstract—In taxicab industry, a long standing challenge is how
to reduce taxicab’s mileage spent without a fare, i.e., cruising
mile. The current solution for this challenge usually requires the
participation of the passengers. To solve the issue without the
passengers involved, in this paper, we propose a cruising system,
pCruise, for taxicab drivers to maximize theirs profits by finding
the optimal route to pick up a passenger, thus reducing the
cruising mile. In pCruise, base on collected GPS records about
other near taxicabs, a taxicab characterizes its cruising process
with a cruising graph. When a taxicab becomes vacant and tries
to find a passenger, cruising graph will provide the shortest
cruising route with at least one expected available passengers
for this taxicab. With the shortest cruising routes, taxicabs will
significantly reduce theirs cruising miles. We evaluate pCruise
based on a 7 days 10 GB real world GPS dataset from a city
with more than 15, 000 taxicabs. The evaluation results show that
pCruise can assist taxicab drivers to reduce cruising miles by
41% on average.

I. INTRODUCTION

Nowadays, among all different transportation, taxicabs play
an particularly prominent role in big metropolitan residents’
daily commute. According to a recent survey in New York
City [1], over 100 taxicab companies operate more than
13, 000 taxicabs in New York City. There is a fairly stable
taxicab ridership of 660, 000 passengers per day, and taxicabs
in New York City transport more than 25% of all paying
passengers, accounting for 45% of all fares paid.

Taxicab service availability is one of most important service
quality in taxicab industry. In a New York City taxicab survey,
the top ranking unsatisfactory reason about taxicabs is that
taxicabs are not available when needed [2], but nearly 40%
of total taxicab mileage, a total of 314 million miles per
year, is spent to cruise for passengers. Thus, it is important
to address this discord between the high cruising miles for
drivers and the low ride availability for passengers. This
issue can be tackled from two different perspectives. From
the passengers’ perspective, the straightforward solution is to
spend the minimal amount of time or distance to find an
available taxicab on the street; from the drivers’ perspective,
the obvious solution is to find a passenger with the minimal
amount of cruising miles (i.e., miles spent without a fare). In
this paper, we focus on the perspective of taxicab drivers to
maximize their profits by reducing cruising miles.

In large metropolitan areas of United State and China, e.g.,
New York City, Beijing, Shanghai, and Shenzhen, taxicabs
are equipped with GPS and communication devices, and they
upload their vehicle statuses back to taxicab companies’ dis-
patching centers periodically. Thus, these dispatching centers

can schedule taxicabs to the optimal routes to pick up passen-
gers, which will reduce the cruising miles. However, the cur-
rent solution in dispatching centers requires the participation of
passengers. Typically, the existing dispatching centers function
under the scenario where a passenger contacts a dispatching
center, and then the dispatching center assigns a task about this
passenger to a nearby vacant taxicab accordingly. But most
passengers will hail a taxicab along the street directly, rather
than booking a taxicab from a dispatching center. Therefore,
we face a challenge that how to schedule taxicabs to find
passengers with the minimal length routes to reduce their
cruising miles, yet without the participation of passengers.

In this paper, we propose a cruising system, pCruise, i.e.,
cruising with purposes, which schedules the taxicabs based on
pick-up events from GPS records about their nearby taxicabs
in taxicab networks. The key insight about pCruise is that
it utilizes only several key GPS records to model a cruising
process about a taxicab, and then provides a scheduling
strategy to find a passenger with the minimal cruising miles.
Specifically, our key contributions are as follows:

• We introduce a mathematical concept, cruising graph,
for pCruise, where vertices represent intersections and
edges represent road segments connecting intersections.
We characterize a cruising graph by weights on its edges,
which are represented by the expected number of arrival
passengers during a taxicab cruises on road segments.

• According to characterization on edges, pCruise utilizes
a cruising graph by an efficient scheduling. During the
scheduling, pCruise will select the cruising route for a
taxicab with at least one arrival passenger yet having the
minimal length, thus reducing the cruising miles for the
taxicab driver.

• More importantly, we evaluate pCruise with a real world
10 GB dataset, collected from taxicabs in Shenzhen,
China. The dataset consists of 7 days of GPS traces from
more than 15, 000 taxicabs. Based on this dataset, we
conduct both a large scale trace-driven simulations and
a small scale testbed experiment. The evaluation results
show that with the assistance of pCruise, a taxicab driver
can reduce the cruising miles by 41% on average.

The rest of the paper is organized as follows. In Section II,
we present our design goal. In Section III, we propose our
pCruise design. In Section IV, we evaluate pCruise through
simulation and testbed study. In Section V, we present related
work. In Section VI, we conclude the paper.
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II. DESIGN GOAL

Our work is mainly motivated by the observation that the
taxicab drivers suffer from long cruising miles. On the other
hand, passengers cannot find a taxicab when they need one.
We bridge this gap by proposing a cruising system which can
guide vacant taxicabs to find a passenger with the minimal
cruising miles, thus maximizing the profits of taxicab drivers.
To illustrate the current cruising miles in a taxicab network
and our design goal, we plot the average percentage of miles
without passengers among total miles, i.e., cruising miles, by
comparing Ground Truth GPS traces and the traces obtained
by a trace-driven simulation where 10% of total taxicabs using
pCruise. The evaluation setup is given in Section IV.
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Fig. 1. Illustration of pCruise Design Goal.

Figure 1 plots the percentages of cruising miles among total
miles on every 1 hour time window from 0 : 00 to 23 : 59 of a
day, comparing the ground truth of a real world dataset and a
trace-driven simulation under pCruise. From this figure, we
observe that during the rush hours of a day, e.g., from 06 : 00
to 10 : 00 or from 16 : 00 to 20 : 00, both of two schemes have
percentages of cruising miles below 20%; during the non-rush
hours of a day, e.g., from 00 : 00 to 06 : 00, percentages of
cruising miles are higher than 60%. But pCruise has a better
performance than Ground Truth during the rush or non-rush
hours by 41% and 21% on average, respectively. This figure
illustrates the design goal of pCruise, which is to reduce the
cruising miles for taxicab drivers.

Given the existence of a plethora of dispatching and data
mining schemes that extract the knowledge from the entire
GPS dataset, we decide to design pCruise as a lightweight
yet effective system which can be implemented either in
frontend, i.e., taxicabs, or in backend, i.e., dispatching centers.
In addition, we design an efficient scheduling for pCruise
based on the GPS records of their own nearby taxicabs, instead
of the entire GPS dataset. Since every taxicab has different
nearby taxicabs and starting time, pCruise introduces unpre-
dictability and randomness in the system to compensate for
more taxicabs head to the same area with the same cruising
route. pCruise provides a unified solution for a highly diverse,
heterogeneous route selection scheme that may be deployed at
individual mobile devices from various applications.

III. pCruise DESIGN

In this section, we introduce the detailed design for pCruise.
We first present the main idea of pCruise, which is to model
a taxicab’s cruising process to reduce cruising miles. Then,
we demonstrate how to model a cruising process. Further,
we explain how to characterize a cruising process with GPS
records collected from nearby taxicabs. Finally, we show how
to utilize a characterized cruising process to select the optimal
cruising routes for taxicab drivers to reduce the cruising miles.

A. Main Idea

There are two basic situations for a taxicab, i.e., driven
with a fare or driven without a fare. Total miles spent with
a fare are called live miles, while total miles spent without
a fare are called cruising miles, which consists of multiple
cruising routes. In pCruise, the optimal strategy to maximize
drivers’ profits is to minimize every cruising route and then to
minimize the total cruising miles, while finding at least one
expected passenger on every minimal cruising route. Note that
to design pCruise with a more generic philosophy, we describe
pCruise as a distributed solution, even though it can be easily
customized to a centralized solution.

The key idea of pCruise is simple. During both live and
cruising miles, every taxicab broadcasts its GPS records to
other taxicabs periodically, while collecting GPS records from
nearby taxicabs. Whereas during cruising miles, pCruise pro-
vides a model for a cruising process based on collected GPS
records. This model can be used to find the optimal cruising
route with the minimal length, while satisfying that at least one
expected passenger will arrive during the cruising process.

Several questions rise up with respect to this idea.
1) How to model a cruising route: When a vacant taxicab

is cruising on the street, a taxicab driver can make decisions
about cruising routes anytime, but can only take actions at
an intersection on the street. Therefore, an intersection is
a basic yet crucial unit for the optimal cruising route. To
capture fundamental characteristics about a cruising process
on every intersection, we propose a mathematical concept
Cruising Graph. Subsection B will elaborate this concept.

2) How to characterize the optimality of a cruising route:
To characterize the optimality of a route on a given cruising
graph, we characterize a cruising graph by assigning weights
on its edges, representing corresponding road segments of
a cruising route. The weights represent the lower bound of
expected number of available passengers that will arrive on
this road segment, during time period that a taxicab is cruising
on it. This expected number of available passengers can be
obtained by two metrics we proposed. Subsection C introduce
the details of other two parameters.

3) How to utilize the characterized optimality to find the
optimal cruising route: Based on the characterization of a
cruising process, we propose an efficient scheduling scheme
pCruise to obtain the optimal cruising route with the minimal
cruising length, while satisfying that at least one passenger
will arrive on this route during the cruising. Subsection D
will present this scheduling scheme.
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B. Creation of Cruising Graph

In this subsection, we demonstrate how to model a taxicab
cruising process. Note that to show the key principle of
pCruise, we assume a road map is given, and directly present
a model based on it. But in the appendix, we provide a simple
yet effective method to model a cruising process without a
corresponding road map.

We model a taxicab cruising process with a mathematical
concept, i.e., Cruising Graph. A cruising graph is a sim-
ple graph where vertices represent intersections and edges
represent road segments between intersections. The key step
to create a cruising graph is to identify intersections and
road segments connecting them, which can be performed by
several schemes [3] [4]. To fucus on a system level, we now
assume that intersections are given in a road map, but in the
appendix we propose a simple method to identify intersections.
For every intersection, we create a corresponding vertex;
for every two adjacent vertices, we create the two directed
edges between them from one to another and vice versa. The
rationale behind creating two directed edges, instead of one
undirected edge, between two adjacent vertices is that the
optimality from one intersection I1 to another intersection I2
could be total different to that from I2 to I1. In addition, in
some one-way situations, it does not even exist. Figure 2 shows
a cruising graph created according to a given road map.
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Fig. 2. Cruising Graph

Fig. 3. Pick-up or Drop-off Spots. The most of the pick-up or drop-off spots
is on main streets, only a small subset of them is off the street. In addition,
pick-up or drop-off spots are roughly uniformly distributed on main streets.

C. Characterization of Cruising Graph

In this subsection, given a cruising graph obtained in last
subsection, we characterize it by assigning weights on its
edges, indicating the attractiveness of cruising on correspond-
ing road segments. The key feature of our characterization is
that we do not rely on the entire GPS trajectories, only a small
portion of records, whereas most of current schemes functions
with the entire GPS trajectories. Therefore, before presenting
the characterization, we first introduce how to utilize GPS
records about taxicab networks in Subsection 1).

With collected GPS records, we characterize an edge, i.e.,
road segment [sbegin, send] in a time duration [tbegin, tend]
with a novel metric: Available Passenger Ratio ρ. It indicates
that given an arbitrary location sx ∈ [sbegin, send] and an
arbitrary moment tx ∈ [tbegin, tend], the probability that there
is an available, i.e., unserved, passenger in two dimensional
temporal-spacial spot px = [tx, sx]. We propose the available
passenger ratio ρ in Subsection 2).

The available passenger ratio ρ alone is not enough to char-
acterize a road segment, and the number of total passengers
(including both available and unavailable) arriving at the road
segment is also very important. This is because in a road
segment with a high available passenger ratio ρ yet a low
number of total arrival passengers, the number of available
arrival passengers will still be small. But with current GPS
records, even with the entire trajectories of all taxicabs, it
is impractical to obtain such accurate number of passengers
arriving at certain road segments. Nevertheless, with current
GPS records, we can obtain with another metric on a road
segment: Passenger Arrival Rate λ, which indicates the lower
bound of the total passenger arrival rate, given a road segment
[sbegin, send] and a time duration [tbegin, tend]. We present the
passenger arrival rate λ in Subsection 3).

1) GPS Records: In pCruise, every taxicab will broadcast
its GPS records to other nearby taxicabs periodically. A GPS
record consists of following parameters: (1) Plate Number; (2)
Date and Time; (3) GPS Coordinates; and (4) Availability Bit:
whether or not a passenger is in this taxicab when the record
is broadcasted. Thus, we can map GPS coordinates received
by a taxicab into a temporal-spacial coordinate system where
all GPS records are represented by points.

Instead of considering all GPS records, in pCruise, we
shall focus on the records with a change on Availability Bit
compared to previous records. For example, if an Availability
Bit turns to 1 from 0 in two consecutive records of a Taxicab
i, then it indicates that this taxicab just picks up a passenger
in a location indicated by the GPS coordinates. Therefore, we
name this physical location si and corresponding moment ti
as a pick-up spot pi = (ti, si). Similarly, we name a physical
location as a drop-off spot, if an Availability Bit turns to 0 from
1. Figure 3 gives an example of these spots on a road map,
which implies that pick-up or drop-off spots can be treated
as representative samples for all GPS records to reduce the
total number of processed GPS records for characterization of
a taxicab cruising process on a cruising graph.
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2) Available Passenger Ratio ρ: In general, a road segment
with more available passengers will lead to a high possibility
of pick-up, thus minimizing cruising miles for a taxicab driver.
In pCruise, a taxicab driver shall favor a road segment with
a higher available passenger ratio ρ, which can be obtained
by collected pick-up spots in GPS records, via observing how
long nearby vacant taxicabs picked up passengers on this road
segment before. The sooner a nearby taxicab picked up a
passenger on this road segment, the higher available passenger
ratio ρ on this road segment. In the following, we show how
to quantify ρ based on pick-up spots.

For the simplicity, when computing a weight on a road
segment, we transform a two-dimensional GPS coordinate
(x, y) into a one dimensional variable s ∈ [sbegin, send] on
this road segment. Based on a pick-up spot pi of Taxicab i, we
can map pi in a temporal-spacial cartesian coordinate system
in terms of a pick-up location si on a road segment and a
pick-up moment ti, as in Figure 4. The origin of coordinates
oi is (tbegin, sbegin) where tbegin is the moment that Taxicab
i enters this road segment; sbegin is the beginning location of
this road segment.

If pCruise is under the assumption that all the trajectories
are given, in this two dimensional temporal-spacial system, the
triangle-like shape 4′oisipi indicates a temporal-spacial area
without any available passenger. This is because if there is an
available passenger within 4′oisipi, e.g., a spot pj = (tj , sj)
in Figure 4, then the pick-up location of Taxicab i should be
sj , instead of si. But there could be an available passenger
outside 4′oisipi, e.g., a spot pk = (tk, sk) in Figure 4, since
at moment tk, Taxicab i has already passed location sk, and
cannot verify whether or not there is a passenger waiting at
location sk from moment tk, by picking the passenger up.

Therefore, in this 1 taxicab scenario, for a road segment r
connecting an intersection m and an intersection n, we can
obtain the available passenger ratio ρ

′(1)
r at a time period of

[tbegin, tend] as follows.

ρ′(1)r = 1− |4′oisipi|
|tend − tbegin| × |send − sbegin|

,

where |4′oisipi| is the area of 4′oisipi. The physical mean-
ing of |tend− tbegin|× |send− sbegin| is the total 2 dimension
in terms of time and space, while the physical meaning of
|4′oisipi| is the time and space that confirmed by Taxicab
i that there is no passengers. Note that in Figure 4, any

available passenger can exist within square |tend − tbegin| ×
|send − sbegin| but outside 4′oisipi. This is the reason why
ρ is the probability that there exists an available passenger
in arbitrary location sx ∈ [sbegin, send] at arbitrary moment
tx ∈ [tbegin, tend].

In the above analysis, we utilize the trajectory of Taxicab
i to obtain 4′oisipi. However, since pCruise is designed to
employ only a few pick-up spots instead of all the trajec-
tories, we approximate the triangle-like shape 4′oisipi with
the triangle 4oisipi in Figure 5. The rationale behind this
approximation is that in a road segment we can assume that
a taxicab is with relatively even speed. We will verify the
effect of this approximation on Evaluation section. After the
approximation, we have a new available passenger ratio ρ

(1)
r

as in Figure 5, which is given by

ρ(1)r = 1− |4oisipi|
|tend − tbegin| × |send − sbegin|

,

where |4oisipi| is the area of 4oisipi.
Figure 6 and 7 consider multiple taxicabs scenarios where

the triangles of every taxicab overlap with each other. The
union area of all triangles indicates an area without any
available passengers in terms of space and time. For example,
in Figure 6, when Taxicab i enters the road segment from
oi, Taxicab j has already been on this road segment at oj . At
moment tj , Taxicab j first picks up a passenger at location sj .
After that at moment ti, Taxicab i then picks up a passenger
at location si. Since tj < ti and sj < si, 4ojsjpj is inside of
4oisipi. Note that even though there is a passenger at point
pj that is inside 4oisipi, but this passenger is not available
for Taxicab i, since she or he is picked up by Taxicab j.

Therefore, for 2 taxicabs scenario in Figure 6,

ρ(2)r = 1− |4oisipi| ∪ |4ojsjpj |
|tend − tbegin| × |send − sbegin|

.

Similarly, for 3 taxicabs scenario in Figure 7,

ρ(3)r = 1− |4oisipi| ∪ |4ojsjpj | ∪ |4okskpk|
|tend − tbegin| × |send − sbegin|

.

To generalize the above results, for an edge connecting ver-
tex m and vertex n, associating the road segment r connecting
intersection m and intersection n, we have

ρr = 1− ∪∀i∈I |4oisipi|
|tend − tbegin| × |send − sbegin|

,

where I is a set of all pick-up spots.



5

Space

Time

sj

ti

si pi

pj

Fj
-1
(si)

ti-Fj
-1
(si)

oi

oj

Fig. 8. λ under Scenario 1

Space

Timetj

sj

ti

si

pi

pj

Fi
-1
(sj)

tj-Fi
-1
(sj)

oi

oj

Fig. 9. λ under Scenario 2

Space

Timetj

sj

ti

si

pi

pj

oi

oj

Fig. 10. λ under Scenario 3

3) Passenger Arrival Rate λ: In this subsection, we in-
troduce λ, which indicates the lower bound of passenger
arrival rate for a road segment [sbegin, send] in time duration
[tbegin, tend]. With λ, we can have the lower bound of total
arrival passenger number at a time duration.

To obtain an accurate passenger arrival rate, we need a time
period and the number of passengers arriving during this time
period. But based on the collected GPS records alone, it is
impractical to obtain such accurate information. Alternatively,
we may obtain the lower bound of passenger arrival rate λsi
at a pick-up location si during a time period.

For example, in Figure 8, at moment tbegin, Taxicab j is
ahead of Taxicab i, but the pick-up location si of Taxicab i is
ahead of the pick-up location sj of Taxicab j. This indicates
when Taxicab j arrives in location si at moment F−1j (si),
there is no available passenger, where F−1j is the inverse
function of line segment ojpj . This is because if these is
an available passenger, then the pick-up spot pj of Taxicab
j should be (F−1j (si), si), instead of (tj , sj). But since the
pick-up spot of Taxicab i is pi = (ti, si), it indicates that
when Taxicab i arrives at location si, there is a passenger
in location si at moment ti. This implies that at least one
passenger arriving at location si in time duration [F−1j (si), ti].
Note that there may be more than one passenger at location si
arriving at duration [F−1j (si), ti], but since a taxicab can pick
up only one passenger at a time, we only can confirm that at
least one passenger arrived. This is the reason why λ is the
lower bound of passenger arrival rate.

Therefore, the lower bound of passenger arrival rate at a
pick up location si is given by

λsi =
1

ti − F−1j (si)
.

The similar situation is in Figure 9 where at least one
available passenger arrived at the location sj in time duration
[F−1i (sj), tj ]. But in Figure 10, we observe that a situation
where λ cannot be computed, because no pick-up happens
when a later taxicab passes a former taxicab’s cruising route.

Finally, the lower bound of passenger arrival rate at road
segment r during [tbegin, tend] is given as follows.

λr = Σi∈Iλ
si ,

where I is a set of all pick-up spots.

D. Utilization of Cruising Graph

In this subsection, based on the creation and characterization
of a cruising graph, we present how to utilize a character-
ized cruising graph to select the optimal cruising route with
minimal cruising miles, while having a reasonable number of
passengers. This is because that a taxicab driver shall select
a cruising route with at least one passenger arrival, since a
taxicab can only take one passenger at a time. Note that in
our context a passenger means a ridership which may contain
more than one person.

Given a cruising graph, we can have different routes for
a taxicab driver by different traversal strategies. Since every
route consists of several road segments, we characterize a
route based on its road segments, which are evaluated by the
two metrics proposed, i.e., Available Passenger Ratio ρ and
Passenger Arrival Rate λ. During the time period that a taxicab
is cruising on a selected route R, several passengers may arrive
at every road segment on this route R. Since there are other
competing taxicabs, among total arrival passengers, only some
of them are available for pick-ups of this taxicab. Therefore,
for a road segment r in a route R, given its crossposting
passenger arrival rate λr and available passenger ratio ρr, we
can obtain Available Passenger Arrival Rate, i.e., ρr × λr. In
addition, for a given road segment r, the time spent on it,
τr, can be obtained by a road segment length set S based on
GPS records. Therefore, we can obtain the expected number
of arrival available passengers, κr, on the road segment r by

κr = ρr × λr × τr.

Since a cruising route R consists of multiple route seg-
ments, we can obtain the expected number of arrival available
passengers κR on a route R by the following.

κR =
∑
r∈R

κr =
∑
r∈R

ρr × λr × τr.

Based on the above formula of κR, we can obtain the
expected number of arrival available passengers in every
intersection of a route. Since only one available passenger will
be enough for a taxicab, we compute all the routes with the
expected number of arrival available passengers larger than 1.
Among these candidate routes, we select the one with minimal
length as the optimal route to reduce the cruising miles.
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considers it as a candidate for the optimal cruising route.

Given a cruising graph G and a road segment length set
S, the following algorithm describes the scheduling scheme
of pCruise, which will provide the optimal cruising route R
with minimal cruising miles.

Algorithm 1 pCruise Scheduling
Require: (1) Cruising Graph G; (2) Road Segment Length

Set S;
Ensure: Optimal Cruising Route R;

1: Based on G, perform a depth-first traversal; and obtain
a route R′ whose expected number of arrival available
passengers κR is larger than 1;

2: Compute the cruising miles of R′ based on road segment
length set S, and compare it with the cruising miles of
current optimal cruising route R;

3: Select the cruising route from R′ or R with shorter
cruising miles as the new optimal cruising route R;

4: Continue to perform depth-first traversal until all cruising
routes with expected number of arrival available passen-
gers larger than 1 are obtained;

In the above scheduling, pCruise obtains all qualifying
cruising routes one by one, and compares them with the
current optimal cruising route R. If there is a cruising route
R′ shorter than the current optimal cruising route R, then R′

becomes the new current optimal cruising route R. pCruise
scheduling is over when all qualifying cruising routes are
considered, and the running time of this algorithm is bounded
by the terminal condition that the expected number of arrival
available passengers is larger than 1.

In Figure 11, we give an example of the utilization of cruis-
ing graph in pCruise scheduling. Based on the cruising graph
in the left figure, pCruise can compute the all qualifying
cruising routes that satisfy the terminal condition in the right
of Figure. To show the principle of our pCruise scheduling,
we assume that a taxicab can only receive or broadcast the
GPS records from or to other taxicabs within one block.

IV. TRACE-DRIVEN EVALUATION

In this section, to examine the effectiveness of pCruise, we
perform a large-scale simulation and a small-scale testbed in
subsection A and B, respectively.

To evaluate pCruise in a real-world scenario, we collected a
real world 10 GB dataset about 7 days of GPS traces of 15405
taxicabs belonging to different taxicab companies in Shenzhen,
a Chinese city with 10 million population. This dataset is
from an government agency for urban transportation pattern
search. The dataset is obtained by letting every taxicab upload
4 records with a speed 1/s to redundantly report its GPS trace
records to a base station every 30 seconds on average. A record
mainly contains following information: (1) Plate Number: as
a primary key for every taxicab; (2) Date and Time: date and
time of every record uploaded; (3) Availability: whether or not
a passenger is on this taxicab when the record is uploaded;
(4) GPS Coordinates: GPS coordinates when the record is
uploaded. Based on the dataset of above GPS trace records, we
can obtain location and time distributions of pick-up events,
which are used to evaluate the performance of pCruise.

To show the effectiveness of pCruise, we compare the
performance of pCruise with Ground Truth, which is the
original GPS traces from the dataset without any modifi-
cations. In addition, since pCruise only employs the pick-
up spots, instead of the entire trajectories, we also compare
pCruise with an Oracle scheme, which can store and process
all the collected trajectories of nearby taxicabs, and utilizes the
triangle-like shape 4′ to compute available passenger ratio ρ′

as in Section III.C.2). In contrast, pCruise utilizes the triangle
shape 4 to obtain ρ based on only pick-up spots.

The performance metric is the percentage of cruising miles
in total driving miles. We investigate this metric on every 1
hour time window of a day. In addition, we investigate the
sensitivities of pCruise’s performances on two key parame-
ters of taxicab networks, i.e., broadcasting speed as well as
broadcasting range.
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Fig. 12. Cruising Miles VS. Time of One Taxicab
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Fig. 13. Cruising Miles VS. Speed of One Taxicab
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Fig. 14. Cruising Miles VS. Range of One Taxicab
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Fig. 15. Cruising Miles VS. Time of 10% Taxicab
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Fig. 16. Cruising Miles VS. Speed of 10% Taxicab
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Fig. 17. Cruising Miles VS. Range of 10% Taxicab

A. Trace-driven Simulation Evaluation

In this simulation, we report the results of only one taxicab
or 10% of total taxicabs using pCruise or Oracle.

1) Only one taxicab with pCruise or Oracle: Figure 12
plots the percentage of cruising miles in every 1 hour time
window of a day. We observe that in the rush hours of a day,
e.g., 06 : 00−10 : 00, the percentages of cruising miles for all
three schemes are below 20%. In contrast, in non-rush hours
of a day, e.g., 00 : 00 − 6 : 00, the percentages of cruising
miles for all three schemes are over 60%. But during every
1 hour time window of a day, we observe that both pCruise
and Oracle outperform Ground Truth with an average gain
of 32% and 37%, which verifies the effectiveness of taking
nearby taxicab’s activities into consideration. In addition,
Oracle outperforms pCruise by 11% on average in non-rush
hours of a day, and by 3% on average in rush hours, indicating
that even though in rush hours Oracle considers the entire
trajectories, the effect is limited. It implies during rush hours,
pick-up spots alone used by pCruise can effectively reduce the
cruising miles, and considering the entire trajectories in rush
hours is not as effective as in non-rush hours.

Figure 13 plots the effect of different broadcasting speeds
on the percentage of cruising miles. In Figure 13, we observe
that with the increase of the speed, the percentages of cruising
miles in pCruise and Oracle decrease significantly as much
as 36%, when the speed is larger than 6 records per mins,
and the decreasing slows down when the speed is larger than
12 records per mins. This is because when the speed first
becomes larger, pCruise and Oracle will have more frequently
updated GPS records to obtain the optimal route, but when
the speed is larger than 12 records per mins, the records
received by taxicabs are becoming redundant, and cannot be
efficiently used for route selections. We also observe that

Oracle outperforms pCruise slightly when the speed is small,
e.g., 6 records per mins. The gain is becoming bigger when
the speed is between 6 to 22 records per mins.

Figure 14 plots the effect of different broadcasting ranges
on the percentage of cruising miles. We observe that with the
increase of ranges from 0.3KM to 3.0KM, the percentage of
cruising miles in pCruise and Oracle continuously decrease.
When the range is larger than 0.6KM, the decrease becomes
more significant, but when the range is larger than 1.5KM, it
becomes more stable. This is because when the ranges become
larger, pCruise and Oracle will select a route based on more
nearby taxicabs’ information. But when the range is larger
than 1.5KM, the GPS records about the taxicabs that are far
away cannot receive any related information about nearby road
segments. Thus, the decrease of cruising miles becomes less
obvious. Again, Oracle always has a better performance than
pCruise by average 8, which thanks to the utilization of entire
trajectories in Oracle.

2) 10% of total taxicabs with pCruise or Oracle: Figure 15
plots the performance of 10% of total taxicabs in terms of
the percentage of cruising miles. We observe that in the rush
hours of a day, e.g., 06 : 00 − 10 : 00 or 16 : 00 − 18 : 00,
the percentages of cruising miles for all three schemes are
below 20%. In contrast, in non-rush hours of a day, e.g.,
00 : 00 − 6 : 00 or after 22 : 00, the percentages of
cruising miles for all three schemes are significantly higher
than these of rush hours. In addition, both pCruise and Oracle
outperform Ground Truth with an average gain of 36% and
41%, which implies that when more taxicabs take other pick-
up spots into consideration, the whole system has a better
performance. Furthermore, Oracle outperforms pCruise by
8%. This performance gain decreases compared to one taxicab
using pCruise scenario, which implies that pCruise performs
better when more taxicabs employ pCruise.
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Fig. 18. Cruising Miles VS. Time in Testbed
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Fig. 19. Cruising Miles VS. Speed in Testbed
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Fig. 20. Cruising Miles VS. Density in Testbed

Figure 16 and 17 plot the effects of different broadcasting
speeds and ranges on the percentage of cruising miles, re-
spectively. In both Figure 16 and 17, we observe that with the
increases of broadcasting speeds and ranges, the percentage
of cruising miles in Ground Truth keeps the same, while
those in pCruise and Oracle decrease significantly when the
broadcasting speed and range is larger than 6 record/mins
and 0.75KM, respectively. Compared to results in Figure 13
and 14, the results in Figure 16 and 17 have the similar
tendency yet with better performances. But the values from
which the percentages of cruising miles decrease significantly
are smaller. One explanation for this is that when more
taxicabs take other pick-up spots into consideration, the routes
used by taxicabs with pCruise or Oracle will distribute more
uniformly on the entire road network, which reduces the
cruising miles.

B. Trace-driven Testbed Evaluation

To evaluate pCruise in a real world setting, we conduct a
testbed experiment with the real world taxicab dataset.

1) Testbed Setup: We implement pCruise and Oracle in
fully connected networks with 10 TelosB sensor devices on
the TinyOS/Mote platform. We simulate two street blocks
for a mobile toy car attached with a TelosB node as in
Figure 21, which provides the toy car 6 intersections and 7
road segments to make different routes. The other 9 nodes
serve as nearby taxicabs to broadcast normalized GPS records
about this two street blocks based on the real-world dataset.
The normalization of GPS records is to map GPS records of
two real-world street blocks into these two simulated blocks
in terms of time and space. We utilize pick-up spots of same
time period but in the previous day in the dataset to simulate
passenger distributions for the pick-up events of the toy car.
The toy car is controlled by the attached TelosB node and
imaginarily picks up a passenger at a spot on these two street
blocks, only if there is a similar pick-up event in the previous
day of GPS records. We also use the normalized trip length
of similar pick-up events in the previous day to decide trip
length for a simulated pick-up event. All the experiments are
conducted 10 times and average results are reported.

2) Testbed Evaluation: Since we cannot obtain Ground
Truth of taxicab traces constrained in real world two street
blocks, we only compare pCruise and Oracle in different time
windows and broadcasting speeds. Because we conduct the
testbed experiment in a fully connected network, we use the

1 6

43

2 5

Fig. 21. Testbed Setup

different numbers of broadcasting nodes to change the density
of networks, instead of broadcasting ranges.

Figure 18 plots the percentage of cruising miles in every 30
seconds time window of total 12 mins, which is mapped by 2
rush hours in real world dataset. We observe that as cumulative
time increases, the percentages of cruising miles for both of
schemes decrease, and at the end of the experiment the curves
of both schemes overlap with each other. This is because after
cumulatively collecting GPS records from nearby taxicabs
simulated by sensor nodes, both of schemes can select more
effective cruising routes. In addition, the performance gain
between Oracle and pCruise decreases from 12% to 4%, when
cumulative time increases from 1 to 8 mins. This is because
even though Oracle has more information than pCruise to
select the route, the number of different routes obtained by
two street blocks is limited .

Figure 19 and 20 plot the effects of different broadcasting
speed and the number of broadcasting nodes on the percentage
of cruising miles, respectively. In both Figure 19 and 20, we
observe that with the increases of the speed and the number
of nodes, the percentages of cruising miles in pCruise and
Oracle decrease significantly when the speed and the number
of broadcasting nodes is larger than 6 record/mins and 4,
respectively. When the speed is 10 record/mins and the number
of broadcasting nodes is 6, the percentage of cruising miles
achieves its maximal decreasing ratio, respectively. Compared
to results in simulation, the testbed results has a similar
tendency. Nevertheless the values from which the percentages
of cruising miles decrease significantly are different due to
the configuration of testbed. The testbed results verify that
selecting an appropriate broadcasting speed and the density of
networks will reduce the cruising miles significantly.
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V. RELATED WORK

There are two types of systems related to our work, i.e.,
Dispatching Systems and Recommendation Systems.

A. Dispatching Systems

Taxicab dispatching systems are proposed along with the
development of intelligent transportation systems and the pop-
ularization of GPS sensors [5] [6]. Currently, in most of dis-
patching systems, a dispatching center assigns a pick-up task
to taxicab drivers according to the nearest neighbor principle in
terms of distance or time. Phithakkitnukoon et al. [7] employ
the naive Bayesian classifier with an error-based learning
approach, which can obtain the number of vacant taxicabs at
a given time and location to enhance the dispatching system.
Yang et al. [8] propose a mode for urban taxicab services,
which indicates the vacant and occupied taxicab movements
as well as the relationship between passengers and taxicab
waiting time. Yamamoto et al. [9] present an adaptive routing
scheme and a clustering scheme to enhance dispatching system
via assigning vacant taxicabs to the locations with a high
expected potential passengers number adaptively. Chang et
al. [10] propose a model that can predict taxicab demand
distribution based on weather condition, time and locations.
Gonzalez et al. [11] compute the fastest route by taking into
account the speed and driving patterns of taxicabs, which are
obtained from historical GPS trajectories. Ziebart et al. [12]
utilize GPS trajectories obtained from 25 taxicabs, instead of
providing the fastest route for drivers, aiming to predict the
destination of drivers.

Different from the above centralized dispatching systems,
our cruising system pCruise provides suggestions to taxicab
drivers with an efficient scheduling, and provides the optimal
cruising route at a road segment level. Most importantly, for a
dispatching system, the passengers need to provide the demand
for taxicab companies by booking a taxicab via telephone
or Internet in advance, and the reservation is usually not
free of charge. In contrast, most passengers hail a taxicab
along the street directly, rather than booking a taxicab from a
taxicab company. In addition, our approach can be used as a
middleware under an existing dispatching system to enhance
its performance.

B. Recommendation System

Recommendation system are proposed to provide useful
business intelligence for drivers, passengers, or taxicab com-
panies to maximize their profits [13] [14]. Based on GPS
data from a metropolitan area, Zheng et al. [15] [16] [17]
present several novel methods to model the transportation in
the area. Ge et al. [18] present a model to recommend a taxicab
driver with a sequence of pick-up points so as to maximize
the profit, via a centralized solution. According to a mobile
sequential recommendation problem, the author formulates the
target problem. Li et al. [19] study how to find passengers via
several strategies for taxicab drivers in Hangzhou. They select
several features to classify the passenger-finding schemes in
terms of performances. Recently, Powell et al. [20] propose an

approach to suggest profitable grid-based locations for taxicab
drivers by constructing a profitability map where according
to the potential profit calculated by the historical data, the
nearby regions of the driver are scored serving as a metric for
a taxicab driver decision making process.

Our cruising system pCruise is different from the above
schemes in the following two key aspects: (1) The most of
above schemes utilize the entire GPS trajectories of taxicabs
to analyze or model the behaviors of taxicabs, but pCruise
only employs an ”on/off” information, i.e., Pick-up or Drop-
off spots, for the analysis. Therefore, we significantly reduce
the size of data needed to be proceeded, thus making pCruise
suitable for the implementation on low-cost devices, e.g., smart
phones. (2) Existing systems suffer from the fact that multiple
taxicabs may have the same recommended route, which com-
promises the performance of the system. In contrast, pCruise
introduces unpredictability and randomness in the system by
letting every taxicab to create its own cruising graph, which
solves the problem of multiple taxicabs selecting the same
optimal route.

VI. CONCLUSION

In this paper, we introduce pCruise, a cruising system
to reduce cruising miles for taxicab networks. Our work is
motivated by the fact that current schemes to reduce taxicabs’
cruising miles require the participation of the passengers. To
reduce cruising miles without the passengers involved, we
create a cruising graph for every taxicab and characterize it
with weights on its edges based on GPS records about nearby
taxicabs. According to the cruising graph, we propose an
efficient scheduling scheme to provide the shortest routes with
at least one passenger. Based on a 10 GB real world dataset,
we evaluate pCruise in both simulation and testbed. The results
show that pCruise is able to effectively reduce 41% of total
cruising miles on average compared to the Ground Truth. In
this work, we mainly focus on the efficiency and leave the
fairness among the taxicabs in the network as a in the future.
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APPENDIX

In this appendix, we demonstrate how to create a cruising
graph without the requirement of a background road map.
In Figure 3, we observe that pick-up or drop-off spots can
be treated as representative samples for all GPS records, and
these spots are uniformly distributed in the main streets. It
implies that these spots can serve as a virtual road map used
to create a cruising graph. Among these spots, some of special
spots form a concave spot group, which can identify a physical
intersection on the underlying road map. We can identify these
concave spot groups by the geometrical properties of spots in
them, and thus we can identify intersections.

To obtain these concave spots, we uniformly select pairs
of spots, and then construct the shortest paths among them.
Based on the geometrical properties of concave spots, the most
frequently chosen spots among all the shortest paths should

be the concave spots, if we set the radius of a spot is slighter
longer than the average distance between spots. For example,
in Figure 22, given several pick-up or drop-off spots, we show
how to identify a concave spot group and thus an intersection,
by constructing the shortest paths among uniformly selected
pairs of spots.
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Fig. 22. Identify an Intersection

In Figure 22, the spots a1, a2, b1, b2, c1, c2, d1 and d2 will
become the most frequent spots in all shortest paths, and thus
form a concave spot group to identify this intersection. All the
shortest paths from spots in Group A to spots in Group B have
a1 as an intermediate point, e.g., the shortest path from a3 to
c3 will go through a1. The similar situations exist for other
concave spots. Thus, these spots can identify this intersection.

Based on concave spot groups we identified, we can create
a cruising graph to capture the natures of taxicab cruising
processes. For every intersection identified by concave spot
groups, we create a vertex. To examine the number of pick-
up or drop-off spots between two vertices, we shall identify
adjacent vertices. For every two adjacent vertices, we create
the two directed edges between them from one to another
and verse visa. Figure 23 shows an example of cruising graph
created according to pick-up or drop-off spots.
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Fig. 23. Cruising Graph

In the above figure, we can see that for every intersection
in left figure, there is a corresponding vertex in right figure;
every road segment connecting two adjacent vertices has a
corresponding edge in right figure.


