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Monitoring important aquatic processes like harmful algal blooms is of increasing interest to public health,
ecosystem sustainability, marine biology, and aquaculture industry. This article presents a novel approach
to spatiotemporal aquatic field reconstruction using inexpensive, low-power mobile sensing platforms called
robotic fish. Robotic fish networks are a typical example of cyber-physical systems where the design of
cyber components (sensing, communication, and information processing) must account for inherent physical
dynamics of the robots and the aquatic environment. Our approach features a rendezvous-based mobility
control scheme where robotic fish collaborate in the form of a swarm to sense the aquatic environment in a
series of carefully chosen rendezvous regions. We design a novel feedback control algorithm that maintains
the desirable level of wireless connectivity for a sensor swarm in the presence of significant environment and
system dynamics. Information-theoretic analysis is used to guide the selection of rendezvous regions so that
the spatiotemporal field reconstruction accuracy is maximized subject to the limited sensor mobility. The
effectiveness of our approach is validated via implementation on sensor hardware and extensive simulations
based on real data traces of water surface temperature field and on-water ZigBee wireless communication.
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1. INTRODUCTION

Monitoring aquatic environment is of great interest to public health, ecosystem sus-
tainability, marine biology, and aquaculture industry. In this article we explore an
important problem in aquatic monitoring, namely, reconstruction of spatiotemporal
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Fig. 1. (a) HABs in Lake Mendota (top left) and Lake Monona (right bottom) in Wisconsin, 1999 [HABs
and Lake Mendota 2012] (photo credit: Space Science and Engineering Center at University of Wisconsin-
Madison and WisconsinView); (b) a prototype of autonomous robotic fish developed by the Smart Microsys-
tems Laboratory at Michigan State University [Tan 2011].

aquatic process. Many physical and biological phenomena in an aquatic environment,
including Harmful Algal Blooms (HABs) [Dolan et al. 2007], lake surface temperature
[Xu et al. 2011], and plume concentration of chemical substance [Detweiler et al. 2010],
can be modeled as spatiotemporal aquatic fields that usually follow certain distribu-
tions such as the spatiotemporal Gaussian process. For instance, Figure 1(a) shows the
HABs on two inland lakes in Wisconsin, 1999. The reconstructed aquatic field allows
one to study fine-grained spatial distribution and temporal evolution of physical and
biological phenomena of interest. For instance, the reconstructed HAB field is helpful
for understanding the development of emerging HABs and guiding authorities to take
future preventive actions.

Manual sampling, via boat/ship or with handheld devices, is still a common practice
in monitoring aquatic environments. This approach is labor intensive and has difficulty
in capturing large-scale spatially distributed phenomena of interest. An alternative
approach is in-situ sensing with fixed or buoyed/moored sensors [Ruberg et al. 2007].
However, since buoyed sensors cannot move around, they have limited adaptability
in monitoring dynamic aquatic processes like HABs. With advances in underwater
robotics and wireless networking, there is a growing interest in using underwater
sensor platforms like autonomous underwater vehicles (AUVs) [Science Daily 2004] and
sea gliders [Rudnick et al. 2004] to monitor the environment. However, it is difficult to
deploy many AUVs or sea gliders due to their high manufacturing and operational costs.

In this article we propose to use inexpensive, low-power robotic sensor platforms
to sample and reconstruct spatiotemporal aquatic processes of interest. Figure 1(b)
shows a prototype of such platforms called robotic fish. Each robotic fish is equipped
with onboard batteries, ZigBee wireless interface, control, localization, and navigation
modules [Tan 2011], and can be interfaced with various aquatic sensors. Robotic fish
can form an autonomous network and sense an aquatic environment at fine spatial
and temporal granularities.

Aquatic sensor networks composed of robotic fish are a typical Cyber-Physical Sys-
tem (CPS) whose efficient operation depends on the tight coupling and coordination be-
tween cyber (sensing, communication, and information processing) and physical compo-
nents (mobility control and environment). Compared with terrestrial sensor networks,
there are several unique challenges associated with aquatic sensor networks, includ-
ing uncontrollable disturbances from the underlying fluid medium (e.g., waves and
flows), inherently dynamic profiles of aquatic processes, and significant errors in mo-
tion control. Therefore, both sensing and mobility control of robotic fish must account
for the spatial variability and temporal evolution of aquatic processes. Moreover, our
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measurements show that aquatic sensors equipped with ZigBee radio have highly
variable link quality and only about half of the communication range of the terrestrial
radio. Such characteristics must be explicitly considered in the design of the network.
Finally, the operation of these sensors has to be very energy efficient due to the limited
power supply.

We make the following key contributions to address the these challenges.

(1) We propose a new approach to the sampling and reconstruction of a spatiotempo-
ral aquatic field using a sensor swarm composed of inexpensive, low-power, and
collaborative robotic sensors. Our approach features a rendezvous-based mobility
control scheme, where sensors in a swarm gather and sense the environment in a
series of carefully chosen rendezvous regions, reducing the overhead of inter-sensor
coordination during movement.

(2) We design a novel feedback control algorithm that maintains the desirable level
of wireless connectivity of a sensor swarm in the presence of significant physical
dynamics. Based on a wireless signal propagation model, the control-theoretic al-
gorithm adjusts the radius of rendezvous region adaptively to ensure a bound on
the packet reception ratio (PRR) between sensors.

(3) We present a new analysis of spatiotemporal field reconstruction accuracy based
on mutual information and posterior entropy. Our analytical results are used to
guide the selection of rendezvous regions so that the reconstruction accuracy can
be maximized subject to the limited sensor mobility.

(4) We evaluate our approach through extensive simulations based on real data traces
of water surface temperature field and on-water ZigBee wireless communication.
The results show that a sensor swarm can robustly maintain network connectivity
and accurately reconstruct large, dynamic aquatic fields. Moreover, our implemen-
tation on sensor hardware provides important insights into the feasibility of adopt-
ing advanced information-theoretic movement scheduling algorithms on low-power
robotic sensor platforms.

The rest of this article is organized as follows. Section 2 reviews related work. Sec-
tion 3 introduces the background and provides an overview of our approach. Section 4
presents the control-theoretic connectivity maintenance algorithm. Section 5 presents
the information-theoretic swarm movement scheduling algorithms. Section 6 discusses
several issues and the possible extensions to this work. Section 7 presents the results of
extensive trace-driven simulations and implementation on a sensor platform. Section 8
concludes this work.

2. RELATED WORK

Sampling and reconstruction of physical fields using networked sensor systems has
recently received increasing interest. Early work focuses on stationary sensor deploy-
ment. In Krause et al. [2006], positions of sensors are selected before real deploy-
ment to reduce the uncertainty in reconstructing a spatial physical field that follows
the Gaussian process. However, the proposed algorithms are computationally inten-
sive and hence can only be executed offline. A fast sensor placement approach for
fusion-based field surveillance is proposed in Chang et al. [2011] to minimize the
number of sensors while maintaining the signal-to-noise ratio. Recently, mobility has
been exploited to enhance the adaptability and sensing capability of sensor systems.
In Zhang and Sukhatme [2007], a robotic boat supplements a static sensor network
to reduce the error of field reconstruction, where the boat’s movement is guided by
the measurements of the sensor network. Another study [Singh et al. 2006] devel-
ops active learning schemes for mobile sensor networks, which plan the movements
of mobile sensors based on the feedback of previous measurements. In our previous
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work [Wang et al. 2012], we develop movement scheduling algorithms for a school
of robotic fish to profile aquatic diffusion processes. Several recent studies focus on
leveraging sensors’ mobility to reconstruct physical fields that follow the Gaussian
process. In Xu et al. [2011], the movement of mobile sensors is directed to reduce the
uncertainties in estimating the field variables at a set of prespecified locations. The
algorithms developed for placing stationary sensors in Krause et al. [2006] are ex-
tended to schedule the movement of a mobile sensor network in reconstructing a Gaus-
sian process [Singh et al. 2009]. However, the aforementioned studies do not account
for the constraints of low-power robotic sensor systems, such as the limited motion,
computation, and communication capabilities. Moreover, they generally focus on the
open-loop solutions that often fail to adapt to the highly complex and dynamic aquatic
environment.

The Gaussian process field reconstruction using mobile sensor networks has also
been extensively studied in Cortés [2009], Low et al. [2008, 2009, 2011, 2012], and
Chen et al. [2012]. In Cortés [2009], the movements of mobile sensors are controlled to
follow the gradient ascent directions of the Gaussian process field to increase the infor-
mation reward. In Low et al. [2009], an adaptive path planning approach is presented
for mobile sensors in exploring and mapping the hotspot fields. However, this central-
ized approach can incur heavy computation overhead if the number of observations
or sensors is large. To improve the computation efficiency, a decentralized approach
is designed in Chen et al. [2012], with consideration of the limited communication ca-
pability of mobile sensors. For more studies on Gaussian process field reconstruction
using mobile sensors, we refer the interested reader to Low et al. [2008, 2011, 2012],
and Chen et al. [2012] and the references therein. Different from these existing studies
that typically focus on improving certain aspects of the reconstruction problem, in this
work we aim to develop a practical and integrated approach based on a swarm scheme,
which jointly addresses limited mobility and processing capability of the robotic sensor,
as well as the dynamic on-water wireless link quality. In our approach, the computa-
tion of swarm movement scheduling and field reconstruction is executed at the swarm
head. The computation efficiency of our approach can be improved by integrating the
decentralized/distributed field reconstruction and sensor movement scheduling algo-
rithms in Cortés [2009], Low et al. [2012], and Chen et al. [2012].

Most previous works on maintaining sensor network connectivity adopt the graph
theory [Xu et al. 2011] and the potential field theory [De Gennaro and Jadbabaie
2006], and assume fixed communication range and reliable communication quality.
However, several studies have revealed significant stochasticity and irregularity in
link quality of low-power wireless sensors [Zuniga and Krishnamachari 2004; Qiu
et al. 2007; Maheshwari et al. 2008; Chen and Terzis 2011]. Feedback control has
been widely adopted to improve the adaptability of computing systems [He et al. 2003;
Lin et al. 2006; Adbelzaher et al. 2008; Liu et al. 2010]. Different from these existing
solutions, our control-theoretic connectivity maintenance algorithm specifically deals
with the dynamics caused by movement of a robotic sensor swarm and disturbances
from the aquatic environment. Mobility has been used to improve link quality and
preserve network connectivity for robotic sensor systems. In Twigg et al. [2012], each
robotic sensor moves in the gradient ascent direction of its received signal strength
(RSS). However, the movement scheduling algorithm developed in Twigg et al. [2012]
considers only a single link. Moreover, to obtain an estimate of RSS gradient, the
robotic sensor has to explore the local area, which increases energy consumption in
movements. In this article we propose a feedback-control-based approach that aims to
adaptively maintain the network connectivity of a robotic sensor swarm in the presence
of various environment and system dynamics. Our control-theoretic algorithm does not
require the energy-consuming exploration in local area.
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Recently, several swarm-based CPSs have been proposed for various sensing appli-
cations. Representative examples include RoboBee [Dantu et al. 2011] and SensorFly
[Purohit et al. 2011]. These studies mainly focus on hardware design and system issues.
In contrast, this article addresses the field reconstruction problem using a robotic sen-
sor swarm. Based on key observations from real data traces of robotic sensors’ wireless
communication and field measurements, we formulate the swarm connectivity control
and movement scheduling problems, and solve them using control- and information-
theoretic algorithms.

3. OVERVIEW OF APPROACH

3.1. Background and Challenges

Our objective is to reconstruct an aquatic scalar field that follows the spatiotemporal
Gaussian process using a group of robotic sensors. Different from existing solutions, our
approach is based on inexpensive robotic sensor platforms exemplified by the robotic
fish developed in our previous work [Tan 2011], as shown in Figure 1(b). These robotic
sensor platforms are typically equipped with computation, communication, movement
control, GPS components, as well as various sensors [Tan 2011]. However, due to the
resource constraints, they have limited capabilities of computation, communication,
and movement. For instance, the TelosB mote integrated with the robotic fish platform
shown in Figure 1(b) only has an 8 MHz MCU and a low-power 802.15.4 radio with
short communication range. In this article we aim to develop a practical approach for
aquatic field reconstruction, which addresses the complex uncertainties/dynamics of
the monitored physical field and the constraints of realistic robotic sensor platforms.

The design of our approach is motivated by the following major challenges in re-
constructing a spatiotemporal field. First, the physical and biological phenomena of
interest often affect large spatial areas. For instance, HABs can spread over the water
area of a dozen to tens of square kilometers (e.g., Lake Monona and Lake Mendota,
Wisconsin, shown in Figure 1(a) [HABs and Lake Mendota 2012]). However, the number
of robotic sensors available in practice is often small (e.g., a few dozens). In addition,
as the robotic sensors in the aquatic environment often have short communication
ranges, the area that a networked robotic sensor system can sample at any given time
is limited. Second, because of the complex environment dynamics (e.g., wave and wind)
and the limited motion capabilities of the robotic sensors, accurate movement control
of an aquatic sensor system is often challenging. Third, the link quality and network
connectivity of robotic sensors are highly dynamic due to physical uncertainties. The
resulted data loss can significantly affect the accuracy of field reconstruction.

3.2. Approach Overview

A simple approach to reconstructing the field using robotic sensors is to send sensors
to regions that evenly divide the whole aquatic field and each sensor only samples its
own region. Because the aquatic process typically covers a large area as discussed in
Section 3.1, under this simple approach, the sensors would not be able to communi-
cate with each other. Therefore, this noncollaborative approach has the following two
drawbacks. First, each sensor can only reconstruct the field based on its own mea-
surements, and the field reconstruction based on all sensor measurements cannot be
performed until sensors complete their sampling and gather at some location. Second,
the accuracy of the whole field reconstruction would be significantly undermined if
some sensors experience failures.

To address the challenges discussed in Section 3.1, we adopt a novel rendezvous-
based swarm scheme as illustrated in Figure 2. We assume that all sensors know
their positions and are time synchronized, for example, through GPS or in-network
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Fig. 2. Rendezvous-based swarm scheme.
Dashed circles represent the rendezvous circles.

Fig. 3. The iterative sampling process of a robotic sen-
sor swarm.

localization/synchronization services. The robotic sensor system iteratively samples
the aquatic field. As shown in Figure 3, in each sampling iteration, robotic sensors move
into a rendezvous circle, form a swarm, and sample the environment. In the swarm, a
sensor serves as the swarm head, which collects the measurements of other sensors via
wireless communications, as well as schedules the movements of sensors in the next
sampling iteration. To simplify the data collection process and reduce communication
overhead, the swarm adopts a single-hop star network topology centered at the swarm
head. In our approach, the movement scheduling at the swarm head is executed as
follows.

(1) The swarm head first assesses the quality of network connectivity based on the
received data and then determines the radius of the rendezvous circle (referred to
as swarm radius) in the next sampling iteration, such that the network connectivity
in the next sampling iteration can achieve a desirable level.

(2) Given the projected swarm radius, the swarm head conducts information-theoretic
analysis to select the location of the next rendezvous circle, in order to maximize
the improvement of the field reconstruction accuracy.

(3) The swarm head generates random target positions within the next rendezvous
circle and assigns the positions to each sensor to minimize the total movement
distance. The target positions are finally sent to the sensors. Under this random
target position approach, small motion control errors can be tolerated as long as
the final positions of sensors fall within the rendezvous circle. Moreover, as proved
in Section 5.5, under this approach, there is no crossing between sensors’ moving
paths and hence the robotic sensors would not collide.

After receiving the target position in the next sampling iteration, each sensor
straightly moves toward its destination to minimize the energy consumption of lo-
comotion. To initiate the preceding process, the swarm is initially dropped at a venue
within the region affected by the physical/biological process of interest. Note that, to
balance the energy consumption of sensors, the swarm head role can rotate among all
sensors. The communication overhead of our approach is low because sensors coordi-
nate with each other only when they gather in a rendezvous circle. In summary, our
swarm scheme allows the robotic sensors to efficiently collaborate in sensing a large
dynamic aquatic field and avoid heavy coordination overhead. Therefore, it is practi-
cal and energy efficient for low-power aquatic robotic platforms [Tan 2011; Zhang and
Sukhatme 2007].

Our approach has the following two key novelties.

Control-theoretic connectivity maintenance. Data loss of wireless communication can
significantly affect the quality of sensing. A key goal of our system is to ensure that
the swarm head reliably receives the measurements from all sensors. However, this is
challenging because the on-water wireless links have highly dynamic quality due to
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Fig. 4. The PRR measurements versus the dis-
tance between two sensors. The error bar repre-
sents standard deviation.

Fig. 5. The swarm average PRR versus the swarm
radius. The error bar represents the standard
deviation.

the impact of fluid medium and changing positions of sensors during movement. We
develop a control-theoretic algorithm to maintain desirable connectivity of a sensor
swarm in the presence of these dynamics by adaptively adjusting the swarm radius.
Specifically, the swarm head first estimates the quality of network connectivity based
on the average of PRRs of all links. As the swarm average PRR generally decreases
with the swarm radius, the swarm head calculates a new swarm radius based on a
wireless signal propagation model and the current swarm average PRR, such that the
expected connectivity in the next sampling iteration can be maintained at a desirable
level. A control problem is formulated to address this procedure and its solution gives
an adaptive algorithm for tuning the swarm radius.

Information-theoretic movement scheduling. Due to limited power supply and high
power consumption in locomotion, the sensor swarm must efficiently schedule the move-
ment of sensors to sample the field. Specifically, the swarm head must find the location
of the next rendezvous circle subject to the energy budget, such that the improvement
of the field reconstruction accuracy can be maximized with the newly obtained sensor
measurements. In this article we employ information-theoretic analysis to guide the
selection of rendezvous circle locations. Moreover, two information metrics (i.e., mutual
information and posterior entropy) with different computational complexities can be
integrated with our analysis, which hence allow the system designer to choose desirable
trade-offs between the system overhead and reconstruction accuracy.

4. SWARM CONNECTIVITY MAINTENANCE

The wireless connectivity between a robotic sensor and the swarm head is affected by
various environment and system dynamics, which include the stochastic fluctuation
of the on-water wireless links, the errors of localization and motion control, and the
uncertain distance between moving sensors. In this section, we first study the on-
water wireless link dynamics based on real data traces collected on a lake. We then
analyze the swarm connectivity. Finally, we formulate the connectivity maintenance as
a feedback control problem that aims to maintain the swarm connectivity at a desired
level by adjusting the swarm radius based on the quality of all links measured at
runtime.

4.1. On-Water Wireless Link Dynamics

We first motivate our approach using PRR traces of an on-water 802.15.4 wireless link.
Figure 4 plots the PRR measured by two IRIS motes versus distance in an experi-
ment conducted on the wavy water surface of Lake Lansing, Michigan, on a windy day.
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Specifically, we placed the two IRIS motes about 12 cm above the water surface and
measured the PRR versus the distance between the two motes. Each PRR measure-
ment was calculated from 50 packets transmitted within one second. From Figure 4,
we have the following two important observations. First, the on-water wireless commu-
nication has a limited reliable communication range, which is about 35 m for a typical
802.15.4 radio. According to our experience, the communication range of IRIS mote
on water surface decreases by about 50% compared to that on land. Second, the PRR
shows significant variance, especially in the transition range from 25 m to 40 m. It is
mostly caused by the radio and environment dynamics [Zuniga and Krishnamachari
2004]. The wireless link in a wavy water environment is more dynamic than that in a
calm water environment, due to the multipath effect and fading. Such highly dynamic
communication quality can lead to increased communication cost in the field sampling,
and even loss of sensors due to a disconnected network. Therefore, it is critical to
maintain satisfactory connectivity under radio and environment dynamics.

4.2. Modeling Swarm Connectivity

As discussed in Section 3.2, the sensor swarm forms a network with single-hop star
topology in a rendezvous circle. Compared with multihop topology, the single-hop topol-
ogy of the sensor swarm incurs significantly lower overhead in communication and
network formation/maintenance. Suppose the reliable on-water communication range
of a typical 802.15.4 radio is 35 m. Under the single-hop star topology centered at the
swarm head, a sensor swarm can spread over an area of up to 3,800 m2. We adopt
the average PRR of the links between the swarm head and all sensors as the met-
ric of swarm connectivity. This metric quantifies not only the average connectivity of
the swarm but also the communication cost in collecting sensor measurements in a
sampling iteration. In this section, we first derive the expression for the average PRR
given swarm radius, which allows us to adaptively control the swarm connectivity by
adjusting the swarm radius. We then verify the closed-form expression using real data
traces.

4.2.1. Model Derivation. Let Pt (in dBm) denote the power of the wireless signal trans-
mitted by a sensor, and PL(d0) (in dBm) denote the path loss at reference dis-
tance d0. The signal power at the receiver that is d meters from the transmitter is
Pr(d) = Pt − PL(d0) − 10α log10(d/d0) [Rappaport 1996], where α is the path-loss expo-
nent that typically ranges from 2.0 to 4.0. We assume that the noise power (denoted
by Pn) in dBm follows the zero-mean normal distribution with variance ξ2 [Rappaport
1996]. The Signal-to-Noise Ratio (SNR) at distance d is given by SNR = Pr(d) − Pn. We
assume that a packet can be successfully received if the SNR is greater than a thresh-
old denoted by η [Judd et al. 2008]. Hence, the PRR of a single link can be derived as

PRR(d) = 1
2

+ 1
2

· erf(a1 log10 d + a2), (1)

where a1 = −5
√

2, a2 = Pt−PL(d0)−η√
2ξ

+ 5
√

2 log10 d0, and erf(·) is the error function.
Based on the single-link PRR model given in Eq. (1), we now derive the average

PRR over all sensors that are randomly distributed within the rendezvous circle. Our
analysis shows that it is difficult to derive the closed-form formula for the average PRR.
We propose an approximate formula as follows. The expectation of the distance between
any sensor and the swarm head (denoted by E [d]), which consists of two random points
in the rendezvous circle, is a linear function of the swarm radius (denoted by R),
specifically, E [d] = 128R/45π . Based on this observation and Eq. (1), we approximate

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 57, Publication date: April 2014.



Spatiotemporal Aquatic Field Reconstruction w/Cyber-Physical Robotic Sensor Systems 57:9

Fig. 6. The closed loop for connectivity control.

the average PRR over all sensors (denoted by PRR(R)) by

PRR(R) � (1 − c) + c · erf(c1 log10 R + c2), (2)

where c1 (c1 < 0), c2 (c2 > 0), and c (0 < c < 0.5) are three coefficients. Although Eq. (2)
is an approximate model, the feedback-based connectivity maintenance algorithm can
tolerate minor inaccuracy in system modeling.

4.2.2. Model Validation. We now use the collected PRR traces of on-water wireless com-
munication (see Section 4.1) to verify the preceding models. We start from the link
PRR model given in Eq. (1). The least square fitting of the average of the PRR mea-
surements versus distance is 1/2 + 1/2 · erf(−7.096 log10 d + 26.14), which is plotted
in Figure 4. We can see that the fitted value for a1 (i.e., −7.096) is very close to its
theoretical value (i.e., −5

√
2 = −7.0711). Moreover, the fitted curve well matches the

average of the PRR measurements. Therefore, the model in Eq. (1) can characterize
the average performance of on-water link PRR. Although Eq. (1) only captures the
expected PRR, the control-theoretic connectivity maintenance algorithm presented in
Section 4.3 accounts for the variance of PRR measurements.

We then conduct Monte Carlo simulations to verify the accuracy of the swarm av-
erage PRR model given in Eq. (2), and determine the values of the three coefficients.
Specifically, for a given R, we generate a large number (20,000) of random placements
of 10 sensors in the rendezvous circle. In the simulations, the PRR of each link is set to
be the distance-based interpolation of real PRR measurements obtained in the afore-
mentioned on-water experiment. Figure 5 shows the error bar of the swarm average
PRR, where the variances are caused by the random sensor placements and estimation
inaccuracy as well as the inherent stochasticity of the wireless link. We then fit the
curve defined by Eq. (2) with the simulation results, as shown in Figure 5. From the
figure, we can see that the approximate model for the swarm average PRR is fairly
accurate. The fitted value for the coefficient c1, c2, and c are −1.201, 4.879, and 0.4783,
respectively. These values are also adopted in the performance evaluation in Section 7.

4.3. Swarm Connectivity Control

Our objective is to maintain the swarm average PRR at a desired level (denoted by δ) in
the presence of various environment and system dynamics. From Figure 5, the swarm
average PRR decreases with the swarm radius. However, the amount of information
sampled by the sensors often increases with the swarm radius. Therefore, there is a
trade-off between the amount of information obtained by the swarm and its connectiv-
ity. To avoid the loss of sensors that can have catastrophic consequence to the swarm,
we ensure that the swarm is a well-connected network in each rendezvous circle by
setting a relatively high δ, such as 0.8 to 0.9. In this section, we first analyze the con-
trol laws based on the connectivity model in Eq. (2) and then develop the connectivity
maintenance algorithm.

The block diagram of the feedback control loop is shown in Figure 6. We denote
Gc(z), Gp(z), and H(z) as the transfer functions of the connectivity maintenance algo-
rithm, the sensor swarm system, and the feedback, which are expressed in z-transform
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representation. The z-transform provides a compact representation for time-varying
functions, where z represents a time shift operation. We refer the interested reader to
Ogata [1995] for the details of z-transform and Adbelzaher et al. [2008] for a few rep-
resentative applications of discrete-time control theory to networking and computing
systems. As shown in Figure 6, the desired PRR level δ is the reference, and the PRR(R)
is the controlled variable. As PRR(R) is a nonlinear function of R (refer to Eq. (2)), we
define γ = erf(c1 log10 R + c2) as the control input to simplify the controller design. As
a result, we have the swarm average PRR expressed as PRR(γ ) � (1 − c) + c · γ . As this
time-domain expression does not contain time shift, its z-transform is simply Gp(z) = c
[Ogata 1995]. In each sampling iteration, to ensure that the swarm head receives the
measurements from all sensors, a sensor retransmits the lost packet until it receives
an acknowledgement from the swarm head. At the end of each sampling iteration, the
swarm head estimates the PRR(R) as 1

N

∑N
i=1

1
CTXi

, where N is the number of sensors
in the sensor swarm, and CTXi is the number of (re-)transmissions of sensor i in the
current sampling iteration. Such a passive estimation approach avoids transmitting
a large number of measurement packets for estimating PRRs. Then, the swarm head
updates γ based on the estimated PRR(R), and sets R in the next sampling iteration
accordingly. As the feedback will take effect in the next iteration, H(z) = z−1, which
represents a delay of one iteration. Since the system is of zero order, a first-order con-
troller is sufficient to achieve the stability and convergence [Ogata 1995]. Hence, we
let Gc(z) = α

1−β·z−1 , where α > 0 and β > 0. The settings of α and β need to ensure
the system stability, convergence, and robustness. Following the standard method for
analyzing stability and convergence [Ogata 1995], the stability and convergence, con-
dition can be obtained as β = 1 and 0 < α < 2/c. The detailed analysis can be found in
Appendix A.1.

In this article we model three uncertainties that substantially affect the PRR(R) as
the disturbances in the control loop shown in Figure 6. First, as shown in Figure 4, the
PRR measurements exhibit variance, especially in the transition range from 25 m to
40 m. Second, the swarm topology changes with the random sensor positions, hence also
causes variance to the PRR(R). Third, although the estimated PRR from the number
of (re-)transmissions is unbiased, it has variance because of the limited number of
samples. The error bars in Figure 5 show the overall standard deviation versus the
swarm radius. From the figure, we find that in order to keep a satisfactory swarm
average PRR around 0.8, the standard deviation is 0.12. We now discuss how to design
Gc(z) to reduce the impact of such random disturbances. From control theory [Ogata
1995], to minimize the effects of disturbance on the controlled variable PRR(R), the
gain of Gc(z)Gp(z)H(z) should be made as large as possible. By jointly considering the
stability and convergence condition, we set α = 2b/c where b is a relatively large value
within [0, 1]. In the experiments conducted in this article, b is set to be 0.9.

Implementing Gc(z) in the time domain gives the connectivity maintenance algo-
rithm. According to Figure 6, we have Gc(z) = γ (z)/(δ − H(z)PRR). From H(z) and
Gc(z), the control input can be expressed as γ (z) = z−1γ (z) + 2bc−1(δ − z−1PRR), and its
time-domain implementation is γk = γk−1 + 2bc−1(δ − PRRk−1), where k is the index of
sampling iteration. The swarm radius to be set in the kth sampling iteration is given
by Rk = 10(erf−1(γk)−c2)/c1 .

5. INFORMATION-THEORETIC MOVEMENT SCHEDULING

In this section, we first briefly introduce the Gaussian process model that characterizes
many physical/biological phenomena, and present the field reconstruction algorithm.
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Fig. 7. ln(K/σ 2) versus d2 and 
t2.

We then present the information-theoretic analysis for selecting the location of ren-
dezvous circle in the next sampling iteration, which aims to maximize the accuracy of
field reconstruction.

5.1. Physical Field

5.1.1. Spatiotemporal Gaussian Process Model. We assume that the monitored physi-
cal phenomenon follows the spatiotemporal Gaussian process [Rasmussen 2006]. Let
Z(p, t) denote the field variable at point p ∈ R

2 and time t ∈ [0,+∞]. For instance, the
surface phytoplankton population density is an important field variable of HABs. A
Gaussian process can be fully characterized by the mean function, denoted by M(p, t),
and the covariance function, denoted by K((p, t), (p′, t′)), where (p, t) and (p′, t′) are two
time-space coordinates. In this article we adopt the following covariance function that
has been widely adopted [Dolan et al. 2007; Xu et al. 2011; Krause et al. 2006]

K(d,
t) = σ 2 · exp
(

− d2

2ς2
s

)
· exp

(
−
t2

2ς2
t

)
, (3)

where d =‖ p − p′ ‖�2 , 
t = |t − t′|, σ 2 is the prior variance of any field variable
and ςs and ςt are the spatial and temporal kernel bandwidths, respectively. Therefore,
the covariance function can be rewritten as K(d,
t). The vector composed of the field
variables at N time-space coordinates {(pi, ti) | i ∈ [1, N]}, denoted by Z, follows the
multivariate Gaussian distribution, that is, Z ∼ N (m, ), where m and  are the
mean vector and covariance matrix. Specifically, m = [M(p1, t1), . . . ,M(pN, tN)] and
the (i, j)th entry of  is given by K(‖ pi − pj ‖�2 , |ti − tj |). Sensor measurements can
be corrupted by noises from the sensor circuitry and environment [Xu et al. 2011].
The reading at time-space coordinates (p, t), denoted by R(p, t), is given by R(p, t) =
Z(p, t) + W , where W is a zero-mean Gaussian noise with variance of σ 2

w.

5.1.2. Model Verification. We now verify the Gaussian process model using real tem-
perature traces collected on Lake Fulmor, California [NAMOS Project 2006]. The
temperature readings on the lake surface were collected by 8 robotic boats over
several hours. Applying the logarithm to the covariance function K(d,
t) yields
−2 · lnK(d,
t)/σ 2 = d2/ς2

s + 
t2/ς2
t . Therefore, the quantities ln(K/σ 2), d2, and 
t2

are expected to exhibit linear relationships. Figure 7 plots ln(K/σ 2) versus d2 and 
t2,
respectively. We can observe from the figure that the quantities exhibit linear relation-
ships with small variations caused by the random noise W . The hyperparameters are
estimated as ςs = 6.42 and ςt = 7.15. Therefore, the adopted K(d,
t) well characterizes
the spatiotemporal covariance of the water surface temperatures.
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5.2. Field Reconstruction Using a Robotic Sensor Swarm

In this section, we present how to reconstruct the field using measurements collected by
the sensor swarm. To facilitate the expression, we define H as a row vector composed of
all measurements, namely, H = [R(p1, t1), . . . , R(pN, tN)], m as a row vector composed
of the corresponding prior mean values, and T as the time duration of each sampling
iteration. Therefore, each ti (i ∈ [1, N]) is always a multiple of T . The Hc is a 3 × N
matrix, where each column represents the time-space coordinates of the correspond-
ing measurement in H. The objective of reconstructing a Gaussian process field is to
estimate the posterior mean and variance at any time-space coordinates (p, t) given
H, which are denoted by E [Z|H] and Var[Z|H]. The estimates are given by Rasmussen
[2006] and Ramachandran and Tsokos [2009] as

E [Z|H] = M(p, t) + ̃[(p, t), Hc] · ̃−1[Hc] · (H − m)T, (4)

Var[Z|H] = σ 2 − ̃[(p, t), Hc] · ̃−1[Hc] · ̃T[(p, t), Hc], (5)

where ̃ is a matrix calculated from the covariance matrix  of the field variables at
Hc. Specifically, the (i, j)th entry of ̃ is given by ̃i j = i j + θi j

σ 2
w

σ
, where θi j = 1 if

i = j, and otherwise θi j = 0. There are three interesting observations from Eq. (4) and
Eq. (5). First, because of the spatiotemporal correlation, the posterior variance (i.e., the
uncertainty) is reduced given the measurements H. Second, from Eq. (5), the posterior
variance does not depend on the prior and posterior means. As our movement schedul-
ing algorithm aims to reduce the variance, it does not need the knowledge of means.
Third, the dimension of ̃ increases along the accumulation of sensor measurement. As
a result, the high-dimensional  poses substantial computation overhead to calculate
its inversion in Eq. (4) and Eq. (5) on resource-constrained robotic sensors.

From the previous three observations, an important design of our approach is to
separate the following two tasks.

Sensor movement scheduling. This task is executed on the swarm head in each sam-
pling iteration, which aims to reduce the variance given in Eq. (5). Section 5.3 to
Section 5.5 will present the details of our sensor movement scheduling algorithms. In
particular, as the sensor movement scheduling involves calculating the inversion of ̃
in Eq. (5) on the swarm head, in Section 5.4, we propose two measurement truncation
schemes that can significantly reduce the computation overhead.

Field reconstruction. This task computes Eq. (4) and Eq. (5) based on collected mea-
surements. It can be executed on either on the swarm head, if it has sufficient compu-
tation capability, or a remote data processing center after measurements are fetched
back.

5.3. Information-Theoretic Swarm Center Selection

We now discuss the selection of the center of the next rendezvous circle (referred to as
swarm center), which aims to improve the accuracy of the field reconstruction algorithm
(i.e., Eq. (4) and Eq. (5)).

5.3.1. Problem Formulation. Suppose that the swarm has N robotic sensors and will
schedule the sensor movements for the next (i.e., the kth) sampling iteration. Let V
denote the region to be reconstructed and the time of reconstruction, and S denote the
set of target time-space coordinates for all sensors.1 Hence, S can be represented as
({p1, p2, . . . , pN}, kT ), where pi is the target position of sensor i. Let p′

c and pc denote

1To simplify the presentation, V refers to both the set of field variables and the corresponding time-space
coordinates. So do S and Hc.
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the swarm center in the (k − 1)th and kth sampling iteration, and Rk is the scheduled
swarm radius for the kth iteration by the connectivity maintenance algorithm. The
optimal solution of S maximizes the following information-theoretic metric

� (S) = H [V \ S | Hc] − H [V \ S | Hc ∪ S], (6)

subject to

‖ p′
c − pc ‖�2 ≤ L;

‖ pi − pc ‖�2 ≤ Rk,∀i ∈ [1, N];
(7)

where the H [·] denotes entropy and quantifies the uncertainty. In Eq. (6), the term
V \ S represents the set of ungauged sites in the current iteration, and the term Hc ∪ S
represents the set of visited time-space coordinates after the current iteration. There-
fore, H [V \ S | Hc] represents the uncertainty at the ungauged sites (i.e., V \ S) given
the historically visited positions, and H [V \ S | Hc ∪ S] represents the uncertainty at
the ungauged sites after additionally sampling the field at S. As a result, the preceding
problem aims to maximize the drop of entropy at the ungauged sites after the current
iteration by sampling the field variables at S given the historical measurements at Hc.
The previous problem formulation adopts the drop of entropy as the performance met-
ric, which is defined by Eq. (6). The constraint in the first part of Eq. (7) specifies the
reachable area of the swarm due to limited sensor movement speed. For instance, we
can set L = v · T , where v is the maximum speed of the robotic sensors. The constraint
in the second part of Eq. (7) ensures the scheduled swarm radius. These constraints
are also illustrated in Figure 2.

Note that the posterior entropy for the ungauged sites [Wang et al. 2004] is another
widely adopted performance metric in field reconstruction studies. We now identify the
relationship between posterior entropy and our metric defined in Eq. (6). Suppose the
current iteration is the kth iteration of the sampling process. By cumulating Eq. (6)
of each iteration, we can approximate the accumulative entropy reduction (denoted as∑k

i=1 � (Si)) as
∑k

i=1 � (Si) ≈ H [V \ S1] − H [V \ Sk | Hc ∪ Sk], where Si is the set of
sampling positions in the ith iteration and Hc = S1 ∪ S2 . . . ∪ Sk−1 represents all the
gauged sites until the kth iteration. In particular, the term H [V \ Sk | Hc ∪ Sk] denotes
the posterior entropy after the kth iteration. Note that H [V\S1] is a constant. Therefore,
there is a simple linear relationship between the posterior entropy and the accumulated
entropy reduction. From this relationship, the minimum posterior entropy is achieved
when the entropy reduction in each iteration is maximized.

5.3.2. Swarm Center Selection Algorithm. A similar problem without the condition Hc and
the constraints in Eq. (7) has been proven NP-hard [Krause et al. 2008]. Hence, the pre-
ceding problem has prohibitively high complexity that is not practical for robotic sensor
platforms. In this article we propose a heuristic approach that approximates the whole
swarm by its center, which is selected from a set of discrete candidate points. By such
an approximation, we avoid the complex inter-point dependence given by Eq. (3), hence
largely reduce the computation overhead. We will evaluate the performance of this
approximation in Section 7.1.8. Under the proposed heuristic approach, we adopt mu-
tual information (MI) and posterior entropy (PE) to quantify the information reward.
As these two metrics differ in computation overhead and the resulting reconstruc-
tion accuracy, they allow the system designer to choose a desirable trade-off between
the overhead and accuracy subject to the budgets of computation resources of robotic
sensors.

We first discuss the MI-based metric. The MI of a random variable X given a
set of random variables Y can be expressed as I [X; Y] = H [X] − H [X | Y], where
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H [X | Y] = 1
2 log (2πe · Var[X | Y]) and

Var[X | Y] = Var[X] − [X, Y] · −1[Y] · T[X, Y]. (8)

The [X, Y] is a row vector composed of the covariances of X with each variable in Y,
and −1[Y] is the inverse of the covariance matrix of Y. Given available measurements
at Hc, the MI-based information reward for the swarm centered at position pc, denoted
by �MI(pc, kT ), is defined as

�MI(pc, kT )
= I [V \ (pc, kT ); (pc, kT ) | Hc]
= H [(pc, kT ) | Hc] − H [(pc, kT ) | V ∪ Hc \ (pc, kT )].

The aforesaid information reward metric characterizes the drop of uncertainty about
the region other than pc given all historical measurements if the swarm is centered at
pc in the next iteration. The swarm center selection is hence to maximize �MI, subject
to the constraints in Eq. (7).

The complexity for computing �MI for a certain pc is O (|V|3). However, as the aquatic
phenomenon of interest (e.g., HABs) often affects a large spatial area, computing �MI
can incur high overhead. To reduce the computation overhead, we propose another
information reward metric based on PE:

�PE(pc, kT ) = H [(pc, kT ) | Hc].

Different from �MI, �PE characterizes the uncertainty drop at the swarm center pc in
the next iteration given the historical measurements. For each certain pc, the complex-
ity of computing �PE is O (|Hc|3), which is much smaller than that of �MI. Although
such a metric does not necessarily lead to the maximum uncertainty drop for the un-
gauged sites, it can reduce the computation overhead by only considering the most
uncertain positions.

5.4. Truncating Historical Measurements

Both the metrics �MI and �PE involve storing and inverting the covariance matrix
[Hc] when computing Eq. (8). This imposes substantial challenges to robotic sensor
platforms with limited computation resources. For instance, a TelosB mote equipped
with 10KB RAM can store at most a 50 × 50 covariance matrix. Moreover, matrix
inversion is a computation-intensive operation with at least cubic complexity with
respect to the number of historical measurements. To develop practical information-
theoretic movement scheduling algorithms for robotic sensors, we propose two schemes
for truncating the historical measurements. Both schemes select K measurements to
compose the covariance matrix.

The first scheme selects K historical measurements with the largest covariances
regarding a candidate swarm center. This scheme is referred to as cov-trunc. The
rationale of cov-trunc is as follows. As we only use a subset of historical measurements,
the conditional variance in Eq. (8) will increase. The cov-trunc scheme maximizes each
element in [X, Y], and hence can efficiently suppress the undesired increase of the
conditional variance caused by the truncation. The drawback of cov-trunc is that it
needs to truncate the historical measurements for each candidate swarm center when
maximizing �MI and �PE. As a result, a matrix inversion operation is needed for each
candidate swarm center, which results in high computation overhead for the swarm
head. To address this issue, we propose another truncating scheme, referred to as
time-trunc. The time-trunc selects the most recent K historical measurements. As the
most recent sampling positions are generally in the proximity of the swarm in the next
iteration, time-trunc can well approximate cov-trunc even though it ignores the spatial
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Fig. 8. The swarm average and minimum PRR versus the swarm radius. The error bar represents the
standard deviation.

correlation. The time-trunc scheme has the following two advantages. First, it only
needs a matrix inversion operation for each sampling iteration. Second, the swarm
head only needs to maintain a first-in-first-out historical measurement buffer with
size of K. This buffer can be easily migrated in the swarm head rotation process for
the purpose of balancing energy consumption. However, we note that the performance
of these truncation schemes depends on the properties of the underlining aquatic
processes, such as the kernel bandwidths (i.e., ςs and ςt) and the affected region (i.e.,
V). In Section 7.1.6, we will evaluate the impact of historical measurements truncation
on reconstruction accuracy.

5.5. Sensor Movement Scheduling

As discussed in Section 3, once the swarm center and radius are determined, the
swarm head randomly selects N positions (denoted by p′) in the rendezvous circle.
We let p denote the current positions of robotic sensors. To prolong the lifetime of
the robotic sensor swarm, we find the element mapping from p to p′, such that the
sum of sensors’ movement distances is minimized. Under this movement scheduling
scheme, there is no crossing between sensors’ moving paths. The proof can be found
in Appendix A.2. Therefore, our movement scheduling scheme is collision free. This
element mapping problem can be solved by existing algorithms such as the Munkres
assignment algorithm [Burkard et al. 2009] with a complexity of O(N3). Once the
mapping is found, the swarm head sends the target position to each robotic sensor,
which then moves toward the target position. While moving toward the target position,
the robotic sensor can adopt a feedback-based motion control algorithm that adaptively
corrects the motion errors based on the localization result, using a potential function
approach [Baras et al. 2003]. The motion control of robotic fish is beyond the scope of
this article and the details can be found in Baras et al. [2003].

6. DISCUSSIONS

6.1. Swarm Connectivity Based on Minimum PRR

In Section 4, we employ the swarm average PRR as the metric to characterize the
swarm connectivity. We note that it is possible that some individual links may have
low PRRs while others have high. To this end, we conduct the following Monte Carlo
simulations to analyze the worst case of link connectivity. For a given swarm radius R,
we generate a large number of random sensor placements within the rendezvous circle,
and select the minimum PRR among all links in the swarm. The simulation results
are shown in Figure 8. In Figure 8, we also include the results shown in Figure 5 such
that we can compare the minimum PRR and average PRR. We can see that, when the
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expected swarm average PRR is 0.9, the expected minimum PRR is 0.6, which means
1/0.6 = 1.67 retransmissions on average. Such an overhead is acceptable. Therefore,
by specifying a high setpoint for the average PRR, the minimum PRR can be efficiently
lower-bounded.

We further extend our approach to using swarm minimum PRR as the metric to set
the radius. In other words, the setpoint of the control-theoretic connectivity mainte-
nance algorithm is the desired minimum single-link PRR in the swarm. Deriving the
closed-form formula for the expected minimum PRR is challenging. However, numer-
ical analysis shows that the model given by Eq. (2) can well approximate the swarm
minimum PRR. Specifically, Figure 8 shows the result of fitting Eq. (2) with the Monte
Carlo simulation results. From the figure, we can see that Eq. (2) accurately charac-
terizes the swarm minimum PRR. Therefore, our control-theoretic connectivity main-
tenance algorithm can still be applied to maintain swarm minimum PRR at a specified
level.

6.2. Impact of Connectivity Degradation and Outage

Our approach can tolerate connectivity degradation caused by sensor position errors.
In the swarm, sensor positions are randomly selected within the rendezvous circle. As
long as the final positions of sensors fall within the target rendezvous circle, the swarm
connectivity can be maintained by our control-theoretic algorithm. In case a few sensors
are outside the rendezvous circle for a few meters, the overall swarm connectivity will
not be substantially jeopardized. According to our experimental results presented in
Figure 4, the link PRR in the swarm drops at most 15% when the distance is increased
by 2. Note that, based on the measurements in our previous work [Wang et al. 2012],
the closed-loop motion control algorithms usually introduce small position errors (in
the order of 10 cm) and the GPS localization errors are generally around 2 m in an
outdoor environment.

As we typically set a sufficiently high setpoint for the swarm connectivity (i.e., δ),
the swarm is expected to maintain a satisfactory connectivity. However, the control-
theoretic algorithm may not be able to cope with sudden drastic drops of link quality
due to unexpected wireless communication outages. We now describe two recovery
mechanisms to prevent loss of sensors in these wireless communication outages. First,
packet acknowledgment should be adopted, and the number of retransmissions in case
of packet loss can be set to a relatively large value. This simple approach can largely
reduce the possibility of sensor loss caused by suddenly reduced link quality that the
control-theoretic connectivity maintenance algorithm cannot deal with. Second, if the
first mechanism fails, the sensor swarm can gather at a predefined meeting point.
When disconnection with the swarm head is detected, a lost node will move to the
nearest meeting point. Note that the meeting points can be carefully chosen before
system deployment and stored in each sensor.

7. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithms by trace-driven simulations
and implementation on hardware. First, we evaluate the connectivity maintenance
and swarm movement scheduling algorithms using extensive simulations based on
real data traces of water surface temperature field [NAMOS Project 2006] and on-
water ZigBee wireless communication. Second, we implement one of the proposed
swarm movement scheduling algorithms on a TelosB sensor platform and evaluate
its overhead. The results provide insights into the feasibility of adopting advanced
information-theoretic movement scheduling algorithms on mote-class robotic sensor
platforms.
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Fig. 9. Swarm average PRR versus sampling it-
eration. The error bar represents the standard
deviation.

Fig. 10. Impulsive and step responses (at the 7th

and 14th iterations) of our algorithm.

7.1. Trace-Driven Simulations

7.1.1. Simulation Methodology and Settings. In the simulations, 10 robotic sensors are used
to reconstruct a scalar field in a square region. The hyperparameters of the Gaussian
process are set to be [σ 2, ςs, ςt] = [9, 6, 8], unless otherwise specified. Note that these
settings are consistent with Zhang and Sukhatme [2007] and Singh et al. [2009] and
obtained from real on-water temperature traces [NAMOS Project 2006]. Initially, the
robotic sensors are randomly deployed in a small region with radius of 10 m. In each
sampling iteration, the PRR of each link is set to be the distance-based interpolation
of real on-water PRR traces measured by two IRIS motes on Lake Lansing, Michigan
(refer to Section 4.2). Other settings include desired swarm connectivity level δ = 0.9,
sampling iteration duration T = 5 min, sensor movement speed v = 0.2 m/s, and
L = v × T = 60 m.

7.1.2. Swarm Connectivity Maintenance and Communication Overhead. We first compare our
connectivity maintenance algorithm with a heuristic baseline algorithm. The heuristic
algorithm adopts the Kalman filter to update the coefficient c in Eq. (2) based on
the recently estimated PRR(R). The next swarm radius is then obtained by solving
Eq. (2). Recall that our approach assigns a fixed value to c and tunes the swarm radius
directly. Figure 9 plots the PRR(R) in the first 10 sampling iterations. The range of
swarm radius after 10 iterations is [24, 36]. The error bars, calculated from 20 runs,
are caused by the various disturbances discussed in Section 4.3. We can see that
the swarm average PRR controlled by our algorithm quickly converges to the desired
connectivity level. In contrast, the heuristic algorithm diverges from the reference. This
is because the Kalman filter does not tune the swarm radius directly, and incorrectly
updates the coefficient c in the control cycle. To evaluate the response of our algorithm
to the sudden changes of the wireless link quality, we artificially reduce the PRR
measurements by 20% only in the 7th iteration (i.e., the left arrow in Figure 10) and
continuously reduce the PRR measurements by 10% after the 14th iteration (i.e., the
right arrow in Figure 10). For both types of changes, our algorithm can converge within
a few iterations.

In each sampling iteration, the communication overhead is mainly caused by the
packet loss. Hence, we employ the total number of transmissions in collecting all sensor
measurements as the evaluation metric. When a node transmits a packet to the swarm
head, the packet is delivered with a success probability equal to the PRR. The node
retransmits the packet up to 20 times before it is dropped. The packet to the swarm
head includes sensor ID, spatiotemporal coordinates, and measurement. The packet
to the sensor contains the target position in the next rendezvous circle. Consider a
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Fig. 11. Trajectories of a robotic sensor swarm with 10 sensors in the first 6 sampling iterations in the
reconstruction of a 300 × 300 m2 field.

typical sampling iteration, for example, the 4th iteration in Figure 10 where a swarm
radius around 32 m yields a swarm average PRR about 0.9. Our simulation results
show that for a swarm consisting of 10 nodes, the number of transmitted packets (for
two-way communications) has a mean of 38 and a standard deviation of 8. Even if all
these packets are transmitted sequentially, the delay will be within a second, because
transmitting a TinyOS packet only takes about 10 milliseconds on typical mote-class
sensor platforms. Therefore, our approach has low communication overhead.

7.1.3. Effectiveness of Swarm Center Selection. We now compare the two swarm center
selection approaches presented in Section 5.3.2 (referred to as MI and PE) with three
other baseline approaches. The first baseline (referred to as MI-MC) finds the next
swarm center according to the metric � (S) in Eq. (6), where S is a set of random sensor
placements within the rendezvous circle. For each candidate pc, 100 random sensor
placements are generated (i.e., Monte Carlo trials) and the average � is used as the
information reward relating to pc. The second baseline (referred to as PE-MC) is simi-
lar to the MI-MC, except that the metric is given by H (S | Hc). These two Monte Carlo
baselines give the near-optimal swarm centers regarding the MI and PE metrics, re-
spectively. However, due to the high computation overhead of the Monte Carlo method,
these two baselines are not suitable for mote-class sensor platforms. A random walk
approach is employed as the third baseline (referred to as RW). Specifically, the swarm
head selects a random position as pc subject to the constraints in Eq. (7).

We first show the swarm trajectories scheduled by various approaches. Figure 11
plots the trajectories of a sensor swarm in the first six sampling iterations. Note that the
swarm radius is controlled by the connectivity maintenance algorithm. We can see that,
for all approaches, two consecutive rendezvous circles can overlap. This is because the
correlation of the Gaussian process exists in both spatial and temporal domains; moving
to a farther location does not necessarily increase the overall information reward. Note
that, if only spatial correlation is considered, the swarm will move to the farthest
unexplored areas. From Figure 11(a), it can be seen that PE and PE-MC output different
trajectories. As the next swarm location is affected by historical sensor positions which
were randomly generated, the trajectories can be different under different approaches,
and even different under the same approach in different simulation runs. However,
they basically follow the similar trend of spreading out in the field.

We then compare the effectiveness of various approaches based on the criterion �
given in Eq. (6), which quantifies the drop of uncertainty at the ungauged sites at
the current time. Note that in each sampling iteration, the position of the rendezvous
circle is determined by the specified information reward metric, and the radius is chosen
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Fig. 12. Information reward versus sampling
iteration.

Fig. 13. Impact of sensing failure on information
reward (FR stands for failure rate).

to maintain the swarm connectivity. Figure 12 plots � versus the index of sampling
iteration. The error bar represents the standard deviation over multiple simulation
runs. We can see that � increases over time as more measurements are taken. From
the figure, we find that MI and MI-MC outperforms PE by 10% and 19%, respectively,
in the 5th sampling iteration. However, they have much higher computation overhead
than PE. Specifically, MI and MI-MC take about 20 and 8000 times of the execution
time of PE, respectively. The RW approach yields the worst accuracy. Moreover, the gap
between our approach and the corresponding Monte-Carlo-based baseline (e.g., PE and
PE-MC) gives the performance loss caused by approximating the rendezvous circle with
the swarm head. Due to the large number of Monte Carlo trials, the baseline approaches
achieve better performance with substantially heavier computation overhead that is
infeasible on mote-class platforms.

7.1.4. Impact of Sensing Failure. We now evaluate the impact of sensing failure on recon-
struction performance. Sensing failure means that the robotic sensor platform cannot
sample the field temporarily. In this set of simulations, we take the PE approach as an
example and introduce random sensing failures. Specifically, each sensor has a sensing
failure rate (10%, 20%, and 30%) in a sampling iteration. For sensors that experience
sensing failure, their sampling positions will not be used in computing the drop of
uncertainty � and scheduling the swarm movement in the next iteration. We adopt the
PE-MC and PE approaches with zero failure rate as baselines, in which the PE-MC ap-
proach gives the near-optimal swarm center regarding the PE metric. For each failure
rate, we conduct six runs of simulations. The average information rewards are plotted
in Figure 13. We can observe that our approach can achieve comparable reconstruction
performance in the presence of relatively low sensing failure rate (e.g., 10%). As the
sensing failure rate increases, the reconstruction performance drops. This is because
the decreased sampling diversity leads to inaccuracy in swarm position selection. Note
that, in addition to sensing failure, sensors are also subject to hardware failure, motion,
and control failure. In particular, hardware failure means that the robotic sensor plat-
form completely fails and the swarm will lose the failed node. Since a swarm consists
of a limited number of nodes, the robotic sensor platform should be designed to have a
low hardware failure rate to ensure long-term monitoring. Motion and control failure
are caused by errors in swarm size control and sensor motion control such that the
node cannot communicate with the swarm head. We have specifically presented two
recovery mechanisms in Section 6.2 to address such failures.

7.1.5. Effectiveness of Random Position Selection. In this section, we analyze the effec-
tiveness of random sensor position selection regarding information reward. In our ap-
proach, the position of each sensor in the next sampling iteration is randomly selected
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Fig. 14. Impact of sensor position selection on
the information reward.

Fig. 15. Information reward in the 15th iteration
versus the number of used measurements K.

by the swarm head within the rendezvous circle. We note that the proposed MI/PE-
based metrics can also be used to guide the sensor position selection. Specifically, the
swarm head sequentially selects each sensor’s position based on the MI/PE-based met-
rics, such that each added sensor maximizes the information reward metric. We refer to
the PE-based sequential sensor position selection approach as PE-Seq. This set of sim-
ulations only evaluate the PE-based approaches, which help us understand the impact
of the random sensor position selection scheme. To make a fair comparison, we set the
swarm radius of PE-Seq identical to that of PE in each iteration. Figure 14 plots � ver-
sus the index of sampling iteration for PE-MC, PE-Seq, and PE, respectively. From the
figure, we can see that the random sensor position selection (i.e., PE) gives comparable
performance to the metric-guided sensor position selection (i.e., PE-Seq). The slightly
better performance of PE-Seq is achieved at the cost of intensive computation over-
head in determining each sensor’s position. Due to the sequential execution process,
this scheme cannot be executed on low-power sensing platforms at runtime. Therefore,
within a rendezvous circle, the random placement of sensors does not significantly af-
fect the information reward. Hence, our approach that combines metric-based swarm
center position selection and in-swarm random sensor position selection not only is an
effective solution in terms of information reward, but also simplifies the motion control
of the sensor swarm as well as reduces the computation overhead of the swarm head.

7.1.6. Impact of Historical Measurements Truncation. In this set of simulations, we com-
pare the performance of various combinations of the MI/PE-based metrics and the
two truncation schemes presented in Section 5.4. The number of used historical mea-
surements, namely, K, is set to be 20 or 40. The robotic sensor swarm is deployed in
a 1000 × 1000 m2 square region. Figure 15 plots the performance criterion � at the
15th sampling iteration under various settings. Without the truncation scheme, all
historical measurements are used and hence a greater � is achieved. Moreover, we
can see that � increases with K. An interesting observation is that the truncation
schemes with K = 40 yield almost the same performance obtained by using all histori-
cal measurements. In addition, the time-trunc and cov-trunc schemes have comparable
performance. Therefore, the time-trunc scheme with a small K can achieve satisfactory
performance.

7.1.7. Impact of Kernel Bandwidth. The kernel bandwidths are important hyperparame-
ters of the Gaussian process. We focus on the impact of the spatial kernel bandwidth
ςs while keeping the temporal kernel bandwidth ςt fixed. Figure 16 plots performance
criterion � versus K, under various settings of ςs. We can observe that � increases
with ςs. This is because the stronger spatial correlation introduced by the larger ςs can
lead to a greater posterior entropy drop at the ungauged sites. Moreover, we can see
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Fig. 16. Information reward versus the number
of used measurements K under various ςs.

Fig. 17. Impact of kernel bandwidth on the ap-
proximation performance.

Fig. 18. Impact of swarm radius on the approxi-
mation performance.

Fig. 19. Information reward versus desired
swarm connectivity level.

from the figure that the performance becomes saturated after K is greater than 20 for
various settings of ςs.

7.1.8. Approximation Performance. In this section, by taking the PE approach as an exam-
ple, we evaluate the performance of our heuristic that approximates the whole swarm
by its center. As discussed in Section 7.1.3, the PE-MC approach gives the near-optimal
swarm center regarding the PE metric. We assess the approximation performance in
terms of the relative loss in �, which is calculated as (�PE-MC − �PE)/�PE-MC. In the
first set of simulations, we consider the impact of kernel bandwidth. Specifically, we
vary the spatial kernel bandwidth ςs while keeping the temporal kernel bandwidth ςt
and the swarm radius R fixed. The results are plotted in Figure 17. We can observe
that relative loss decreases with kernel bandwidth. This result is consistent with the
intuition that, when nearby positions are more correlated (i.e., a larger kernel band-
width), the swarm center is a better representation of nearby positions. In the second
set of simulations, we consider the impact of swarm radius. Specifically, we vary the
swarm radius while keeping the kernel bandwidths fixed. Figure 18 shows the impact
of swarm radius on the relative loss. From the figure, we can see that relative loss in-
creases with swarm radius. This result is consistent with the intuition that the swarm
center can better represent the whole swarm when the swarm size is smaller.

7.1.9. Information Reward versus Swarm Connectivity. As discussed in Section 4.3, there is
a trade-off between the amount of information obtained by the sensor swarm and its
connectivity level. In this set of simulations, we quantitatively evaluate the trade-off.
Specifically, we vary the desired swarm connectivity level, that is, δ, and compare the
resulting information rewards. Other settings are consistent with those presented in
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Fig. 20. Temperature field reconstruction using a robotic sensor swarm. The numbers in circles represent
sequence of rendezvous circles.

Section 7.1.1. For each δ, the control-theoretic algorithm adaptively tunes the radius of
the rendezvous circle to maintain the swarm connectivity. According to Eq. (2), a larger
δ generally requires a smaller rendezvous circle, which will result in less information
reward. Figure 19 plots the achieved information reward after five sampling iterations
versus the desired swarm connectivity level. The decreasing relationship between drop
of uncertainty and desired swarm connectivity level shown in Figure 19 verifies the
trade-off.

7.1.10. Accuracy of Field Reconstruction. In this set of simulations, we reconstruct a field
using 10 robotic sensors. We first generate a temperature field based on the temper-
ature data [NAMOS Project 2006] collected at eight locations on the surface of Lake
Fulmor, California, which has an area of about three acres. We have verified that tem-
perature data follows the spatiotemporal Gaussian process in Section 5.1. However,
the data at eight locations are not sufficient to drive the simulations. Therefore, we use
an existing tool [Gaussian Surface Fit 2011] to fit a 200 × 200 m2 (�10 acres) Gaussian
process field based on the traces, as shown in Figure 20(a). For ease of illustration,
the field does not change with time, although our approach can deal with temporal
evolution of the field. The movement of the swarm is scheduled by PE without trun-
cation. Sensor measurements in the simulation are corrupted by zero-mean Gaussian
noise with variance of 0.15 [Xu et al. 2011; Krause et al. 2008]. In the reconstruction,
the mean function M(p, t) is set to be a fixed value of the average temperature in
Figure 20(a). Figure 20(b) and Figure 20(c) show the reconstructed field after the 3rd

and 7th sampling iteration, as well as the trajectories of the swarm. Figure 20(d) plots
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Fig. 21. Execution time of PE time-trunc
scheduling versus the number of used measure-
ments K.

Fig. 22. Execution time of sensor position as-
signment versus the number of sensors N.

the mean squared error (MSE) of the reconstructed temperature filed versus the index
of sampling iteration. For comparison, we also include the MSE under MI approach.
Due to space limitation, the corresponding reconstructed fields and swarm trajecto-
ries are omitted here. From Figure 20, we can see that the reconstruction accuracy is
improved along with the movement of the swarm.

7.2. Overhead on Sensor Hardware

We have implemented the PE-based time-trunc swarm center selection algorithm and
the sensor movement scheduling algorithm in TinyOS 2.1 on a TelosB platform. We
ported the C implementation of the Cholesky decomposition algorithm in GNU Scien-
tific Library [GNU Scientific Library 2012] to TinyOS to invert the matrix in the swarm
center selection algorithm. We also implement the Munkres algorithm in TinyOS to
schedule each sensor’s movement. Figure 21 and Figure 22 plot the execution times
of the two algorithms in one sampling iteration, respectively. We can see that the PE-
based time-trunc algorithm takes about one minute when 40 historical measurements
are used. The Munkres algorithm for position assignment only takes 4.5 seconds when
25 robotic sensors are deployed. As our current implementation employs extensive
floating-point computation, the preceding processing delays can be further reduced
by using fixed-point arithmetic. Nevertheless, a delay of about one minute is accept-
able since the duration of each iteration can be much longer than that. Note that
the MI metric and the cov-trunc scheme result in very long processing delays on the
TelosB platform because of large search space and repeated matrix inversion opera-
tions. Therefore, they are only suitable for more powerful sensor platforms such as
Imote2 [Imote2 2012].

8. CONCLUSION AND FUTURE WORK

In this article we propose a novel cyber-physical approach to spatiotemporal aquatic
field reconstruction using inexpensive, low-power mobile sensor swarms. Our approach
features a rendezvous-based mobility control scheme where a sensor swarm collabo-
rates to sense the environment in a series of carefully chosen rendezvous regions. We
design a novel feedback control algorithm that maintains the desirable level of wireless
connectivity of a sensor swarm in the presence of significant physical dynamics. We
present new information-theoretic analysis to guide the selection of rendezvous regions
such that the field reconstruction accuracy is maximized. We evaluate our approach by
extensive trace-driven simulations and implementation on real sensor hardware. Our
results show that the connectivity of robotic sensors can be maintained robustly in the
presence of significant physical uncertainties. Moreover, despite the limited mobility, a
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Fig. 23. Two crossing moving paths (i.e., segments p1p′
2 and p2p′

1) must not exist in the optimal solution
to the element mapping problem.

sensor swarm can accurately reconstruct large, dynamic spatiotemporal aquatic fields,
which validates the effectiveness of our information-theoretic movement scheduling
algorithm. Lastly, our mechanisms incur low overhead on resource-constrained sensor
motes.

In the future, we will implement our control- and information-theoretic algorithms
on a testbed of motes. We will also evaluate the performance of our approach through
emulation where the algorithms are executed on the motes, and the physical fields
and sensor movements are simulated using real data traces. We will build fully func-
tional robotic fish, and conduct real experiments in both a large indoor water tank and
inland lakes for temperature field reconstruction. Moreover, we will extend our control-
theoretic connectivity maintenance algorithm to multihop network topologies. We will
also study how to integrate decentralized/distributed field reconstruction and sensor
movement scheduling algorithms [Cortés 2009; Low et al. 2012; Chen et al. 2012] with
our rendezvous-based swarm scheme.

APPENDIXES

A.1. Analysis of Controller’s Stability and Convergence

This section presents the details of stability and convergence analysis in controller de-
sign. We first analyze the system reliability. The closed-loop transfer function (denoted
by Tc(z)) is given by Tc(z) = Gc(z)Gp(z)

1+Gc(z)Gp(z)H(z) = αcz
z−(β−αc) , which has a pole at z = β −αc. The

closed-loop system is stable if this pole is located within the unit circle [Ogata 1995],
that is, |β−αc| < 1. Therefore, the sufficient condition for stability is β−1

c < α <
β+1

c . We
then analyze the steady-state error of the connectivity control system. The open-loop
transfer function (denoted by To(z)) is given by To(z) = Gc(z)Gp(z)H(z) = αc

z−β
. By letting

β = 1, the system is a type-1 system [Ogata 1995] that exhibits no steady-state error
in response to step inputs. Therefore, the condition for both stability and convergence
is β = 1 and 0 < α < 2

c .

A.2. Proof of Collision-Free Trajectories

In this section, by contradiction, we prove that there is no crossing among sensors’
moving paths under the movement scheduling scheme discussed in Section 5.5. We as-
sume that there are crossings among sensors’ moving paths. Without loss of generality,
we consider any two crossing moving paths, as depicted by segments p1p′

2 and p2p′
1 in

Figure 23. We now prove that if the two sensors move along segments p1p′
1 and p2p′

2
without crossing, the total movement distance can be reduced. Therefore, a movement
schedule that contains any crossing must not be the optimal solution to the element
mapping problem.
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A necessary condition for the intersecting of segments p1p′
2 and p2p′

1 is that
points p1 and p′

2 are located at different sides of segment p2p′
1, and so are points

p2 and p′
1 with segment p1p′

2. Let pa denote a point in the aquatic field such that
the quadrilateral p1 p′

2 pa p′
1 forms a parallelogram. So is pb that gives parallelogram

p1 p2 pb p′
2. Therefore, the sum of sensors’ movement distances with crossing trajectories

is given by ‖ p2p′
1 ‖�2 + ‖ p′

1pa ‖�2 , and that without crossing trajectories is given
by ‖ p2p′

2 ‖�2 + ‖ p′
2pa ‖�2 . Hence, the quadrilateral p2 pb pa p′

1 is a parallelogram as
well. Since point p′

2 locates inside of parallelogram p2 pb pa p′
1, by geometry, the sum of

distances it is to the across corners (i.e., p2 and pa) is smaller than that of the corner
p′

1, namely ‖ p2p′
2 ‖�2 + ‖ p′

2pa ‖�2 < ‖ p2p′
1 ‖�2 + ‖ p′

1pa ‖�2 .
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