
Designing High-Quality Embedded Control Systems
with Guaranteed Stability

Amir Aminifar1, Soheil Samii1,2, Petru Eles1, Zebo Peng1, Anton Cervin3

1Department of Computer and Information Science, Linköping University, Sweden
2Semcon AB, Linköping, Sweden

3Department of Automatic Control, Lund University, Sweden
{amir.aminifar,petru.eles,zebo.peng}@liu.se, soheil.samii@semcon.com, anton@control.lth.se

Abstract—Many embedded systems comprise sev-
eral controllers sharing available resources. It is well
known that such resource sharing leads to complex
timing behavior that degrades the quality of control,
and more importantly, can jeopardize stability in the
worst-case, if not properly taken into account during
design. Although stability of the control applications
is absolutely essential, a design flow driven by the
worst-case scenario often leads to poor control quality
due to the significant amount of pessimism involved
and the fact that the worst-case scenario occurs very
rarely. On the other hand, designing the system
merely based on control quality, determined by the
expected (average-case) behavior, does not guarantee
the stability of control applications in the worst-case.
Therefore, both control quality and worst-case stabil-
ity have to be considered during the design process,
i.e., period assignment, task scheduling, and control-
synthesis. In this paper, we present an integrated
approach for designing high-quality embedded control
systems, while guaranteeing their stability.

I. Introduction and Related Work

Many embedded systems comprise several control appli-
cations sharing available resources. The design of embed-
ded control systems involves two main tasks, synthesis of
the controllers and implementation of the control appli-
cations on a given execution platform. Controller syn-
thesis comprises period assignment, delay compensation,
and control-law synthesis. Implementation of the control
applications, on the other hand, is mostly concerned with
allocating computational resources to applications (e.g.,
mapping and scheduling).

Traditionally, the problem of designing embedded con-
trol systems has been dealt with in two independent
steps, where first the controllers are synthesized and, sec-
ond, applications are implemented on a given platform.
However, this approach often leads to either resource
under-utilization or poor control performance and, in
the worst-case, may even jeopardize the stability of
control applications because of timing problems which
can arise due to certain implementation decisions [1],
[2]. Thus, in order to achieve high control performance
while guaranteeing stability even in the worst-case, it is
essential to consider the timing behavior extracted from

the system schedule during control synthesis and to keep
in view control performance and stability during system
scheduling. The issue of control–scheduling co-design [2]
has become an important research direction in recent
years.

Rehbinder and Sanfridson [3] studied the integration
of off-line scheduling and optimal control. They found
the static-cyclic schedule [4] which minimizes a quadratic
cost function. Although the stability of control applica-
tions is guaranteed, the authors mention the intractabil-
ity of their method and its applicability only for systems
limited to a small number of controllers. Majmudar et al.
[5] proposed a performance-aware static-cyclic scheduler
synthesis approach for control systems. The optimization
objective is based on the L∞ to RMS gain. Recently,
Goswami et al. [6] proposed a time-triggered [4] im-
plementation method for mixed-criticality automotive
software. The optimization is performed considering an
approximation of a quadratic cost function and with
assuming the absence of noise and disturbance. Consider-
ing time-triggered implementation, it is straightforward
to guarantee stability, in the absence of noise and dis-
turbance, as a consequence of removing the element of
jitter. However, to completely avoid jitter, the periods of
applications are constrained to be related to each other
(harmonic relationship). Therefore, such approaches can
lead to resource under-utilization and, possibly, poor
control performance due to long sampling periods [3],
[7]. Nevertheless, the approaches in [3], [5], and [6] are
restricted to static-cyclic and time-triggered scheduling.

Seto et al. [8] found the optimal periods for a set of
controllers on a uniprocessor platform with respect to a
given performance index. Bini and Cervin [9] proposed a
delay-aware period assignment approach to maximize the
control performance measured by a standard quadratic
cost function on a uniprocessor platform. Ben Gaid et al.
[10] considered the problem of networked control systems
with one control loop. The objective is to minimize a
quadratic cost function. Cervin et al. [11] proposed a
control–scheduling co-design procedure to yield the same
relative performance degradation for each control appli-
cation. Zhang et al. [12] considered control–scheduling

co-design problem where the objective function to be
optimized is the sum of the H∞ norm of the sensitivity
functions of all controllers. In our previous work [13]
and [14], we proposed optimization methodologies for
integrated mapping, scheduling, and control synthesis to
maximize control performance by minimizing a standard
quadratic cost on a distributed platform.

In order to capture control performance, two kinds
of metrics are often used: (1) stochastic control per-
formance metrics and (2) robustness (stability-related)
metrics. The former identify the expected (mathematical
expectation) control performance of a control application,
whereas the latter are considered to be a measure of
the worst-case control performance. Although consider-
ing both the expected control performance and worst-
case control performance during the design process is
crucial, previous work only focuses on one of the two
aspects. The main drawback of such approaches, e.g.,
based solely on the expected control performance, is that
the resulting high expected performance design solution
does not necessarily satisfy the stability requirements in
the worst-case scenario. On the other hand, considering
merely the worst-case, often results in a system with poor
expected control performance. This is due to the fact that
the design is solely tuned to a scenario that occurs very
rarely. Thus, even though the overall design optimization
goal should be the expected control performance, taking
the worst-case control stability into consideration during
design space exploration is indispensable.

In this paper, for the first time, to the best of our
knowledge, we propose an integrated control–scheduling
approach to design embedded control systems with guar-
antees on the worst-case robustness, where the optimiza-
tion objective is the expected control performance.

The paper is organized as follows. In the next section,
we present the system model, i.e., plant, platform and
application models. Section III discusses the metrics for
the expected and the worst-case control performance,
and control synthesis. Analysis of real-time attributes
is outlined in Section IV. In Section V, we present
motivational examples and in Section VI, we formulate
our control–scheduling co-design problem. The proposed
design flow is discussed in Section VII. Section VIII
contains the experimental setup and results. Finally, the
paper will be concluded in Section IX.

II. System Model

The system model is determined by the plant model, the
platform and application model.

A. Plant Model

Let us consider a given set of plants P. Each plant Pi is
modeled by a continuous-time system of equations

ẋi = Aixi +Biui + vi,

yi = Cixi + ei,
(1)

τ
1s 1c

τ
1a

τ

Figure 1. Example of modeling a controller as a task graph

where xi and ui are the plant state and control sig-
nal, respectively. The additive plant disturbance vi is
a continuous-time white-noise process with zero mean
and given covariance matrix R1i. The plant output is
denoted by yi and is sampled periodically with some
delays at discrete time instants—the measurement noise
ei is discrete-time Gaussian white-noise process with zero
mean and covariance R2i. The control signal will be
updated periodically with some delays at discrete time
instants and is held constant between two updates by a
hold-circuit in the actuator [15].

For instance, an inverted pendulum can be mod-

eled using Equation 1 with Ai =
[

0 1
g/li 0

]
, Bi =[

0 g/li
]T

, and Ci =
[

1 0
]
, where g ≈ 9.81 m/s2 is

the gravitational constant and li is the length of pendu-

lum Pi. The two states in xi =
[
φi
φ̇i

]
are pendulum

position φi and speed φ̇i. For plant disturbance and
measurement noise, we have R1i = BiB

T
i and R2i = 0.1,

respectively.

B. Platform and Application Model

The platform considered in this paper is a uniprocessor.
For each plant Pi ∈ P there exists a corresponding
control application denoted by Λi ∈ Λ, where Λ indicates
the set of applications in the system.

Each application Λi is modeled as a task graph. A
task graph consists of a set of tasks and a set of edges,
identifying the dependencies among tasks. Thus, an ap-
plication is modeled as an acyclic graph Λi = (Ti,Γi),
where Ti denotes the set of tasks and Γi ⊂ (Ti × Ti)
is the set of dependencies between tasks. We denote the
j-th task of application Λi by τij . The execution-time,
cij , of the task τij is modeled as a stochastic variable
with probability function ξij ,

1 bounded by the best-case
execution-time cbij and the worst-case execution-time cwij .
Further, the dependencies between tasks τij and τik are
indicated by γijk = (τij , τik) ∈ Γi.

Control applications can typically provide a satisfac-
tory control performance within a range of sampling
periods [15]. Hence, each application Λi can execute with
a period hi ∈ Hi, where Hi is the set of suggested periods
application Λi can be executed with. However, the actual
period for each control application is determined during
the co-design procedure, considering the direct relation
between scheduling parameters and control-synthesis.

1The probability function ξij is only used for the system sim-
ulation which is utilized in delay compensation for controller de-
sign and computing the expected control performance. Worst-case
stability guarantees only depend on the worst-case and best-case
execution times.

A simple example of modeling a control application as
a task graph is shown in Figure 1. The control application
Λi has three tasks, where τis, τic, and τia indicate the
sensor, computation, and actuator tasks, respectively.
The arrows between tasks indicate the dependencies,
meaning that, for instance, the computation task τic can
be executed only after the sensor task τis terminates its
execution.

III. Control Performance and Synthesis

In this section, we introduce control performance metrics
both for the expected and worst-case. We also present
preliminaries related to control synthesis.

A. Expected Control Performance

In order to measure the expected quality of control for
a controller Λi for plant Pi, we use a standard quadratic
cost [15]

Je
Λi

= lim
T→∞

1

T
E

{∫ T

0

[
xi
ui

]T
Qi

[
xi
ui

]
dt

}
. (2)

The weight matrix Qi is given by the designer, and is a
positive semi-definite matrix with weights that determine
how important each of the states or control inputs are
in the final control cost, relative to others (E {·} denotes
the expected value of a stochastic variable). To compute
the expected value of the quadratic control cost Je

Λi

for a given delay distribution, the Jitterbug toolbox is
employed [16].

The stability of a plant can be investigated using the
Jitterbug toolbox in the mean-square sense if all time-
varying delays can be modeled by independent stochastic
variables. However, since it is not generally possible to
model all time-varying delays by independent stochastic
variables, this metric (Equation 2) is not appropriate as
a guarantee of stability in the worst-case.

B. Worst-Case Control Performance

The worst-case control performance of a system can be
quantified by an upper bound on the gain from the
uncertainty input to the plant output. For instance,
assuming the disturbance d to be the uncertainty input,
the worst-case performance of a system can be measured
by computing an upper bound on the worst-case gain G
from the plant disturbance d to the plant output y. The
plant output is then guaranteed to be bounded by

‖y‖ ≤ G‖d‖.

In order to measure the worst-case control perfor-
mance of a system, we use the Jitter Margin toolbox [17].
The Jitter Margin toolbox provides sufficient conditions
for the worst-case stability of a closed-loop system. More-
over, if the closed-loop system is stable, the Jitter Margin

a∆
w

s∆
w

kh+h

t

R
b
s R

w
R
b
a R

w
a

L

kh s

Figure 2. Graphical interpretation of the nominal sensor–actuator
delay L, worst-case sensor jitter ∆w

s , and worst-case actuator jitter
∆w

a

toolbox can measure the worst-case performance of the
system. The worst-case control cost is captured by

Jw
Λi

= G(Pi,Λi, Li,∆
w
is,∆

w
ia). (3)

The discrete-time controller designed for sampling period
hi is denoted by Λi. The nominal sensor–actuator (input–
output) delay for control application Λi is denoted by
Li. The worst-case jitters in response times of the sensor
(input) and the actuator (output) tasks of the controller
Λi are denoted by ∆w

is and ∆w
ia (see Section IV, Figure

2), respectively. It should be noted that a finite value for
the worst-case control cost Jw

Λi
represents a guarantee of

stability for control application Λi in the worst-case.

C. Control Synthesis

For a given sampling period hi and a given, constant
sensor–actuator delay (i.e., the time between sampling
the output yi and updating the controlled input ui),
it is possible to find the control-law ui that minimizes
the expected cost Je

Λi
[15]. Thus, the optimal controller

can be designed if the delay is constant at each periodic
instance of the control application. Since the overall
performance of the system is determined by the expected
control performance, the controllers shall be designed for
the expected average behavior of the system. System sim-
ulation is performed to obtain the delay distribution and
the expected sensor–actuator delay and the controllers
are designed to compensate for this expected amount
of delay. In order to synthesize the controller we use
MATLAB and the Jitterbug toolbox [16].

The sensor–actuator delay is in reality not constant
at runtime due to interference from other applications
competing for the shared resources. The quality of the
constructed controller is degraded if the sensor–actuator
delay distribution is different from the constant one
assumed during the control-law synthesis. The overall
expected control quality of the controller for a given delay
distribution is obtained according to Section III-A.

IV. Jitter and Delay Analyses

In order to apply the worst-case control performance
analysis, we shall compute the three parameters men-
tioned in Section III-B (Equation 3), namely, the nominal
sensor–actuator delay Li, worst-case sensor jitter ∆w

is,

and worst-case actuator jitter ∆w
ia for each control appli-

cation Λi. Figure 2 illustrates the graphical interpreta-
tion of these three parameters. To obtain these parame-
ters, we can apply response-time analysis as follows,

∆w
is = Rw

is −Rb
is,

∆w
ia = Rw

ia −Rb
ia,

Li =

(
Rb
ia +

∆w
ia

2

)
−
(
Rb
is +

∆w
is

2

)
,

(4)

where Rw
is and Rb

is denote the worst-case and best-case
response times for the sensor task τis of the control
application Λi, respectively. Analogously, Rw

ia and Rb
ia

are the worst-case and best-case response times for the
actuator task τia of the same control application Λi.

In this paper, we consider fixed-priority scheduling and
we give a brief overview on computing the worst-case and
best-case response times.

A. Worst-Case Response Time Analysis

Under fixed-priority scheduling, assuming deadline Di ≤
hi and an independent task set2, the worst-case response
time of task τij can be computed by the following
equation [18],

Rw
ij = cwij +

∑
τab∈hp(τij)

⌈
Rw
ij

ha

⌉
cwab, (5)

where hp (τij) denotes the set of higher priority tasks for
the task τij . Equation 5 is solved by fixed-point iteration
starting with e.g., Rw

ij = cwij .

B. Best-Case Response Time Analysis

For the best-case response time analysis under fixed
priority scheduling, we use the bound given by equation
[19]

Rb
ij = cbij +

∑
τik∈pr(τij)

cbik, (6)

where the set pr (τij) is the set of predecessors for task
τij in the task graph model of application Λi.

V. Motivational Example

The examples in this section motivate the need for a
proper design space exploration in order to be able to
design a high expected performance embedded control
system with guaranteed worst-case stability. The first
example illustrates that considering only the expected
control performance could jeopardize the stability of
a control system. The second example illustrates that
the design space exploration should be done considering
the expected control cost (Equation 2) as the objective

2Since we consider the same priority for all tasks within a
task graph, the worst-case response-time analysis can be readily
extended to the sensor (input) and actuator (output) tasks in a
task graph, without introducing any pessimism.

1s

1a

1c

τ

τ

(1)

(1)

(5)

τ

2a

2c

τ

τ

(1)
τ

2s

(1)

(0−6)

(a) Example 1: two control
applications

2ca
τ

(7)

(3)
τ

2s

3s

3a

3c

τ

τ

(3)

(1)

τ

(2)

1s

1a

1c

τ

τ

(2)

(2)

τ

(7)

(b) Example 2: three control
applications

Figure 3. Motivational examples

function, subject to the constraints on worst-case cost
(Equation 3).

We consider (see Equation 2) the weight matrix Qi =
diag (1, 0, 0.001) for each application Λi. All time quan-
tities are given in units of 10 milliseconds throughout
this section. We synthesize the discrete-time Linear-
Quadratic-Gaussian (LQG) controllers for a given period
and constant expected sensor–actuator delay using the
Jitterbug toolbox [16] and MATLAB. We consider (see
Equation 1) the continuous-time disturbance vi to have a
covariance R1i = 1 and discrete-time measurement noise
ei to have the covariance R2i = 0.01. The total expected
control cost, for a set of plants P, is Je

total =
∑
Pi∈P J

e
Λi

,
whereas the total worst-case control cost is defined to be
Jw

total =
∑
Pi∈P J

w
Λi

.

A. Example 1: System Design Driven by Expected Con-
trol Quality

In this example, we consider two plants P1 and P2

(P = {P1, P2}). The corresponding applications Λ1

and Λ2 are two controllers modeled as two task graphs
each consisting of a sensor task τis, a computation task
τic, and an actuator task τia as shown in Figure 3(a).
The numbers in parentheses specify the execution times
of the corresponding tasks. The execution-time of the
control task τ2c is uniformly distributed in the interval of
(0, 6). The other tasks, on the other hand, have constant
execution times. Moreover, let us consider that both
applications are released synchronously.

The applications Λ1 and Λ2 have periods h1 = h2 =
30. Considering the control application Λ2 to be the
higher priority application, the total expected control
cost for control applications Λ1 and Λ2, Je

total, computed
by the Jitterbug toolbox, is minimized and is equal to
14.0. However, if we use the Jitter Margin toolbox [17],
we realize that there is no guarantee that the plant P1

will be stable (the cost Jw
Λ1

is infinite). The values of the
nominal sensor–actuator delay L1, sampling jitter ∆w

1s,
and actuator jitter ∆w

1a are equal to 6.0.
Inverting the priority order of the applications, we can

guarantee the stability of control application Λ1 as a
result of decrease in the sampling jitter ∆w

1s and actuator
jitter ∆w

1a, without jeopardizing the stability of control
application Λ2 (since the nominal sensor–actuator delay
L2, sampling jitter ∆w

2s, and actuator jitter ∆w
2a remain

the same). For this priority order, the values of the
nominal sensor–actuator delay L1, sampling jitter ∆w

1s,
and actuator jitter ∆w

1a are 6.0, 0.0, and 0.0, respectively.
This solution guarantees the stability of both control
applications, although the total expected control cost
Je

total for control applications Λ1 and Λ2 is slightly larger
than before, i.e., 15.2. Thus, considering only the max-
imization of the expected control performance during
the design process can jeopardize the worst-case stability
of applications. We also observe that the guaranteed
worst-case stability could be obtained with only marginal
decrease in the overall expected control quality.

B. Example 2: Stability-Aware System Design with Ex-
pected Control Quality Optimization

We consider three plants P1, P2, and P3 (P =
{P1, P2, P3}) to be controlled, where task graph models
of the corresponding control applications Λ1, Λ2, and Λ3

are shown in Figure 3(b). Let us assume that application
Λi has a higher priority than application Λj iff i > j. Our
objective is to find a stable solution with high control
performance.

Considering the initial period assignment to be h1 =
60, h2 = 60, and h3 = 20, the stability of the plant
P1 is not guaranteed (the worst-case control cost Jw

Λ1

is not finite) even though this design solution provides
high expected control performance, Je

total = 2.7. For this
period assignment, we obtain L1 = 12, ∆w

1s = 16, ∆w
1a =

22 for application Λ1.

In order to decrease the amount of interference ex-
perienced by low priority application Λ1 from high pri-
ority applications Λ2 and Λ3, we increase the period
of application Λ3 to h3 = 60. Further, since a smaller
period often leads to higher control performance, we
decrease the period of the control application Λ1 to
h1 = 30. Applying delay and jitter analyses for this
period assignment, we compute the values of the nominal
sensor–actuator delay L1 = 9, worst-case sensor jitter
∆w

1s = 16, and worst-case actuator jitter ∆w
1a = 16, which

are smaller than the corresponding values for the ini-
tial period assignment. However, this modification does
not change the nominal sensor–actuator delay, worst-
case sensor jitter, and worst-case actuator jitter for the
control applications Λ2 and Λ3. As a result, we can
guarantee the stability of all applications in the worst-
case scenario since the worst-case control costs for all
three applications is finite. Moreover, the total worst-case
and expected control costs for this period assignment are

Jw
total = 2.3 and Je

total = 20.4, respectively.3 We observe
that stability in the worst-case has been achieved with a
severe degradation of the expected control performance.

Another possible solution would be h1 = 60, h2 = 60,
and h3 = 60, that leads to a total worst-case control
cost equal to Jw

total = 5.7 and a total expected cost
Je

total = 3.0. It should be mentioned that the values
of the nominal sensor–actuator delay, worst-case sensor
jitter, and worst-case actuator jitter remain the same as
the previous period assignment for all three applications.
Considering the applications are released simultaneously,
as for the previous period assignment, the low priority
application Λ1 experiences interference by high priority
applications every other time (since it executes twice as
frequently as the high priority applications). Therefore,
the decrease in the expected control cost is due to
removing the variation in the response-time of the control
application Λ1.

Having finite total worst-case costs for both period
assignments indicates the stability of both design solu-
tions. However, though the total worst-case control cost
(Jw

total) is smaller in the former period assignment, the
latter is the desirable design solution since the overall
performance of the system is determined by the expected
control performance (Je

total). Although it is of critical
importance to guarantee stability, it is highly desirable
to keep the inherent quality degradation in the expected
control performance as small as possible.

We conclude that, just optimizing the expected control
quality can lead to unsafe solutions which are unstable
in the worst-case. Nonetheless, focusing only on stability,
potentially, leads to low overall quality. Therefore, it is
essential and possible to achieve both safety (worst-case
stability guarantees) and high level of expected control
quality.

VI. Problem Formulation

The inputs for our co-design problem are
• a set of plants P to be controlled,

• a set of control applications Λ,

• a set of sampling periods Hi for each control appli-
cation Λi,

• execution-time probability functions of the tasks
with the best-case and worst-case execution times.

The outputs of our co-design tool are the period hi for
each control application Λi, unique priority ρi for each
application Λi, and the control law ui for each plant Pi ∈
P (the tasks within an application have the same priority
equal to the application priority). The outputs related to

3It is good to mention that the metrics for the worst-case (Jw)
and expected case (Je) are expressing different properties of the
system and, thus, are not comparable with each other (Jw

total = 2.3,
and Je

total = 20.4, does not mean that the worst-case control cost
is better than the expected one.).

the controller synthesis are the period hi and the control
law ui for each plant Pi.

As mentioned before, there exists a control applica-
tion Λi ∈ Λ corresponding to each plant Pi ∈ P and
the final control quality is captured by the weighted sum
of the individual control costs Je

Λi
(Equation 2) of all

control applications Λi ∈ Λ. Hence, the cost function to
be minimized is ∑

Pi∈P

wΛiJ
e
Λi
, (7)

where the weights wΛi
are determined by the designer.

To guarantee stability of control application Λi, the
worst-case control cost Jw

Λi
(Equation 3) must have a fi-

nite value. However, in addition to stability, the designer
may require an application to satisfy a certain degree of
robustness which is captured by the following criteria,

Jw
Λi
< J̄w

Λi
, ∀Pi ∈ P, (8)

where J̄w
Λi

is the limit on tolerable worst-case cost for
control application Λi and is decided by the designer. If
the requirement is for an application Λi only to be stable
in the worst-case, the constraint on the worst-case cost
Jw

Λi
is to be finite.

VII. Co-design Approach

The overall flow of our proposed optimization approach is
illustrated in Figure 4. In each iteration, each application
is assigned a period by our period optimization method
(see Section VII-A). Having assigned a period to each
application, we proceed with determining the priorities of
the applications (see Section VII-B). This process takes
place in two main steps. In the first step, we analyze the
worst-case sensitivity (worst-case sensitivity is illustrated
in Section VII-B1) of control applications and at the
same time we synthesize the controllers (see Section
VII-B2). The analysis of worst-case sensitivity is done
based on the worst-case control performance constraints
for control applications. The higher the sensitivity level
of a control application, the smaller the amount of jitter
and delay it can tolerate before hitting the worst-case
control performance limit. Therefore, in this step, the
applications are clustered in several groups according
to their sensitivity and the priority level of a group is
identified by the sensitivity level of its applications. In
addition, in the first step, we can figure out if there
exists, at all, any possible priority assignment which
satisfies the worst-case robustness requirements with the
current period assignment. The outputs of this step are
a sequence of groups, in ascending order of sensitivity,
and the synthesized controllers. While the first step has
grouped applications according to their sensitivity, the
second step is concerned with assigning priorities to each
individual application (see Section VII-B3). This will be
taken care of by an inside group optimization, where

Priority

Optimization

(Periods & Control−Laws)
Controllers

Schedule Specification

Stop?

Compute Control Cost

Delay Distributions

System Simulation

Priorities

Optimization
Inside Group

Periods

Choose Controller
Periods

System Model
Period Specification

Execution−Time Specification

Sensitivity Groups

& Controllers

Sensitivity Analysis

& Application Clustering

& Control Synthesis

P
er

io
d

 O
p

ti
m

iz
a
ti

o
n

 L
o
o
p

No

No

Yes

Yes

Possible?

Figure 4. Overall flow of our approach

we take the expected control performance into account
during the priority optimization step. Having found the
periods and priorities, we perform system simulation to
obtain the delay distributions for all sensor and actuator
tasks. These delay distributions are then used by the
Jitterbug toolbox to compute the total expected control
cost. The optimization will be terminated once a satis-
factory design solution is found.

A. Period Optimization

The solution space exploration for the periods of control
applications is done using a modified coordinate search
[20] combined with the direct search method [21]. Both
methods belong to the class of derivative-free optimiza-
tion methods, where the derivative of the objective func-
tion is not available or it is time consuming to obtain.
These methods are desirable for our optimization since
the objective function is the result of an inside opti-
mization loop (i.e., the objective function is not available
explicitly) and it is time consuming to approximate the
gradient of the objective function using finite differences
[20]. We describe our period optimization approach in
two steps, where the first step identifies a promising

region in the search space and the second step performs
the search in the region identified by the first step, to
achieve further improvements.

In the first step, we utilize a modified coordinate
search method to acquire information regarding the
search space and to drive the optimization towards a
promising region. The coordinate search method cycles
through the coordinate directions (here, the coordinates
are along the application periods) and in each iteration
performs a search along only one coordinate direction.
Our modified coordinate search method is guided by the
expected control performance, taking into consideration
the worst-case requirements of the applications. In the
initial step, all control applications are assigned their
longest periods in their period sets. If there exists a
control application violating its worst-case control per-
formance criterion, its period is decreased to the next
longest period in the period set; otherwise, the period
of the control application with the highest expected
control cost is decreased to the next longest period in the
period set. This process is repeated until the expected
control performance cannot be further improved under
the worst-case control performance requirements of the
applications.

The solution obtained in the first step (period assign-
ment), places us in a promising region of the solution
space. In the second step, the direct search method is
utilized to achieve further improvements. This method
employs two types of search moves, namely, exploratory
and pattern. The exploratory search move is used to
acquire knowledge concerning the behavior of the objec-
tive function. The pattern move, however, is designed
to utilize the information acquired by the exploratory
search move to find a promising search direction. If the
pattern move is successful, the direct search method
attempts to perform further steps along the pattern move
direction with a series of exploratory moves from the new
point, followed by a pattern move.

Figure 5 illustrates the coordinate and direct search
methods using a simple example considering two control
applications. Therefore, in this example, the search space
is two-dimensional, where each dimension corresponds to
the period of one of the control applications. The dashed
curves are contours of the objective function and the
minimizer of the objective function in this example is
x∗ = (h∗1, h

∗
2). The green arrows are the moves performed

by the coordinate search method in the first step. The
blue and red arrows are exploratory and pattern moves,
respectively, performed by the direct search method in
the second step.

In this section, we have considered the period opti-
mization loop in Figure 4. Inside the loop, application
priorities have to be determined and controllers have to
be synthesized such that the design goals are achieved.

h
2

h
1

x*

Figure 5. The coordinate and direct search methods

This will be described in the following section.

B. Priority Optimization and Control Synthesis

Our priority optimization approach consists of two main
steps. The first step makes sure that the worst-case
control performance constraints are satisfied, whereas the
second step improves the expected control performance
of the control applications.

1) Worst-Case Sensitivity and Sensitivity Groups

The notion of worst-case sensitivity is closely related
to the amount of delay and jitter a control application
can tolerate before violating the robustness requirements.
The sensitivity level of an application is captured by
Algorithm 1. Further, Algorithm 1 clarifies the relation
between sensitivity level and priority level of a group
and identifies the sensitivity groups (Gi). The notion
of sensitivity is linked to priority by the fact that high
priority applications experience less delay and jitter.

2) Sensitivity-Based Application Clustering

The algorithm for the worst-case sensitivity analysis
and application clustering is outlined in Algorithm 1.
The main idea behind this algorithm is to cluster the
applications which have the same level of sensitivity in
the same group.

To cluster applications, we look for the set of appli-
cations which can satisfy their worst-case control perfor-
mance requirements even if they are at the lowest priority
level. This group (G1) of applications can be considered
the least sensitive set of applications. We remove these
applications from the set of applications (Line 24) and
proceed with performing the same procedure for the re-
maining applications. This process continues until either
the set of remaining applications (S) is empty (Line
17) or none of the remaining applications can satisfy its
requirements if it is assigned the lowest priority among
the remaining applications (Line 20), which indicates
that there does not exist any priority assignment for the

Algorithm 1 Worst-Case Sensitivity Analysis
1: % S: remaining applications set;
2: % Gi: the i-th sensitivity group;
3: Initialize set S = Λ;
4: for n = 1 to | Λ | do
5: Gn = ∅;
6: for all Λi ∈ S do
7: • Response-time analysis for sensor and actuator (Eq 5

and 6), considering hp (Λi) = S \ {Λi};
8: • Jitter and delay analyses ∆w

is, ∆w
ia, Li (Eq 4);

9: • Simulation considering hp (Λi) = S \ {Λi} to find the
expected sensor–actuator delay for Λi;

10: • Control-law synthesis and delay compensation;
11: • Worst-case control performance Jw

Λi
analysis (Eq 3);

12: if Jw
Λi
< J̄w

Λi
then

13: Gn = Gn ∪ {Λi};
14: end if
15: end for
16:
17: if S == ∅ then
18: % Terminate!
19: return 〈G1,G2, ...,Gn〉;
20: else if Gn == ∅ then
21: % No possible solution meets the requirements!
22: return 〈〉;
23: else
24: S = S \Gn;
25: end if
26: end for

current assigned periods which can guarantee the worst-
case control performance requirements for all applica-
tions.

In order to figure out whether an application meets its
worst-case robustness requirements, we perform the best-
case and worst-case response-time analyses (Equations
5 and 6) for the sensor and actuator tasks considering
hp (Λi) = S \ {Λi} (Line 7) and compute the nomi-
nal sensor–actuator delay, worst-case sensor jitter, and
worst-case actuator jitter (Equation 4) for the applica-
tion under analysis (Line 8). Moreover, we shall syn-
thesize the control-law and compensate for the proper
amount of delay. Therefore, we design an LQG con-
troller and compensate for the expected sensor–actuator
delay (Line 10). The expected sensor–actuator delay is
extracted from the schedule in our system simulation en-
vironment, where the remaining applications constitute
the set of higher priority applications (hp (Λi) = S\{Λi})
for the application under analysis (Line 9). Having the
controller and the values of the nominal sensor–actuator
delay, worst-case sensor jitter, and worst-case actuator
jitter, we can calculate the worst-case control cost (Equa-
tion 3) (Line 11) and check if the worst-case requirements
(Equation 8) are fulfilled (Line 12).

3) Inside Group Optimization

Based on Algorithm 1 in the previous section, we have
grouped the applications according to their sensitivity
level. In this section, we shall assign a unique priority to
each application such that the expected control perfor-
mance is improved. The grouping realized by Algorithm

1 guarantees the worst-case control performance and
robustness requirements (Equation 8) of an application Λi
assigned to group Gj, as long as all applications assigned
to a group Gk, k < j, have a priority smaller than
the priority of application Λi. Considering the grouping,
we can make the following observation: priority order of
applications inside a group can be assigned arbitrarily
without jeopardizing the worst-case performance and
stability guarantees.

As mentioned before, an intrinsic property of Algo-
rithm 1 is that the priority order of the applications
inside a group can be changed arbitrarily. Therefore, our
proposed approach optimizes the priority order of the
applications within each group with respect to the ex-
pected control performance without the need for recheck-
ing the worst-case requirements of applications. Thus,
the combinatorial optimization problem is divided into
several smaller problems, inside each group, which are
exponentially less time consuming to solve. In this paper,
the priorities are assigned considering the dynamics of
the plants, Ai, and the sampling periods, hi. Therefore,
we choose to assign priorities based on the values of
λ̂ihi, where λ̂i = maxj{Re(λij)|det(Ai − λijI) = 0} is
a proper representative of dynamics of plant Pi (λij are
the eigenvalues of matrix Ai). We consider that the larger
the value of λ̂ihi is, the higher the priority of application
Λi, leading to smaller induced delays due to interference
from other applications.

VIII. Experimental Results

We have performed several experiments to investigate
the efficiency of our proposed design approach. We
compare our approach (EXP–WST) against three other
approaches (NO OPT, WST, and EXP). We have 125
benchmarks with varying number of plants. The number
of plants varies from 2 to 15. The plants are taken
from a database with inverted pendulums, ball and beam
processes, DC servos, and harmonic oscillators [15]. Such
benchmarks are representative of realistic control prob-
lems and are used extensively for experimental evalua-
tions. For each plant, there exists a corresponding control
application modeled as a task graph with 2 to 5 tasks.
The set of suggested periods of each control applications
includes 6 periods generated based on common rules of
thumb [15]. Without loss of generality, we wish to find
a high-quality stable design solution, i.e., the constraint
on the maximum tolerable worst-case control cost is that
the cost is finite (Equation 8).

A. Efficiency of our proposed approach

As for the first comparison, we run the same algorithm
as our proposed approach, however, it terminates as
soon as it finds a stable design solution. Therefore, this
approach, called NO OPT, does not involve any expected

Table I
Experimental Results

Number of NO OPT approach WST approach EXP approach
control Improvement Improvement Difference Percentage of

applications
(

Je
NO OPT−Je

EXP–WST
Je
NO OPT

)
× 100

(
Je
WST−Je

EXP–WST
Je
WST

)
× 100

(
Je
EXP−Je

EXP–WST
Je
EXP

)
× 100 invalid solutions 4

2 74% 10% -2.4% 42%
3 72% 49% 4.6% 20%
4 44% 25% -5.4% 44%
5 55% 37% -0.4% 40%
6 52% 27% -6.1% 30%
7 58% 33% 4.4% 33%
8 56% 23% -4.1% 44%
9 54% 28% -4.9% 44%
10 46% 20% -4.9% 37%
11 51% 24% -5.5% 50%
12 43% 13% -1.6% 44%
13 65% 28% 1.9% 71%
14 46% 24% -2.4% 60%
15 38% 18% -5.5% 60%

Average 53% 26% -2.3% 44%

control performance optimization but guarantees worst-
case stability. We calculate the relative expected control
cost improvements

Je
NO OPT−J

e
EXP–WST

Je
NO OPT

, where Je
EXP–WST

and Je
NO OPT are the expected control costs produced by

our approach and the NO OPT approach, respectively.
The second column of Table I shows the result of this
set of experiments. As it can be observed, our approach
produces solutions with guaranteed stability and an
overall control quality improvement of 53% on average,
compared to an approach which only addresses worst-
case stability.

The second comparison is made with an optimization
approach driven by the worst-case control performance.
The approach, called WST, is exactly the same as our
approach but the objective function to be optimized is
the worst-case control cost given in Equation 3. Similar
to the previous experiment, we are interested in the rela-
tive expected control cost improvements

Je
WST−J

e
EXP–WST

Je
WST

,

where Je
WST is the expected control cost of the final

solution obtained by the WST approach. Our proposed
approach, while still guarantees worst-case stability, has
an average improvement of 26% in the expected control
cost as shown in the third column of Table I.

The third comparison is performed against an op-
timization approach, called EXP, which ONLY takes
into consideration the expected control performance. The
priority assignment in this approach is done by a genetic
algorithm approach similar to our previous work [13].
Since the worst-case control performance constraints are
ignored, the search space is larger, and the algorithm
should be able to find a superior design solution in terms
of the expected control performance. The comparison has
been made considering the relative expected control cost
difference

Je
EXP−J

e
EXP–WST

Je
EXP

, where Je
EXP is the expected

control cost of the final solution found by the EXP
approach. The results of the comparison are shown in

the forth column of Table I. Since the worst-case control
performance constraints are relaxed, the final solution of
this approach can turn out to be unstable. The percent-
age of designs produced by the EXP approach for which
the worst-case stability was not guaranteed is reported in
the fifth column of Table I. The first observation is that,
on average, for 44% of the benchmarks this algorithm
ended up with a design solution for which the stability
could not be guaranteed. The second observation is that
our approach is on average 2.3% away from the relaxed
optimization approach exclusively guided by expected
control performance. This clearly states that we are able
to guarantee worst-case stability with a very small loss on
expected control quality. As discussed before, the relaxed
optimization approach should in principle outperform
our proposed approach. However, our proposed approach
performs slightly better in a few cases which is due to
the fact that heuristics with different constraints can be
guided to different regions of the huge search space.

B. Runtime of our proposed approach

We measured the runtime of our proposed approach
on a PC with a quad-core CPU running at 2.83 GHz
with 8 GB of RAM and Linux operating system. The
average runtime of our approach based on the number
of control application is shown in Figure 6. It can be
seen that our approach could find a high-quality stable
design solution for large systems (15 control applications)
in less than 7 minutes. Also, we report the timing of the
relaxed optimization approach, EXP, which only consid-
ers the expected control performance (no guarantee for
stability), where the priority assignment is performed by
a genetic algorithm similar to [13]. For large systems
(15 control applications), it takes 178 minutes for this
approach to terminate.

4Percentage of design solutions produced by the EXP approach
for which stability is not guaranteed.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 6 8 10 12 14

R
u

n
ti
m

e
 [

S
e

c
]

Number of Control Applications

Our approach (EXP-WST)
Relaxed approach (EXP)

Figure 6. Runtime of our approach (EXP–WST) and comparison
with the relaxed optimization approach (EXP)

We conclude that the design optimization time is
reduced by an order of magnitude compared to previous
co-design methods for embedded control systems. In
addition, our integrated design approach gives formal
guarantees on stability based on timing and jitter analy-
sis, and at the same time it practically achieves the same
level of control-quality optimization as related design
approaches.

IX. Conclusions

The design of embedded control systems requires spe-
cial attention due to the complex interrelated nature
of timing properties connecting scheduling and control
synthesis. In order to address this problem, not only
the control performance but also the robustness require-
ments of control applications have to be taken into
consideration during the design process since having
high control performance is not a guarantee for worst-
case stability. On the other hand, a design methodology
solely grounded on worst-case scenarios leads to poor
control performance due to the fact that the design
is tuned to a scenario which occurs very rarely. We
proposed an integrated design optimization method for
embedded control systems with high requirements on
robustness and optimized expected control performance.
Experimental results have validated that both control
quality and worst-case stability of a system have to be
taken into account during the design process.

References

[1] B. Wittenmark, J. Nilsson, and M. Törngren, “Timing prob-
lems in real-time control systems,” in Proceedings of the Amer-
ican Control Conference, 1995, pp. 2000–2004.

[2] K. E. Årzén, A. Cervin, J. Eker, and L. Sha, “An introduction
to control and scheduling co-design,” in Proceedings of the 39th

IEEE Conference on Decision and Control, 2000, pp. 4865–
4870.

[3] H. Rehbinder and M. Sanfridson, “Integration of off-line
scheduling and optimal control,” in Proceedings of the 12th

Euromicro Conference on Real-Time Systems, 2000, pp. 137–
143.

[4] H. Kopetz, Real-Time Systems—Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic, 1997.

[5] R. Majumdar, I. Saha, and M. Zamani, “Performance-aware
scheduler synthesis for control systems,” in Proceedings of
the 9th ACM international conference on Embedded software,
2011, pp. 299–308.

[6] D. Goswami, M. Lukasiewycz, R. Schneider, and
S. Chakraborty, “Time-triggered implementations of
mixed-criticality automotive software,” in Proceedings of the
15th Conference for Design, Automation and Test in Europe
(DATE), 2012.

[7] K. E. Årzén and A. Cervin, “Control and embedded comput-
ing: Survey of research directions,” in Proceedings of the 16th

IFAC World Congress, 2005.

[8] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task
schedulability in real-time control systems,” in Proceedings of
the 17th IEEE Real-Time Systems Symposium, 1996, pp. 13–
21.

[9] E. Bini and A. Cervin, “Delay-aware period assignment in
control systems,” in Proceedings of the 29th IEEE Real-Time
Systems Symposium, 2008, pp. 291–300.

[10] M. M. Ben Gaid, A. Cela, and Y. Hamam, “Optimal in-
tegrated control and scheduling of networked control sys-
tems with communication constraints: Application to a car
suspension system,” IEEE Transactions on Control Systems
Technology, vol. 14, no. 4, pp. 776–787, 2006.

[11] A. Cervin, B. Lincoln, J. Eker, K. E. Årzén, and G. Buttazzo,
“The jitter margin and its application in the design of real-
time control systems,” in Proceedings of the 10th International
Conference on Real-Time and Embedded Computing Systems
and Applications, 2004.

[12] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney,
“Task scheduling for control oriented requirements for cyber-
physical systems,” in Proceedings of the 29th IEEE Real-Time
Systems Symposium, 2008, pp. 47–56.

[13] S. Samii, A. Cervin, P. Eles, and Z. Peng, “Integrated schedul-
ing and synthesis of control applications on distributed em-
bedded systems,” in Proceedings of the Design, Automation
and Test in Europe Conference, 2009, pp. 57–62.

[14] A. Aminifar, S. Samii, P. Eles, and Z. Peng, “Control-quality
driven task mapping for distributed embedded control sys-
tems,” in Proceedings of the 17th IEEE Embedded and Real-
Time Computing Systems and Applications (RTCSA) Con-
ference, 2011, pp. 133 –142.

[15] K. J. Åström and B. Wittenmark, Computer-Controlled Sys-
tems, 3rd ed. Prentice Hall, 1997.

[16] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysis
of real-time control performance,” in Proceedings of the 41st

IEEE Conference on Decision and Control, 2002, pp. 1319–
1324.

[17] A. Cervin, “Stability and worst-case performance analysis of
sampled-data control systems with input and output jitter,” in
Proceedings of the 2012 American Control Conference (ACC),
2012.

[18] M. Joseph and P. Pandya, “Finding response times in a real-
time system,”The Computer Journal, vol. 29, no. 5, pp. 390–
395, 1986.

[19] J. Palencia Gutierrez, J. Gutierrez Garcia, and M. Gonza-
lez Harbour, “Best-case analysis for improving the worst-case
schedulability test for distributed hard real-time systems,” in
Proceedings of the 10th Euromicro Workshop on Real-Time
Systems, 1998, pp. 35–44.

[20] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed.
Springer, 1999.

[21] R. Hooke and T. A. Jeeves, ““direct search” solution of nu-
merical and statistical problems,” J. ACM, vol. 8, no. 2, pp.
212–229, 1961.

