
Cache-Aware Compositional Analysis of Real-Time Multicore
Virtualization Platforms∗

Meng Xu Linh T.X. Phan Insup Lee Oleg Sokolsky
University of Pennsylvania

{mengxu, linhphan, lee, sokolsky}@cis.upenn.edu

Sisu Xi Chenyang Lu Christopher Gill
Washington University in St. Louis
{xis, cdgill, lu}@cse.wustl.edu

Abstract—Multicore processors are becoming ubiquitous, and
it is becoming increasingly common to run multiple real-time
systems on a shared multicore platform. While this trend helps
to reduce cost and to increase performance, it also makes it more
challenging to achieve timing guarantees and functional isolation.

One approach to achieving functional isolation is to use virtual-
ization. However, virtualization also introduces many challenges
to the multicore timing analysis; for instance, the overhead due
to cache misses becomes harder to predict, since it depends not
only on the direct interference between tasks but also on the
indirect interference between virtual processors and the tasks
executing on them.

In this paper, we present a cache-aware compositional analysis
technique that can be used to ensure timing guarantees of
components scheduled on a multicore virtualization platform.
Our technique improves on previous multicore compositional
analyses by accounting for the cache-related overhead in the
components’ interfaces, and it addresses the new virtualization-
specific challenges in the overhead analysis. To demonstrate the
utility of our technique, we report results from an extensive
evaluation based on randomly generated workloads.

I. INTRODUCTION

Modern real-time systems are becoming increasingly complex
and demanding; at the same time, the microprocessor industry
is offering more computation power in the form of an ex-
ponentially growing number of cores. Hence, it is becoming
more and more common to run multiple system components
on the same multicore platform, rather than deploying them
separately on different processors. This shift towards shared
computing platforms enables system designers to reduce cost
and to increase performance; however, it also makes it signifi-
cantly more challenging to achieve separation of concerns and
to maintain timing guarantees.

One approach to achieve separation of concerns is through
virtualization technology. On a virtualization platform, such
as Xen [1], multiple system components with different func-
tionalities can be deployed in domains (virtual machines) that
can each run their own operating system. These domains
provide a clean isolation between components, and they pre-
serve the components’ functional behavior. However, existing
virtualization platforms are designed to provide good average
performance – they are not designed to provide real-time
guarantees. To achieve the latter, a virtualization platform
would need to ensure that each domain meets its real-time
performance requirements. There are on-going efforts towards
this goal, e.g., [8], [10], [16], but they primarily focus on
single-core processors.

∗The published version of this paper contains a typo in Eq. 13 that has
been fixed in this author version.

In this paper, we present a framework that can provide
timing guarantees for multiple components running on a
shared multicore virtualization platform. Our approach is
based on multicore compositional analysis, but it takes the
unique characteristics of virtualization platforms into account.
In our approach, each component—i.e., a set of tasks and their
scheduling policy—is mapped to a domain, which is executed
on a set of virtual processors (VCPUs). The VCPUs of the
domains are then scheduled on the underlying physical cores.
The schedulability analysis of the system is compositional: we
first abstract each component into an interface that describes
the minimum processing resources needed to ensure that the
component is schedulable, and then we compose the resulting
interfaces to derive an interface for the entire system. Based on
the system’s interface, we can compute the minimum number
of physical cores that are needed to schedule the system.

A number of compositional analysis techniques for multi-
core systems have been developed (e.g., [3], [12], [18]), but ex-
isting theories assume a somewhat idealized platform in which
all overhead is negligible. In practice, the platform overhead—
especially the cost of cache misses—can substantially interfere
with the execution of tasks. As a result, the computed inter-
faces can underestimate the resource requirements of the tasks
within the underlying components. Our goal is to remove this
assumption by accounting for the platform overhead in the
interfaces. In this paper, we focus on cache-related overhead,
as it is among the most prominent in the multicore setting.

Cache-aware compositional analysis for multicore virtu-
alization platforms is challenging because virtualization in-
troduces additional overhead that is difficult to predict. For
instance, when a VCPU resumes after being preempted by a
higher-priority VCPU, a task executing on it may experience a
cache miss, since its cache blocks may have been evicted from
the cache by the tasks that were executing on the preempting
VCPU. Similarly, when a VCPU is migrated to a new core,
all its cached code and data remain in the old core; therefore,
if the tasks later access content that was cached before the
migration, the new core must load it from memory rather than
from its cache.

Another challenge comes from the fact that cache misses
that can occur when a VCPU finishes its budget and stops its
execution. For instance, suppose a VCPU is currently running
a task τi that has not finished its execution when the VCPU
finishes its budget, and that τi is migrated to another VCPU
of the same domain that is either idle or executing a lower-
priority task τj (if one exists). Then τi can incur a cache miss
if the new VCPU is on a different core, and it can trigger

a cache miss in τj when τj resumes. This type of overhead
is difficult to analyze, since it is in general not possible to
determine statically when a VCPU finishes its budget or which
task is affected by the VCPU completion.

In this paper, we address the above virtualization-related
challenges, and we present a cache-aware compositional anal-
ysis for multicore virtualization platforms. Specifically, we
make the following contributions:
• We introduce DMPR, a deterministic extension of the

multiprocessor resource periodic model to better rep-
resent component interfaces on multicore virtualization
platforms (Section III);

• we present a DMPR-based compositional analysis for
systems without cache-related overhead (Section IV);

• we characterize different types of events that cause cache
misses in the presence of virtualization (Section V); and

• we propose two approaches, task-centric and model-
centric, to account for the cache-related overhead. Based
on the results, we develop the corresponding cache-aware
compositional analysis methods (Sections VI and VII).

To demonstrate the applicability and the benefits of our
proposed cache-aware analysis, we report results from an
extensive evaluation on randomly generated workloads using
simulation as well as by running them on a realistic platform.

II. SYSTEM DESCRIPTIONS

The system we consider consists of multiple real-time compo-
nents that are scheduled on a multicore virtualization platform,
as is illustrated in Fig. 1(a). Each component corresponds to
a domain (virtual machine) of the platform and consists of
a set of tasks; these tasks are scheduled on a set of virtual
processors (VCPUs) by the domain’s scheduler. The VCPUs
of the domains are then scheduled on the physical cores by
the virtual machine monitor (VMM).

Each task τi within a domain is an explicit-deadline periodic
task, defined by τi = (pi, ei, di), where pi is the period, ei is
the worst-case execution time (WCET), and di is the relative
deadline of τi. We require that 0 < ei ≤ di ≤ pi for all τi.

Each VCPU is characterized by VPj = (Πj ,Θj), where Πj

is the VCPU’s period and Θj is the resource budget that the
VCPU services in every period, with 0 ≤ Θj ≤ Πj . We say
that VPj is a full VCPU if Θj = Πj , and a partial VCPU
otherwise. We assume that each VCPU is implemented as a
periodic server [20] with period Πj and maximum budget time
Θj . The budget of a VCPU is replenished at the beginning
of each period; if the budget is not used when the VCPU is
scheduled to run, it is wasted.

We assume that all cores are identical and have unit capacity,
i.e., each core provides t units of resource (execution time) in
any time interval of length t. Each core has a private cache1,
all cores share the same memory, and the size of the memory
is sufficiently large to ensure that all tasks (from all domains)
can reside in memory at the same time, without conflicts.

1We assume that either there is no shared cache, or the shared cache has
been partitioned into cache sets so that each core has exclusive access to some
number of cache sets [15].

Domain 1 Domain 2 Domain 3

gEDF gEDF
321 ,, τττ 654 ,, τττ 87 ,ττ

gEDF

hP2,Q2,m2i hP3,Q3,m3ihP1,Q1,m1i

VP1 VP2 VP3 VP4 VP5

cpu1 cpu2 cpu3 cpu4

VMM

VP1 VP2VP3 VP4 VP5

cpu1 cpu3 cpu4

cpu2

gEDF

(a) Task and VCPU scheduling.

Domain 1 Domain 2 Domain 3

gEDF gEDF
321 ,, τττ 654 ,, τττ 87 ,ττ

gEDF

hP2,Q2,m2i hP3,Q3,m3ihP1,Q1,m1i

VP1 VP2 VP3 VP4 VP5

cpu1 cpu2 cpu3 cpu4

VMM

VP1 VP2VP3 VP4 VP5

cpu1 cpu3 cpu4

cpu2

gEDF

(b) Scheduling of VCPUs.

Fig. 1: Compositional scheduling on a virtualization platform.

Scheduling of tasks and VCPUs. We consider a hybrid
version of the Earliest Deadline First (EDF) strategy. As is
shown in Fig. 1, tasks within each domain are scheduled on the
domain’s VCPUs under the global EDF (gEDF) [2] scheduling
policy. The VCPUs of all the domains are then scheduled on
the physical cores under a semi-partitioned EDF policy: each
full VCPU is pinned (mapped) to a dedicated core, and all the
partial VCPUs are scheduled on the remaining cores under
gEDF. In the example from Fig. 1(b), VP1 and VP3 are full
VCPUs, which are pinned to the physical cores cpu1 and cpu2,
respectively. The remaining VCPUs are partial VCPUs, and
are therefore scheduled on the remaining cores under gEDF.
Cache-related overhead. When two code sections are mapped
to the same cache set, one section can evict the other section’s
cache blocks from the cache, which causes a cache miss
when the former resumes. If the two code sections belong
to the same task, this cache miss is an intrinsic cache miss;
otherwise, it is an extrinsic cache miss [5]. The overhead
due to intrinsic cache misses of a task can typically be
statically analyzed based solely on the task; however, extrinsic
cache misses depend on the interference between tasks during
execution. In this paper, we assume that the tasks’ WCETs
already include intrinsic cache-related overhead, and we will
focus on the extrinsic cache-related overhead. In the rest of this
paper, we use the term ‘cache’ to refer to ‘extrinsic cache’.

We use ∆crpmd to denote the maximum time needed to re-
load all the useful cache blocks (i.e., cache blocks that will
be reused) of a preempted task when that task resumes (either
on the same core or on a different core).2 Since the overhead
for reloading the cache content of a preempted VCPU (i.e., a
periodic server) upon its resumption is insignificant compared
to the task’s, we will assume here that it is either zero or is
already included in the overhead due to cache misses of the
running task inside the VCPU.
Objectives. In the above setting, our goal is to develop a
cache-aware compositional analysis framework for the system.
This framework consists of two elements: (1) an interface
representation that can succinctly capture the resource require-
ments of a component (i.e., a domain or the entire system);
and (2) an interface computation method for computing a
minimum-bandwidth cache-aware interface of a component
(i.e., an interface with the minimum resource bandwidth that
guarantees the schedulability of a component in the presence
of cache-related overhead). We assume that all VCPUs of each

2For ease of exposition, we use a single bound on the cache-related
overhead; however, our analysis can easily be extended to consider different
bounds for the preemption overhead and the migration overhead of each task.

domain j share a single period Πj , which is given a priori and
available to all the other domains.

III. DETERMINISTIC MULTIPROCESSOR PERIODIC
RESOURCE MODEL

In this section, we introduce the deterministic multiprocessor
resource model (DMPR) for representing the interfaces.

Recall that, when representing a platform, a resource model
specifies the characteristics of the resource supply that is
provided by that platform; when representing a component’s
interface, it specifies the total resource requirements of the
component that must be guaranteed to ensure the component’s
schedulability. The resource provided by a resource model
R can also be captured by a supply bound function (SBF),
denoted by SBFR(t), that specifies the minimum number of
resource units that R provides over any interval of length t.

Several resource models have been developed for
multiprocessor platforms. In this paper, we propose a
deterministic extension of the multiprocessor periodic
resource (MPR) model [21], since it is the most efficient and
suitable for our virtualization platform.
Background on MPR. An MPR model Γ = (Π̃, Θ̃,m′)
specifies that a multiprocessor platform with a number of
identical, unit-capacity CPUs provides Θ̃ units of resources in
every period of Π̃ time units, with concurrency at most m′ (in
other words, at any time instant at most m′ physical processors
are allocated to this resource model), where Θ̃ ≤ m′Π̃.

The MPR model is simple and highly flexible because it
represents the collective resource requirements of components
without fixing the contribution of each processor a priori.
However, this flexibility also introduces some extra overhead:
it is possible that all processors stop providing resources at
the same time, which results in a long worst-case starvation
interval (it can be as long as 2(Π̃−dΘ̃/m′e) time units [12]).
Therefore, to ensure schedulability in the worst case, it is
necessary to provide more resources than strictly required.
However, we can minimize this overhead by restricting the
supply pattern of some of the processors. This is a key
element of the deterministic MPR that we now propose.
Deterministic multiprocessor resource model (DMPR). A
DMPR model is a deterministic extension of the MPR model,
in which all of the processors but one always provide resource
with full capacity. It is formally defined as follows.

Definition 1. A DMPR µ = 〈Π,Θ,m〉 specifies a resource
that guarantees m full (dedicated) unit-capacity processors,
each of which provides t resource units in any time interval of
length t, and one partial processor that provides Θ resource
units in every period of Π time units, where 0 ≤ Θ < Π and
m ≥ 0.

By definition, the resource bandwidth of a DMPR µ =
〈Π,Θ,m〉 is bwµ = m + Θ

Π . The total number of processors
of µ is mµ = m+ 1, if Θ > 0, and mµ = m, otherwise.

Observe that the partial processor of µ is represented by a
single-processor periodic resource model Ω = (Π,Θ) [22].
(However, it can also be represented by any other single

)2,5.2,6()',,(=ΘΠ m

Figure 4 Worst case resource supply of DMPR

VP1

VP2

VP3

Π 2Π 3Π 0

Θ Θ Θ

t

Fig. 2: Worst-case resource supply pattern of µ = 〈Π,Θ,m〉.

processor resource model, such as EDP model [11].) Based on
this characteristic, we can easily derive the worst-case supply
pattern of µ (shown in Figure 2) and its supply bound function,
which is given by the following lemma:

Lemma 1. The supply bound function of a DMPR model µ =
〈Π,Θ,m〉 is given by:

SBFµ(t) =

{
mt, if Θ = 0 ∨ (0 ≤ t ≤ Π−Θ)

mt + yΘ + max{0, t− 2(Π−Θ)− yΠ}, otherwise

where y =
⌊ t−(Π−Θ)

Π

⌋
, for all t > Π−Θ.

Proof: Consider any interval of length t. Since the full
processors of µ are always available, µ provides the minimum
resource supply iff the partial processor provides the worst-
case supply. Since the partial processor is a single-processor
periodic resource model Ω = (Π,Θ), its minimum resource
supply in an interval of length t is given by [22]: SBFΩ(t) = 0,
if Θ = 0 or 0 ≤ t ≤ Π − Θ; otherwise, SBFΩ(t) =

yΘ + max{0, t − 2(Π − Θ) − yΠ} where y =
⌊ t−(Π−Θ)

Π

⌋
.

In addition, the m full processors of µ provides a total of mt
resource units in any interval of length t. Hence, the minimum
resource supply of µ in an interval of length t is mt+SBFΩ(t).
This proves the lemma.

It is easy to show that, when a DMPR µ and an MPR Γ have
the same period, bandwidth, and total number of processors,
then SBFµ(t) ≥ SBFΓ(t) for all t ≥ 0, and the worst-case
starvation interval of µ is always shorter than that of Γ.

IV. OVERHEAD-FREE COMPOSITIONAL ANALYSIS

In this section, we present our method for computing the
minimum-bandwidth DMPR interface for a component, as-
suming that the cache-related overhead is negligible. The
overhead-aware interface computation is considered in the next
sections. We first recall some key results for components that
are scheduled under gEDF [12].

A. Component schedulability under gEDF
The demand of a task τi in a time interval [a, b] is the amount
of computation that must be completed within [a, b] to ensure
that all jobs of τi with deadlines within [a, b] are schedulable.
When τi = (pi, ei, di) is scheduled under gEDF, its demand
in any interval of length t is upper bounded by [12]:

dbfi(t) =
⌊ t+ (pi − di)

pi

⌋
ei + CIi(t), where

CIi(t) = min
{
ei,max

{
0, t−

⌊ t+ (pi − di)
pi

⌋
pi

}}
.

(1)

In Eq. (1), CIi(t) denotes the maximum carry-in demand of
τi in any time interval [a, b] with b−a = t, i.e., the maximum
demand generated by a job of τi that is released prior to a but
has not finished its execution requirement at time a.

Consider a component C with a taskset τ = {τ1, ...τn},
where τi = (pi, ei, di), and suppose the tasks in C are

schedulable under gEDF by a multiprocessor resource with
m′ processors. From [12], the worst-case demand of C that
must be guaranteed to ensure the schedulability of τk in a time
interval (a, b], with b− a = t ≥ dk is bounded by:
DEM(t,m′) = m′ek +

∑
τi∈τ

Îi,2 +
∑

i:i∈L(m′−1)

(Īi,2 − Îi,2) (2)

where Îi,2 = min
{
dbfi(t)− CI i(t), t− ek

}
, ∀ i 6= k,

Îk,2 = min
{
dbfk(t)− CI k(t)− ek, t− dk

}
;

Īi,2 = min
{
dbfi(t), t− ek

}
, ∀ i 6= k,

Īk,2 = min
{
dbfk(t)− ek, t− dk

}
;

and L(m′−1) is the set of indices of all tasks τi that have
Īi,2− Îi,2 being one of the (m′−1) largest such values for all
tasks.3 This leads to the following schedulability test for C:

Theorem 2 ([12]). A component C with a task set τ =
{τ1, ...τn}, where τi = (pi, ei, di), is schedulable under gEDF
by a multiprocessor resource model R with m′ processors in
the absence of overhead if, for each task τk ∈ τ and for all
t ≥ dk, DEM(t,m′) ≤ SBFR(t), where DEM(t,m′) is given
by Eq. (2) and SBFR(t) gives the minimum total resource
supply by R in an interval of length t.

B. DMPR interface computation

In the absence of cache-related overhead, the minimum re-
source supply provided by a DMPR model µ = 〈Π,Θ,m〉
in any interval of length t is SBFµ(t), which is given by
Lemma 1. Since each domain schedules its tasks under gEDF,
the following theorem follows directly from Theorem 2.

Theorem 3. A domain D with a task set τ = {τ1, ...τn},
where τi = (pi, ei, di), is schedulable under gEDF by a DMPR
model µ = (Π,Θ,m) if, for each τk ∈ τ and for all t ≥ dk,

DEM(t,mµ) ≤ SBFµ(t), (3)

where mµ = m+ 1 if Θ > 0, and mµ = m otherwise.

We say that µ is a feasible DMPR for D if it guarantees the
schedulability of D according to Theorem 3.

The next theorem derives a bound of the value t that needs
to be checked in Theorem 3. The proof is similar to that of
Theorem 2 in [12], and we omit it due to space constraints.

Theorem 4. If Eq. 3 is violated for some value t, then it must
also be violated for a value that satisfies the condition

t ≤ CΣ +mµek + U +B
Θ
Π +m− UT

(4)

where CΣ is the sum of the mµ−1 largest ei; U =
∑n
i=1(pi−

di)
ei
pi

; UT =
∑n
i=1

ei
pi

; and B = 2Θ
Π (Π−Θ).

The next lemma gives a condition for the minimum-
bandwidth DMPR interface with a given period Π.

Lemma 5. A DMPR model µ∗ = 〈Π,Θ∗,m∗〉 is the
minimum-bandwidth DMPR with period Π that can guarantee
the schedulability of a domain D only if m∗ ≤ m for

3Here, dk and t refer to Dk and Ak + Dk in [12], respectively.

all DMPR models µ = 〈Π,Θ,m〉 that can guarantee the
schedulability of a domain D.

Proof: Suppose m∗ > m for some DMPR µ = 〈Π,Θ,m〉.
Then, m∗ ≥ m+1 and, hence, bwµ∗ = m∗+Θ∗/Π ≥ m+1+
Θ∗/Π ≥ m+1. Since Θ < Π, bwµ = m+Θ/Π < m+1. Thus,
bwµ∗ > bwµ, which implies that m∗ cannot be the minimum-
bandwidth DMPR with period Π. Hence the lemma.

Computing the domains’ interfaces. Let Di be a domain in
the system and Πi be its given VCPU period (c.f. Section II).
The minimum-bandwidth interface of Di with period Πi is
the minimum-bandwidth DPRM model µi = 〈Πi,Θi,mi〉
that is feasible for Di. To obtain µi, we perform binary
search on the number of full processors m′i, and, for each
value m′i, we compute the smallest value of Θ′i such that
〈Θ′i,Πi,m

′
i〉 is feasible for Di (using Theorem 3).4 Then mi

is the smallest value of m′i for which a feasible interface is
found, and, Θi is the smallest budget Θ′i computed for mi.
Computing the system’s interface. The interface of the
system can be obtained by composing the interfaces µi of all
domains Di in the system under the VMM’s semi-partitioned
EDF policy (c.f. Section II). Let D denote the number of
domains of the platform.

Observe that each interface µi = 〈Πi,Θi,mi〉 can be
transformed directly into an equivalent set of mi full VCPUs
(with budget Πi and period Πi) and, if Θi > 0, a partial
VCPU with budget Θi and period Πi. Let C be a component
that contains all the partial VCPUs that are transformed from
the domains’ interfaces. Then the VCPUs in C are scheduled
together under gEDF, whereas all the full VCPUs are each
mapped to a dedicated core.

Since each partial VCPU in C is implemented as a periodic
server, which is essentially a periodic task, we can compute
the minimum-bandwidth DMPR interface µC = 〈ΠC ,ΘC ,mC〉
that is feasible for C by the same technique used for domains.
Combining µC with the full VCPUs of the domains, we can
see that the system must be guaranteed mC +

∑
1≤i≤Dmi

full processors and a partial processor, with budget ΘC and
period ΠC , to ensure the schedulability of the system. The
next theorem directly follows from this observation.

Theorem 6. Let µi = 〈Πi,Θi,mi〉 be the minimum-
bandwidth DMPR interface of domain Di, for all 1 ≤ i ≤ D.
Let C be a component with the taskset

τC = {(Πi,Θi,Πi) | 1 ≤ i ≤ D ∧ Θi > 0},
which are scheduled under gEDF. Then the minimum-
bandwidth DMPR interface with period ΠC of the system is
given by: µsys = 〈ΠC ,ΘC ,msys〉, where µC = 〈ΠC ,ΘC ,mC〉
is a minimum-bandwidth DMPR interface with period ΠC of
C and msys = mC +

∑
1≤i≤Dmi.

Based on the system’s interface, one can easily derive the
schedulability of the system as follows (the lemma comes
directly from the interface’s definition):

4Note that the number of full processors is always bounded from below by
bUic, where Ui is the total utilization of the tasks in Di, and bounded from
above by the number of tasks in Di or the number of physical platform (if
given), whichever is smaller.

Lemma 7. Let M be the number of physical cores of the
platform. The system is schedulable if M ≥ msys+1, or, M =
msys and ΘC = 0, where 〈ΠC ,ΘC ,msys〉 is the minimum-
bandwidth DMPR system’s interface.

The results obtained above assume that the cache-related
overhead is negligible. We will next develop the analysis in
the presence of cache-related overhead.

V. CACHE-RELATED OVERHEAD SCENARIOS

In this section, we characterize the different events that cause
cache-related overhead; this is needed for the cache-aware
analysis in Sections VI and VII.

Cache-related overhead in a multicore virtualization plat-
form is caused by (1) task preemption within the same domain,
(2) VCPU preemption, and (3) VCPU exhaustion of budget.
We discuss each of them in detail below.

A. Event 1: Task-preemption event

Since tasks within a domain are scheduled under gEDF,
a newly released higher-priority task preempts a currently
executing lower-priority task of the same domain, if none of
the domain’s VCPUs are idle. When a preempted task resumes
its execution, it may experience cache misses: its cache content
may have been evicted from the cache by the preempting task
(or tasks with a higher priority than the preempting task, if a
nested preemption occurs), or the task may be resumed on a
different VCPU that is running on a different core, in which
case the task’s cache content may not be present in the new
core’s cache. Hence the following definition:

Definition 2 (Task-preemption event). A task-preemption
event of τi is said to occur when a job of another task τj
in the same domain is released and this job can preempt the
current job of τi.

Fig. 3 illustrates the worst-case scenario of the overhead
caused by a task-preemption event. In the figure, a preemption
event of τ1 happens at time t = 3 when τ3 is released (and
preempts τ1). Due to this event, τ1 experiences a cache miss at
time t = 5 when it resumes. Since τ1 resumes on a different
core, all the cache blocks it will reuse have to be reloaded
into new core’s cache, which results in cache-related preemp-
tion/migration overhead on τ1. (Note that the cache content
of τ1 is not necessarily reloaded all at once, but rather during
its remaining execution after it has been resumed; however,
for ease of exposition, we show the combined overhead at the
beginning of its remaining execution).

(YHQW���+LJKHU�SULRULW\�WDVN�UHOHDVH

�FSX
�� �WW

�FSX

�W

�W

�W�W

�W

���� WWW !!SULRULW\&530'
���

Fig. 3: Cache-related overhead of a task-preemption event.

Since gEDF is work-conserving, tasks do not suspend
themselves, and each task resumes at most once after each time
it is preempted. Therefore, each task experiences the overhead

caused by each of its task-preemption events at most once, and
this overhead is bounded from above by ∆crpmd.

Lemma 8. A newly released job of τj preempts a job of τi
under gEDF only if dj < di.

Proof: Suppose dj ≥ di and a newly released job Jj of
τj preempts a job Ji of τi. Then, Jj must be released later
than Ji. As a result, the absolute deadline of Jj is later than
Ji’s (since dj ≥ di), which contradicts the assumption that Jj
preempts Ji under gEDF. This proves the lemma.

The maximum number of task-preemption events in each
period of τi is given by the next lemma; its proof is available
in the Appendix.

Lemma 9 (Number of task-preemption events). The max-
imum number of task-preemption events of τi under gEDF
during each period of τi, denoted by N1

τi , is bounded by

N1
τi ≤

∑
τj∈HP(τi)

⌈di − dj
pj

⌉
(5)

where HP(τi) is the set of tasks τj within the same domain
with τi with dj < di.

B. VCPU-preemption event

Definition 3 (VCPU-preemption event). A VCPU-
preemption event of VPi occurs when VPi is preempted by a
higher-priority VCPU VPj of another domain.

When a VCPU VPi is preempted, the currently running task
τl on VPi may migrate to another VCPU VPk of the same
domain and may preempt the currently running task τm on
VPk. This can cause the tasks running on VPk experiences
cache-related preemption or migration overhead twice in the
worst case, as is illustrated in the following example.

Example 1. The system consists of three domains D1-D3. D1

has VCPUs VP1 (full) and VP2 (partial); D2 has VCPUs VP3

(full) and VP4 (partial); and D3 has one partial VCPU VP5.
The partial VCPUs of the domains – VP2(5, 3), VP4(8, 3) and
VP5(6, 4) – are scheduled under gEDF on cpu1 and cpu2,
as is shown in Fig. 4(a). In addition, domain D2 consists of
three tasks, τ1(8, 4, 8), τ2(6, 2, 6) and τ3(10, 1.5, 10), which
are scheduled under gEDF on its VCPUs (Fig. 4(b)).

(YHQW����ILQLVK�HYHQW

���

������93 ������93 ������93

�� �9393 �93

�FSX

�FSX
���

������W ������W ���������W

�93

�93

93�XQDYDLODEOH &530'

�� �WW �W

(a) Scheduling scenario of VCPUs.

(YHQW����ILQLVK�HYHQW

���

������93 ������93 ������93

�� �9393 �93

�FSX

�FSX
���

������W ������W ���������W

�93

�93

93�XQDYDLODEOH &530'

�� �WW �W

(b) Cache overhead of tasks in D2.

Fig. 4: Cache overhead due to a VCPU-preemption event.
As is shown in Fig. 4(a), a VCPU-preemption event occurs

at time t = 2, when VP4 (of D2) is preempted by VP2. Observe
that, within D2 at this instant, τ2 is running on VP4 and τ1 is
running on VP3. Since τ2 has an earlier deadline than τ1, it is
migrated to VP3 and preempts τ1 there. Since VP3 is mapped

to a different core from cpu1, τ2 has to reload its useful cache
content to the cache of the new core at t = 2. Further, when
τ1 resumes at time t = 3.5, it has to reload the useful cache
blocks that may have been evicted from the cache by τ2. Hence,
the VCPU-preemption event of VP4 causes overhead for both
of the tasks in its domain.

Lemma 10. Each VCPU-preemption event causes at most two
tasks to experience a cache miss.

The proof of the lemma is available in the Appendix.
Since the partial VCPUs are scheduled under gEDF as

implicit-deadline tasks (i.e., the task periods are equal to their
relative deadlines), the number of VCPU-preemption events
of a partial VCPU VPi during each VPi’s period also follows
Lemma 9. The next lemma is implied directly from this
observation (its proof is straightforward and is omitted here
due to space constraints):

Lemma 11 (Number of VCPU-preemption events). Let
VPi = (Πi,Θi) for all partial VCPUs VPi of the domains.
Let HP(VPi) be the set of VPj with 0 < Θj < Πj < Πi.
Denote by N2

VPi
and N2

VPi,τk
the maximum number of VCPU-

preemption events of VPi during each period of VPi and during
each period of τk inside VPi’s domain, respectively. Then,

N2
VPi ≤

∑
VPj∈HP(VPi)

⌈Πi −Πj

Πj

⌉
(6)

N2
VPi,τk ≤

∑
VPj∈HP(VPi)

⌈ pk
Πj

⌉
. (7)

C. VCPU-completion event

Definition 4 (VCPU-completion event). A VCPU-completion
event of VPi happens when VPi exhausts its budget in a period
and stops its execution.

Like in VCPU-preemption events, each VCPU-completion
event causes at most two tasks to experience a cache miss.

Lemma 12 (Number of VCPU-completion events). Let N3
VPi

and N3
VPi,τk

be the number of VCPU-completion events of VPi
in each period of VPi and in each period of τk inside VPi’s
domain. Then,

N3
VPi ≤ 1 (8)

N3
VPi,τk ≤

⌈pk −Θi

Πi

⌉
+ 1 (9)

Proof Sketch: Eq. (8) holds because VPi completes its
budget at most once every period. Further, observe that τi ex-
periences the worst-case number of VCPU-preemption events
when (1) its period ends at the same time as the budget finish
time of VPi’s current period, and (2) VPi finishes its budget as
soon as possible (i.e., Bi time units from the beginning of the
VCPU’s period) in the current period and as late as possible
(i.e., at the end of the VCPU’s period) in all its preceding
periods. Eq. (9) follows directly from this worst-case scenario.

VCPU-stop event. Since a VCPU stops its execution when
its VCPU-completion or VCPU-preemption event occurs, we
define a VCPU-stop event that includes both types of events.

That is, a VCPU-stop event of VPi occurs when VPi stops its
execution because its budget is finished or because it is pre-
empted by a higher-priority VCPU. Since VCPU-stop events
include both VCPU-completion events and VCPU-preemption
events, the maximum number of VCPU-stop events of VPi
during each VPi’s period, denoted as N stop

VPi
, satisfies

N stop
VPi

= N2
VPi +N3

VPi ≤
∑

VPj∈HP(VPi)

⌈Πi −Πj

Πj

⌉
+ 1 (10)

Overview of the overhead-aware compositional analysis.
Based on the above quantification, in the next two sections
we develop two different approaches, task-centric and model-
centric, for the overhead-aware interface computation. Al-
though the obtained interfaces by both approaches are safe and
can each be used independently, we combine them to obtain
the interface with the smallest bandwidth as the final result.

VI. TASK-CENTRIC COMPOSITIONAL ANALYSIS

In this section, we present a task-centric approach to account
for the overhead in the interface computation. The idea is
to inflate the WCET of every task in the system with the
maximum overhead it experiences within each of its periods.

As was discussed in Section V, the overhead that a task
experiences during its lifetime is composed of the overhead
caused by task-preemption events, VCPU-preemption events
and VCPU-completion events. In addition, when one of the
above events occurs, each task τk experiences at most one
cache miss and, hence, a delay of at most ∆crpmd. From Lem-
mas 9, 11 and 12, we conclude that the maximum overhead
τk experiences within each period is

δcrpmd
τk

= ∆crpmd
(
N1
τk

+N2
VPi,τk +N3

VPi,τk

)
where VPi is the partial VCPU of the domain of τk.

As a result, the worst-case execution time of τk in the
presence of cache overhead is at most

e′k = ek + δcrpmd
τk

(11)

Thus, we can state the following theorem:

Theorem 13. A component with a taskset τ = {τ1, ...τn},
where τk = (pk, ek, dk), is schedulable under gEDF by a
DMPR model µ in the presence of cache-related overhead
if its inflated taskset τ ′ = {τ ′1, ...τ ′n} is schedulable under
gEDF by µ in the absence of cache-related overhead, where
τ ′k = (pk, e

′
k, dk), and where e′k is given by Eq. 11.

Based on Theorem 13, we can compute the DMPR inter-
faces of the domains and the system by first inflating the
WCET of each task τk in each domain with the overhead
∆crpmd
τk

and then applying the same method as the overhead-
free interface computation in Section IV-B.5

5Note that we inflate only the tasks’ WCETs and not the VCPUs’ budgets,
since ∆crpmd includes the overhead for reloading the useful cache content of
a preempted VCPU when it resumes.

VII. MODEL-CENTRIC COMPOSITIONAL ANALYSIS

Recall from Section V that each VCPU-stop event (i.e.,
VCPU-preemption or VCPU-completion event) of VPi causes
at most one cache miss for at most two tasks of the same
domain. However, since it is unknown which two tasks may
be affected, the task-centric approach in Section VI assumes
that every task τk of the same domain is affected by all
the VCPU-stop events of VPi (and thus includes all of the
corresponding overheads in the inflated WCET of the task).
While this approach is safe, it is very conservative, especially
when the number of tasks or the number of events is high.

In this section, we propose an alternative approach that
avoids the above assumption to minimize the pessimism of
the analysis. The idea is to account for the total overhead due
to VCPU-stop events that is incurred by all tasks in a domain,
rather than by each task individually. This combined overhead
is the overhead that the domain as a whole experiences due
to VCPU-stop events under a given DMPR interface µ of the
domain (since the budget of the partial VCPU of a domain is
determined by the domain’s interface). Therefore, the effective
resource supply that a domain receives from a DMPR interface
µ in the presence of VCPU-stop events is the total resource
supply that µ provides, less the combined overhead.

In the following, we first analyze the effective resource
supply of a DMPR model µ, i.e., the supply it provides to
a domain in the presence of the overhead caused by VCPU-
stop events. We then combine the results with the overhead
caused by task-preemption events to derive the schedulability
and the interface of a domain.

A. Cache-aware effective resource supply of a DMPR model
Consider a DMPR interface µ = (Π,Θ,m) of a domain Di,
and recall that µ provides one partial VCPU VPi = (Π,Θ)
and m full VCPUs to Di. Then, in the presence of overhead
due to VCPU-stop events, the effective resource supply of
µ consists of the effective resource supply of VPi and the
effective resource supply of m full processors. Here, the
effective budget (resource) of a VCPU is the budget (resource)
that is used solely to execute the tasks running on the VCPU,
rather than to handle the cache misses that are caused by
VCPU-stop events. We quantify each of them below.

For ease of exposition, we say that a VCPU incurs a
CRPMD if the task running on the VCPU incurs the overhead
caused by a VCPU-stop event, and we call a time interval
[a, b] an overhead interval of a VCPU if the effective resource
the VCPU provides during [a, b] is zero. (Note that the first
overhead interval of VPi in a period cannot start before VPi
begins its execution.) Finally, we call [a, b] a blackout interval
of a VCPU if it consists of overhead intervals or intervals
during which the VCPU provides no resources.
Effective resource supply of the partial VCPU VPi of µ.
Recall that N stop

VPi
denotes the maximum number of VCPU-stop

events of VPi during each period Π. The next lemma states a
worst-case condition for the effective resource supply of VPi:

Lemma 14. The worst-case effective resource supply of VPi
in each period occurs when VPi has N stop

VPi
VCPU-stop events.

Proof: Because VPi has a constant budget of Θ in each
period Π, the more cache-related overhead it incurs in a
period, the fewer effective resources it can supply to (the actual
execution of) the tasks in the domain. Since the overhead that
a domain’s tasks incur in a period of VPi is highest when
VPi stops its execution as many times as possible, the worst-
case effective resource supply of VPi in a period occurs when
VPi has the maximum number of VCPU-stop events, which is
N stop

VPi
events. Hence, the lemma.

Based on this lemma, we can construct the worst-case
scenario during which the effective resource supply of VPi
is minimal, and we can derive the effective supply bound
function according to this worst-case scenario.

Lemma 15. The effective supply bound function of the partial
VCPU VPi = (Π,Θ) of a resource model µ = (Π,Θ,m) is

SBFstop
VPi

(t) =

{
yΘ∗ + max{0, t− x− yΠ− z} if Θ > N stop

V Pi
∆crpmd

0 otherwise
(12)

where Θ∗ = Θ − N stop
VPi

∆crpmd, x = Π −∆crpmd − Θ∗, y =
b t−xΠ c and z = Π−Θ∗.

Proof Sketch: Let I be any interval of length t. Then the
effective resource supply that VPi provides during I is minimal
when (1) VPi provides its budget as early as possible in the
current period and as late as possible in the subsequent periods,
(2) VPi has as many VCPU-stop events as possible in each
period, and (3) the interval I begins in the current period of
VPi and the total length of the blackout intervals that overlap
with I is maximal. Fig. 11 illustrates this scenario, where I
begins at time t3 and the intervals during which VPi provides
effective resources are [t2, t3], [t5, t6] and [t7, t8]:

ZRUVW�FDVH�UHVRXUFH�VXSSO\�IRU�SDUWLDO�9&38
Y��IRU�ODWH[

S93

W

�W �W �W �W �W�W�W

4 []

�W

,W
V�EHWWHU�WR�XVH�ZDY\�OLQHV��DW�WB��WR�VKRZ�
WKHUH�FDQ�EH�PRUH�SHULRGV���FKDQJH�LQ�WKH�
ILQDO�SDSHU��

Fig. 5: Worst-case effective resource supply of VPi = (Π,Θ).

In the figure, the first overhead interval of VPi in a period
starts when VPi first begins its execution in that period. This
first overhead interval is caused by the VCPU-completion
event of VPi that occurs in the previous period. Recall from
Lemma 14 that the maximum number of VCPU-stop events
of VPi in a period Π is N stop

VPi
. Further, ∆crpmd is the maximum

overhead a task experiences due to a VCPU-stop event. Hence,
the effective budget is Θ∗ = t3−t2 ≤ Θ−N stop

VPi
∆crpmd. In ad-

dition, we have t2−t1 ≤ ∆crpmd, x = t4−t3 ≥ Π−∆crpmd−Θ∗

and z = t7 − t6 = Π − Θ∗. Based on this information, we
can derive the minimum effective resource supply during the
interval I, as is given by Eq. 12.
Effective resource supply of all m full VCPUs of µ. Similar
to the partial-VCPU case, we can also establish a worst-
case condition for their effective resource supply. Its proof
is available in the Appendix.

Lemma 16. The m full VCPUs provide the worst-case total

effective resource supply when they incur N stop
VPi

CRPMDs in
total during each period Π of the partial VPi of µ.

Lemma 17. The effective resource supply bound function of
the m full VCPUs of µ is given by:

SBFstop
VPs(t) =

{
m
(
yΘ′ + max{0, t− yΠ− 2x}

)
if Θ 6= 0

mt if Θ = 0
(13)

where x = N stop
VPi

∆crpmd, y = b t−xΠ c and Θ′ = Π− x.

The proof of the lemma can be found in the Appendix.
Effective resource supply of a DMPR model The next
lemma gives the effective resource supply that a DMPR
interface µ = (Π,Θ,m) provides to a domain Di after having
accounted for the overhead due to VCPU-stop events. The
lemma is a direct consequence of Lemmas 15 and 17.

Lemma 18. The effective resource supply of a DMPR inter-
face µ = 〈Π,Θ,m〉 of a domain Di after having accounted
for the overhead due to VCPU-stop events is given by:

SBFstop
µ = SBFstop

VPi
(t) + SBFstop

VPs(t), ∀ t ≥ 0. (14)

Here, SBFstop
VPi

(t) is the effective resource supply of the partial
VCPU VPi = (Π,Θ), which is given by Eq. (12), and
SBFstop

VPs(t) is the effective resource supply of the m full VCPUs
of µ, which is given by Eq. (13).

B. Model-centric DMPR interface computation

Based on the effective supply function, we can develop the
component schedulability test as follows. The proof of the
theorem is available in the Appendix.

Theorem 19. Consider a domain Di with a taskset τ =
{τ1, ...τn}, where τk = (pk, ek, dk). Let τ ′′ = {τ ′′1 , ...τ ′′n},
where τ ′′k = (pk, e

′′
k , dk) and e′′k = ek + ∆crpmdN1

τk
for all

1 ≤ k ≤ n. Then, Di is schedulable under gEDF by a DMPR
model µ in the presence of cache-related overhead, if the
inflated taskset τ ′′ is schedulable under gEDF by the effective
resource supply SBFstop

µ (t) in the absence of overhead.

Based on the above results, we can generate a cache-aware
minimum-bandwidth DMPR interface for a domain in the
same manner as in the overhead-free case, except that we
use the effective resource supply and the inflated taskset in
the schedulability test. Similarly, the system’s interface can be
computed from the interfaces of the domains in the exact same
way as the overhead-free interface computation.

C. Hybrid cache-aware DMPR interface

The minimum interface of a component can be obtained
from the ones computed using the task-centric approach (Sec-
tion VI) and the model-centric approach described above. The
theorem is trivially true, since both interfaces are safe.

Theorem 20 (Hybrid cache-aware interface). The minimum
cache-aware DMPR interface of a domain Di (a system S) is
the interface that has a smaller resource bandwidth between

µtask and µmodel, where µtask and µmodel are the minimum-
bandwidth DMPR interfaces of Di (S) computed using the
task-centric and the model-centric approaches, respectively.

Discussion. We observe that the schedulability analysis under
gEDF in the absence of overhead (Theorem 2) is only a
sufficient test, and that its pessimism degree varies signif-
icantly with the characteristics of the taskset. For instance,
under the same multiprocessor resource, one taskset with
a larger total utilization may be schedulable while another
with a smaller total utilization may not be schedulable. As
a result, it is possible that the overhead-aware interface of a
domain (system) may require less resource bandwidth than the
overhead-free interface of the same domain (system).

VIII. EVALUATION

To evaluate the benefits of our proposed interface model
and cache-aware compositional analysis, we performed sim-
ulations using randomly generated workloads. We had three
main objectives for our evaluation: (1) Determine how much
resource bandwidth the DMPR model can save compared to
the MPR model; (2) evaluate the relative performance of the
hybrid analysis approach (which combines model-centric and
task-centric) and the task-centric analysis approach; and (3)
study the impact of task parameters (e.g., the number of tasks
in a taskset) on both the overhead-aware DMPR interfaces.

A. Experimental setup

Workload. Our evaluation is based on a set of synthetic real-
time workloads. Each workload contained a set of randomly
generated periodic task sets. The tasks’ periods were chosen
uniformly at random between 350ms and 850ms, and the
tasks’ deadlines were equal to their periods. The tasks’ utiliza-
tions followed one of four distributions: a uniform distribution
within the range [0.001, 0.1] and three bimodal distributions,
where the utilizations were distributed uniformly over either
[0.1, 0.4] or [0.5, 0.9], with respective probabilities of 8/9 and
1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9 (heavy).6

Each generated workload was then distributed uniformly into
four different domains.
Overhead value measurement. For our measurements, we
used a Dell Optiplex-980 quad-core workstation with the RT-
Xen 1.0 platform [23]; each domain was running LITMUSRT

2012.3 [9]. The scheduler was gEDF in the domains and semi-
partitioned EDF in the VMM, as described in Section II.
We ran cache-intensive programs (as tasks) in the domains,
and we measured the cache-related preemption and migration
delay each task incurred using the feather-trace tool from
LITMUSRT . We then used the maximum observed values
of all tasks as the value of ∆crpmd for the theoretical analysis.

B. Results

DMPR vs MPR. For this experiment, we generated 625
tasksets with taskset utilizations ranging from 0.1 to 5, with
a step of 0.2. For each taskset utilization, there were 25
independently generated tasksets; the task utilizations were

6The bimodal distribution probabilities are similar to the ones used in [7].

0 1 2 3 4 50

2

4

6

8

10

Task set utilization

A
ve

ra
ge

 re
so

ur
ce

 b
an

dw
id

th

Task utilization: uniform distribution in [0.001,0.1]

MPR DMPR

Fig. 6: DMPR vs. MPR.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

1.2

1.4

Taskset utilization

A
ve

ra
ge

 b
an

dw
id

th
 s

av
in

gs

Task utilization: uniform distribution in [0.001,0.1]

Fig. 7: Savings per taskset utilization.
0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Taskset size

A
ve

ra
ge

 b
an

dw
id

th
 s

av
in

gs

Task utilization: uniform distribution in [0.001, 0.1]

Fig. 8: Savings per taskset size.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

Taskset size

A
ve

ra
ge

 b
an

dw
id

th
 s

av
in

gs

(a) Bimodal-light distribution.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

Taskset size

A
ve

ra
ge

 b
an

dw
id

th
 s

av
in

gs

(b) Bimodal-medium distribution.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

Taskset size

A
ve

ra
ge

 b
an

dw
id

th
 s

av
in

gs

(c) Bimodal-heavy distribution.

Fig. 9: Average resource bandwidth saved with different task utilization.
MPR RT-Xen DMPR RT-Xen Cache-aware Hybrid RT-Xen Cache-aware Task-centric RT-Xen

Schedulable Yes No Yes No No No No No
Deadline miss ratio - 78% - 78% - 0.07% - 7%

TABLE I: Performance in theory vs. in practice.

uniformly distributed, as described earlier. For each generated
taskset, we distributed the tasks into the four domains, and
we then computed the overhead-free interface of the system
using the DMPR interface computation method (Section IV) as
well as using the existing MPR interface computation method
from [12]. Fig. 6 shows the average resource bandwidths with
respect to taskset utilization of the DMPR interfaces and the
MPR interfaces. We observe that the DMPR interface always
requires either the same or less resource bandwidth than the
MPR interface across all taskset utilizations. We observe that
the DMPR interfaces save a significant amount of resources
for more than 40% of the tasksets. For instance, when the
taskset utilization is 4.5, it saves up to 3.5 cores.
Hybrid cache-aware vs. task-centric cache-aware. To com-
pare the performance of the two overhead-aware analysis
approaches, we used the same tasksets and system configu-
ration as in the previous experiment. We then computed the
respective DMPR interface of the system for each taskset using
the respective approach.

Fig. 7 shows the average resource bandwidth savings of the
hybrid approach compared to the task-centric approach for
each task set utilization. The results show that the hybrid ap-
proach reduces the resource bandwidth for 64% of the tasksets.
We observe that, as the taskset utilization increases, there are
more cores being saved. However, the performance in general
varies significant across taskset utilizations. One reason for
this behavior is that the underlying gEDF schedulability test
is only sufficient, and is not strictly dependent on the taskset
utilization. In other words, it is possible that a taskset with
a high utilization is schedulable but another with a lower
utilization is not. As a result, when the taskset utilization

increases, the interface bandwidth can decrease.
Impact of the number of tasks. We further investigated the
impact of the number of tasks (i.e., the taskset size) on the
average bandwidth savings of the hybrid approach compared
to the task-centric approach. For this experiment, we generated
a set of tasksets with sizes between 4 to 300, with a step of
20, and with 25 tasksets per size. We tried both the uniform
distribution and the three bi-modal distributions discussed in
the experiment setup.

Figure 8 shows the average resource bandwidth savings of
the hybrid approach compared to the task-centric approach for
the uniform distribution. We observe that the hybrid approach
almost always outperforms the task-centric approach.

Fig. 9(a)–9(c) show the average resource bandwidth savings
for different taskset sizes with the three bi-modal distribu-
tions. We observe that, across all three cases, the hybrid
approach consistently outperforms the task-centric approach.
In addition, as the number of tasks increases, the savings also
increase. This is expected because the task-centric technique
inflates the WCET of every task with all the cache-related
overhead each task experiences; hence, its total cache overhead
increases with the size of the taskset.
Performance in theory vs. in practice. We also validated the
invalidity of the overhead-free interfaces and the correctness
of the cache-aware interface in practice. For this experiment,
we first computed the domains’ interfaces, and then, we ran
the generated tasks on our RT-Xen experimental platform.
The periods and budgets of the domains in RT-Xen were
assigned to be that of the respective computed interfaces. We
then computed the schedulability and deadline miss ratios of
the tasks, based on the theoretical schedulability test and the

measurements on the RT-Xen platform. Table I shows the
schedulability and deadline miss ratios of these methods.

We observe that the overhead-free MPR and DMPR inter-
faces significantly underestimate the tasks’ resource require-
ments; even though the tasks were claimed to be schedulable
by the computed interfaces, there were 78% of the jobs
missing their deadlines. The experimental results also confirm
that our cache-aware analysis correctly estimated the resource
requirements of the system in practice. In addition, we also
observe that the hybrid approach also outperformed (had fewer
deadline misses than) the task-centric approach.

IX. RELATED WORK

Several compositional analysis techniques for multicore plat-
forms have been developed (see e.g., [3], [12], [17], [18]) but,
unlike this work, they do not consider the platform overhead.
There are also methods that account for cache-related overhead
in multicore schedulability analysis (e.g., [7]), but they cannot
be applied to the virtualization and compositional setting. To
the best of our knowledge, the only existing overhead-aware
interface analysis is for uniprocessors [19].

Prior work has already extended the multiprocessor resource
model in a number of ways. Most notably, Bini et al. intro-
duced generalizations such as the parallel supply function [6],
as well as later refinements. These models capture the resource
requirements at each different level of parallelism; thus, they
minimize the interface abstraction overhead that the MPR
model incurs. However, they also increase the complexity
of the interface representation and the interface computation.
Our work follows a different approach: instead of adding
more information, we make the supply pattern of the resource
model more deterministic. As a result, we can improve the
worst-case resource supply of the model without increasing
its complexity. In addition, this approach helps to reduce
the platform overhead that arises when these interfaces are
scheduled at the next level.

The semi-partitioned EDF scheduling we use at the VMM
level is similar to the strategy proposed for soft real-time
tasks by Leontyev and Anderson [17], in which the bandwidth
requirement of a container is distributed to a number of
dedicated processors as well as a periodic server, which is
globally scheduled onto the remaining processors. The two
key differences to our work are that 1) we use gEDF within
the domains, which necessitates a different analysis, and that
2) unlike our work, [17] does not consider cache overhead.

There are other lines of cache-related research that benefit
our work. For example, results on intrinsic cache analysis
and WCET estimation [14] can be used as an input to our
analysis; studies on cache-related preemption and migration
delay [4] can be used to obtain the value of ∆crpmd used in
our analysis; and finally, cache-aware scheduling, such as [13],
can be used to reduce the additional cache-related overhead in
the compositional/virtualization setting.

X. CONCLUSION

We have presented a cache-aware compositional analysis
technique for real-time virtualization multicore systems. Our

technique accounts for the cache overhead in the component
interfaces, and thus enables a safe application of the anal-
ysis theories in practice. We have developed two different
approaches, model-centric and task-centric, for analyzing the
cache-related overhead and for testing the schedulability of
components in the presence of cache overhead. We have
also introduced a deterministic extension of the MPR model,
which improves the interface resource efficiency, as well as
accompanying overhead-aware interface computation methods.
Our evaluation on synthetic workloads shows that our interface
model can help reduce resource bandwidth by a significant
factor compared to the MPR model, and that the model-centric
approach achieves significant resource savings compared to the
task-centric approach (which is based on WCET inflation).

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP, 2003.

[2] S. Baruah and T. Baker. Schedulability analysis of global EDF. Real-
Time Systems, 38(3):223–235, 2008.

[3] S. Baruah and N. Fisher. Component-based design in multiprocessor
real-time systems. In ICESS, 2009.

[4] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-Related
Preemption and Migration Delays: Empirical Approximation and Impact
on Schedulability. In OSPERT, 2010.

[5] S. Basumallick and K. Nilsen. Cache issues in real-time systems. In
LCTES, 1994.

[6] E. Bini, M. Bertogna, and S. Baruah. Virtual multiprocessor platforms:
Specification and use. In RTSS, 2009.

[7] B. B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[8] F. Bruns, S. Traboulsi, D. Szczesny, E. Gonzalez, Y. Xu, and A. Bilgic.
An Evaluation of Microkernel-Based Virtualization for Embedded Real-
Time Systems. In ECRTS, 2010.

[9] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUS RT: A testbed for empirically comparing real-time
multiprocessor schedulers. In RTSS, 2006.

[10] A. Crespo, I. Ripoll, and M. Masmano. Partitioned Embedded Archi-
tecture Based on Hypervisor: the XtratuM Approach. In EDCC, 2010.

[11] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. In RTSS, 2007.

[12] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based
multiprocessor scheduling. Real-Time Systems, 43(1):25–59, 2009.

[13] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and
analysis for multicores. In EMSOFT, 2009.

[14] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten wcet estimates
for multi-core processors with shared instruction caches. In RTSS, 2009.

[15] T. Kim, M. Peinado, and G. Mainar-Ruiz. System-level protection
against cache-based side channel attacks in the cloud. In USENIX
Security, 2012.

[16] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and
O. Sokolsky. Realizing compositional scheduling through virtualization.
In RTAS, 2012.

[17] H. Leontyev and J. H. Anderson. A hierarchical multiprocessor band-
width reservation scheme with timing guarantees. In ECRTS, 2008.

[18] G. Lipari and E. Bini. A framework for hierarchical scheduling on
multiprocessors: From application requirements to run-time allocation.
In RTSS, 2010.

[19] L. T. X. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky. Overhead-aware
compositional analysis of real-time systems. In RTAS, 2013.

[20] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for Some Practical
Problems in Prioritized Preemptive Scheduling. In RTSS, 1986.

[21] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework
for virtual clustering of multiprocessors. In ECRTS, 2008.

[22] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. of the 24th IEEE Real-Time Systems Symposium
(RTSS), Cancun, Maxico, 2003.

[23] S. Xi, J. Wilson, C. Lu, and C. Gill. Rt-xen: towards real-time hypervisor
scheduling in xen. In EMSOFT, 2011.

APPENDIX

Proof of Lemma 9: Let τ ci be the current job of τi in a
period of τi, and let rci be its release time. From Lemma 8,
only jobs of a task τj with dj < di and in the same domain
can preempt τ ci . Further, for each such τj , only the jobs that
are released after τ ci and that have absolute deadlines no later
than τ ci ’s can preempt τ ci . In other words, only jobs that are
released within the interval (rci , r

c
i + di− dj] can preempt τ ci .

As a result, the maximum number of task-preemption events
of τi under gEDF is no more than

∑
τj∈HP(τi)

⌈
di−dj
pj

⌉
.

Proof of Lemma 10: At most one task is running on a
VCPU at any time. Hence, when a VCPU VPi is preempted,
at most one task (τm) on VPi is migrated to another VCPU
VPj , and this task preempts at most one task (τl) on VPj . As
a result, at most two tasks (i.e., τm and τl) incur a cache miss
because of the VCPU-preemption event. (Note that τl cannot
immediately preempt another task τn because otherwise, τm
would have migrated to the VCPU on which τn is running and
preempted τn instead.). Since the overhead caused by each
cache miss is at most ∆crpmd, the maximum overhead caused
by a VCPU-preemption event is at most 2∆crpmd.

Proof of Lemma 16: Because the total resource supply of
m full VCPUs in any interval of length t is always mt, these
VCPUs together provide the least effective resource supply
when they incur the maximum number of CRPMDs. Recall
from Section V that, when a VCPU-stop event of the partial
VCPU VPi of a domain Di occurs, it causes one CRPMD in
a full VCPU of the same domain. Hence, the total number of
CRMPDs that these full VCPUs incur together is the number
of VCPU-stop events of the partial VCPU VPi of the same
domain. The lemma then follows from a combination with
Lemma 14.

Proof of Theorem 19: Since τ ′′ includes the overhead that τ
incurs due to task-preemption events, if SBFstop

µ (t) is sufficient
to schedule τ ′′ assuming negligible overhead, then it is also
sufficient to schedule τ in the presence of task-preemption
events. As SBFstop

µ (t) gives the effective supply that µ provides
to τ after having accounted for the overhead due to VCPU-
stop events, µ provides sufficient resources to schedule τ in
the presence of the overhead from all types of events. This
proves the theorem.

Proof Sketch for Lemma 17: The effective supply that m
full VCPUs provide to the domain in the presence of VCPU-
stop events can be computed based on their worst-case supply
scenario. From Lemma 16, we can see that the worst-case
effective resource supply of m full VCPUs of µ in an interval
I of length t occurs when (1) all the N stop

VPi
CRPMDs are

incurred by one full VCPU VPf in each period Π of VPi, (2)
VPf incurs the overhead as late as possible in the first period
and as early as possible in the rest of periods of VPi, and (3)
the interval I begins when the first CRPMD occurs in the first
period. This worst-case scenario is illustrated by Fig. 12:

In addition, while VPf is experiencing a CRPMD, the
resource provided by any other full VCPU VPj is unavailable
to the task currently running on VPf (since this task cannot
execute on more than one VCPUs at any given time). Since it

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

fVP

jVP

CRPMD

preemption
point

t

1t 3t2t 4t 5t 6t 7t

unavailable to \tau_k which is reloading cache

*Θx

Fig. 10: Worst-case resource supply of m full VCPUs of µ.

is unknown which exact task in the domain is running on VPf ,
it is unknown whether VPj is available to a given task. Hence,
we consider VPj as unavailable to every task while VPf is
experiencing the overhead so as to guarantee the safety of the
schedulability analysis.

Based on the above observation and the worst-case scenario
shown in Fig. 12, we derive the minimum effective resource
supply the m full VCPUs provide in the interval I, which is
given by Eq. 13. In other words, the effective supply bound
function of these full VCPUs is given by Eq. 13.

Proof for Lemma 15: Let I be any interval of length t. We
assume that the effective resource supply that VPi provides
during I is minimal when (1) VPi provides its budget as early
as possible in the current period and as late as possible in the
subsequent periods, (2) VPi has as many VCPU-stop events
as possible in each period, and (3) the interval I begins in
the current period of VPi and the total length of the blackout
intervals that overlap with I is maximal. Fig. 11 illustrates this
scenario, where I begins at time t3 and the intervals during
which VPi provides effective resources are [t2, t3], [t5, t6] and
[t7, t8]:

ZRUVW�FDVH�UHVRXUFH�VXSSO\�IRU�SDUWLDO�9&38
Y��IRU�ODWH[

S93

W

�W �W �W �W �W�W�W

4 []

�W

,W
V�EHWWHU�WR�XVH�ZDY\�OLQHV��DW�WB��WR�VKRZ�
WKHUH�FDQ�EH�PRUH�SHULRGV���FKDQJH�LQ�WKH�
ILQDO�SDSHU��

Fig. 11: Worst-case effective resource supply of VPi = (Π,Θ).
In the figure, the first overhead interval of VPi in a period

starts when VPi first begins its execution in that period. This
first overhead interval is caused by the VCPU-completion
event of VPi that occurs in the previous period. Recall from
Lemma 14 that the maximum number of VCPU-stop events
of VPi in a period Π is N stop

VPi
. Further, ∆crpmd is the maximum

overhead a task experiences due to a VCPU-stop event. Hence,
the effective budget is Θ∗ ≥ Θ−N stop

VPi
∆crpmd. We have t3 −

t2 ≥ Θ−(N stop
VPi
−1)∆crpmd−(t2−t1) = Θ∗+∆crpmd−(t2−t1),

x = t4−t3 = (t4−t1)−(t3−t2)−(t2−t1) ≤ Π−∆crpmd−Θ∗,
and z = t7 − t6 = (t8 − t6) − (t8 − t7) ≤ Π − Θ∗. Based
on this information, we can derive the minimum effective
resource supply during the interval I: if Θ ≤ N stop

V Pi
∆crpmd,

Θ∗ = 0 and SBF stop
V Pi

= 0; otherwise, SBF stop
V Pi

(t) = yΘ∗ +

max{0, t − x − yΠ − z}. Further, SBF stop
V Pi

(t) is minimized,
when Θ∗ = Θ − N stop

VPi
∆crpmd and x = Π − ∆crpmd − Θ∗.

Therefore, Equation 12 is the minimum effective resource
supply of the worst case effective resource supply scenario we
assumed at the beginning of the proof. Then we will prove the
correctness of the assmuption.

Suppose V Pi provides Θ resource in each period. Let the
worst case effective resource supply scenario in practice as

scenario(b) and the assumed worst case effective resource
supply scenario as scenario(a), see Fig. 11, to simplify the
explanation. SBF stop

V Pi
(t) ≤ SBF stop

V Pi
(t), where SBF stop

V Pi
(t)

and SBF stop
V Pi

(t) are the effective resource supply over inter-
val t in scenario(b) and scenario(a), respectively. Let the
effective resource supply in each period of scenario(b) as
Θ∗. Because there is at most N stop

V Pi
cache misses during each

period, Θ∗ ≥ Θ−N stop
V Pi

∆crpmd = Θ∗, where Θ∗ is the effective
budget that V Pi provides in each period in scenario(a).

If Θ ≤ N stop
V Pi

∆crpmd, SBF stop
V Pi

(t) = 0, because
SBF stop

V Pi
(t) ≤ SBF stop

V Pi
(t), V Pi in scenario(b) can provide

at most Θ∗ effective budget in each period, where Θ∗ =
Θ−N stop

V Pi
∆crpmd; That is Θ∗ ≤ Θ∗. Because Θ∗ ≥ Θ∗ ≤ Θ∗,

Θ∗ = Θ∗.
If Θ > N stop

V Pi
∆crpmd, it has the following situations:

(a) When t ≤ x + z, SBF stop
V Pi

(t) = 0, because
SBF stop

V Pi
(t) ≤ SBF stop

V Pi
(t), V Pi in scenario(b) must

provide its budget as early as possible in the current
period and as late as possible in the next period as
shown in interval [t3, t5] in scenario(a), so that it
can guarantee that SBF stop

V Pi
(t) = 0; Further, because

V Pi must provides at most Θ∗ time during each period
Pi, V Pi always provides effective resource when t is
enlarged; therefore, the maximum bankout interval is
x+ z;

(b) When x + z < t ≤ x + z + Θ∗, because V Pi provides
Θ∗ resource in each period and the whole second period
of scenario(b) overlaps with t, V Pi must provides Θ∗

resource at the end of Θ∗ time of the second period;
therefore, scenario(b) has the same scenario during
interval [t5, t6] with scenario(a);

(c) When x+z+Θ∗ < t ≤ x+2z+Θ∗, SBF stop
V Pi

(t) = Θ∗

and V Pi in scenario(a) provides no effective resource
during [t6, t7]; therefore, V Pi in scenario(b) must
provide no effective resource during [t6, t7]; otherwise,
SBF stop

V Pi
(t) > Θ∗;

(d) When x+2z+Θ∗ < t ≤ x+2z+2Θ∗, it is similar with
the situation (b). V Pi in scenario(b) must provide Θ∗

time during [t7, t8] as it does in scenario(a); otherwise,
V Pi in scenario(b) cannot provide Θ∗ time in each
period;

(e) Repeating the situation (c) and (d), we can prove that
V Pi in an arbitrary scenario(b) provides no less ef-
fective resource than that in scenario(a). Hence, it
is proved that scenario(a) is the worst case effective
resource supply scenario.

Proof of Lemma 17: We claim that the worst-case effective
resource supply of m full VCPUs of µ in an interval I of
length t occurs when (1) all the N stop

VPi
CRPMDs are incurred

by one full VCPU VPf in each period Π of VPi, (2) VPf
incurs the overhead as late as possible in the first period and
as early as possible in the rest of periods of VPi, (3) the cost
of each CRPMD overhead is ∆crpmd and (4) the interval I
begins when the first CRPMD occurs in the first period. One

of this worst-case scenario is illustrated by Fig. 12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

fVP

jVP

CRPMD

preemption
point

t

1t 3t2t 4t 5t 6t 7t

unavailable to \tau_k which is reloading cache

*Θx

Fig. 12: Worst-case resource supply of m full VCPUs of µ.
We denote the claimed worst-case effective resource sup-

ply scenario as scenario(a), see Fig. 12, to simplify the
explanation. Suppose the actual worst-case effective resource
supply scenario is an arbitrary scenario scenario(b). Let
x = N stop

V Pi
∆crpmd. We will prove that the m full VCPUs in

scenario(b) provides no less effective resource than that in
scenario(a) with the following arguments:

1) While a full VCPU VPf is experiencing a CRPMD,
the resource provided by any other full VCPU VPj is
unavailable to the task currently running on VPf (since
this task cannot execute on more than one VCPUs
at any given time). Since it is unknown which exact
task in the domain is running on VPf , it is unknown
whether VPj is available to a given task. Hence, we
consider VPj as unavailable to every task while VPf is
experiencing the overhead so as to guarantee the safety
of the schedulability analysis. Recall from Lemma 16,
all m full VCPUs incur N stop

V Pi
CRPMDs in each period.

All the N stop
V Pi

CRPMDs should be incurred by one
full VCPU V Pf in eahc period Π of V Pi so that the
unavailable intervals of each period Π is maximized.
Hence, scenario(b) must obey the condition (1).

2) The maximum unavailable intervals of m full VCPUs is
x = N stop

V Pi
∆crpmd in total in each period. The maximum

bankout interval happens when the unavailable intervals
in two periods are consecutive and the cost of each
CRPMD is ∆crpmd. Therefore, the full VCPU V Pf
should incur the overhead as late as possible in the first
period and as early as possible in the second period of
VPi so that the bankout interval is maximized. In addi-
tion, the interval I should begin when the first CRPMD
occurs in the first period. Hence, the scenario(b) should
obey the condition (3) and (4), and the m full VCPUs
in scenario(b) provide no less effective resource than
that in scenario(a) when t ≤ 2x.

3) When x + kΠ < t < 2x + kΠ (k ∈ N), because m
full VCPUs must provide m(Π − x) effective resource
in each period and the interval t has k periods, the
m full VCPUs in scenario(b) should provide at least
km(Π − x) effective resource during time interval t.
Because t > x+kΠ, the m full VCPUs in scenario(b)
has already provided km(Π − x) effective resource
during interval x + kΠ. Therefore, the m full VCPUs
must provide no effective resource at the remaining
of t − (x + kΠ) time interval. (otherwise, the m full
VCPUs in scenario(b) provides more effective resource
that that in scenario(a).) Hence, the V Pf should incur
the overhead as early as possible in all periods (except

for the first period) of V Pi. Therefore, scenario(b)
must obey the condition (2) by considering the argu-
ments (2) and (3) together, and the m full VCPUs in
scenario(b) provide no less effective resource than that
in scenario(a) when x+ kΠ < t < 2x+ k Pi.

4) When 2x+kΠ < t < x+ (k+ 1)Π (k ∈ N), the m full
VCPUs in scenario(b) provides no effective resource
during [x+ kΠ, 2x+ kΠ] according to argument (3). In
addition, the m full VCPUs in scenario(b) must provide
m(Π−x) effective resource during [x+kΠ, x+(k+1)Π],
i.e., the (k+1)th period of V Pi, so that they can provide
m(Π−x) effective resource during the (k+1)th period
of V Pi. Therefore, the m VCPUs in scenario(b) must
always provide effective resource during [2x+ kΠ, x+
(k+ 1)Π] as in scenario(a). Hence, the m full VCPUs
in scenario(b) provide no less effective resource than
that in scenario(a) when 2x+kΠ < t < x+ (k+ 1)Π.

Because the m full VCPUs in an arbitrary scenario(b)
provide no less effective resource that that in scenario(a),
scenario(a) is one of the worst-case effective resource supply
scenario of the m full VCPUs. Hence, the claimed worst-case
effective resource supply scenario is proved correct.

We can derive the effective resource supply bound func-
tion SBF stop

V Ps(t) of the worst-case effective resoruce supply
scenario based on the arguments above. When t < 2x
, SBF stop

V Ps(t) = 0; When x + kΠ < t < 2x + kΠ,
SBF stop

V Ps(t) = km(Π−x); When 2x+kΠ < t < x+(k+1)Π,
SBF stop

V Ps(t) = km(Π− x) +m(t− 2x− kΠ). Equation 13 is
derived by rearranging the equations of SBF stop

V Ps(t).

Proof of Lemma 18: Suppose the minimum effective re-
source supply of a DMPR interface µ is SBF stop

µ . SBF stop
µ =

SBF stop
V Pi

(t) + SBF stop
V Ps(t), where SBF stop

V Pi
(t) is the effec-

tive resource supply of the parital VCPU and SBF stop
V Ps(t)

is the effective resoruce supply of the m full VCPUs.
Because SBF stop

V Pi
(t) ≥ SBF stop

V Pi
(t) and SBF stop

V Ps(t) ≥
SBF stop

V Ps(t), SBF stop
µ (t) ≥ SBF stop

µ (t). Hence, it is proved
that SBF stop

µ (t) is the minimum effective resource supply of
a DMPR interface µ.

