
EDF-VD Scheduling of Mixed-Criticality Systems
with Degraded Quality Guarantees

Di Liu1, Jelena Spasic1 Gang Chen2, Nan Guan3, Songran Liu2, Todor Stefanov1, Wang Yi2, 4
1 Leiden University, The Netherlands

2 Northeastern University, China
3 Hong Kong Polytechnic University, Hong Kong

4 Uppsala University, Sweden

Abstract—This paper studies real-time scheduling of mixed-
criticality systems where low-criticality tasks are still guaranteed
some service in the high-criticality mode, with reduced execution
budgets. First, we present a utilization-based schedulability test
for such systems under EDF-VD scheduling. Second, we quantify
the suboptimality of EDF-VD (with our test condition) in terms of
speedup factors. In general, the speedup factor is a function with
respect to the ratio between the amount of resource required by
different types of tasks in different criticality modes, and reaches
4/3 in the worst case. Furthermore, we show that the proposed
utilization-based schedulability test and speedup factor results
apply to the elastic mixed-criticality model as well. Experiments
show effectiveness of our proposed method and confirm the
theoretical suboptimality results.

I. INTRODUCTION

An important trend in real-time embedded systems is to
integrate applications with different criticality levels into a
shared platform in order to reduce resource cost and energy
consumption. To ensure the correctness of a mixed-criticality
(MC) system, highly critical tasks are subject to certification
by Certification Authorities under extremely rigorous and
pessimistic assumptions [1]. This generally causes large worst-
case execution time (WCET) estimation for high-criticality
tasks. On the other hand, the system designer needs to consider
the timing requirement of the entire system, but under less
conservative assumptions. The challenge in scheduling MC
systems is to simultaneously guarantee the timing correctness
of (1) only high-criticality tasks under very pessimistic as-
sumptions, and (2) all tasks, including low-critical ones, under
less pessimistic assumptions.

The scheduling problem of MC systems has been intensively
studied in recent years (see Section II for a brief review).
In most of previous works, the timing correctness of high-
criticality tasks are guaranteed in the worst case scenario at the
expense of low-criticality tasks. More specifically, when any
high criticality task executes for longer than its low-criticality
WCET (and thus the system enters the high-criticality mode),
all low-criticality tasks will be completely discarded and the
resource are all dedicated for meeting the timing constraints
of high-criticality tasks [2]–[5]. However, such an approach
seriously disturbs the service of low-criticality tasks. This
is not acceptable in many practical problems, especially for
control systems where the performance of controllers mainly
depends on the execution frequency of control tasks [6].

To overcome this problem, Burns and Baruah in [7] intro-
duced an MC task model where low-criticality tasks reduce
their execution budgets such that low-criticality tasks are
guaranteed to be scheduled in high-criticality mode with reg-
ular execution frequency (i.e., the same period) but degraded
quality1. Since the idea of reducing execution budgets to
keep tasks running is conceptually similar to the imprecise
computation model [8] [9], in this paper we call an MC system
with possibly reduced execution budgets of low criticality
tasks an imprecise mixed criticality (IMC) system.

In [7], the authors consider preemptive fixed-priority
scheduling for the IMC system model and extend the adaptive
mixed criticality (AMC) [3] approach to provide a schedu-
lability test for the IMC model. In this paper, we study the
EDF-VD scheduling of IMC systems. EDF-VD is designed
for the classical MC system model, in which EDF is en-
hanced by deadline adjustment mechanisms to compromise
the resource requirement on different criticality levels. EDF-
VD has shown strong competence by both theoretical and
empirical evaluations [2], [4], [5]. For example, [2] proves
that EDF-VD is a speedup-optimal MC scheduling and in [4],
[5] experimental evaluations show that EDF-VD outperforms
other MC scheduling algorithms in terms of acceptance ratio.
The main technical contributions of this paper include

• We propose a sufficient test for the IMC model under
EDF-VD, - see Theorem 3 in Section IV;

• For the IMC model under EDF-VD, we derive a speedup
factor function with respect to the utilization ratios of
high criticality tasks and low criticality tasks - see Theo-
rem 4 in Section V. The derived speedup factor function
enables us to quantify the suboptimality of EDF-VD and
evaluate the impact of the utilization ratios on the speedup
factor. We also compute the maximum value 4/3 of the
speedup factor function, which is equal to the speedup
factor bound for the classical MC model [2].

• With extensive experiments, we show that for the IMC
model, by using our proposed sufficient test, in most cases
EDF-VD outperforms AMC [7] in terms of the number of
schedulable task sets. Moreover, the experimental results
validate the observations we obtained for speedup factor.

1In [8] [9], the output quality of a task is related to its execution time. The
longer a task executes, the better quality results it produces.

ar
X

iv
:1

60
5.

01
30

2v
1

 [
cs

.O
H

]
 4

 M
ay

 2
01

6

Moreover, the schedulability test and speedup factor results
of this paper also apply to the elastic mixed-criticality (EMC)
model proposed in [6], where the periods of low-criticality
tasks are scaled up in high-criticality mode, see in Section VI.

The remainder of this paper is organized as follows: Section
II discusses the related work. Section III gives the prelimi-
naries and describes the IMC task model and its execution
semantics. Section IV presents our sufficient test for the IMC
model and Section V derives the speedup factor function for
the IMC under EDF-VD. Section VI extends the proposed
sufficient test to the EMC model. Finally, Section VII shows
our experimental results and Section VIII concludes this paper.

II. RELATED WORK

Burns and Davis in [10] give a comprehensive review of
work on real-time scheduling for MC systems. Many of these
literatures, e.g., [2] [4] [5], consider the classical MC model
in which all low criticality tasks are discarded if the system
switches to the high criticality mode. In [7], Burns and Baruah
discuss three approaches to keep some low criticality tasks
running in high-criticality mode. The first approach is to
change the priority of low criticality tasks. However, for fixed-
priority scheduling, deprioritizing low criticality tasks cannot
guarantee the execution of the low criticality tasks with a
short deadline after the mode switches. [7]. Similarly, for EDF,
lowering priority of low criticality tasks leads to a degraded
service [11]. In this paper, we consider the IMC model which
improves the schedulability of low criticality tasks in high-
criticality mode by reducing their execution time. The IMC
model can guarantee the regular service of a system by trading
off the quality of the produced results. For some applications
given in [8] [9] [12], such trade-off is preferred. The second
approach in [7] is to extend the periods of low criticality
tasks when the system mode changes to high-criticality mode
such that the low criticality tasks execute less frequently to
ensure their schedulability. Su et al. [6] [13] and Jan et al.
[14] both consider this model. However, some applications
might prefer an on-time result with a degraded quality rather
than a delayed result with a perfect quality. Some example
applications can be seen in [15] [8] [9]. Then, the approach of
extending periods is less useful for this kind of applications.
The last approach proposed in [7] is to reduce the execution
budget of low criticality tasks when the system mode switches,
i.e., the use of the IMC model studied in this paper. In [7], the
authors extend the AMC [3] approach to test the schedulability
of an IMC task set under fixed-priority scheduling. However,
the schedulability problem for an IMC task set under EDF-VD
[2], has not yet been addressed. Therefore, in this paper, we
study the schedulability of the IMC task model under EDF-VD
and propose a sufficient test for it.

III. PRELIMINARIES

This section first introduces the IMC task model and its ex-
ecution semantics. Then, we give a brief explanation for EDF-
VD scheduling [2] and an example to illustrate the execution
semantics of the IMC model under EDF-VD scheduling.

A. Imprecise Mixed-Criticality Task Model
We use the implicit-deadline sporadic task model given in

[7] where a task set γ includes n tasks which are scheduled
on a uniprocessor. Without loss of generality, all tasks in γ
are assumed to start at time 0. Each task τi in γ generates an
infinite sequence of jobs {J1

i , J
2
i ...} and is characterized by

τi = {Ti, Di, Li, Ci}:
• Ti is the period or the minimal separation interval be-

tween two consecutive jobs;
• Di denotes the relative task deadline, where Di = Ti;
• Li ∈ {LO,HI} denotes the criticality (low or high) of a

task. In this paper, like in many previous research works
[6] [11] [2] [4] [5], we consider a duel-criticality MC
model. Then, we split tasks into two task sets, γLO =
{τi|Li = LO} and γHI = {τi|Li = HI};

• Ci = {CLOi , CHIi } is a list of WCETs, where CLOi and
CHIi represent the WCET in low-criticality mode and the
WCET in high-criticality mode, respectively. For a high-
criticality task, it has CLOi ≤ CHIi , whereas CLOi ≥ CHIi
for a low-criticality task, i.e., low-criticality task τi has
a reduced WCET in high-criticality mode.

Then each job Ji is characterized by Ji = {ai, di, Li, Ci},
where ai is the absolute release time and di is the absolute
deadline. Note that if low-criticality task τi has CHIi = 0,
it will be immediately discarded at the time of the switch to
high-criticality mode. In this case, the IMC model behaves
like the classical MC model.

The utilization of a task is used to denote the ratio between
its WCET and its period. We define the following utilizations
for an IMC task set γ:

• For every task τi, it has uLOi =
CLO

i

Ti
, uHIi =

CHI
i

Ti
;

• For all low-criticality tasks, we have total utilizations

ULOLO =
∑

∀τi∈γLO

uLOi , UHILO =
∑

∀τi∈γLO

uHIi

• For all high-criticality tasks, we have total utilizations

ULOHI =
∑

∀τi∈γHI

uLOi , UHIHI =
∑

∀τi∈γHI

uHIi

• For an IMC task set, we have

ULO = ULOLO + ULOHI , UHI = UHILO + UHIHI

B. Execution Semantics of the IMC Model
The execution semantics of the IMC model are similar to

those of the classical MC model. The major difference occurs
after a system switches to high-criticality mode. Instead of
discarding all low-criticality tasks, as it is done in the classical
MC model, the IMC model tries to schedule low-criticality
tasks with their reduced execution times CHIi . The execution
semantics of the IMC model are summarized as follows:
• The system starts in low-criticality mode, and remains in

this mode as long as no high-criticality job overruns its
low-criticality WCET CLOi . If any job of a low-criticality
task tries to execute beyond its CLOi , the system will
suspend it and launch a new job at the next period;

Task L CLOi CHIi Ti D̂i
τ1 LO 4 2 9
τ2 HI 4 7 10 7

Table I: Illustrative example

τ1
0 5 10 15 18

τ2
0 5 10 15 20

Switch

Figure 1: Scheduling of Example I

• If any job of high-criticality task executes for its CLOi
time units without signaling completion, the system im-
mediately switches to high-criticality mode;

• As the system switches to high-criticality mode, if jobs of
low-criticality tasks have completed execution for more
than their CHIi but less than their CLOi , the jobs will
be suspended till the tasks release new jobs for the next
period. However, if jobs of low-criticality tasks have
not completed their CHIi (≤ CLOi) by the switch time
instant, the jobs will complete the left execution to CHIi
after the switch time instant and before their deadlines.
Hereafter, all jobs are scheduled using CHIi . For high-
criticality tasks, if their jobs have not completed their
CLOi (≤ CHIi) by the switch time instant, all jobs will
continue to be scheduled to complete CHIi . After that, all
jobs are scheduled using CHIi .

Santy et al. [16] have shown that the system can switch back
from the high-criticality mode to the low-criticality mode when
there is an idle period and no high-criticality job awaits for
execution. For the IMC model, we can use the same scenario to
trigger the switch-back. In this paper, we focus on the switch
from low-criticality mode to high-criticality mode.
C. EDF-VD Scheduling

The challenge to schedule MC tasks with EDF scheduling
algorithm [17] is to deal with the overrun of high-criticality
tasks when the system switches from low-criticality mode
to high-criticality mode. Baruah et al. in [2] proposed to
artificially tighten deadlines of jobs of high-criticality tasks
in low-criticality mode such that the system can preserve
execution budgets for the high-criticality tasks across mode
switches. This approach is called EDF with virtual deadlines
(EDF-VD).
D. An Illustrative Example

Here, we give a simple example to illustrate the execution
semantics of the IMC model under EDF-VD. Table I gives
two tasks, one low-criticality task τ1 and one high-criticality
task τ2, where D̂i is the virtual deadline. Figure 1 depicts the
scheduling of the given IMC task set, where we assume that
the mode switch occurs in the second period of τ2. When the
system switches to high-criticality mode, τ2 will be scheduled
by its original deadline 10 instead of its virtual deadline 7.
Hence, τ1 preempts τ2 at the switch time instant. Since in

0 t2t1a1 d1

Deadline miss

Figure 2: The defined time instants

high-criticality mode τ1 only has execution budget of 2 , i.e.,
CHI1 , τ1 executes one unit and suspends. Then, τ2 completes
its left execution 4 (CHI2 − CLO2) before its deadline.

IV. SCHEDULABILITY ANALYSIS

In [7], an AMC-based schedulability test for the IMC model
under fixed priority scheduling has been proposed. However, to
date, a schedulability test for the IMC model under EDF-VD
has not been addressed yet. Therefore, inspired by the work
in [2] for the classical MC model, we propose a sufficient test
for the IMC model under EDF-VD.

A. Low Criticality Mode
We first ensure the schedulability of tasks when they are

in low-criticality mode. As the task model is in low-criticality
mode, the tasks can be considered as traditional real-time tasks
scheduled by EDF with virtual deadlines (VD). The following
theorem is given in [2] for tasks scheduled in low-criticality
mode.

Theorem 1 (Theorem 1 from [2]). The following condition is
sufficient for ensuring that EDF-VD successfully schedules all
tasks in low-criticality mode:

x ≥ ULOHI
1− ULOLO

(1)

where x ∈ (0, 1) is used to uniformly modify the relative
deadline of high-criticality tasks.

Since the IMC model behaves as the classical MC model
in low-criticality mode, Theorem 1 holds for the IMC model
as well.

B. High Criticality Mode
For high-criticality mode, the classical MC model discards

all low-criticality jobs after the switch to high-criticality mode.
In contrast, the IMC model keeps low-criticality jobs running
but with degraded quality, i.e., a shorter execution time. So
the schedulability condition in [2] does not work for the IMC
model in the high-criticality mode. Thus, we need a new test
for the IMC model in high-criticality mode.

To derive the sufficient test in high-criticality mode, suppose
that there is a time interval [0, t2], where a first deadline miss
occurs at t2 and t1 denotes the time instant of the switch
to high-criticality mode in the time interval, where t1 < t2.
Assume that J is the minimal set of jobs generated from
task set γ which leads to the first deadline miss at t2. The
minimality of J means that removing any job in J guarantees
the schedulability of the rest of J . Here, we introduce some
notations for our later interpretation. Let variable ηi denote the
cumulative execution time of task τi in the interval [0, t2]. J1
denotes a special high-criticality job which has switch time
instant t1 within its period (a1, d1), i.e, a1 < t1 < d1.

Furthermore, J1 is the job with the earliest release time
amongst all high-criticality jobs in J which execute in [t1, t2).
Figure 2 visualizes the defined time instants. Moreover, we
define a special type of job for low-criticality tasks which is
useful for our later proofs.

Definition 1. A job Ji from low-criticality task τi is a carry-
over job, if its absolute release time ai is before and its
absolute deadline di is after the switch time instant, i.e.,
ai < t1 < di.

With the notations introduced above, we have the following
propositions,

Proposition 1 (Fact 1 from [2]). All jobs in J that execute
in [t1, t2) have deadline ≤ t2.

It is easy to observe that only jobs which have deadlines
≤ t2 are possible to cause a deadline miss at t2. If a job has
its deadline > t2 and is still in set J , it will contradict the
minimality of J .

Proposition 2. The switch time instant t1 has

t1 < (a1 + x(t2 − a1)) (2)

Proof: Let us consider a time instant (a1 + x(d1 − a1))
which is the virtual deadline of job J1. Since J1 executes in
time interval [t1, t2), its virtual deadline (a1 + x(d1 − a1))
must be greater than the switch time instant t1. Otherwise, it
should have completed its low-criticality execution before t1,
and this contradicts that it executes in [t1, t2). Thus, it holds
that

t1 < (a1 + x(d1 − a1))
⇒t1 < (a1 + x(t2 − a1)) (since d1 ≤ t2)

Proposition 3. If a carry-over job Ji has its cumulative
execution equal to (di−ai)uLOi and uLOi > uHIi , its deadline
di is ≤ (a1 + x(t2 − a1)).

Proof: For a carry-over job Ji, if it has its cumulative
execution equal to (di − ai)uLOi and uLOi > uHIi , it should
complete its CLOi execution before t1. Otherwise, if job Ji
has executed time units Ci ∈ [CHIi , CLOi) at time instant t1,
it will be suspended and will not execute after t1.

Now, we will show that when job Ji completes its CLOi
execution, its deadline is di ≤ (a1 + x(t2 − a1)). We prove
this by contradiction. First, we suppose that Ji has its deadline
di > (a1 + x(t2 − a1)) and release time ai. As shown above,
job Ji completes its CLOi execution before t1. Let us assume
a time instant t∗ as the latest time instant at which this carry-
over job Ji starts to execute before t1. This means that at this
time instant all jobs in J with deadline ≤ (a1 + x(t2 − a1))
have finished their executions. This indicates that these jobs
will not have any execution within interval [t∗, t2]. Therefore,
jobs in J with release time at or after time instant t∗ can form
a smaller job set which causes a deadline miss at t2. Then,
it contradicts the minimality of J . Thus, carry-over job Ji

with its cumulative execution time equal to (di− ai)uLOi and
uLOi > uHIi has its deadline di ≤ (a1 + x(t2 − a1)).

With the propositions and notations given above, we derive
an upper bound of the cumulative execution time ηi of low-
criticality task τi.

Lemma 1. For any low-criticality task τi, it has

ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi (3)

Proof: If uLOi = uHIi , it is trivial to see that Lemma 1
holds. Below we focus on the case when uLOi > uHIi . If a
system switches to high-criticality mode at t1, then we know
that low-criticality tasks are scheduled using CLOi before t1
and using CHIi after t1. To prove this lemma, we need to
consider two cases, where τi releases a job within interval
(a1, t2] or it does not. We prove the two cases separately.

Case A (task τi releases a job within interval (a1, t2]): There
are two sub-cases to be considered.
• Sub-case 1 (No carry-over job): The deadline of a job of

low-criticality task τi coincides with switch time instant
t1. The cumulative execution time of low-criticality task
τi within time interval [0, t2] can be bounded as follows,

ηi ≤ (t1 − 0) · uLOi + (t2 − t1) · uHIi

Since t1 < (a1 + x(t2 − a1)) according to Proposition 2
and for low-criticality task τi it has uLOi > uHIi , then

ηi <
(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi < (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

• Sub-case 2 (with carry-over job): In this case, before
the carry-over job, jobs of τi are scheduled with its CLOi .
After the carry-over job, jobs of τi are scheduled with
its CHIi . It is trivial to observe that for a carry-over job
its maximum cumulative execution time can be obtained
when it completes its CLOi within its period [ai, di],
i.e., (di−ai)uLOi . Considering the maximum cumulative
execution for the carry-over job, we then have for low-
criticality task τi,

ηi ≤ (ai − 0)uLOi + (di − ai)uLOi + (t2 − di)uHIi
⇔ηi ≤ diuLOi + (t2 − di)uHIi

Proposition 3 shows as Ji has its cumulative execution
equal to (di − ai) · uLOi , it has di ≤ (a1 + x(t2 − a1)).
Given uLOi > uHIi for low-criticality task, we have

ηi ≤ diuLOi + (t2 − di)uHIi
⇒ηi ≤

(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

Case B (task τi does not release a job within interval (a1, t2]):
In this case, let Ji denote the last release job of task τi before
a1 and ai and di are its absolute release time and absolute
deadline, respectively. If di ≤ t1, we have

ηi = (ai − 0)uLOi + (di − ai) · uLOi = diu
LO
i

If di > t1, Ji is a carry-over job. As we discussed above, the
maximum cumulative execution time of carry-over job Ji is
(di − ai)uLOi , so we have

ηi ≤ (ai − 0)uLOi + (di − ai) · uLOi ⇔ ηi ≤ diuLOi
Similarly, according to Proposition 3, we obtain,

ηi ≤ di · uLOi ≤ (a1 + x(t2 − a1))uLOi
⇒ηi < (a1 + x(t2 − a1))uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi < (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

Lemma 1 gives the upper bound of the cumulative execution
time of a low-criticality task in high-criticality mode. In order
to derive the sufficient test for the IMC model in high-
criticality mode, we need to upper bound the cumulative
execution time of high-criticality tasks.

Proposition 4 (Fact 3 from [2]). For any high-criticality task
τi, it holds that

ηi ≤
a1
x
uLOi + (t2 − a1)uHIi (4)

Proposition 4 is used to bound the cumulative execution of
the high-criticality tasks. Since in the IMC model the high-
criticality tasks are scheduled as in the classical MC model,
Proposition 4 holds for the IMC model as well. With Lemma
1 and Proposition 4, we can derive the sufficient test for the
IMC model in high-criticality mode.

Theorem 2. The following condition is sufficient for ensur-
ing that EDF-VD successfully schedules all tasks in high-
criticality mode:

xULOLO + (1− x)UHILO + UHIHI ≤ 1 (5)

Proof: Let N denote the cumulative execution time of all
tasks in γ = γLO ∪ γHI over interval [0, t2]. We have

N =
∑

∀τi∈γLO

ηi +
∑

∀τi∈γHI

ηi

By using Lemma 1 and Proposition 4, N is bounded as follows

N ≤
∑

∀τi∈γLO

((
a1 + x(t2 − a1)

)
uLOi + (1− x)(t2 − a1)uHIi

)
+

∑
∀τi∈γHI

(
a1
x
uLOi + (t2 − a1)uHIi

)
⇔N ≤ (a1 + x(t2 − a1))ULOLO + (1− x)(t2 − a1)UHILO

+
a1
x
ULOHI + (t2 − a1)UHIHI

⇔N ≤ a1(ULOLO +
ULOHI
x

) + x(t2 − a1)ULOLO

+ (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

(6)

Since the tasks must be schedulable in low-criticality mode,
the condition given in Theorem 1 holds and we have 1 ≥
(ULOLO +

ULO
HI

x). Hence,

N ≤a1 + x(t2 − a1)ULOLO
+ (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

(7)

Since time instant t2 is the first deadline miss, it means that
there is no idle time instant within interval [0, t2]. Note that
if there is an idle instant, jobs from set J which have release
time at or after the latest idle instant can form a smaller job set
causing deadline miss at t2 which contradicts the minimality
of J . Then, we obtain

N =

(∑
∀τi∈γLO

ηi +
∑

∀τi∈γHI

ηi

)
> t2

⇒a1 + x(t2 − a1)ULOLO + (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

> t2

⇔x(t2 − a1)ULOLO + (1− x)(t2 − a1)UHILO + (t2 − a1)UHIHI

> t2 − a1
⇔xULOLO + (1− x)UHILO + UHIHI > 1

By taking the contrapositive, we derive the sufficient test for
the IMC model when it is in high-criticality mode:

xULOLO + (1− x)UHILO + UHIHI ≤ 1

Note that if UHILO = 0, i.e., no low-criticality tasks are
scheduled after the system switches to high-criticality mode,
our Theorem 2 is the same as the sufficient test (Theorem 2
in [2]) for the classical MC model in high-criticality mode.
Hence, our Theorem 2 actually is a generalized schedulability
condition for (I)MC tasks under EDF-VD.

By combining Theorem 1 (see Section IV-A) and our
Theorem 2, we prove the following theorem,

Theorem 3. Given an IMC task set, if

UHIHI + ULOLO ≤ 1 (8)

then the IMC task set is schedulable by EDF; otherwise, if

ULOHI
1− ULOLO

≤ 1− (UHIHI + UHILO)

ULOLO − UHILO

(9)

where

UHIHI + UHILO < 1 and ULOLO < 1 and ULOLO > UHILO (10)

then this IMC task set can be scheduled by EDF-VD with a
deadline scaling factor x arbitrarily chosen in the following
range

x ∈
[

ULOHI
1− ULOLO

,
1− (UHIHI + UHILO)

ULOLO − UHILO

]
Proof: Total utilization U ≤ 1 is the exact test for EDF

on a uniprocessor system. If the condition in (8) is met, the
given task set is worst-case reservation [2] schedulable under
EDF, i.e., the task set can be scheduled by EDF without
deadline scaling for high-criticality tasks and execution budget
reduction for low-criticality tasks. Now, we prove the second
condition given by (9). From Theorem 1, we have,

x ≥ ULOHI
1− ULOLO

From Theorem 2, we have

xULOLO + (1− x)UHILO + UHIHI ≤ 1

⇔x ≤ 1− (UHIHI + UHILO)

ULOLO − UHILO

Therefore, if ULO
HI

1−ULO
LO

≤ 1−(UHI
HI +U

HI
LO)

ULO
LO−UHI

LO

, the schedulability
conditions of both Theorem 1 and 2 are satisfied. Thus, the
IMC tasks are schedulable under EDF-VD.

V. SPEEDUP FACTOR

The speedup factor bound is a useful metric to compare
the worst-case performance of different MC scheduling algo-
rithms. The speedup factor bound for the classical MC model
under EDF-VD [2] has been shown to be 4/3. The following
is the definition of the speedup factor for an MC scheduling
algorithm.

Definition 2 (from [2]). An algorithm A has a speedup factor
f ≥ 1, if any task system that is schedulable on a unit-
speed processor by using a hypothetical optimal clairvoyant
scheduling algorithm2, can be successfully scheduled on a
speed-f processor by algorithm A.

For notational simplicity, we define

UHIHI = c, ULOHI = α× c
ULOLO = b, UHILO = λ× b

where α ∈ (0, 1] and λ ∈ [0, 1]. α denotes the utilization ratio
between ULOHI and UHIHI , while λ denotes the utilization ratio
between UHILO and ULOLO .

First, let us analyze the speedup factor of two corner cases.
When α = 1, i.e., ULOHI = UHIHI , this means that there is
no mode-switch. Therefore, the task set is scheduled by the
traditional EDF, i.e., the task set is schedulable if ULOLO +
ULOHI ≤ 1. Since EDF is the optimal scheduling algorithm on a
uniprocessor system, the speedup factor is 1. When λ = 1, i.e.,
ULOLO = UHILO , if the task set is schedulable in high-criticality
mode, it must hold UHIHI +U

LO
LO ≤ 1 by Theorem 2. Then it is

scheduled by the traditional EDF and thus the speedup factor
is 1 as well.

In this paper, instead of generating a single speedup factor
bound, we derive a speedup factor function with respect to
(α, λ). This speedup factor function enables us to quantify
the suboptimality of EDF-VD for the IMC model in terms of
speedup factor (by our proposed sufficient test) and evaluate
the impact of the utilization ratio on the schedulability of an
IMC task set under EDF-VD.

First, we strive to find a minimum speed s (≤1) for a
clairvoyant optimal MC scheduling algorithm such that any
implicit-deadline IMC task set which is schedulable by the
clairvoyant optimal MC scheduling algorithm on a speed-s
processor can satisfy the schedulability test given in Theorem
3, i.e., schedulable under EDF-VD on a unit-speed processor.

Lemma 2. Given b, c ∈ [0, 1], α ∈ (0, 1), λ ∈ [0, 1), and

max{b+ αc, λb+ c} ≤ S(α, λ) (11)

where

S(α, λ) =
(1− αλ)((2− αλ− α) + (λ− 1)

√
4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)

2A ‘clairvoyant’ scheduling algorithm knows all run-time information, e.g.,
when the mode switch will occur, prior to run-time.

(a) plane 1 (b) plane 2 (c) vertical surface

(d) Feasible solution space

Figure 3: 3D space of optimization problem (13)

then it guarantees

αc

1− b
≤ 1− (c+ λb)

b− λb
(12)

Proof: Suppose that s ≥ max{b+αc, λb+ c}. We strive
to find a minimal value s to guarantee that (12) in Theorem 3
is always satisfied. Based on this, we construct an optimization
problem as follows,

minimize s (13)
subject to b+ αc ≤ s (14)

λb+ c ≤ s (15)

λb2 + (αλ− α+ 1)bc− (λ+ 1)b− c+ 1 ≤ 0
(16)

0 ≤ b ≤ 1, 0 ≤ c ≤ 1 (17)

where α and λ are constant and s, b, c are variables. If we can
prove that S(α, λ) is the optimal solution of the optimization
problem (13), then Lemma 2 is proved.

Below, we prove that S(α, λ) is the optimal solution of
the optimization problem (13)3. Each of constraints in the
optimization problem (13) defines a feasible space in the
three-dimension space. In Figure 3(a), the space above the
plane is a feasible space satisfying constraint (14), where
the plane corresponds to b + αc = s. For constraint (15),
λb+ c = s draws a plane and the feasible space is above the
plane shown in Figure 3(b). Similarly, when constraint (16)
makes its right-hand-side equal to the left-hand-side, we draw
a vertical curved surface seen in Figure 3(c) and the space
outside the vertical surface is the feasible space4. As a result,

3 This optimization problem is a non-convex problem and thus we cannot
use general convex optimization techniques such as the Karush-Kuhn-Tucker
(KKT) approach [18] to solve it.

4As the arrows direct.

the feasible solutions subject to these three constraints must
be above both planes and outside the vertical curved surfaces.
Below we will prove the minimum value of s in the feasible
solution space must be on the vertical surface and one plane.

First assume that we have a point (b′0, c
′
0, s
′
0) which satisfies

all constraints but is not on the vertical surface. If we connect
the origin (0, 0, 0) and (b′0, c

′
0, s
′
0), this line must have an

intersection point (b∗0, c
∗
0, s
∗
0) with the vertical surface. It is

easy to observe that s∗0 < s′0 - see in Figure 3(d). This means
that any point which is not on the vertical surface can find
a point with smaller value of s on the vertical surface which
satisfies all constraints. Therefore, the point with the minimal
s must be on the vertical surface. Similarly, the minimal s
must be on one of the two planes. Otherwise, if it is not on
any plane, we always can find a projected point on one plane
which has a smaller value of s.

We have shown above that to obtain the minimal value of s
the point must be on the vertical surface and one plane. Then,
the two planes have an intersection line and this line intersects
with the vertical surface at a point denoted by (b0, c0, s0). By
taking constraints (14)(15) and (16), we formulate a piece-wise
function of s with respect to b as follows.

s(b) =

{
(αλ2−αλ)b2+b−1
(αλ−α+1)b−1 0 < b ≤ b0

(1−α)b2+(αλ+α−1)b−α
(αλ−α+1)b−1 b0 < b ≤ 1

(18)

This function covers all points which are on the vertical surface
and one plane and at same time satisfy all constraints. By
doing some calculus, we know that Eq. (18) is monotonically
decreasing in (0, b0] and monotonically increasing in (b0, 1].
Therefore, the minimal value of Eq. (18) can be obtained
at (b0, c0, s0). The complete proof is given by Lemma 4 in
Appendix I. It means that we can obtain the optimal solution of
optimization problem (13) by solving the following equation
system.

b0 + xc0 = s0

λb0 + c0 = s0

λb20+(αλ−α+1)b0c0−(λ+1)b0−c0+1 = 0

(19)

By joining the first two equations we have c0 = 1−λ
1−α × b0,

and applying it to the last equation in (19) gives

(−αλ2 + αλ− α+ 1)b20 + (αλ+ α− 2)b0 + (1− α) = 0

By the well-known Quadratic Formula we get the two roots
of the above quadratic equation.

b10 =
(2− αλ− α) + (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
(20)

b20 =
(2− αλ− α)− (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
(21)

We can prove that b20 is larger than 1 and thus should
be dropped (since we require 0 ≤ b ≤ 1), while b10 is in
the range of [0, 1]. The detailed proof is given by Lemma 5
in Appendix I. As a result, we obtain the optimal solution
(b10,

1−α
1−λ b

1
0,

1−αλ
1−λ b

1
0) for Eq. (19). Thus, we have

λ

0.0
0.2

0.4
0.6

0.8
1.0

α

0.0

0.2
0.4

0.6
0.8

1.0

sp
e
e
d
u
p
 f

a
ct

o
r

1.05

1.10

1.15

1.20

1.25

1.30

1.351.333

Figure 4: 3D image of speedup factor w.r.t α and λ

λ
α 0.1 0.3 1/3 0.5 0.7 0.9 1

0 1.254 1.332 1.333 1.309 1.227 1.091 1
0.1 1.231 1.308 1.310 1.293 1.219 1.090 1
0.3 1.183 1.256 1.259 1.254 1.201 1.087 1
0.5 1.134 1.195 1.200 1.206 1.174 1.083 1
0.7 1.082 1.126 1.130 1.143 1.133 1.074 1
0.9 1.028 1.046 1.048 1.056 1.061 1.048 1
1 1 1 1 1 1 1 1

Table II: Speedup factor w.r.t α and λ

S(α, λ) =
1− αλ
1− λ b10

=
(1− αλ)((2− αλ− α) + (λ− 1)

√
4α− 3α2)

2(1− α)(αλ− αλ2 − α+ 1)

Therefore, Lemma 2 is proved.
Lemma 2 shows that any IMC task set which is schedulable

by an optimal clairvoyant MC scheduling algorithm on a
speed-S(α, λ) is also schedulable on a unit-speed processor by
EDF-VD. As a direct result, we have the following theorem,

Theorem 4. The speedup factor of EDF-VD with IMC task
sets is upper bounded by

f =
2(1− α)(αλ− αλ2 − α+ 1)

(1− αλ)((2− αλ− α) + (λ− 1)
√
4α− 3α2)

The speedup factor is shown to be a function with respect
to α and λ. Figure 4 plots the 3D image of this function and
Table II lists some of the values with different α and λ. By
doing some calculus, we obtain the maximum value 1.333, i.e.,
4/3, of the speedup factor function when λ = 0 and α = 1

3 ,
which is highlighted in Figure 4 and Table II. We see that
the speedup factor bound is achieved when the task set is a
classical MC task set. From Figure 4 and Table II, we observe
different trends for the speedup factor with respect to α and
λ.
• First, given a fixed λ, the speedup factor is not a mono-

tonic function with respect to α. The relation between
α and the speedup factor draws a downward parabola.
Therefore, a straightforward conclusion regarding the
impact of α on the speedup factor cannot be drawn.

• Given a fixed α, the speedup factor is a monotonic
decreasing function with respect to increasing λ. It is seen
that increasing λ leads to a smaller value of the speedup

factor. This means that a larger λ brings a positive effect
on the schedulability of an IMC task set.

VI. EXTENSION TO ELASTIC MIXED-CRITICALITY
MODEL

Su and Zhu in [6] introduced an Elastic Mixed-Criticality
(EMC) task model, where the elastic model [19] is used to
model low criticality tasks. When the MC system switches
to high criticality mode, low-criticality tasks scale up their
original period to a larger period such that low-criticality
tasks continue to be scheduled with a degraded service (less
frequently). Although the EMC model has been studied by
[6] [13] [14], there is not a utilization-based sufficient test for
the EMC model. Therefore, in this section, we prove that the
theories proposed in Section IV apply to the EMC model [6] as
well. Here, we use Tmaxi (≥ Ti) to denote the extended period
of a low-criticality task τi. Since, in the EMC model, the
WCETs of a low-criticality tasks are the same in two modes,
the utilization of low-criticality task τi in high-criticality mode
is computed as uHIi = CLOi /Tmaxi .

Proposition 5 (Lemma 1 from [6]). A set of EMC tasks is
EMC schedulable under EDF-VD if UHIHI + UHILO ≤ 1.

Here, in order to keep the consistence, we use UHILO to
denote U(L,min) in [6]. Proposition 5 is provided in [6] to
check the schedulability of an EMC task set on a uniprocessor.
However, Proposition 5 is a necessary test. This means that
even if a given task set satisfies the condition presented in
Proposition 5, it is still possible that the task set is un-
schedulable under EDF-VD. Below, we prove that the theories
proposed in Section IV can apply to the EMC model.

First, in low-criticality mode, since the EMC model just
behaves like the classical MC model, Theorem 1 holds for
the EMC model. Then we discuss the schedulability of the
EMC model in high-criticality mode. We have the following
definition for the carry-over job of a low criticality task in the
EMC model:

Definition 3. In the EMC model, carry-over job Ji of low
criticality task τi has its release time ai < t1 and original
deadline di > t1.

Then, we prove the following proposition for a carry-over
job.

Proposition 6. For an EMC carry-over job Ji, if it completes
its execution before switch time instant t1, then its original
deadline di is ≤ (a1 + x(t2 − a1)).

Proof: Consider that carry-over job Ji completes its
execution before switch time instant t1. Suppose that Ji has
its original deadline di > (a1+x(t2−a1)). Let t∗ denote the
latest time instant at which Ji starts to execute before t1. At
time instant t∗, all jobs in J with deadlines ≤ (a1+x(t2−a1))
then have finished their execution. Therefore, these jobs do not
have any execution within interval [t∗, t2]. This implies that
jobs in J which are released at or after t∗ can form a smaller
job set and this smaller job set is sufficient to cause deadline

miss at t2. This contradicts the minimality of J . Therefore,
in this case we have di ≤ (a1 + x(t2 − a1))

Lemma 3. Lemma 1 still holds for low-criticality tasks of the
EMC model in high-criticality mode.

Proof: We can prove this lemma by doing some modifi-
cations on the proof of Lemma 1. Here, we mainly focus on
the modified part. The proof uses the same notations explained
in Section IV.

For the EMC model, we need to consider a special case
when carry-over job Ji of low-criticality task τi has its
extended deadline dmaxi > t2. Since t2 is a deadline miss,
a job with deadline > t2 will not be scheduled within [t1, t2)
-see Proposition 1. If dmaxi > t2, job Ji will not be executed
after the switch time instant t1 and the maximum cumulative
execution time of τi can be obtained as job Ji completes its
CLOi before t1. Hence, the cumulative execution of task τi can
be bounded by,

ηi ≤ ai · uLOi + (di − ai)uLOi = di · uLOi (22)

By Proposition 6, we replace di with (a1+x(t2−a1)) in Eq.
(29)

ηi ≤ (a1 + x(t2 − a1))uLOi + (t2 − (a1 + x(t2 − a1)))uHIi
⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

(23)

The rest of the proof can follow the proof of Lemma 1. A
complete proof can be found in Appendix II.

Lemma 3 shows that Lemma 1 can still bound the cumula-
tive execution time of low-criticality tasks of the EMC model
in high-criticality mode. Moreover, since there is no difference
how the high-criticality tasks are scheduled in the EMC model
or in the classical MC model, Proposition 4 still holds for the
high-criticality tasks in the EMC model. As a result, Theorem
2 holds for the EMC model as well. Then, we can directly
obtain the following theorem,

Theorem 5. Theorem 3 is a sufficient test for the EMC model
under EDF-VD.

Since Theorem 3 is a sufficient test for the EMC model
under EDF-VD, the speedup factor results we obtained in
Section V also apply to the EMC model, i.e., the speedup
factor bound of the EMC model under EDF-VD is also 4/3
by using our proposed sufficient test.

VII. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the
effectiveness of the proposed sufficient test for the IMC model
in terms of schedulable task sets (acceptance ratio). Moreover,
we conduct experiments to verify the observations obtained in
Section V regarding the impact of α and λ on the average
acceptance ratio. Our experiments are based on randomly
generated MC tasks. We use a task generation approach,
similar to that used in [5] [4], to randomly generate IMC task
sets to evaluate the proposed sufficient test. Each task τi is
generated based on the following procedure,

• pCriticality is the probability that the generated task is a
high-criticality task; pCriticality∈ [0, 1].

• Period Ti is randomly selected from range [100, 1000].
• In order to have sufficient number of tasks in a

task set, utilization ui is randomly drawn from the
range[0.05, 0.2].

• For any task τi, CLOi = ui ∗ Ti.
• R ≥ 1 denotes the ratio CHIi /CLOi for every high-

criticality task. If Li = HI , we set CHIi = R ∗ CLOi . It
is easy to see that α used in the speedup factor function
is equal to 1

R ;
• λ ∈ (0, 1] denotes the ratio CHIi /CLOi for every low-

criticality task. If Li = LO, we set CHIi = λ ∗ CLOi .

In the experiment, we generate IMC task sets with different
target utilization U . Each task set is generated as follows.
Given a target utilization U , we first initialize an empty task
set. Then, we generate task τi according to the task generation
procedure introduced above and add the generated task to the
task set. The task set generation stops as we have

U − 0.05 ≤ Uavg ≤ U + 0.05

where

Uavg =
ULO + UHI

2

is the average total utilization of the generated task set. If
adding a new task makes Uavg > U + 0.05, then the added
task will be removed and a new task will be generated and
added to the task set till the condition is met.

A. Comparison with AMC [7]
To date, the modified AMC given in [7] is the only related

work considering the schedulability of the IMC model under
fixed-priority scheduling. Therefore, in the first experiment,
we compare EDF-VD by using our proposed test to the AMC
approach in [7] in terms of average acceptance ratio. In this
experiment, R is randomly selected from a uniform distribu-
tion [1.5, 2.5]. With different λ and pCriticality settings, we
vary Uavg from 0.4 to 0.95 with step of 0.05, to evaluate the
effectiveness of the proposed sufficient test in terms of the
average acceptance ratios. We generate 10,000 task sets for
each given Uavg . Due to space limitations, we only present
the experimental results when pCriticality= 0.5. Results with
different pCriticality settings can be found in Appendix III.
The results are shown in Figure 5, where the x-axis denotes
the varying Uavg and the y-axis denotes the acceptance ratio.
In the figures, let EDF-VD and AMC denote our proposed
schedulability test and the one proposed in [7], respectively. In
most cases, EDF-VD outperforms AMC in terms of acceptance
ratio. We observe the following trends:

1) When Uavg ∈ [0.5, 0.8], EDF-VD always outperforms
AMC in terms of acceptance ratio. However, if Uavg >
0.8 and λ = 0.3 or 0.5, AMC performs better than EDF-
VD. The same trend is also found for the classical MC
model under EDF-VD and AMC, see the comparison in
[4].

0.2 0.3 0.4 0.5 0.6 0.7 0.8
λ

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o Uavg=0.65

Uavg=0.70

Uavg=0.75

Uavg=0.80

Uavg=0.85

Figure 6: Impact of λ

2) By comparing sub-figures in Figure 5, we see that the
average acceptance ratio improves when λ increases.
This confirms the observation for the speedup factor
we obtained in Section V. The increasing λ leads to a
smaller speedup factor. As a result, it provides a better
schedulability. We need to notice that when λ increases,
not only EDF-VD improves its acceptance ratio but the
acceptance ratio of AMC [7] also improves.

B. Impact of α and λ
Above, we compare our proposed sufficient test to the

existing AMC approach. In this section, we conduct exper-
iments to further evaluate the impact of λ and α (1/R) on
the acceptance ratio. In this experiment, we select Uavg =
{0.65, 0.7, 0.75, 0.8, 0.85} to conduct experiments. We fix
Uavg to a certain utilization and vary λ and α to evaluate
the impact.

We first show the results for λ. The results are depicted in
Figure 6, where the x-axis denotes the value of λ from 0.2
to 0.9 with step of 0.1 and the y-axis denotes the average
acceptance ratio. R is randomly selected from a uniform
distribution [1.5, 2.5] and pCriticality= 0.5. Similarly, 10,000
task sets are generated for each point in the figures. A clear
trend can be observed that the acceptance ratio increases as λ
increases. This trend confirms the positive impact of increasing
λ on the schedulability which we have observed in Section V.

Next we conduct experiments to evaluate the impact of α
on the schedulability. Similarly, we fix Uavg and vary α to
carry out the experiments. Due to α = 1

R , if α is given,
we compute the corresponding R to generate task sets. The
results are depicted in Figure 7, where λ = 0.5. The x-
axis denotes the varying α from 0.1 to 0.9 with step of 0.1.
while the y-axis denotes the average acceptance ratio. First,
from Table II, we see that with increasing α the speedup
factor first increases till a point. This means within this range
the scheduling performance of EDF-VD gradually decreases.
After that point, the speedup factor decreases which means
the scheduling performance of EDF-VD gradually improves.
The experimental results confirm what we have observed for
α in Section V. The acceptance ratio gradually decreases till
a point and then it increases.

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

(a) λ = 0.3

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

(b) λ = 0.5

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

(c) λ = 0.7

Figure 5: Varying Uavg with different λ and pcriticality=0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o Uavg=0.65

Uavg=0.70

Uavg=0.75

Uavg=0.80

Uavg=0.85

Figure 7: Impact of α

VIII. CONCLUSIONS

In this paper, the imprecise mixed-criticality (IMC) model
from [7] is investigated. A sufficient test for the IMC model
under EDF-VD is proposed and the proposed sufficient test
later applies to the EMC model as well. Based on the proposed
sufficient test, we derive a speedup factor function with respect
to the utilization ratio α of all high-criticality tasks and the
utilization ratio λ of all low-criticality tasks. This speedup
factor function provides a good insight to observe the impact
of α and λ on the speedup factor and quantifies suboptimality
of EDF-VD for the IMC/EMC model in terms of speedup fac-
tor. Our experimental results show that our proposed sufficient
test outperforms the AMC approach in terms of acceptance
ratio. Moreover, the extensive experiments also confirm the
observations we obtained for the speedup factor.

REFERENCES

[1] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Proceedings of the 16th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
Washington, DC, USA: IEEE Computer Society, 2010, pp. 13–22.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. V. der Ster, and L. Stougie, “The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems,” in Proceed-
ings of the 24th Euromicro Conference on Real-Time Systems (ECRTS),
July 2012, pp. 145–154.

[3] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for
mixed criticality systems,” in Proceedings of the 32nd IEEE Real-Time

Systems Symposium. Washington, DC, USA: IEEE Computer Society,
2011, pp. 34–43.

[4] P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-time systems, vol. 50,
no. 1, pp. 48–86, 2014.

[5] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,” in Proceedings of the 2013 IEEE 34th Real-Time
Systems Symposium (RTSS). Washington, DC, USA: IEEE Computer
Society, 2013, pp. 78–87.

[6] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2013, March 2013, pp. 147–152.

[7] A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in Proceedings of Workshop on Mixed Criticality,
IEEE Real-Time Systems Symposium (RTSS), 2013, pp. 1–6.

[8] J. W. Liu, K.-J. Lin, W.-K. Shih, A. C.-s. Yu, J.-Y. Chung, and W. Zhao,
“Algorithms for scheduling imprecise computations,” Computer, vol. 24,
no. 5, pp. 58–68, 1991.

[9] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

[10] A. Burns and R. Davis, “Mixed criticality systems-a review,” University
of York, Tech. Rep, 2015.

[11] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, “Service
adaptions for mixed-criticality systems,” in Proceedings of the 19th Asia
and South Pacific Design Automation Conference (ASP-DAC), Jan 2014,
pp. 125–130.

[12] R. Ravindran, C. M. Krishna, I. Koren, and Z. Koren, “Scheduling
imprecise task graphs for real-time applications,” International Journal
of Embedded Systems (IJES), vol. 6, 2014.

[13] H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for mixed-
criticality systems,” in Proceedings of IEEE 20th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2014.

[14] M. Jan, L. Zaourar, and M. Pitel, “Maximizing the execution rate of low-
criticality tasks in mixed criticality system,” Proceedings of Workshop
on Mixed-Criticality, IEEE Real-Time Systems Symposium, pp. 43–48,
2013.

[15] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin, “Scheduling periodic jobs
that allow imprecise results,” IEEE Trans. Comput., vol. 39, no. 9, pp.
1156–1174, Sep. 1990.

[16] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with fp,” in
Proceedings of the 24th Euromicro Conference on Real-Time Systems
(ECRTS), July 2012.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
1973.

[18] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and
Probability. Berkeley, Calif.: University of California Press, 1951.

[19] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic schedul-
ing for flexible workload management,” IEEE Trans. Comput., vol. 51,
no. 3, pp. 289–302, Mar. 2002.

APPENDIX I
Lemma 4. The minimum value of piece-wise function (18)
given in Section V is obtained when b = b0.

s(b) =

{
(αλ2−αλ)b2+b−1
(αλ−α+1)b−1 0 < b ≤ b0

(1−α)b2+(αλ+α−1)b−α
(αλ−α+1)b−1 b0 < b ≤ 1

(24)

Proof: For case of 0 < b ≤ b0, its derivative is

s′(b) =
α(λ− 1)(λ(αy − α+ 1)b2 − 2λb+ 1)

((αλ− α+ 1)b− 1)2

The denominator is obviously positive. For the numerator,
since the discriminant of λ(αλ − α + 1)b2 − 2λb + 1 = 0
is (2λ)2−4λ(αλ−λ+1), which is negative since 0 < λ < 1,
so we know λ(αλ − α + 1)b2 − 2λb + 1 > 0. Moreover,
we have λ − 1 < 0, so putting them together we know the
numerator is negative. In summary, s′(b) is negative and thus
s(b) is monotonically decreasing with respect to b in the range
b ∈ (0, b0].

For case of b0 < b ≤ 1, we can compute the derivative of
s(b) by

s′(b) =
(1− λ)((λy − x+ 1)b2 − 2b− (λy − x− 1))

((λy − x+ 1)b− 1)2

The denominator is obviously positive. For the numerator, we
focus on (xλ−x+1)b2−2b−(xλ−x−1) part. The following
equation

(xλ− x+ 1)b2 − 2b− (xλ− x− 1) = 0

has two roots b1 = 1 and b2 = 1+(x−xλ)
1−(x−xλ) , which is greater than

1, so we know (xλ−x+1)b2−2b−(xλ−x−1) is either always
positive or always negative in the range of b ∈ (b0, 1). Since
we can construct (xλ−x+1)b2−2b− (xλ−x−1) > 0 with
x = λ = b = 0.5, so we know (xλ−x+1)b2−2b−(xλ−x−1)
is always positive. Moreover, since 1− x > 0, the numerator
of s′(b) is positive, so overall s′(b) is positive, and thus s(b)
is monotonically increasing with respect to b in the range of
b ∈ (b0, 1].

In summary, we have proved s(b) is monotonically decreas-
ing in (0, b0], and monotonically increasing in (b0, 1], both
with respect to b, so the smallest value of s(b) must occur at
b0.

Lemma 5. If 0 < α < 1 and 0 ≤ λ < 1, then

b10 =
(2− αλ− α) + (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
> 1 (25)

b20 =
(2− αλ− α)− (1− λ)

√
−3α2 + 4α

2(−αλ2 + αλ− α+ 1)
∈ [0, 1] (26)

Proof: We start with proving b10 > 1. We first prove b10 ≥
0 by showing both the numerator and dominator are positive.
For simplicity, we use N1 and M1 to denote the numerator and
denominator of b10 in (25), and N2 and M2 the numerator and
denominator of b20 in (26). Note that the following reasoning
relies on that α ∈ (0, 1), λ ∈ [0, 1).

1) N1 > 0. First, we have

N1 ×N2

= (2− αλ− α)2 − (1− λ)2(−3α2 + 4α)

= 4αλ(1− λ)(1− α) + 4(1− α)2

> 0

Moreover, it is easy to see N2 > 0. Therefore, we can
conclude that N1 is also positive.

2) M1 > 0. 2(−αλ2+αλ−α+1) = 2(αλ(1−λ)+(1−α)),
which is positive.

In summary, both the numerator and the denominator of b10 in
(25) are positive, so b10 ≥ 0. Next we prove b10 ≤ 1 by showing
N1 −M1 ≤ 0:

N1 −M1

= (λ− 1)(
√
−3α2 + 4α+ α(2λ− 1))

which is negative if λ ≥ 0.5 (since λ − 1 < 0 and√
−3α2 + 4α+α(2λ−1) ≥ 0). So in the following we focus

on the case of λ < 0.5. Since λ < 0.5, we know α(2λ − 1)
is negative, so we define two positive number A and B as
follows

A =
√
−3α2 + 4α (27)

B = α(1− 2λ) (28)

so N1 −M1 = (λ − 1)(A − B). Since λ − 1 < 0, we only
need to prove A − B > 0, which is equivalent to proving
A2 − B2 > 0 (as both A and B are positive): A2 − B2 > 0,
which is done as follows:

A2 −B2 =− 3α2 + 4α− α2(2λ− 1)2

=4α(1− α) + 4α2λ(1− λ)
>0

so we have A−B > 0 and thus N1−M1 = (λ−1)(A−B) < 0.
In summary, we have proved N1 −M1 < 0 for the cases of
both λ ≥ 0.5 and λ < 0.5, so we know b10 ∈ [0, 1].

Next we prove b20 > 1, by showing N2 −M2 > 0

N2 −M2

= (1− λ)(
√
−3α2 + 4α− α(2λ− 1))

If λ ≤ 0.5, then
√
−3α2 + 4α − α(2λ − 1) > 0, and since

1 − λ > 0 we have N2 −M2 > 0. If λ > 0.5, we let C =
α(2λ− 1) > 0 and also use A as defined above, N2 −M2 =
(1 − λ)(A − C). To prove A − C > 0, it suffices to prove
A2 − C2 > 0, as shown in the following:

A2 − C2 = − 3α2 + 4α− α2(2λ− 1)2

= 4α− (3 + (2λ− 1)2)α2

> 4α− 4α2 (λ < 1 ,so 2λ− 1 < 1)

> 0

By now we have proved N2 −M2 for both cases of λ ≤ 0.5
and λ > 0.5, so we known b20 > 1.

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

(a) λ = 0.3

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

(b) λ = 0.5

0.4 0.5 0.6 0.7 0.8 0.9
Uavg

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 r
a
ti

o

AMC

EDF-VD

(c) λ = 0.7

Figure 8: Varying UB with different λ and pcriticality=0.3

APPENDIX II
The following is the complete proof of Lemma 3.

Proof: We use the same notations explained in Section IV.
When uLOi = uHIi , it is trivial to see that Lemma 1 holds for
the EMC model. Now we focus on the case when uLOi > uHIi
To prove this case, we need to consider two cases where low-
criticality task τi releases a job within interval (a1, t2] or it
does not.
• Case 1 (τi releases a job within interval (a1, t2]): If there

is no carry-over job , the proof is the same as we have
proved for the IMC model (see the proof of Sub-case
1 in Lemma 1). Here, we focus on the case that there
is a carry-over job. Let Ji denote the carry-over job
with absolute release time ai, original deadline di, and
maximum deadline dmaxi . Here, we consider two cases,
dmaxi > t2 and dmaxi ≤ t2.

– dmaxi > t2: since t2 is a deadline miss, a job with
deadline > t2 will not be scheduled within [t1, t2)
-see Proposition 1. If dmaxi > t2, job Ji will not
be executed after the switch time instant t1 and the
maximum cumulative execution time of τi can be
obtained as job Ji completes its CLOi before t1.
Hence, the cumulative execution of task τi can be
bounded by,

ηi ≤ ai · uLOi + (di − ai)uLOi = di · uLOi (29)

By Proposition 6, we replace di with (a1+x(t2−a1))
in Eq. (29)

ηi ≤ (a1 + x(t2 − a1))uLOi + (t2 − (a1 + x(t2 − a1)))uHIi
⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

(30)

– dmaxi ≤ t2: in this case, the cumulative execution of
low-criticality task τi can be bounded as follows:

ηi ≤ aiuLOi + (t2 − ai)uHIi
(Since ai < t1

and t1 < (a1 + x(t2 − a1)) from Proposition 2)

⇒ηi ≤
(
a1 + x(t2 − a1)

)
uLOi +

(
t2 −

(
a1 + x(t2 − a1)

))
uHIi

⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi
(31)

• Case 2 (τi does not release a job within interval (a1, t2]):
For low-criticality task τi, let Ji denote the last release
job before a1, where ai(< a1) and di are the absolute
release time and deadline of Ji, respectively. Moreover,
let dmaxi (> di) denote the new absolute deadline of job
Ji as the system switches to high-criticality mode. Here,
there are two cases, di ≤ t1 and di > t1. For di ≤ t1,
the cumulative execution of task τi can be computed as
follows:

ηi = di · uLOi (32)

For di > t1, if dmaxi ≤ t2, then the maximum cumulative
execution can be bounded as follows:

ηi ≤ ai · uLOi + (dmaxi − ai)uHIi
⇒ηi ≤ ai · uLOi + (t2 − ai)uHIi (since dmaxi ≤ t2)

Since ai < t1 ≤ (a1 + x(t2 − a1)) by Proposition 2, we
obtain

ηi ≤ (a1 + x(t2 − a1))uLOi + (t2 − (a1 + x(t2 − a1)))uHIi
⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

(33)

If dmaxi > t2, our reasoning is similar to the case
discussed in Case 1. The maximum cumulative execution
happens to that Ji completes its execution before t1.
Similarly, in this case, its cumulative execution can be
upper bounded by

ηi ≤ aiuLOi + (di − ai)uLOi
By Proposition 6, we obtain

ηi ≤ (a1 + x(t2 − a1))uLOi + (t2 − (a1 + x(t2 − a1)))uHIi
⇔ηi ≤ (a1 + x(t2 − a1))uLOi + (1− x)(t2 − a1)uHIi

The above discussion proves that Lemma 1 still holds for low-
criticality tasks of the EMC model.

APPENDIX III
Experimental results between EDF-VD and AMC is de-

picted in Figure 8, where pCriticality= 0.3.

	I Introduction
	II Related Work
	III Preliminaries
	III-A Imprecise Mixed-Criticality Task Model
	III-B Execution Semantics of the IMC Model
	III-C EDF-VD Scheduling
	III-D An Illustrative Example

	IV Schedulability Analysis
	IV-A Low Criticality Mode
	IV-B High Criticality Mode

	V Speedup Factor
	VI Extension to Elastic Mixed-Criticality Model
	VII Experimental Evaluation
	VII-A Comparison with AMC burns2013towards
	VII-B Impact of and

	VIII Conclusions
	References

