
IEEE COPYRIGHT NOTICE

Copyright (c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

F. Terraneo, F. Riccardi, A. Leva, ”Jitter-compensated VHT and its application to WSN clock synchronization” IEEE
Real-Time Systems Symposium (RTSS), Paris, France, December 2017

https://doi.org/10.1109/RTSS.2017.00033

ar
X

iv
:1

80
8.

05
69

6v
1

 [
cs

.D
C

]
 1

6
A

ug
 2

01
8

Jitter-compensated VHT and its application to WSN clock
synchronization

Federico Terraneo∗, Fabiano Riccardi†, Alberto Leva∗
∗Politecnico di Milano, Italy. Email: {federico.terraneo,alberto.leva}@polimi.it

†Former graduate student at the Politecnico di Milano

Abstract—Accurate and energy-efficient clock synchronization
is an enabler for many applications of Wireless Sensor Networks.
A fine-grained synchronization is beneficial both at the system
level, for example to favor deterministic radio protocols, and at
the application level, when network-wide event timestamping is
required. However, there is a tradeoff between the resolution of a
WSN node’s timekeeping device and its energy consumption. The
Virtual High-resolution Timer (VHT) is an innovative solution,
that was proposed to overcome this tradeoff. It combines a
high-resolution oscillator to a low-power one, turning off the
former when not needed. In this paper we improve VHT by first
identifying the jitter of the low-power oscillator as the current
limit to the technique, and then proposing an enhanced solution
that synchronizes the fast and the slow clock, rejecting the said
jitter. The improved VHT is also less demanding than the original
technique in terms of hardware resources. Experimental results
show the achieved advantages in terms of accuracy.

I. INTRODUCTION

Precise timing is essential for embedded systems, and in
general for computing systems that interact with the physical
world. Timing requirements arise out of the need to read
sensors and perform actuation at a rate prescribed by the
applications, as well as to schedule computations. The design
of such systems requires specialized knowledge, and their
importance is testified by both a huge research literature and
a number of industrial applications.

A computing system’s notion of time ultimately comes from
hardware counters and event timers, which are used to query
the time, and schedule events. As counters are fed by a clock
signal, their accuracy depends on that of the clock source.

Inexpensive quartz crystal oscillators have made it possible
to provide even cost-sensitive embedded systems with clocks
having an accuracy of a few tens of parts per million. This
is enough for the requirements of all but the most demanding
isolated systems, but for distributed ones, the scenario is com-
pletely different. When multiple devices need to cooperate,
clocks differing by even a few parts per million cause their
notion of time to progressively diverge, which very easily turns
into an unacceptable situation.

Since distributing a single clock to all devices in a network
is resource-consuming, thus hardly feasible especially with
wireless connections, it is not surprising that clock synchro-
nization is a very relevant and well studied topic, that dates
back to the dawn of computing systems [19], [11], but where
innovations are still being introduced nowadays [21], [1].

Clock synchronization is a fundamental topic for distributed
computing systems at large, but in the the Wireless Sensor
Network Wirless Sensor Networks (WSNs) domain, it takes

a particular flavor. WSNs exhibit at the same time extreme
energy constraints and potentially very strict application timing
requirements—think for example of sound localization [5],
[16]. Such needs, coupled with the possibility/opportunity to
tailor the entire communication protocol stack, gave rise to
unique solutions which are still extending the state of the art
in clock synchronization.

One of these solutions is the VHT [25] or Virtual High-
resolution Time, which enabled low-energy high-precision
timekeeping. VHT is a powerful technique, where two oscil-
lators are used cooperatively: a low-power, low-frequency one
is always active to keep the time, and a high-frequency but
higher-power one is turned on only when required, giving the
impression of an always running high resolution timebase.

In principle, the VHT technique does not set an upper bound
to the frequency ratio of the two oscillators, therefore – again,
in principle – it can be used to increase the resolution of
a low-power timekeeping device indefinitely. However, when
implementing VHT, we discovered that as the ratio between
the clocks increases, the jitter of the low-frequency oscillator
limits the accuracy of the overall time representation. This led
us to develop an improved VHT, that instead of combining
the two clocks like the original technique, synchronizes the
high-frequency clock to the slow one.

The contributions of this paper can thus be summarized as
follows. First, we provide a model for the VHT technique
that allows to study the effect of the nonidealities of the
two clocks on the time representation. Then, we propose an
improved VHT solution that mitigates the effect of the low-
frequency clock jitter, and at the same time is less demanding
than the original one in terms of hardware resources. The
proposed solution has been implemented on the WandStem
WSN node [6], and experimental results are reported to show
the achieved accuracy improvement.

II. RELATED WORK

The literature on WSN clock synchronization was histor-
ically divided in two broad categories. The first one com-
prehends works that address clock synchronization with a
specific emphasis on low-energy nodes, that have to operate
for up to years without replacing batteries. The second one is
made of works that aim at pushing the boundaries of WSN
synchronization, without considering power consumption.

Typical of the first category is the use of a low-frequency
timebase, usually with an inexpensive 32 kHz crystal and a
consumption in the order of µA, depending on the micro-

controller aboard the node. Works in this category include
for example DMTS [15], a simple synchronization scheme
that periodically overwrites the local clock of each node
with a received timestamp, Tiny-Sync [2], that performs skew
compensation by trying to constrain the possible skew values
using a set of inequalities, FBS [18], that compensates skew
using PI control, UTSR [27], that uses broadcast time stations,
and hardware assisted clock synchronization [28], that instead
relies on powerline frequency.

Although in this category solutions have been proposed
to synchronize within one clock tick, like FLOPSYNC-
QACS [7], the low resolution of the timebase inevitably results
in a synchronization lower bound, that with the typically used
32 kHz crystals is of approximately 30.5µs.

Works in the second category, that conversely address
high-resolution clock synchronization, correspondingly rely on
hardware timers clocked by a high-frequency crystal oscillator,
usually at a few MHz and above. This category includes
RBS [13], that synchronizes nodes by exchanging local times-
tamps of a reference packet and compensates skew with linear
regression, TPSN [20], that creates a spanning tree of the
WSN and then performs pairwise synchronization, FTSP [5],
that introduces flooding as a way to disseminate time, and
PulseSync [23], that improves upon FTSP as for the packet
dissemination. The most recent proposals in this category,
such as TATS [10], also compensate for propagation delays
to further improve synchronisztion.

The use of a high-frequency timebase allows these works to
achieve microsecond-level synchronization, and in some cases
to reach the sub-µs range. However, such a timebase severely
affects the power consumption of the entire node. Also, in
most microcontroller architectures, leaving the high-frequency
oscillator active prevents entering the deep sleep state, which
further increases power consumption.

The introduction of VHT [25] changed the entire scenario,
allowing for the first time high-resolution and low-power
synchronization. Works that adopted a VHT-like timebase,
like FLOPSYNC-2 [14], achieved both sub-µs clock synchro-
nization and sub-µA consumption overhead, and extensions
such as Reverse Flooding [12] also added propagation delay
compensation. The VHT technique has also been an enabler
for protocols requiring tight time synchronization to achieve
constructive interference [17], and for applications such as
high-performance sound-based localization [16].

For completeness, the power consumption of clocks has
been addressed by other works, such as the Tunable Tick
Resolution approach [3], that aims at reducing the interrupt
rate for timekeeping in operating systems (OSes) needing a pe-
riodic tick also in deep sleep. Fully hardware synchronization
solutions have been proposed as well, see e.g. [24], although
the quoted work focuses more on synchronizing the radio
wakeup for efficient protocols than at exposing high resolution
time to the OS and the applications.

Summarizing after this brief review, VHT is definitely a step
forward in low-power timekeeping and a promising technique
for a number of applications. In its original form, it has

however a few weaknesses as for accuracy and resource
demand, that in the following we evidence, characterize, and
address.

III. PROBLEM STATEMENT AND MODEL

In this section we describe the abstract interface of a generic
timekeeping device, show in detail the principle of operation
of the original VHT algorithm, and point out the effect of the
nonidealities of its timebases.

A. The abstract timekeeping device

A timekeeping device is a hardware component, coupled
with some support software, that is used by an OS to ex-
pose timing information to the applications, and to schedule
computations. This component should expose to the OS at
least two fundamental operations, that we name here get time
and set event, plus optionally two additional ones – here-
inafter get hw event timestamp and set hw event – to facili-
tate clock synchronization.
• get time is an operation that returns the current time.

It is the fundamental primitive to allow the OS and
the applications to be aware of that time, whatever the
purpose of this awareness is.

• set event is an operation that causes an event, usually an
interrupt service routine, to be called at a given time in
the future. The time when the event should occur can be
either specified as an absolute time point in the timeline
of get time, or as a relative time interval starting from
the call to set event itself. Its use is primarily to allow
the OS scheduler to schedule tasks.

• get hw event timestamp is an optional operation that
allows to know the exact time when some hardware-
generated event external to the CPU has occurred, for
example when a packet has been received through a
communication interface. Some hardware implementa-
tions provide support for timestamping also application-
related events, such as sensor readings, when high timing
accuracy is required by applications [16], [6].

• set hw event is an optional operation that allows to
generate an event external to the CPU, usually a rising
edge on some output port, at a given absolute time
point in the future. When connected to a communication
transceiver, it allows to precisely control the time when
a packet is sent without software-induced latencies. Also
in this case, additional output channels can be dedicated
to applications [6].

Although the last two primitives are optional, they are
becoming common in WSN nodes as their availability allows
to increase the accuracy of clock synchronisation [14], [12],
[10], [4] especially in multi-hop networks, as they eliminate
latencies caused by the software, that accumulate as the
number of hops increase. Additionally, also modern clock syn-
chronization protocols over wired network such as PTP [21]
do require hardware packet timestamping.

B. A brief review of VHT

Energy optimization in WSNs is performed by keeping
nodes in a low power sleep state as long as possible, with
values of 99% and above being practically achievable [26].
In this state, the CPU and the radio transceiver are not
operational. Only the timekeeper is active, as this is needed
to maintain the time, and schedule wakeups. The timekeeper
resolution poses a lower bound to the notion of time a node can
have, as clock synchronization cannot exceed the hardware tick
resolution. However, the timekeeper consumption is a function
of its clock frequency, which results in a tradeoff between
timing resolution and energy efficiency.

VHT solves this by relying on two hardware clocks, a high-
frequency one, with frequency fh, that can be turned off during
deep sleep periods, and a low-frequency one, with frequency
fl . We define the ratio between the two frequencies as

φ0 =
fh

fl
. (1)

Most microcontrollers already support such a setting naturally,
as the fast clock is the one for the CPU, and the slow one is
a 32768 Hz clock for the RTC.

To fully describe the VHT, it is necessary to briefly review
how the typical hardware timer in a microcontroller works.
Such a device has a hardware counter, that is incremented
at the rate of the timer’s clock frequency, and one or more
hardware units that can be software configured either in
capture mode, where they store in a register a snapshot of the
counter at the occurrence of an external event, or in compare
mode, where the content of a register is compared against the
timer counter, and an event is generated when they are equal.
Both in capture and compare mode, it is possible to configure
an interrupt to be raised when the event occurs, to allow the
software to handle that event.

The VHT paper shows how to implement in software the
get hw event timestamp operation in Section 4.1 of [25], and
this implementation is what we call “original VHT” in this
paper. This implementation uses two hardware timers, clocked
respectively by the fast and slow clock. The event source
is connected to a capture channel of both timers, to take a
timestamp h1 of the high-frequency clock and a timestamp l0
of the low-frequency one every time an event occurs. Either
of the two is configured to generate an interrupt, in order to
inform the software about the event. Additionally, a second
capture channel of the high-frequency timer is connected to
the low-frequency clock signal, taking a timestamp h0 of every
rising edge of the low-frequency clock. This channel is not
configured to generate interrupts.

When an event occurs, as shown in Figure 1, the interrupt
routine reads h0, h1 l0 and computes the event timestamp as

timestamp = l0φ0 +((h1−h0)modφ0). (2)

The modulo operation is necessary because if a rising edge of
the slow clock occurs after an event, but before the software
routine reads h0, then h0 and h1 will be reversed in the
timeline. As can be noticed, the high-frequency clock is only

Fast

Slow

h0

l0

h1

l0

ϕ

Fig. 1. Operation of the original VHT algorithm in the ideal case. Low
frequency oscillator (h0) and event (h1) being timestamped by the high
frequency clock.

used to measure the time interval between the event and the
last edge of the slow clock, identified by φ in the figure. This
means that it can be turned off when not needed, without
losing the notion of time.

C. Issues with the VHT algorithm

The VHT technique allows to achieve the resolution of the
high-frequency timer without the cost of having it always
clocked, but does it allow to achieve also its accuracy?
To answer this question, it is necessary to introduce clock
jitter [8], a nonideality of crystal oscillators that causes their
period to change by a small and random amount at each clock
cycle. The point here is that the jitter of the low-frequency
clock is small compared to its period, but there is no guarantee
that it will be small also with respect to the period of the fast
clock. This introduces a limit to the ratio of the two clocks φ0,
beyond which the VHT accuracy will not increase. In detail,
jitter causes an additive disturbance to the edges of the slow
clock, that affects the timestamp h0. Given the nature of (2), an
additive disturbance in h0 will propagate through the difference
and the modulo, and will finally introduce uncertainty in the
event timestamp, degrading accuracy.

To quantify this effect, we performed three experiments.
First, to see the jitter propagation in an ideal setting, we
performed a Monte Carlo simulation where 100000 uniformly
distributed events over a 100s horizon are timestamped using
the original VHT with a 60ns low-frequency clock jitter. The
simulation considered a 48MHz high-frequency clock, and a
32768Hz low-frequency one. Then, to show that the issue
exists in real-world hardware, and is not specific to a single
particular platform, we implemented the VHT algorithm in two
quite different microcontroller boards. The first one is an off-
the-shelf stm32f4discovery board. This has a high-frequency
clock at 84MHz but lacks a 32kHz crystal, hence we soldered
to it an ecliptek EC26 32768Hz one. The second board is
a WandStem WSN node, that has a 48MHz high-frequency
clock and uses a model CPFB 32kHz crystal by Cardinal
Components.

It should be noted that the hardware RTC of both boards
lacks an input capture feature, and thus to implement VHT
we had to route the output of the 32kHz oscillator to a
different timer than the RTC. As only the RTC can function
when the microcontroller is in deep sleep, this setup prevents
the microcontroller from entering deep sleep, making VHT
practically useless but serving the experiment’s scope of seeing
how the jitter propagates through the algorithm.

Fig. 2. Low frequency clock jitter vs original VHT algorithm timestamping
jitter. Top row, Monte Carlo simulation; middle row, stm32f4discovery; bottom
row, WandStem WSN node.

Figure 2 shows the result of the experiments. The left
column shows the jitter of the low-frequency oscillator as
timestamped by the high-frequency one. The right column
shows the jitter of timestamps taken using the original VHT
algorithm. In all three implementations we observed some
timestamps with an error of 30.5µs, but these were caused by
a race condition that will be described later on in this section,
so we removed them to focus only on jitter.

The top row shows the results for the Monte Carlo simula-
tion. In this case the jitter of the VHT timestamping is 60.4ns,
a value remarkably close to the 60ns jitter of the low-frequency
clock. Thus, in an ideal setting where the only disturbance is
jitter and quantization noise, the standard deviation of VHT
equals the jitter of the slow clock. The middle row shows the
results for the stm32f4discovery. In this case the jitter of the
low-frequency clock had a standard deviation of 19ns, and
the maximum error was ± 7.5 ticks of the fast clock. In this
board the fast clock is obtained through a PLL, thus the high-
frequency clock is not fully stable, and exhibits a nonideality
called wander [22] (a slow random drift in the timescale of
seconds). After removing the wander by means of a high pass
filter, the jitter of the VHT algorithm is as shown in the middle
right plot of Figure 2, and the standard deviation is 27ns. With
the WandStem board, the jitter of the low-frequency clock had
a standard deviation of 63ns, and the maximum error was ±
17.5 ticks of the fast clock. The VHT jitter was instead 116ns;
the probability distribution spreads across more values due to
temperature changes during the experiment, introducing time-
varying skew.

As can be seen, in all three experiments the jitter of VHT is
never less than the jitter of the underlying slow clock, showing
how the VHT timestamping algorithm does not attenuate
the low-frequency clock jitter. Moreover, in both hardware
implementations, the jitter of the slow clock is several ticks

Fig. 3. VHT algorithm timestamping error including the timestamps where a
race condition occurs. Top: Monte Carlo simulation, middle: stm32f4discovery
implementation, bottom: WandStem implementation. The low-frequency ran-
dom drift in the middle plot is the wander of the STM32 PLL.

h0 = 1

l0 = 1

h1 = 11

Event

h′0 = 11

Interrupt latency

Fast ctr 1 2 3 4 5 6 7 8 9 10 11

Fast clk

Slow clk

Slow ctr 0 1 2

h0 = 1

l0 = 1

h1 = 11

Event

Fast ctr 1 2 3 4 5 6 7 8 9 10 11

Fast clk

Slow clk

Slow ctr 0 1 2

Fig. 4. Timing diagram of the fast and slow clock showing the VHT algorithm
race condition.

of the fast one, supporting the statement that slow clock jitter
is a limiting factor to accuracy.

Figure 3 shows instead the raw timestamping error using
the original VHT algorithm, in the three experiments above.
Note the peaks of 30.5µs, which correspond to one tick of
the low-frequency clock. These errors are caused by a race
condition in the original VHT algorithm.

To explain this condition, first consider the top timing
diagram of Figure 4. In this example the ratio φ0 between the
fast and slow clock is 10. Now consider that the phase between
the two clocks is such that there is a small time where the fast
clock has incremented φ0 times since the last rising edge of
the slow clock. If an event occurs in that time instant, the input

capture units will log the following timestamps: h1=11, l0=1.
However, since the software interrupt has a latency, the h0
timestamp will be overwritten as soon as the second edge of
the slow clock occurs, so instead of h0=1 we will have h′0=11.
Applying Equation (2) the wrong timestamp 10 is computed
instead of the correct result which is 20. The bottom part of
the figure shows that the race condition occurs even when
considering zero interrupt latency, as in this case we will have
h0=1 and h1=11, but 10 mod 10 is 0.

IV. JITTER-COMPENSATED VHT

As shown in the previous section, the VHT technique
exhibits three issues. The first one is the degradation of the
time accuracy as the ratio between the clocks increases, due
to the jitter of the low-frequency clock. The second one is the
race condition just shown. The third one, perhaps less obvious
and on which we shall return later on, is the need for two input
capture units for each event to be timestamped, which makes
its implementation heavy on hardware resources. The issues
above are exacerbated if one wants to use the VHT as an
OS timer, because doing so requires to implement the entire
timekeeper interface, not just the get hw event timestamp
operation—a matter out of the scope of the original VHT
paper, however.

In this section, we overcome these issues by introduc-
ing an improved VHT implementation, that we call jitter-
compensated VHT. This solutions casts the VHT problem
in the clock synchronization framework, and works by syn-
chronizing the fast clock to the slow one, by means of
the FLOPSYNC-2 technique [14], every time the node gets
out of deep sleep. To explain the operation of our jitter-
compensated VHT, we proceed in two steps. First we show a
naı̈ve approach, that only corrects for offset, as a preliminary
step to introducing the complete scheme, that also performs
skew correction.

A. The naı̈ve jitter-compensated VHT

The simplest solution to solve the scalability issues men-
tioned above consists in using the low-frequency clock to
resynchronize the high-frequency one only upon exiting deep
sleep, and then perform time-related operations using only
the fast clock. Since all operations are performed using only
one timer, this solution is also inherently immune from the
race condition described in Section III-C. To do so, one can
measure the offset every time the node goes out of deep sleep,
by taking a timestamp h0 of the fast clock corresponding to
an edge l0 of the slow clock, as

o f f set = l0φ0−h0. (3)

This offset computation can be repeated multiple times, for
subsequent edges of the slow clock, averaging the results to
reduce the effect of jitter that affects h0. Such an operation can
be considered acceptable because the wakeup is an infrequent
event, thus the expense in terms of timestamp measurements
and average computation, which on a typical implementation

can be assumed to be less than 500µs, does not impact the
node performance to a relevant extent.

From then on, timestamps can be taken using only a capture
channel of the high-speed timer, and converted to the VHT
timeline by simply adding the offset, thus implementing the
get hw event timestamp operation. The get time operation
can likewise be implemented by reading the high-frequency
timer counter and adding the offset, while the set event and
set hw event can be implemented by using a single compare
channel of the fast clock timer, which is set to the desired time
minus the offset.

This solution clearly solves the hardware resource issue, as
all timekeeping operations are implementable with at most one
capture/compare channel of the fast clock per operation, plus
an additional one to compute the offset at every wakeup from
deep sleep.

This solution also solves the clock jitter issue. As times-
tamps are taken using only the high-frequency clock, the
jitter of the low-frequency clock no longer affects each time
measurement. For what concerns interval measurements, those
obtained by subtracting two timestamps taken while the node
is active are entirely taken by the high-frequency timer, and
are thus insensitive to the low-frequency clock jitter. If on
the contrary the node went to deep sleep in between two
timestamps, the jitter effect is significantly mitigated by the
averaging in the offset computation.

However, the naı̈ve jitter-compensated VHT described so
far would not work in practice, due to another nonideality
of crystal oscillators, that is, clock skew. In fact, both the
high-frequency and the low-frequency crystal oscillators are
affected by skew, and the skews of the two can differ signif-
icantly from one another, both in magnitude and as for their
dependence on temperature.

Setting without loss of generality the time origin of the low-
frequency clock to when the node was first turned on, and
denoting by tw the generic wakeup time, the time reported by
the naı̈ve jitter-compensated VHT will be

Cnaive(t) = φ0

⌊∫ tw

0
fl +δ f l(τ)dτ

⌋
+

⌊∫ t

tw
fh +δ f h(τ)dτ

⌋
(4)

where δ f l(t) and δ f h(t) are terms representing the frequency
error of the two clocks due to their nonidealities. The first
integral is the skew accumulation of the slow clock till the
node wakeup, which coincides with the offset computation,
while the second integral is the skew accumulation of the fast
clock from the wakeup instant onwards. The floor operators
account for the tick quantization. Figure 5 shows a graphical
representation of the issue.

Synchronization schemes that can correct for skew using the
time information received via the radio are well known, but
these schemes are meant to compensate a single clock skew,
not for a blend of two skews that depends on how long the
node has been out of deep sleep.

To overcome this issue, we propose a hierarchical solution
that introduces a local clock skew correction to make the
skew of the fast clock equal to that of the slow clock,

ts

t− t̂

Deep sleep tw

We need to improve the resolution of the slow clock

...but once the fast clock is on,
its skew is what we get.

Fig. 5. Clock skew issue in the naı̈ve jitter-compensated VHT

thereby allowing for the abstraction of an always running,
jitter-free, low-power and high-resolution clock with a single
skew value. Once this abstraction is built, an ordinary clock
synchronization scheme can compensate the skew of the jitter-
compensated VHT, needing no awareness that the clock to
synchronize is built with two different crystals.

B. Skew correction in the jitter-compensated VHT

Performing skew correction means synchronizing the fast
clock to the slow one. There are various phenomena that make
the two clocks diverge, like crystal imperfections, aging, jitter,
and temperature variations. These phenomena collectively
manifest themselves in the synchronization error, but cannot be
measured individually. In problems like this, feedback control
is a natural solution, as it permits to contrast error-generating
phenomena (in control terms, disturbances) based only on the
measurement of the error.

We thus address the problem with the FLOPSYNC-2 syn-
chronization framework [14], which is based on a feedback
controller. However, the frequency content of the disturbances
encountered in this work is not the same as in [14], and
although the feedback control structure can be re-used, the
computation of the control signal needs modifying. In this sec-
tion we illustrate the control problem, review the FLOPSYNC-
2 solution, and describe the synthesis of the new control law.

ts

t− t̂

Deep sleep tw

Fast to slow
sync period

Slow period

Fast period

Expected sync period
in fast clock

Actual sync period
in fast clock

Fast to slow sync error

Fast-slow skew compensation by
the FLOPSYNC-2 technique

Fig. 6. The FLOPSYNC-2 clock synchronization framework applied to intra-
node skew correction.

For the physical reasons sketched above and detailed in [14],
the frequency fh of the fast clock varies over time with respect
to its nominal value φ0 fl0, where fl0 is the nominal frequency

of the slow clock. Since we want the fast clock to synchronize
to the slow one – or equivalently, we want the fast clock to be
the slave and the slow the master – we take the time counted
by the latter as the reference. Denoting the fast and slow clock
times respectively with th and tl , and indicating with ehl the
synchronization error, we can write

th(tl) =
∫ tl

0

φ0 fl0 +δ fh(τ)

φ0 fl0
dτ (5)

whence

ehl(tl) := tl− th(tl) =−
∫ tl

0

δ fh(τ)

φ0 fl0
dτ. (6)

As in FLOPSYNC-2, we assume synchronizations to take
place at a fixed period, Thl to name it, dictated by the master
clock. The error is measured – see Figure 6 – as the expected
minus the actual end of the synchronization period counted
in the slave clock. This gives the controlled system exactly
the same structure as in [14], with the inter-node frequency
fluctuation replaced by the intra-node one.

The next expected end of the synchronization period is
computed as the previous one plus Thl plus a correction
uhl(k), that takes the role of the control signal. Denoting by
ehl(k) the error at the k-th intra-node synchronization event,
computations omitted for brevity lead to write

ehl(k) = ehl(k−1)+uhl(k−1)+dhl(k−1), (7)

where
dhl(k−1) :=−

∫ kThl

(k−1)Thl

δ fh(τ)

φ0 fl0
dτ (8)

is the disturbance provided by the fast/slow relative skew
cumulated over one synchronization period.

Should this disturbance – hence the skew – be constant, non
control-centric synchronization schemes (such as those based
on regression) could fit. However the skew is not constant
at all, and depends on phenomena (aging, thermal stress,
jitter) with different time scales. This motivates the choice
of a feedback control law designed specifically to counteract
the frequency components of that disturbance that are most
relevant for the synchronization need at hand.

In [14], FLOPSYNC-2 was used to synchronize clocks
aboard different nodes, and the most relevant source of dis-
turbance was thermal stress. In the case considered herein
the clocks are on the same node, and given the much faster
time scale, the main concern is high-frequency jitter. We now
proceed to the design of a control law with the specific aim
of rejecting high-frequency disturbance components.

We carry out the design in the continuous time domain,
mainly because doing so allows to operate with frequency
values directly, and independently of the adopted synchroniza-
tion period. Putting model (7) in transfer function form and
transforming to continuous time, we get

Ehl(s) = P(s)(Uhl(s)+Dhl(s)) , P(s) =
1

Thls
, (9)

where s is the Laplace transform complex variable. We use
an integral controller augmented with a zero-pole pair; this

guarantees a 40 dB/decade high-frequency disturbance-to-
output roll-off, and allows to prescribe the cosed-loop stability
degree. In detail, writing the controller as

C(s) =
ω2

c Thl

αs

1+ s α

ωc

1+ s 1
βωc

, α,β > 1, (10)

the Bode magnitude plot of the frequency response of the
loop transfer function L(jω) = C(jω)P(jω) takes the form
of Figure 7.

0
ω

dB |L(jω)|

ωc√
α

ωc
α

β ωc

ωc

Fig. 7. Control synthesis: the obtained loop frequency response magnitude.
The cutoff frequency ωc dictates the closed-loop response

speed, while parameter α governs the stability degree, because
the phase margin is

ϕm = arctan(α)− arctan(1/β) . (11)

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Time [s]

N
o
rm

a
li
ze
d
er
ro
r
[1
]

Fig. 8. Sample of the design space exploration conducted to synthesize the
controller (10).

To determine the parameters in controller (10), we set Thl
to the recommended value (see Section IV-C) of 200 ms and
carried out a design exploration in the (ωc,α,β) space, oper-
ating in simulation with the process model (9). The goal was
to obtain a fast error convergence to zero, while maintaining
a good high-frequency disturbance rejection, and an adequate
stability degree. A sample of the said exploration, illustrating
the error convergence speed, is shown in Figure 8. After the
exploration we chose ωc = 5/4 r/s, α = 25/4 and β = 16,
which correspond in Figure 8 to the red thick response. These
values yield a phase margin of about 77◦; a faster settling
would result in a lower stability degree, and most important,
in a less effective jitter rejection. Applying the backward Euler
method, we finally got the discrete-time controller

C(z) =
26z2−25z

125z2−150z+25
. (12)

1 // State variables
2 // uoo=u(k-2), uo=u(k-1), eo=e(k-1)
3 static int uoo, uo, eo;
4 static long long expectedTimestamp;
5

6 // High frequency timer input capture interrupt
7 void timerIsr() {
8 // Compute synchronization error
9 long long actualTimestamp = readTimerCapture();

10 int e = actualTimestamp - expectedTimestamp;
11

12 // Controller R(z) fixed-point implementation
13 // by premultiplying u by 125
14 int u = 150*uo - 25*uoo + 26*e - 25*eo;
15 uoo = uo; uo = u/125; eo = e;
16

17 //Close the FLOPSYNC-2 loop
18 expectedTimestamp += T_hl + u/125;
19

20 // Clock skew is (T_hl + u)/T_hl
21 updateSkewCorrection(u/125);
22 }

Listing 1. The proposed intra-node clock skew correction controller.

This controller settles to compensate the skew within 0.1%
in about 14 s, see again the red thick response in Figure 8.
This is therefore the time it takes when the node is first turned
on to correct for 99.9% of the initial (unknown) skew, which
we found to be an adequate performance. Listing 1 reports the
implementation of the proposed controller in C++, evidencing
its simplicity.

C. Synchronization period selection

In the case of the inter-node synchronization it is important
to keep the synchronization period as long as possible, in
order to minimize the radio usage. In the case of intra-node
synchronization it is instead beneficial to keep the period as
short as possible, because the high-frequency clock is not
running while the node is in deep sleep, and thus intra-node
synchronization is only possible while the node is active.

The lower limit of the synchronization period is due to the
quantization induced by the fast clock resolution

qe =
106

fhThl
(13)

where qe is the quantization error in parts per million. Inverting
this formula, to synchronize a 48MHz fast clock to within 0.1
ppm, the minimum synchronization period is around 200ms,
which can be reduced to 20ms if 1ppm accuracy is enough.

D. The complete jitter-compensated VHT

To summarize, the complete jitter-compensated VHT works
as follows. When the node is powered up, both oscillators are
turned on, and the offset between the two clocks is computed
as in Section IV-A. After that, the skew correction starts as per
Section IV-B. The node is forced to stay active long enough
for the skew correction controller to settle, after which it is
allowed to go in deep sleep. Note that during this time the
only CPU load caused by our VHT implementation is one
interrupt for each synchronization period Thl , so the CPU is
essentially idle and this time can be proficiently used for
other tasks, such as MAC neighbor discovery, and to wait

for the first synchronization packet as required by inter-node
synchronization schemes.

Every time the node gets out of deep sleep, the offset
correction is performed again. Additionally, the last skew
correction is preserved when entering deep sleep, so as to
apply it upon wakeup. This eliminates the need to wait for
the controller to settle every time a wakeup from deep sleep
occurs.

As long as the node remains active, the skew correction
controller is executed at period Thl . Every time the node wakes
up to receive the synchronization packet and to perform the
inter-node synchronization, it is forced to stay active for at
least Thl , and thus perform one inter-node skew correction
update. This is required to ensure a minimum rate of skew
correction updates even with applications that always wake up
for smaller periods than Thl . Note that in our implementation
we decided to tie the minimum rate of the intra-node skew
correction to the inter-node synchronization period mainly for
convenience, but other options are possible.

The solution has an overhead in terms of hardware resources
of two capture/compare units: one output compare unit of the
slow clock connected to an input capture unit of the fast clock.
These two hardware resources are set up to generate an event
every rising edge of the slow clock during the averaging of the
offset when waking up from deep sleep, and then reconfigured
to generate one event every intra-node synchronization period
Thl , as long as the node is active, to perform skew correction.
All the operations of the timekeeper interface can then be
implemented using just one capture/compare unit of the fast
clock, except for get time which requires none.

V. EVALUATION

The proposed solution was evaluated in terms of lower hard-
ware resource usage, jitter attenuation capability and power
consumption.

A. Hardware requirements

The jitter-compensated VHT was implemented on the
WandStem WSN node [6] using the Miosix operating sys-
tem [9]. The entire timekeeper interface has been imple-
mented, with the OS relying on the VHT get time and
set event operations for task scheduling, and three hardware
event sources:

1) the radio transceiver packet reception event, linked to an
get hw event timestamp operation;

2) the transceiver “send packet” line, controlled by a
set hw event operation;

3) an event line dedicated to applications, which can
be configured as either a timestamp input through
a get hw event timestamp, or an event output via
set hw event.

Table I shows the hardware requirements in terms of cap-
ture/compare channels that were necessary to implement the
timekeeper using the jitter-compensated VHT, compared to the
requirements that would have been necessary to implement
the original VHT algorithm. The first line refers to the

TABLE I
NUMBER OF CAPTURE/COMPARE CHANNELS REQUIRED TO IMPLEMENT

THE TIMEKEEPER OPERATIONS.
jitter-compensated VHT VHT Operation

2 1 Internal VHT requirements
- - OS get time
1 2 OS set event
1 2 Radio get hw event timestamp
1 2 Radio set event
1 2 Application dedicated line

requirements for the VHT to function not tied to specific
operations, i.e., to the resources needed just to perform offset
and skew correction in the jitter-compensated VHT, and to
timestamp each rising edge of the slow clock in the original
VHT. As can be seen, the jitter-compensated VHT requires 6
capture/compare channels, while the original VHT would have
required 9 in the WandStem use case.

B. Jitter attenuation

Using the WandStem implementation, we measured the jit-
ter of the original and jitter-compensated VHT, and compared
it to measurements of the jitter of the fast and slow clock.
Jitter measurements were performed by repeatedly measuring
the length of an interval timed by the clock under test, and
computing the standard deviation, except for the original VHT
case in which the more precise clock is used to generate
events timestamped by the VHT algorithm. The experiment
was repeated for different time intervals to appreciate jitter
integration over different time spans.

As measuring intervals of a clock requires another clock of
greater precision, a FE5680 rubidium oscillator was used. The
measurement resolution of our setup is 11.9 ns.

Figure 9 shows the results. As can be seen, the 32768 Hz
oscillator has a high jitter standard deviation, between 60 and
80 ns. The measure of the jitter of the 48 MHz turned out to
be difficult due to being less than the measurement resolution.
In these condition, the introduced quantization does not allow
to make conclusions on the exact value, other than it is less
than 11.9 ns.

The jitter-compensated VHT jitter is comparable to that of
the 48 MHz oscillator for intervals up to 100ms, after which
it starts increasing. This is due to the skew compensation
controller, whose filtering action on jitter gets progressively
less effective for longer periods. Although this is unavoidable,
and the performance of the jitter-compensated VHT will
asymptotically – and obviously – reach that of the slow clock
for longer periods, it can be argued that the effect of jitter
is most relevant for small time interval measurements, where
it can induce a high relative error. For larger intervals, jitter
is less of concern compared to other error sources, such as
thermal-induced skew variations over time.

The jitter of the original VHT is always equal or higher
than the one of the 32768 Hz oscillator. Note that to achieve
this results the timestamps affected by the original VHT race
condition have been removed, otherwise its standard deviation
would have been even higher.

0.001 0.01 0.1 1
0

20

40

60

80

100

(a)

(b)

(c)

(d)

Time interval [s]

Ji
tte

r
st

an
da

rd
de

vi
at

io
n

[n
s]

Fig. 9. Comparison of the jitter standard deviation in the WandStem node. Jitter of the 32768 Hz oscillator (a), 48MHz oscillator (b), jitter-compensated
VHT (c) and original VHT (d). The light blue block is the measurement resolution.

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
0

20

40

Time [s]

C
ur

re
nt

[m
A

]

Fig. 10. Power trace of a WandStem node waking up from deep sleep to
perform inter-node clock synchronization using FLOPSYNC-2, propagation
delay compensation and intra-node jitter-compensated VHT synchronization.

C. Power consumption

To assess the current consumption of the jitter-compensated
VHT we performed a test where a WandStem node per-
forms inter-node clock synchronization using FLOPSYNC-2
and propagation delay compensation, using jitter-compensated
VHT as the underlying timebase.

Figure 10 shows a trace of the node current consumption.
Upon wakeup from deep sleep, the node first resynchronizes
the fast clock to the slow one as shown in Section IV-A.
Then it waits for the (inter-node) synchronization packet. The
two peaks above 40mA are the Glossy [4] rebroadcast of
the synchronization packet, and the packet sent to estimate
propagation delays. The node then waits for the propagation
delay reply and enters the sleep state with the high frequency
clock active until 200ms have passed, to estimate the skew as
explained in Section IV-B. Finally, the node can go to deep
sleep till the next sync period.

Notice that despite the requirement for the jitter-
compensated VHT to spend 200ms to measure the relative
skew, the node can still spend 98.0% (10s sync period) and
99.7% (60s sync period) in the deep sleep state.

To estimate the power saving of the jitter-compensated VHT,
the experiment of Figure 10 has been repeated with no VHT,
thus with only the high frequency clock and no deep sleep. To
compare the jitter-compensated VHT with the original one, we
estimated its consumption by running jitter-compensated VHT
with intra-node skew compensation disabled, which is what
sets it apart in terms of power consumption. We could not use
the original VHT implementation of Section III-C because it
is incapable of going in deep sleep, but this does not affect

the purpose of the test. Results are summarized in Table II
TABLE II

AVERAGE SYNCHRONIZATION CONSUMPTION COMPARISON.
Sync period 10s 60s

Without VHT 6035uA 6006uA
Flopsync VHT 158uA 28uA

VHT 30uA 7uA

VI. CONCLUSIONS AND FUTURE WORK

This paper focused on one of the key methodologies that
allowed joint low power and high resolution timekeeping in
WSNs, namely Virtual High-resolution Time. Its operation was
studied, identifying three issues as jitter susceptibility, high
hardware requirements, and a race condition.

A new solution was proposed, which fully casts the VHT
in the framework of clock synchronization. The proposed
solution was implemented on a real WSN node, assessing
the expected performance improvement. At present the only
relevant drawback of the proposed solution is an increased
computation overhead, still compatible with the applications,
but worth further research effort.

It is expected that the research here presented will foster
a more widespread adoption of VHT timebases, by lowering
the barrier required for their implementation, and making them
more palatable thanks to the improved accuracy.

Furher work will also address the use of the proposed
technique to tackle “blended skews” also in the context of
inter-node clock synchronization problem.

REFERENCES

[1] F. Anwar, S. DSouza, A. Symington, A. Dongare, R. Rajkumar,
A. Rowe, and M. Srivastava. Timeline: An operating system abstraction
for time-aware applications. In 2016 IEEE Real-Time Systems Sympo-
sium (RTSS), pages 191–202, Nov 2016.

[2] S. Yoon, C. Veerarittiphan, and M.L. Sichitiu. Tiny-sync: Tight time
synchronization for wireless sensor networks. ACM Trans. on Sensor
Networks, 2007.

[3] Y. Chen, W. Yi, H. Sun, and Y. Xing. Tunable time resolution: An energy
saving mechanism for wireless sensor networks. IEEE Communications
Letters, 19(7):1201–1204, July 2015.

[4] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with Glossy. IPSN, pages 73–84,
2011.

[5] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
flooding time synchronization protocol. SenSys, pages 39–49, 2004.

[6] Federico Terraneo, Alberto Leva, and William Fornaciari. Demo:
A high-performance, energy-efficient node for a wide range of wsn
applications. In EWSN, pages 241–242, 2016.

[7] Federico Terraneo, Alessandro Papadopoulos, Alberto Leva, and Maria
Prandini. Flopsync-qacs: Quantization-aware clock synchronization for
wireless sensor networks. In IEEE 4th International Workshop on Real-
Time Computing and Distributed systems in Emerging Applications,
November 2016.

[8] I. Zamek and S. Zamek. Crystal oscillators jitter measurements and its
estimation of phase noise. In IEEE International Frequency Control
Symposium and PDA Exhibition Jointly with the 17th European Fre-
quency and Time Forum, 2003. Proceedings of the 2003, pages 547–555,
May 2003.

[9] Federico Terraneo. Miosix embedded OS. http://miosix.org.
[10] Roman Lim, Balz Maag, and Lothar Thiele. Time-of-flight aware time

synchronization for wireless embedded systems. In EWSN, pages 149–
158, 2016.

[11] D.L. Mills. Internet time synchronization: the network time protocol.
IEEE Trans. on Communications, 39(10):1482–1493, 1991.

[12] Federico Terraneo, Alberto Leva, Silvano Seva, Martina Maggio, and
Alessandro Vittorio Papadopoulos. Reverse flooding: Exploiting radio
interference for efficient propagation delay compensation in WSN clock
synchronization. In 2015 IEEE Real-Time Systems Symposium, RTSS
2015, San Antonio, Texas, USA, December 1-4, 2015, pages 175–184,
2015.

[13] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. SIGOPS Oper. Syst.
Rev., 36(SI):147–163, 2002.

[14] F. Terraneo, L. Rinaldi, M. Maggio, A. V. Papadopoulos, and A. Leva.
FLOPSYNC-2: Efficient monotonic clock synchronisation. RTSS, pages
11–20, 2014.

[15] Su Ping. Delay measurement time synchronization for wireless sensor
networks. In Intel Research, 2003.

[16] Kazuki Awaki, Chun-Hao Liao, Makoto Suzuki, and Hiroyuki
Morikawa. Speaker-less sound-based 3d localization with centimeter-
level accuracy. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct, UbiComp
’16, pages 249–252, New York, NY, USA, 2016. ACM.

[17] M. Knig and R. Wattenhofer. Maintaining constructive interference using
well-synchronized sensor nodes. In 2016 International Conference on
Distributed Computing in Sensor Systems (DCOSS), pages 206–215,
May 2016.

[18] Jiming Chen, Qing Yu, Yan Zhang, Hsiao-Hwa Chen, and Youxian Sun.
Feedback-based clock synchronization in wireless sensor networks: A
control theoretic approach. IEEE Trans. on Vehicular Tech., 59(6):2963–
2973, 2010.

[19] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[20] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync
protocol for sensor networks. SenSys, pages 138–149, 2003.

[21] M. Lvesque and D. Tipper. A survey of clock synchronization over
packet-switched networks. IEEE Communications Surveys Tutorials,
18(4):2926–2947, Fourthquarter 2016.

[22] http://users.rcn.com/wpacino/jitwtutr/jitwtutr.htm.
[23] C. Lenzen, P. Sommer, and R. Wattenhofer. Pulsesync: An efficient and

scalable clock synchronization protocol. IEEE/ACM Transactions on
Networking, 23(3):717–727, June 2015.

[24] K. Suzuki, A. Yamagishi, and M. Harada. A 0.15-µm cmos baseband lsi
employing sleep mode with clock-offset compensation for m2m wireless
sensor networks. IEEJ Transactions on Electrical and Electronic
Engineering, 10(5):576–584, 2015.

[25] Thomas Schmid, Prabal Dutta, and Mani B. Srivastava. High-resolution,
low-power time synchronization an oxymoron no more. IPSN, pages
151–161, 2010.

[26] Timofei Istomin, Amy L. Murphy, Gian Pietro Picco, and Usman Raza.
Data prediction + synchronous transmissions = ultra-low power wireless
sensor networks. In Proceedings of the 14th ACM Conference on
Embedded Network Sensor Systems CD-ROM, SenSys ’16, pages 83–95,
New York, NY, USA, 2016. ACM.

[27] Yin Chen, Qiang Wang, M. Chang, and A. Terzis. Ultra-low power
time synchronization using passive radio receivers. IPSN, pages 235–
245, 2011.

[28] M. Buevich, N. Rajagopal, and A. Rowe. Hardware assisted clock
synchronization for real-time sensor networks. RTSS, 2013.

http://miosix.org

	I Introduction
	II Related work
	III Problem statement and model
	III-A The abstract timekeeping device
	III-B A brief review of VHT
	III-C Issues with the VHT algorithm

	IV Jitter-compensated VHT
	IV-A The naïve jitter-compensated VHT
	IV-B Skew correction in the jitter-compensated VHT
	IV-C Synchronization period selection
	IV-D The complete jitter-compensated VHT

	V Evaluation
	V-A Hardware requirements
	V-B Jitter attenuation
	V-C Power consumption

	VI Conclusions and future work
	References

