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Abstract—One of the primary sources of unpredictability in
modern multi-core embedded systems is contention over shared
memory resources, such as caches, interconnects, and DRAM.
Despite significant achievements in the design and analysis of
multi-core systems, there is a need for a theoretical framework
that can be used to reason on the worst-case behavior of real-
time workload when both processors and memory resources are
subject to scheduling decisions.

In this paper, we focus our attention on dynamic allocation
of main memory bandwidth. In particular, we study how to
determine the worst-case response time of tasks spanning through
a sequence of time intervals, each with a different bandwidth-to-
core assignment. We show that the response time computation
can be reduced to a maximization problem over assignment of
memory requests to different time intervals, and we provide an
efficient way to solve such problem. As a case study, we then
demonstrate how our proposed analysis can be used to improve
the schedulability of Integrated Modular Avionics systems in the
presence of memory-intensive workload.

Index Terms—Real-time Systems; Multicore Processing; Dy-
namic Memory Bandwidth Regulation; WCET in Multicore;
Memory Scheduling

I. INTRODUCTION

Over the last decade, multi-core systems have rapidly
increased in popularity and they are now the de-facto standard
in the embedded computing industry. Multi-core systems are
significantly more challenging to analyze compared to their
single-core counterparts due to the extensive sharing of hard-
ware resources among logically independent execution flows.
The primary source of performance unpredictability, in this
class of systems, can be identified as the memory hierarchy. In
fact, the memory hierarchy in multi-core platforms is comprised
of a number of components that are concurrently accessed by
multiple cores. These include: multi-level CPU caches, shared
memory controllers and DRAM banks, and shared I/O devices.
The interplay of accesses originated by multiple cores has a
direct impact on the timing of subsequent memory accesses.
The resulting temporal variability is in the range of multiple
orders of magnitude, meaning that inaccurate performance
modeling and analysis can lead to overly pessimistic worst-
case execution time (WCET) estimates.

Despite the remarkable achievements in the analysis of
hard real-time workload on multi-core systems, there is a
fundamental lack of self-contained theoretical frameworks that
can be used to reason on the schedulability of a generic
multi-core hard real-time workload when both CPU and
memory resources are subject to scheduling decisions. In fact,
while consolidated techniques are used to reason about CPU
scheduling, comparatively less general results are available to
reason on memory scheduling. An even slimmer body of works
has provided general results to reason on co-scheduling of CPU

and memory. The majority of works in this area assume fixed
assignment of memory resources to CPUs.

Memory Scheduling: there are two dimensions to the
problem of assigning memory resources to applications. The
first dimension is space scheduling, concerning the allocation
over time of memory space (e.g., cache lines, DRAM banks,
scratchpad pages). A second dimension is temporal scheduling,
i.e., scheduling of access to a shared memory interface
(e.g., an interconnect, a bus, or a memory controller). In
this paper, we focus on the temporal dimension of memory
scheduling. In a nutshell, memory interfaces/subsystems are
associated with a characteristic sustainable bandwidth that can
be partitioned among the CPUs of a multi-core system. If
the bandwidth-to-cores assignment is determined offline and
remains unchanged over time, we say that memory bandwidth
is statically partitioned. Conversely, if bandwidth is dynam-
ically assigned to cores, we say that memory bandwidth is
subject to scheduling. We hereafter interchangeably use the
terms “memory scheduling”, “memory bandwidth scheduling”,
or “bandwidth partitioning” referring to the same concept.

Since memory bandwidth is constrained and often represents
a bottleneck in multi-core systems, memory scheduling is an
important dimension to consider and a way to achieve important
real-time performance improvements. Clearly, if the memory
bandwidth assigned to each core changes over time, this will
have an effect on the response time of tasks. In this case,
how can the worst-case response time be calculated? In this
paper, we address this question. More specifically, we study
the problem of determining the worst-case response time for
a task that spans a sequence of time intervals, each with a
different bandwidth-to-cores assignment.

In this paper, we make the following contributions:

1) we improve response time calculation under static (over
time) but arbitrary (across cores) bandwidth partitioning;

2) we provide a general framework to perform response
time analysis under dynamic bandwidth partitioning. Our
approach can be used to analyze memory schedulers as
long as: (i) changes in bandwidth-to-cores allocation are
time-triggered; or (ii) a critical instant can be found for the
possible CPU-to-tasks and bandwidth-to-cores scheduling
decisions;

3) we demonstrate how the proposed analysis technique can
be used in a time-triggered memory scheduling scenario,
for an Integrated Modular Avionics (IMA) system. In
particular, we show that dynamic bandwidth allocation
significantly outperforms static allocation in the presence
of varying memory-intensive workload.
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II. BACKGROUND

A memory interface is characterized by a maximum guaran-
teed bandwidth. It is generally easy to analyze the temporal
behavior of memory requests when the interface operates below
the maximum guaranteed bandwidth [1]. Conversely, if the rate
of memory requests exceeds such a threshold, the behavior
of the memory subsystem can be hard to analyze, or lead
to overly pessimistic worst-case estimates [2]. In multi-core
systems, however, the available memory bandwidth can be
arbitrarily distributed among cores. Take a 2-core system for
instance, as depicted in Figure 1. Workload on the two cores can
be either CPU-intensive (blue), or memory-intensive (red). For
simplicity, the figure assumes that CPU-intensive workload is
unaffected by changes in memory bandwidth (BW) assignment.
Conversely, memory-intensive workload is roughly linearly
affected by it. An even assignment as depicted in Figure 1(a)
would provide 50% of the available memory bandwidth to
each core. Even partitioning is not flexible: mostly memory
intensive workload is deployed on core Core A, while mostly
CPU-intensive workload is scheduled on Core B. As such,
workload is penalized on Core A while memory bandwidth
is wasted on Core B. Under this setup, the memory-intensive
workload on Core A and B take 5 and 3 time units to complete,
respectively. The overall utilization is 95%.

If Core A is known to run memory-intensive tasks while
Core B mostly processes CPU-intensive workload, it is ben-
eficial to perform an uneven assignment – e.g., 80% and
20% of the available bandwidth assigned to Core A and B,
respectively. This is depicted in Figure 1(b). In this case,
bandwidth can be distributed to better meet the CPU/memory
needs of workload on the various cores. The memory-intensive
workload on Core A can benefit from this assignment, now
completing in 2 time units. However, the (shorter) memory-
intensive workload on Core B is negatively affected, completing
in 4 time units. Overall utilization decreases to 85% in our
example.

In both uneven and even partitioning, memory bandwidth
allocation is statically decided at design time, i.e., it does not
change over time. The workload on each core, however, can
undergo variations in terms of memory requirements. This
is often the case as more/less memory-intensive tasks (or
partitions) are scheduled on each core. As such, it is natural
to consider a scheme where bandwidth-to-cores assignment is
varied over time. In this case, we talk of dynamic bandwidth
partitioning, i.e., memory scheduling. Figure 1 depicts one
such example. Here, when only one core is executing memory-
intensive workload, it is given 80% of the available bandwidth;
when both are executing the same type of workload, the band-
width is evenly distributed. Under the new scheme, the system
operates at 80% utilization. In general, dynamic bandwidth
assignment can yield significant performance improvement,
because it is possible to produce an assignment scheme that
follows the memory requirements of scheduled workload over
time.

In the next sections, we address the problem of computing
the time it takes in the worst-case to complete execution of
workload that: (i) has known memory and CPU requirements;
and (ii) spans over an arbitrary and known sequence of
bandwidth assignments.

Fig. 1. Example of static and even (a), static and uneven (b), and dynamic
(c) memory bandwidth management on a 2-core (A and B) system.

III. SYSTEM MODEL AND ASSUMPTIONS

We hereby discuss the assumptions considered in our work.
We also provide the basic terminology and notation required
to present our results.

Multi-core Model: in this work, we assume a homogeneous
multi-core system with m cores. We use the index i to refer
to any of the m cores, i.e., i ∈ {1, . . . ,m}. We make no
assumption on the cache hierarchy, as we focus on the behavior
of tasks with respect to main memory accesses. We only assume
that hits in last-level cache (LLC) do not generate main memory
traffic. Main memory transactions have fixed size, typically
one cache line, indicated with Lsize. We assume that access to
main memory is granted to cores/processors following a round-
robin scheme. We assume that the time to perform a single
memory transaction is bounded in the interval: [Lmin, Lmax].
We do not require all memory transactions to be of a fixed
size; but assume that, in the worst-case, all transactions have
the maximum size. As an additional simplification, we assume
no transaction parallelism, meaning that Lmax is also the
maximum amount of interference that a given core can suffer
due to an active memory transaction directed to a different
core. No re-ordering of requests originated by different cores
occurs in the system. This behavior can be achieved in a
traditional COTS DRAM setup by assigning private memory
banks to cores [2]–[4]. With private banking, the available
DRAM banks are partitioned among the available m cores.
These assumptions make the considered model compatible with
the work in [5]–[7].

Workload Model: we consider a partitioned system in which
each task in a set of tasks is statically assigned to one of the
m cores [8]. Since our focus is on the behavior of workload
in memory, we abstract away the details of each task and
only consider the “load”, or “workload” in terms of CPU
time and the number of memory transactions that need to be
completed by a given deadline. The load can correspond to a



single task instance, or to an entire busy-period. This is in line
with the approach followed in [6], [7], [9]. Reasoning in terms
of workload allows us to remain generic with respect to the
exact task scheduling strategy used at the CPU. For instance,
under preemptive rate-monotonic scheduling (RM), in order to
analyze the schedulability of a task τ , one would consider the
deadline-constrained “load” comprised by the execution (CPU
time and memory transactions) of one instance of τ , as well
as that of all the instances of interfering higher-priority tasks.
The deadline of the workload will be the deadline of τ .

Without loss of generality, we model deadline-constrained
workload on a core i under analysis using three parameters:
Ci, µi, and Di. Here, Ci represents the worst-case amount of
time required for pure execution on the CPU (no memory).
For ease of notation, we will always consider the worst-case
execution time in slots of Lmax and indicate the latter with
Ei = d Ci

Lmax
e. It must hold that Ei > 0. Next, µi represents

the worst-case number of main memory transactions [10] to
be completed by the relative deadline Di. We often use β =
Ei+µi as a shorthand notation for the overall CPU and memory
requirement of the workload under analysis. We assume that
new workload is always released synchronously with respect
to regulation periods, and scheduling decisions (on both CPU
and memory) are taken at the boundaries of regulation periods.

Memory Bandwidth Regulation Model: in order to un-
evenly partition the memory bandwidth across cores, a budget-
based memory bandwidth regulation scheme is used, such as
MemGuard [11]. In this regulation scheme, per-core bandwidth
regulators use hardware-implemented performance counters
to monitor the number of memory transactions performed by
each core over a period of time P . For this reason, P takes the
name of “regulation period”. Note that the number of memory
transactions over P is a measure of bandwidth. Since the
maximum latency of a single memory transaction is Lmax, then
in the worst-case it is always possible to perform Q = P

Lmax

memory transactions in P . Each core can then be assigned a
different budget qi, as long as

∑
i qi ≤ Q. However, in order

to fully utilize the already constrained memory bandwidth, we
consider the case

∑
i qi = Q without loss of generality. The

budget assigned to all the m cores forms a vector, namely
Q = {q1, . . . , qm}.

The key idea of memory bandwidth regulation is the
following. A core i is given a budget qi, which represents
the number of memory transactions that core i is allowed
to perform during a regulation period P . The budget is
replenished to qi at time zero and at every instant k · P ,
with k ∈ N. During a regulation period, the core executes
tasks normally, performing memory transactions as needed. A
hardware performance counter monitors the number of memory
transactions, decreasing the residual budget accordingly. If core
i depletes its budget qi before the next replenishment, core
i is stalled until the next replenishment. P is a system-wide
parameter which should be smaller than the minimum task
period in the system. P is often experimentally set to 1 ms [11],
[12].

Memory Schedule: in this paper, we assume that the
memory schedule is known, or that a critical instant can be
found on the bandwidth-to-core assignment rule, if an online
memory scheduling rule is used. This opens a whole new set of
questions that are out of the scope of this work: e.g. optimality,

or existence of critical instants for memory schedulers. As de-
picted in Figure 1(c), a memory schedule S = {B1, . . . , BN}
is a time-ordered sequence of N memory budget assignment
intervals Bj . Each Bj is of the form Bj = (Qj , Lj), where
Qj = {qj1, . . . , qjm} is the budget-to-cores assignment used
in interval j, and Lj is the length in regulation periods of
interval j. For instance, the memory schedule in Figure 1(c)
is S = {(Q, 2), (Q′, 1), (Q, 1), (Q′′, 2), (Q, 4)}.

Workload Span: the goal of this work is to compute the
maximum number of regulation periods required to execute
the workload under analysis to completion. This goes under
the name of span, and is defined below.

Definition 1 (Span): We define span as the number of
regulation periods to entirely complete Ei units of execution
and µi memory transactions for the considered workload. The
span is indicated throughout the paper with the symbol Wi.

The workload, however, may span throughout a number
of different memory scheduling intervals B1, . . . , BN . While
the total span is indicated with Wi, the span of the workload
over each interval Bj is indicated with W j

i . It must hold that∑N
j=1W

j
i = Wi.

Since the intervals have fixed length and are ordered, W 1
i

must be equal to either L1 or Wi, whichever is shorter. Then
assuming Wi > L1, the span W 2

i over interval B2 must be
equal to the minimum of L2 and Wi−L1. In general, noticing
that

∑j−1
k=1 L

k is the cumulative length of intervals preceding
Bj , the execution over interval Bj must thus be equal to:

W j
i = max

(
0,min

(
Lj ,Wi −

j−1∑
k=1

Lk
))
. (1)

IV. MEMORY STALL

A fundamental concept is the notion of memory stall. In
general, a memory request originating from the core i under
analysis can be “stalled” for two reasons. The first reason is
that the hardware memory arbiter has prioritized one or more
other cores over i for access to the memory subsystem (memory
interference). The second reason is that the core under analysis
has exhausted its budget and is stalled until the beginning of
the next regulation period.

We make no assumption on the behavior of tasks in cores
other than core i. It follows that the maximum stall that can
be suffered by a memory transaction on core i depends only
on the number of memory transactions performed by i in the
same regulation period. This is exemplified in Figure 2, where
i = 4 and Q = {2, 2, 5, 7}. The budget for Core 4 is q4 = 7. It
follows that there are 8 possible worst-case scenarios, denoted
as (a)-(h) in the figure. In general, there are always qi + 1
possible cases. In the figure, pure execution is represented with
“e” and is considered in slots of length Lmax, as mentioned in
Section III.

The pattern in Figure 2(a) depicts the worst-case memory
interference from other cores (cores 1 to 3) provided that core
4 performs zero memory accesses within the regulation period.
A more interesting case is Figure 2(e). Here, Core 4 performs
4 memory accesses. For the first two memory accesses, since
three cores (1, 2 and 3) can cause stall, 3 units of stall are
accumulated per memory access. If we depict the stall as a
curve, then the “slope” of the stall introduced by the first two
accesses is 3. After the first two accesses, cores 1 and 2 are



Fig. 2. M/C configurations for core i = 4 under analysis in a 4-core system
with Q = {2, 2, 5, 7}.
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Fig. 3. Plot of stall curves for a 4-core system with Q = {2, 2, 5, 7}.

temporarily stopped due to regulation – they have exhausted
their respective budgets. Core 3, however, can still cause stall
on transactions from Core 4 under analysis. Hence, the stall
slope for the 3rd and 4th transactions is 1.

A more efficient way to visualize the possible stall scenarios
is by plotting the per-period memory transactions and resulting
stall. The qi + 1 possible cases represent a discrete domain. A
corresponding continuous curve for the memory stall can be
derived by “connecting” these discrete points. Call ri ∈ R≥0
the number of memory transactions per regulation period being
performed. We introduce the notion of memory rate.

Definition 2 (Memory rate): We define as memory rate
the number of memory transactions performed per regulation
period. Memory rates are indicated throughout the paper with
the symbol ri.

A memory rate is often used to indicate the rate at which
a total number of memory transactions µi is performed over
the span of the considered workload Wi. Hence, ri = µi

Wi
.

We can also indicate the number of memory transactions
performed during a specific interval Bj as µji . It must hold
that

∑N
j=1 µ

j
i = µi. Analogously, we indicate the memory rate

over each interval as rji . By definition, we have rji =
µj
i

W j
i

.
A. Memory-stall Curves

The memory-stall curve for a core i represents the cumulative
maximum interference-induced stall for a given memory rate r
and is denoted as I(r)i . Consider same setup used for Figure 2.
The memory-stall curves for cores 3 and 4 are provided in
Figure 3. Considering Core 4, We have already discussed how
the first two transactions introduce stall at a “slope” of 3. This
is reflected in the I(r)4 curve, since the curve has slope 3
when r ∈ ]0, 2[.

For clarity, let us construct the memory-stall curve for core
3. The y-axis represents the cumulative maximum stall I(r)3
that can be experienced by workload on Core 3 with a memory
rate r (x-axis). Workload on Core 3 can perform of 0, 1, 2, 3, 4
or 5 memory transactions in a regulation period. The first step
is to compute the maximum stall in each of these cases. If the
workload does not perform any memory transaction (r = 0) in a
regulation period, then it will experience no stall, i.e. I(0)3 = 0.
When r = 1, then it can be stalled by a maximum of 1 memory
transaction by each of the m−1 = 3 cores resulting in I(1)3 =
3. Similarly, for all values of r until r = mini(q1, . . . , qm), the
maximum stall rate I(r)3 = (m−1) · r, hence I(2)3 = 3 ·2 =
6. When Core 3 performs an additional memory transaction,
i.e. r = 3, it can only be stalled by Core 4, since cores 1

and 2 have been regulated after their second memory access.
Thus, the cumulative stall rate is I(3)3 = I(2)3 + 1 · 1 = 7.
Similarly, for r = 4, I(4)3 = I(3)3 + 1 · 1 = 8. Finally, for
r = 5 = q3, Core 3 is regulated. Here the maximum cumulative
stall is I(5)3 = Q − q3 = 16 − 5 = 11. The memory-stall
curve I(r)3 is obtained by connecting the discrete values of
I(k)3, k ∈ {0, . . . , 5} calculated so far.

Generalizing the example provided above, for any fixed
budget Q we can define the stall curve I(r)i as follows:

I(r)i =

{∑
k 6=i min(r, qk) if r < qi

Q− qi if r = qi
(2)

Since the budget assignment Qj changes every scheduling
interval Bj , a different I(r)ji curve needs to be considered on
each interval.

If the resulting curve is concave, then the memory-stall
curve is already final. This is the case for I(r)4 in Figure 3.
Conversely, a refinement step is necessary to produce the final
curve. Specifically, we take the upper-envelope of each of the
convex segments to obtain a concave curve. The result of this
step is depicted as Ī(r)3 in Figure 3.

Definition 3 (Stall rate): We define as stall rate the amount
of memory stall Ī(r)i suffered per regulation period with a
memory rate r. When considering multiple intervals, Ī(r)ji is
the stall rate for core i on interval Bj .

If the span over Bj is W j
i and µji transactions are performed

in the interval, we can compute the worst-case total stall Sji
over Bj as:

Sji := Ī(rji )i ·W
j
i = Ī

( µji
W j
i

)
i
·W j

i . (3)

It follows that the total stall is Si =
∑N
j=1 S

j
i . If the

maximum memory stall that can be suffered by the workload
under analysis can be derived, then the worst-case amount of
time (in multiples of Lmax) required to complete the considered
workload is Wi ·Q = βi+Si. The rest of the paper is concerned
with the calculation of the maximum total stall, and hence span,
over a generic memory schedule S = {B1, . . . , BN}.

For a fixed budget Q, a given memory rate ri and span Wi,
Lemma 1 guarantees that computing Si according to Equation 3
always results in an upper-bound on the maximum possible
memory stall.

Lemma 1: Si = Ī(µi/Wi)i · Wi is an upper bound to
the cumulative stall suffered by a workload on core i that



performs µi memory accesses over Wi regulation periods, with
µi ≤ Wi · qi.

Proof: In each of the Wi regulation periods, a number of
memory accesses between 0 and qi could have been performed;
hence, note that we cannot have µi > Wi · qi. Let us indicate
with ak the number of periods in which k memory accesses
were performed. It must hold that

∑qi
k=0 ak = Wi. We can

then write:

µi = a0 · 0 + a1 · 1 + . . .+ aqi · qi. (4)

The cumulative stall suffered over Wi can be computed as:

a0 · I(0)i + a1 · I(1)i + . . .+ aqi · I(qi) =

qi∑
k=0

I(k)i · ak. (5)

Consider now computing the stall rate as Ī(µi/Wi)i. From
Equation 5, by I(r) ≤ Ī(r) we have:

qi∑
k=0

I(k)i · ak ≤
qi∑
k=0

Ī(k)i · ak (6)

Next recall that by definition of concavity for a generic function
f(x), it must hold that:

λk ∈ R s.t.
∑
k

λk = 1 =⇒ f
(∑

k

xkλk

)
≥
∑
k

f(xk)λk

(7)
Note that: ∑qi

k=0 ak
Wi

=

qi∑
k=0

ak∑qi
k=0 ak

= 1. (8)

Hence, we can write:∑qi
k=0 Ī(k)i · ak

Wi

=

qi∑
k=0

Ī(k)i · ak∑qi
k=0 ak

≤ Ī

(
qi∑

k=0

k · ak∑qi
k=0 ak

)
i

= Ī

(
µi
Wi

)
i
.

(9)
This implies that Ī(µi/Wi)i ·Wi is an upper bound to the
cumulative stall

∑qi
k=0 I(k)i · ak suffered by the workload for

any pattern of memory accesses over Wi periods, concluding
the proof.

V. WCET UNDER STATIC MEMORY BUDGET

In this section, we present a fixed-point iterative algorithm
to compute the worst-case length of the workload on a core
under analysis i under static memory budget Q. This is useful
to understand the basic mechanisms to compute the span over
a generic single memory scheduling interval.

In each iteration, the algorithm recomputes the maximum
stall and thereby, the workload span, based on the workload
span from the previous iteration (except for the base iteration)
and the corresponding memory schedule. The key intuition
behind iterative recomputation is that the increase in workload
span in an iteration is likely to increase the maximum stall in the
consecutive iteration due to a different worst-case distribution
of memory requests across (a) different per memory-stall curves
and/or (b) different memory scheduling intervals.

In the rest of the paper, we will always focus on the generic
core under analysis. As such, we will drop the index i from
all the notation introduced so far, unless required to resolve an
ambiguity. Since we will be introducing a series of iterations
of the algorithm, we subscript the iteration number (e.g., (k))
in the notation introduced so far.

Iterative Algorithm: the span W over a static memory
budget can be computed using Equation 10.

W(0) ← dβ/Qe,

W(k) ←
⌈(
β + Ī(min(µ/W(k−1)), q) ·W(k−1)

)
/Q
⌉
, (10)

where the iteration continues until convergence with W(k) =
W(k−1), or until W(k) · Q · Lmax > D. In the latter case,
the workload in not schedulable. Since Ī(r) is only defined
for r ∈ [0, q], the term Ī(min(µ/W(k−1)), q) ensures that the
function is never evaluated on a value outside its domain.

Theorem 1: The iteration in Equation 10 terminates in a finite
number of steps by either obtaining a value W(k)·Q·Lmax > D,
or by converging, in which case W(k) is an upper bound on
the span of the workload on the core under analysis.

Proof Sketch: Notice that we omit the proof for Theorem 1
here, as it is a corollary of the more general Theorem 2. As
such, the proof is provided in the Appendix.

For ease of explanation, Section V illustrates how to apply
the algorithm in a specific instance. Subsequently, Section VI
presents the generic algorithm.

Example of WCET over Static Budget: consider the static
budget Q = {2, 2, 5, 7}. Let us now compute the span W of
the workload with E = 40 and µ = 35 (i.e. β = 75) executing
on Core 3. For simplicity, we ignore the workload’s deadline
D and focus only on its length. Since workload on Core 3 is
being analyzed, we consider the stall curve Ī(r)3 in Figure 3,
with Q = 16 and q = 5.

The first step in the iterative Equation 10 is W(0) =
dβ/Qe = d75/16e = 5. We then have:

W(1) = d(75 + Ī(min(35/5, 5) · 5)/16e
= d(75 + Ī(5) · 5)/16e = d(75 + 11 · 5)/16e = 9

Since W0 6= Wk, an additional iteration needs to be performed.
We have:

W(2) = d(75 + Ī(min(35/9, 5) · 9)/16e
= d(75 + Ī(3.88) · 9)/16e = d(75 + 9 · 9)/16e = 10

No convergence has been reached yet, so one more iteration
is performed:

W(3) = d(75 + Ī(min(35/10, 5) · 10)/16e
= d(75 + Ī(3.5) · 10)/16e = d(75 + 8.5 · 10)/16e = 10

Since W(3) = W(2), convergence has been reached and the
worst-case length (in multiples of Lmax) for the workload
under analysis can be computed as W(3) ·Q = 160.

VI. WCET UNDER DYNAMIC MEMORY BUDGET

In this section, we extend our analysis to the case of dynamic
bandwidth assignment. In this case, the workload could span
across one or more memory scheduling intervals B1, . . . , BN .
Recall from Section II that each interval Bj = (Qj , Lj) is char-
acterized by a budget-to-cores assignment Qj = {qj1, . . . , qjm}
and a length Lj expressed in number of regulation periods.
For the core under analysis, it is always possible to compute
Ī(r)j using Equation 2, i.e. the stall curve resulting from Qj .

Similarly to Equation 10, we follow an iterative approach.
Let once again W(k) be the span of the considered workload at



Fig. 4. Example of memory schedule of length 15 regulation periods composed of 3 intervals B1, B2, B3 of length 5, 3, and 7, respectively. Considering
Core 3, the curves Ī(r)13, Ī(r)

2
3, Ī(r)

3
3 are reported above each interval. For each Ī(r)j3 curve, segment start points are highlights with a • and slopes are

annotated above the segments.

iteration k. It is always possible to determine the span of the
workload W j

(k) in each of the intervals Bj using Equation 1.
Example: To better understand this setup, consider the

situation depicted in Figure 4. In this case, the memory schedule
is composed of 3 intervals B1, B2, B3. The intervals have
length L1 = 5, L2 = 3, and L3 = 7, respectively. Similarly we
have three budget-to-cores assignments Q1,Q2,Q3 with the
budgets values specified in the figure. Assume that we want
to analyze the behavior of workload on Core i = 3: the figure
reports the Ī(r)13, Ī(r)23, Ī(r)33 curves that need to be considered
in each of the intervals. Let us assume that at a certain iteration
k, we have W(k) = 9 and apply Equation 1. We obtain W 1

(k) =

max
(
0,min(5, 9)

)
= 5,W 2

(k) = max
(
0,min(3, 9 − 5)

)
= 3,

and W 3
(k) = max

(
0,min(7, 9− 8)

)
= 1. Note that it always

hold
∑N
j=1W

j
(k) = W(k).

Assume that the span W(k) and hence the various W j
(k)

terms at a given iteration k are known. Then, the challenge is
to determine how to distribute the total µ memory transactions
among the B1, . . . , BN intervals in a way that maximizes the
overall stall. A distribution of memory transactions simply
means that we derive the quantities µj(k) for each Bj interval.
Obviously, it must hold that

∑N
j=1 µ

j
(k) = µ. But among all

the possible, valid distributions, we are interested in the one1

that maximizes the overall stall, i.e. S(k) =
∑N
j=1 S

j
(k), where

each of the Sj(k) terms is defined as in Equation 3.
To simplify exposition, we first introduce an optimization

problem in Algorithm 1 that computes the number µj(k)
of memory requests assigned to each interval Bj at the
k-th iteration to maximize the overall stall S(k). Then, in
Section VI-B we show how to efficiently solve the optimization
problem. Note that once µj(k) has been determined, based on
Lemma 1 the stall in interval Bj can be upper-bounded as
Sj(k) = Ī(µj(k)/W

j
(k))

j ·W j
(k) . Hence, the cumulative stall at

Line 8 of the algorithm is computed as S(k) =
∑N
j=1 S

j
(k).

Due to regulation, in Line 12 we assign at most qj memory

1This distribution may not be unique.

transactions in any regulation period inside interval Bj . This
is equivalent to the following constraint: the number of
transactions µj(k) performed in Bj is upper bounded by W j

(k)·q
j .

Finally, since we know that the workload comprises at most µ
requests, it must hold

∑N
j=1 µ

j
(k) ≤ µ at Line 13.

Based on Algorithm 1, W j
(k) is then computed according to

the following iteration:

W(0) ← dβ/Qe,

W(k) ←
⌈(
β +

N∑
j=1

Ī(µj(k−1)/W
j
(k−1))

j ·W j
(k−1)

)
/Q
⌉
. (11)

Note that at each iteration k > 0, the values W j
(k−1) are

computed using Equation 1 from W(k−1), and the values µj(k−1)
are computed using Algorithm 1. As in Section V, the iteration
continues until convergence or W(k) ·Q · Lmax > D.

Algorithm 1. Stall maximization over multiple intervals

1 Input: B1, . . . , BN /∗ sequence of intervals ∗/
2 Input: W 1

(k)
, . . . ,WN

(k)
/∗ span in each interval ∗/

3 Input: µ /∗ total memory requests ∗/
4
5 Output: µ1

(k)
, . . . , µN

(k)
/∗ memory requests in each interval ∗/

6
7 Maximize: /∗ max cumulative stall ∗/
8 S

(k)
=
∑N

j=1 S
j
(k)

=
∑N

j=1 Ī(µ
j
(k)
/W j

(k)
)j ·W j

(k)
9

10 Subject to:
11 µj

(k)
∈ N /∗ number of requests is natural ∗/

12 µj
(k)
≤W j

(k)
· qj /∗ max qj transactions per regulation period ∗/

13
∑N

j=1 µ
j
(k)
≤ µ /∗ total requests constraint ∗/

Example: Suppose we are analyzing the behavior of work-
load with E = 15 and µ = 25 on Core 3 under the memory
schedule depicted in Figure 4. Assume that at a given step k
we have W(k) = 6. In this case we have W 1

(k) = 5,W 2
(k) = 1

and W 3
(k) = 0. Invoking Algorithm 1 returns the memory-

to-intervals distribution that maximizes the overall stall, in
this case: µ1

(k) = 22, µ2
(k) = 3, µ3

(k) = 0. The stall per



interval can be computed as Sj(k) = Ī
(
µj(k)/W

j
(k)

)
· W j

(k).
For this example, we have S1

(k) = 50, S2
(k) = 8 and

S3
(k) = 0. The new value of W(k+1) can then be computed

as W(k+1) = d(35 + 50 + 8)/16e = 6. Note that in this case
Equation 11 has reached convergence.

A. Proof of Correctness

We now formally prove that Equation 11 computes a valid
upper bound for the workload length in number of regulation
periods. We begin with some helper lemmas; Lemma 2 show
that the value of W(k) increases monotonically, which is
required for the iteration to terminate, while Lemma 3 shows
that if the iteration converges, we are able to distribute all µ
memory requests among the N memory scheduling intervals.

Lemma 2: At each iteration step in Equation 11 it holds:
W(k) ≥W(k−1) > 0.

Proof: First note that functions Ī(r)j are concave and
Ī(0)j = 0. For any such function and positive constant µ, one
can prove that Ī(µ/x)j · x is monotonic non-decreasing in
x > 0 (a formal proof is reported in Lemma 6 in Appendix).
The proof then proceeds by induction over the index k.

Base Case: Since we assume β > 0, we have W(0) >

0. Furthermore, since by definition all W j
(0) terms are

non-negative and functions Ī(r)j have non-negative ranges,∑N
j=1 Ī(µj(0)/W

j
(0))

j ·W j
(0) is non-negative. By definition of

Equation 11, this implies W(1) ≥W(0) > 0.

Inductive Step: Consider k ≥ 2. Note that in Equation 11,
W(k) is computed based on the value of W(k−1), from which
we obtain the values of W j

(k−1) in Equation 1 and µj(k−1)
in Algorithm 1; similarly, W(k−1) is computed based on
W(k−2) and W j

(k−2), µ
j
(k−2). By induction hypothesis, we have

W(k−1) ≥ W(k−2) > 0; based on Equation 1, this implies
W j

(k−1) ≥W
j
(k−2) for all intervals Bj .

Now consider Line 8 of Algorithm 1: since Ī(µ/x)j · x is
monotonic for x > 0, it must hold:

N∑
j=1

Ī(µj(k−2)/W
j
(k−1))

j ·W j
(k−1) ≥

N∑
j=1

Ī(µj(k−2)/W
j
(k−2))

j ·W j
(k−2). (12)

In other words, when running Algorithm 1 at iteration k based
on the values W j

(k−1), there exists an assignment of variables
(µj(k−1) = µj(k−2), i.e., the same assignment as the previous
iteration) that results in a value of the objective function that is
greater than or equal to the one at iteration k−1. Furthermore,
the assignment µj(k−1) = µj(k−2) is feasible, in the sense that
it satisfies the constraints at Lines 11-13 of the algorithm: note
that µj(k−2) ≤W

j
(k−2) · q

j implies µj(k−1) ≤W
j
(k−1) · q

j since
W j

(k−1) ≥W
j
(k−2). Hence, given that the optimization problem

is maximizing the objective function, it is guaranteed to find

an assignment for variables µj(k−1) such that:

N∑
j=1

Ī(µj(k−1)/W
j
(k−1))

j ·W j
(k−1) ≥

N∑
j=1

Ī(µj(k−2)/W
j
(k−2))

j ·W j
(k−2). (13)

In turn by definition of Equation 11 this implies W(k) ≥
W(k−1), concluding the induction step.

Lemma 3: If the iteration in Equation 11 converges to a value
W(k), then there exists a feasible assignment to variables µj(k)
that maximizes the objective function at Line 8 of Algorithm 1
and for which

∑N
j=1 µ

j
(k) = µ.

Proof: Note that for a feasible assignment it cannot hold∑N
j=1 µ

j
(k) > µ due to the constraint at Line 13. Hence by

contradiction, assume that for all assignments that maximize
the objective function it holds:

∑N
j=1 µ

j
(k) < µ.

By definition, all W j
(k) terms are non negative. Furthermore,

functions Ī(r)j have non-negative ranges. Hence, increasing
the value of a variable µj(k) cannot cause the objective function
to decrease. Therefore,

∑N
j=1 µ

j
(k) < µ must hold even when

each variable µj(k) is assigned its maximum value, which is
µj(k) = W j

(k) · q
j based on the constraint at Line 12. We thus

obtain:
∑N
j=1W

j
(k) · q

j < µ. Furthermore, note that we have
Ī(µj(k)/W

j
(k))

j = Ī(qj)j = Q− qj .
Finally, given E > 0 and based on Equation 11 at

convergence, we derive:

W(k) =
⌈(
β +

N∑
j=1

Ī(µj(k)/W
j
(k))

j ·W j
(k)

)
/Q
⌉

=
⌈(
E + µ−

N∑
j=1

qj ·W j
(k) +

N∑
j=1

Q ·W j
(k)

)
/Q
⌉

>
⌈(
E +

N∑
j=1

(Q ·W j
(k))
)
/Q
⌉

= dE/Q+W(k)e
≥ 1 +W(k), (14)

which is a contradiction.
Theorem 2: The iteration in Equation 11 terminates in a finite

number of steps by either obtaining a value W(k)·Q·Lmax > D
or converging, in which case W(k) is an upper bound to worst-
case span of the workload on the core under analysis.

Proof: We first show that the algorithm terminates. By
Lemma 2, W(k) ≥ W(k−1). Since W(k) is a natural number,
it follows that the algorithm must either converge or terminate
with a value of W(k) greater than the deadline in a finite
number of steps.

Hence, assume that the algorithm converges to W(k). Based
on Lemma 3, we can find an assignment to variables µj(k) that
maximizes the stall in the objective function of Algorithm 1
and such that

∑N
j=1 µ

j
(k) = µ. Hence, the assignment is valid,

in the sense that the workload is able to perform its worst-case



number of memory transactions. Furthermore, due to Line 12, it
holds µj(k) ≤W

j
(k) ·q

j for all intervals; hence, by Lemma 1 and
for each Bj , Sj(k) = Ī(µj(k)/W

j
(k))

j ·W j
(k) is an upper bound

to the stall when performing µj(k) memory accesses in W j
(k)

regulation periods. Now given that Algorithm 1 maximizes the
objective function at Line 8 over all possible assignments to
variables µj(k), it follows that

∑N
j=1 S

j
(k) = S(k) is an upper

bound to the cumulative stall when performing µ memory
accesses over

∑N
j=1W

j
(k) = W(k) regulation periods.

Finally, by definition, the worst-case length of the workload
can be obtained (in number of slots) as the sum of β and the
stall suffered by the workload. By convergence to W(k), we
have:

W(k) ·Q =
⌈W(k)

Q

⌉
·Q ≥ β +

N∑
j=1

Sj(k) = β + S(k), (15)

and since S(k) is an upper bound to the stall suffered in W(k)
regulation periods, this implies that W(k) is indeed an upper
bound to the total span of the workload.

B. Implementing the Stall Algorithm

In this section, we show how to efficiently implement
Algorithm 1. The algorithm is similar to a concave optimization
problem, except that variables are integer rather than real.

By construction, each Ī(r)j function is a concave piece-
wise linear, and can be thought as a sequence of segments
with decreasing slope. For each Ī(r)j curve, consider the set
of integer values of r corresponding to the beginning of a
segment. Call each of this values a start point, and Ej the
set of all the start points in Ī(r)j . Start points are highlighted
with a solid dot (•) in Figure 4. Considering Core 3, for the
example in the figure we have: E1 = {0, 2}, E2 = {0, 2, 3, 4},
and E3 = {0}.

Using this formulation, we introduce two helper functions
defined on Ej for Ī(r)j . First, the nextj(r) function returns
the next start point strictly greater r:

nextj(r) := min
p
{p ∈ Ej | p > r}. (16)

Second, the function slopej(r) simply returns the slope of the
segment at r. If r is a start point, the function returns the slope
of the starting segment. Formally:

slopej(r) :=
(
Ī
(
nextj(r)

)j − Ī(r)j
)
/
(
nextj(r)− r

)
(17)

All the slopes are annotated in Figure 4 right above the
corresponding segment.

Algorithm 2 first initializes all variables µj(k) to zero.
Then, the algorithm iterates over Lines 9-19 until either (1)∑N

j=1 µ
j
(k) = µ holds, meaning that all µ memory transactions

have been distributed among the N memory scheduling interval;
or (2) µj(k) = W j

(k) ·q
j for all intervals, meaning that we cannot

assign any more memory transactions due to the regulation
constraints. When the condition µj(k) = W j

(k) · q
j holds for

some interval Bj , we say that Bj is saturated. The set of all
the unsaturated intervals is computed at Line 11, and their
respective memory rates rj given the current assignment µj(k)
is computed at Line 13.

For each iteration, at Line 15 the algorithm selects the
interval Bj with the highest slope for the currently assigned
memory rate rj among all the unsaturated intervals – in case
two intervals have the same slope, the tie can be broken
arbitrarily. Finally, at Line 17 the value of memory transactions
µp(k) assigned to the selected interval Bp is modified to the
minimum of two expressions: (1) µ −

∑
j 6=p µ

j
(k), that is,

all remaining transactions. In this case, after the assignment,
it holds that

∑N
j=1 µ

j
(k) = µ and the algorithm terminates

immediately. (2) nextp(rp) ·W p
(k), that is, µp(k) is incremented

so that rp = µp(k)/W
p
(k) becomes equal to the next segment

start point.
Algorithm 2. Stall maximization over multiple intervals

1 Input: B1, . . . , BN /∗ sequence of intervals ∗/
2 Input: W 1

(k)
, . . . ,WN

(k)
/∗ span in each interval ∗/

3 Input: µ /∗ total memory request ∗/
4
5 Output: µ1

(k)
, . . . , µN

(k)
/∗ memory requests in each interval ∗/

6
7 ∀j : µj

(k)
← 0

8
9 do:

10 /∗ consider only unsaturated intervals ∗/
11 B ← {j | µj(k) < W j

(k)
· qj}

12 /∗ compute current memory rate r on each unsaturated interval ∗/
13 ∀j ∈ B : rj ← µj

(k)
/W j

(k)
14 /∗ find curve p where r yields maximum stall slope ∗/
15 p ← argmaxj∈B

{
slopej(rj)

}
16 /∗ assign as many as possible transactions to this interval ∗/
17 µp

(k)
← min

(
µ−

∑
j 6=p µ

j
(k)
, nextp(rp) ·W p

(k)

)
18 /∗ stop if all µ assigned, or all intervals are saturated ∗/
19 until (

∑N
j=1 µ

j
(k)

= µ or ∀j : µj
(k)

= W j
(k)
· qj )

Note that the segment start points, µ and W p
(k) are all natural

numbers; hence, assuming that the values of variables µj(k) were
integer before the assignment at Line 15, the new value assigned
to µp(k) is also integer. Furthermore, the new assignment cannot
violate the constraints

∑N
j=1 µ

j
(k) ≤ µ or µj(k) ≤ W j

(k) · q
j ,

since we use the minimum of the two expressions. Hence,
this shows that the assignment to variables µj(k) operated by
Algorithm 2 is feasible according to the constraints at Lines 11-
13 of Algorithm 1. Furthermore, note that Algorithm 2 is
guaranteed to terminate after the assignment at Line 17 selects
the first expression, or after all intervals have been saturated.
The number of segment start points for each function Ī(r)j

is O(m); hence, the number of iteration of the algorithm is
O(N ·m).

Finally, we show that once the algorithm terminates, the
assignment to variables µj(k) maximizes the cumulative stall
S(k) =

∑N
j=1 S

j
(k) =

∑N
j=1 Ī(µj(k)/W

j
(k))

j · W j
(k), that is,

the objective function in Algorithm 1. This follows from
the way intervals are selected at Line 15. By contradiction,
assume that there exists a different feasible assignment, call
it {µ̄1

(k), . . . , µ̄
N
(k)}, such that

∑N
j=1 Ī(µ̄j(k)/W

j
(k))

j ·W j
(k) >∑N

j=1 Ī(µj(k)/W
j
(k))

j ·W j
(k); then can obtain {µ̄1

(k), . . . , µ̄
N
(k)}

by iteratively modifying {µ1
(k), . . . , µ

N
(k)}, subtracting some

number of memory transactions, say ∆, from one variable µj(k)



and adding them to another variable µp(k). Now define:

slopep =
Ī
(
(µp(k) + ∆)/W p

(k)

)p − Ī(µp(k)/W
p
(k))

p

∆/W p
(k)

,

slopej =
Ī(µj(k)/W

j
(k))

j − Ī
(
(µj(k) −∆)/W j

(k)

)j
∆/W j

(k)

, (18)

as the resulting slopes for functions Ī(r)pi and Ī(r)ji . Note that
the modification to the variables will increase the cumulative
stall by slopep ·∆ and reduce it by slopej ·∆. But because
Line 15 always selects the function with the highest slope, it
must be slopep ≤ slopej ; hence, the cumulative stall cannot
increase, a contradiction. In summary, we have shown the
following lemma:

Lemma 4: Algorithm 2 terminates in a finite number
of steps. Furthermore, the resulting assignment to variables
{µ1

(k), . . . , µ
N
(k)} determines a value of

∑N
j=1 Ī(µj(k)/W

j
(k))

j ·
W j

(k) equal to the value of the objective function computed by
Algorithm 1.

Computational Complexity: note that each iteration of the
algorithm can be easily optimized to execute in O(1). The
sum of variables µj(k) at Lines 17, 19 can be executed in
constant time by keeping the sum in a variable and updating
it each time µp(k) is modified at Line 17. The selection at
Line 15 can be performed in constant time by creating a table
of segments ordered by slope. Since ordering the segments
then dominates the complexity of the algorithm, this results
in a O

(
N ·m · log(N ·m)

)
time for Algorithm 2. Note that,

the analysis assumes a know memory schedule, but, is generic
with respect to CPU scheduling. Thus, it is applicable to event-
triggered CPU schedulers.

VII. SCENARIO: BUDGET ASSIGNMENT AND
SCHEDULABILITY RATIOS FOR IMA PARTITIONS

Integrated Modular Avionics (IMA) systems use time-
triggered scheduling of partitions, also known as ARINC 653
scheduling, where each partition is assigned, at compile time,
a fixed start time and span in a major cycle i.e., a hyperperiod
(H). These partition-level scheduling decisions are stored at
compile time resulting in a static CPU schedule, which is
repeated every major cycle.

Our analysis (Section VI) works with known memory
assignment across cores and known workload parameters. IMA
systems are a natural fit, representing a real-world scenario. We
consider a set of IMA partitions with a fixed major cycle and
assignment of partitions to cores. For simplicity, we assume
the order of execution of the partitions is known, and we
assume that each partition executes once in the major cycle,
and that the major cycle is synchronized among cores. Our
goal is to use our analysis from Section VI and perform
an empirical evaluation comparing the ratio of schedulable
tasksets to generated tasksets, under dynamic memory budget
assignment policy against the static budget assignment policies,
under a fixed partition execution order on each core.

In the next Subsections, we describe the setup used to
compare the budget assignment policies and the two sets of
experiments, one, that varies the number of cores and two, that
varies the number of memory intensive partitions in a system.

A. Setup

IMA Partition Set Generation: For each experiment run,
we consider m cores and a set of 4×m IMA partitions, with a
fixed major cycle, i.e., hyperperiod (H) of 128ms. The earliest
start time of each partition is set to t = 0 and the deadline
to the hyperperiod i.e. 128ms. From the perspective of the
analysis (Section VI), each partition is a workload.

We characterize the varying memory demand between
partitions as exhibited by avionic applications [13], using a
parameter — memory intensity (MI) — , that represents the ratio
of pure memory demand to the sum of pure processing demand
and pure memory demand of a partition under single-core case
i.e., no contentions. We then use a bi-modal distribution for
MI , where each partition either has a HIGH MI mode or
a LOW MI mode. The use of two modes is first, consistent
with the memory intensity behavior exhibited by partitions in
a real avionic application [13], and second, some partitions
perform I/O activity that is memory- intensive. All HIGH MI
mode partitions are randomly assigned an MI value in the
range of [0.5, 0.99], whereas for LOW MI mode partitions, the
MI value range is [0.001, 0.1]. We use a parameter memory
intensity ratio MIr to vary the number of partitions in the
HIGH MI mode to that in the LOW MI mode in the system.

Each partition is then randomly assigned a core, such that
each core ends up with 4 partitions. The setup then generates per
partition single-core utilization using UUniFast algorithm [14]
such that U is the cumulative single-core utilization of each
core. The parameter U allows varying the cumulative single-
core utilization of partitions assigned to a core. Next, the setup
generates E and µ values for each partition based on its single-
core utilization and memory intensity (MI) value, assuming
no stall. The E and µ values of each partition respectively
represent an aggregated E demand and an aggregated µ demand
of all tasks assigned to it, in line with existing works like [15]
and [13].

System-wide Parameters: We use realistic system-wide
parameters: Lmax = 2.4 × 10−6s, P = 1ms, resulting in
Q = 41666 as described in [6].

Budget Assignment Policies: We consider two static budget
assignment policies: Static and even (SE) that assigns to each
core a constant and identical budget of 1/m times the total
budget, e.g., for a 4-core system Q ={10416, 10416, 10416,
10416}, and static and uneven (SU) that assigns to each core
a constant budget based on the weight of each core, e.g.,
Q = {416, 20416, 5416, 15416}. For the SU policy, we use a
heuristic to generate the weight of each core and thereby, a
budget assignment, based on the input partition set.

The key idea behind the heuristic is to assign cores with
higher memory demand a higher memory budget. The heuristic
computes weight of each core based on the ratio of the
remaining cumulative µ to that of the sum of remaining
cumulative µ and cumulative E on a core. Then, the memory
bandwidth Q is partitioned among cores based on the computed
weights resulting in a budget assignment. This is similar to the
term memory intensity, albeit on a core-level.

We compare the static policies (SE and SU) against a
dynamic policy (DY), which assigns dynamic memory budgets
to cores, using the heuristic. As compared to the static SU
policy that uses the heuristic at time t = 0 only, DY policy



Fig. 5. Schedulability ratios under varying m from 4 to 12 cores in steps
of 4, for memory budget assignment policies: Dynamic (DY), Static Uneven
(SU), and Static Even (SE). Memory intensity ratio MIr of 0.25

recomputes the weight of every core each time a partition
finishes execution, resulting in a dynamic budget assignment.

B. Varying Number of Cores m
Figure 5 compares the schedulability ratios for each of the

three budget assignment policies — DY, SU and SE —- under
varying the number of cores m from 4 to 12 in steps of 4,
for a fixed memory intensity ratio MIr of 0.25. In Figure
5, for each value of U , we generated 1000 partition sets for
m = 4 case, and 100 partition sets for each of m = 8 and
m = 12 cases. On the x-axis, we vary the cumulative per core
utilization U from 0.1 to 0.9 in steps of 0.01.

First, we observe that as the number of cores m increases, the
schedulability ratio decreases for the plots shift towards the left,
for each of the three budget assignment policies. This is because,
with increasing the number of cores, the total memory supply
remains constant, albeit the total memory demand increases
as the number of HIGH MI mode partitions increase in the
system. Second, for each value of m, the dynamic policy DY
dominates the static policies SU and SE.

C. Varying Memory Intensity ratio MIr

Now, we vary the memory intensity ratio MIr from 0.15
to 0.50 that impacts the number of HIGH MI partitions in the
system, and consequently, the number of LOW MI partitions
in the system. We set the number of cores m to 8.

Figure 6 shows the schedulability ratios for each of the
three budget assignment policies — DY, SU and SE —- under
varying MIr. On the x-axis, we vary the cumulative per core
utilization U from 0.1 to 0.9 in steps of 0.01. In Figure 6, we
generated 100 partition sets for every combination of U and
MIr.

As the MIr ratio increases, the cumulative memory load
from all cores on the memory increases, in general. Conse-
quently, we observe that schedulability ratio plots shift towards
the left on increasing the MIr ratios. Further, for each memory
intensity ratio MIr, the dynamic budget assignment policy
DY dominates static policies SU and SE.

Fig. 6. Schedulability ratios under varying memory intensity ratio MIr from
0.15 to 0.50, for memory budget assignment policies: Dynamic (DY), Static
Uneven (SU), and Static Even (SE). The number of cores m is set to 8.

VIII. RELATED WORK

Recent literature on the design of real-time systems on multi-
core platforms considers main memory as a significant source
of unpredictability, and an important interfering channel to
mitigate. Predictable memory controllers have been proposed
in [16]–[18]. OS-level techniques implementable on COTS
hardware to regulate access of cores to main memory have
been proposed and evaluated in [1], [11], [19], [20]. Yet
another body of work has investigated the idea of strictly
serializing access of cores to main memory. For instance, the
work in [21] clusters memory operations in tasks via cache
pre-fetching using compiler-level transformations, defining
memory- and execution- phases. Then, a central scheduler only
allows at most one memory-phase to be active at any point
in time. A similar scheme was adopted in [22]–[25] using
DMAs instead of CPU-initiated pre-fetches and scratchpad
memories. A recent work [26] proposes an analysis for co-
running tasks contending for memory resources, i.e. with no
explicit bandwidth partitioning.

By clustering and serializing access to shared memory,
interference is avoided by design. Compared to this approach,
regulation has the advantage of being entirely implementable at
OS-level. For memory regulation techniques, analytic bounds
for the temporal behavior of tasks was also derived [6], [7], [9],
[27]. Similarly, the work in [28] derives runtime guarantees
when both a CPU server and memory regulation are used.
These works focus on static memory bandwidth partitioning.

With respect to static and even budget assignment, a first
analysis was derived in [6]. In [9], an analysis for static and
uneven bandwidth partitioning was performed assuming only
knowledge of the memory budget qi for the core under analysis,
and assuming arbitrary assignment to the other m− 1 cores.
More recently, the work in [7] demonstrated that by leveraging
exact knowledge of each core’s budget qi it is possible to
drastically reduce the pessimism of the analysis.

A few works [1], [11] proposed unused budget reclamation.
However, no offline guarantees can be provided on the dynamic
portion of the assigned budget. The work in [29] considers



budget reclamation and derives WCET guarantees assuming
full knowledge of the workload on all cores. In a more recent
work, Nowotsch et al. [15], [30] consider avionics temporal
partitions with pre-defined budget assignment. In this way, they
are able to compute offline the WCET of application inside
a partition, albeit the budget may vary at the boundaries of
partitions. Finally, the work in [13] relaxes the strict single
budget-to-partition assignment in [15] and allows different
budgets being assigned to a partition offline, enabling dynamic
budget assignment, from a set of design-time fixed budgets.
By assuming that memory stall is pre-computed in each
budget, the WCET computation problem is then be decomposed
in (1) assigning “compatible” budgets across cores; and (2)
minimizing the use of high-budget slots by the task under
analysis.

What sets this work apart is the generality of the
provided results. Unlike the aforementioned literature, we
do not assume any specific budget re-assignment scheme. In
fact, we provide a methodology that can be used to compute
the worst-case runtime of a task given any dynamic budget-to-
core assignment. To use our results, either exact knowledge of
budget assignment over time is known; or a critical instant for
memory budget re-assignments should be identified.

IX. CONCLUSION

In this paper, we presented a methodology to analyze
the worst-case execution time and schedulability of real-
time workload under dynamic memory scheduling. We first
introduced a simple iterative algorithm to compute the span of
workload under static and uneven budget-to-core assignment.
We then generalized the problem to consider a generic memory
schedule and formulated the worst-case span analysis as a
stall-maximization problem. Next, we demonstrated that the
problem has strong similarities with concave optimization and
proposed a low-complexity solution to determine the access
pattern that maximizes the overall memory stall. As a use case,
we considered an IMA setting where a subset of partitions
run memory-intensive workload. In this scenario, dynamic
memory scheduling outperformed traditional static bandwidth
partitioning. The analysis assumes a known memory schedule.
It is, however, generic with respect to CPU scheduling. Thus,
it is applicable for event-triggered CPU schedulers. As a future
work, we intend to study online bandwidth scheduling strategies
for which a critical instant on decisions taken of both processor
and memory can be identified.
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APPENDIX

Lemma 5: Consider a function f : R≥0 → R such that f is
concave and f(0) = 0. Then ∀a, b ∈ R≥0 with b > a:

f(a)− a · f(b)− f(a)

b− a
≥ 0. (19)

Proof: By definition of concave function, ∀x, y ∈ R≥0
and α ∈ [0, 1] it holds:

f
(
(1− α) · x+ α · y

)
≥ (1− α) · f(x) + α · f(y). (20)

Substituting x = 0, y = b and α = a
b in Equation 20 and given

f(0) = 0 we have:

f(a) ≥
(

1− a

b

)
· f(0) +

a

b
· f(b) =

a

b
· f(b). (21)

Finally, using Equation 21 we obtain:

f(a)− a · f(b)− f(a)

b− a
=

f(a) · b− f(a) · a− f(b) · a+ f(a) · a
b− a

=

f(a) · b− f(b) · a
b− a

≥
a
b · f(b) · b− f(b) · a

b− a
= 0, (22)

which yields the hypothesis.
Lemma 6: Consider a function g : R≥0 → R such that g is

concave and g(0) = 0. Then ∀µ ∈ R≥0,∀x ∈ R>0: x · g(µ/x)
is monotonic non decreasing in x.

Proof: We have to show that ∀x1, x2 ∈ R>0 with x2 > x1:

x2 · g(µ/x2) ≥ x1 · g(µ/x1). (23)

Let us define K = g(µ/x1)−g(µ/x2)
1/x1−1/x2

. We first show that:

g(µ/x2)−K/x2 ≥ 0. (24)

Define f(y) = g(µ ·y), a = 1/x2, b = 1/x1. Note that it holds
b > a > 0, f(0) = g(µ · 0) = 0, and since g is concave, f
is also concave. Then we obtain by substitution: g(µ/x2) −
K/x2 = f(a) − a · f(b)−f(a)b−a , which by Lemma 5 is greater
than or equal to 0.

Finally, using Equation 24 we obtain:

x2 · g(µ/x2) = x2 ·
(
g(µ/x2)−K/x2

)
+K ≥

x1 ·
(
g(µ/x2)−K/x2

)
+K =

x1 ·
(
g(µ/x2)−K/x2 +K/x1

)
=

x1 ·
(
g(µ/x2) +K · (1/x1 − 1/x2)

)
=

x1 ·
(
g(µ/x2) + g(µ/x1)− g(µ/x2)

)
= x1 · g(µ/x1), (25)

completing the proof.
Proof of Theorem 1: We show that the iteration in

Equation 10 is a special case of Equation 11, which implies
that Theorem 1 follows as a corollary of Theorem 2. W(0) is
computed in the same way, so we reason about the expression
for W(k).

Note that the static budget scenario in Section V is equivalent
to a dynamic scenario where there is only one memory
scheduling interval B1 of unbounded length. Hence, we have
W 1

(k−1) = W(k−1), and we can define Ī(r) = Ī(r)1 and q = q1

without loss of generality. The stall term in Equation 11 is
thus equal to:

N∑
j=1

Ī(µj(k−1)/W
j
(k−1))

j ·W j
(k−1) =

Ī(µ1
(k−1)/W(k−1)) ·W(k−1). (26)

Next, consider Algorithm 1; since there is only one variable
µ1
(k−1), the constraints at Lines 12, 13 are equivalent to:
µ1
(k−1) ≤ W(k−1) · q and µ1

(k−1) ≤ µ. But since increasing
the value of the variable cannot cause the objective func-
tion to decrease, it follows that the assignment µ1

(k−1) =
min(µ,W(k−1) · q) must maximize the stall. Substituting this
value into Equation 26 yields:

Ī
(

min(µ,W(k−1) · q)/W(k−1)
)
·W(k−1) =

Ī
(

min(µ/W(k−1), q)
)
·W(k−1), (27)

which is the stall term in Equation 10. This shows that the two
iterations over W(k) are identical, completing the proof.
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