
NoCo: ILP-based Worst-Case Contention
Estimation for Mesh Real-Time Manycores

Jordi Cardona
Univ. Politecnica de Catalunya and
Barcelona Supercomputing Center

Barcelona, Spain
jordi.cardona@bsc.es

Carles Hernandez, Enrico Mezzetti,
Jaume Abella

Barcelona Supercomputing Center
Barcelona, Spain

name.surname@bsc.es

Francisco J. Cazorla
Barcelona Supercomputing Center and

IIIA-CSIC
Barcelona, Spain

francisco.cazorla@bsc.es

Abstract—Manycores are capable of providing the computa-
tional demands required by functionally-advanced critical appli-
cations in domains such as automotive and avionics. In manycores
a network-on-chip (NoC) provides access to shared caches and
memories and hence concentrates most of the contention that
tasks suffer, with effects on the worst-case contention delay
(WCD) of packets and tasks’ WCET. While several proposals
minimize the impact of individual NoC parameters on WCD,
e.g. mapping and routing, there are strong dependences among
these NoC parameters. Hence, finding the optimal NoC con-
figurations requires optimizing all parameters simultaneously,
which represents a multidimensional optimization problem. In
this paper we propose NoCo, a novel approach that combines
ILP and stochastic optimization to find NoC configurations in
terms of packet routing, application mapping, and arbitration
weight allocation. Our results show that NoCo improves other
techniques that optimize a subset of NoC parameters.

Keywords-NoC; mesh; WCET; ILP; contention

I. INTRODUCTION

Computing performance needs in domains such automotive,
avionics, railway, and space are on the rise. This is fueled
by the trend towards implementing an increasing number of
product functionalities in software that ends up managing
huge amounts of data and implementing complex artificial-
intelligence functionalities [1], [11].

Manycores are able to satisfy, in a cost-efficient manner, the
computing needs of embedded real-time industry [2], [10]. In
this line, building as much as possible on manycore solutions
deployed in the high-performance (mainstream) market [41],
[32], contributes to further reduce costs and increase availabil-
ity.

However, manycores bring several challenges for their
adoption in the critical embedded market. One of those is
deriving timing bounds to tasks’ execution times as part of
the overall timing validation and verification processes [28].
In particular, the network-on-chip (NoC) has been shown to
be the main resource in which contention arises, and hence
hampers deriving tight bounds to the timing of tasks [24].

For widely-used wormhole NoCs (wNoCs) [32], [41], sev-
eral proposals show how to compute latency upperbounds to
the different flows communicating on the manycore [26], [31]
under some restrictions, e.g. deterministic routing. Unfortu-
nately, WCET estimates computed with wNoCs are gener-
ally pessimistic when – as required to achieve composable
estimates – no restrictions are imposed on when and where
interference occurs in the wNoC. Interestingly, wNoCs offer
several software-controllable parameters that allow to optimize

(reduce) the worst-case contention delay (WCD) that packets
crossing can suffer. These include mapping, routing, and allo-
cation of weights (referred to as walloc) to arbitration policies
in each router. NoC contention optimization solutions have
been proposed for mapping [7], [48] and combining routing
and mapping [46], [47]. Additionally, optimal allocation of
weights to achieve fair bandwidth balancing have been also
proposed for TDMA [36] and wNoCs [25]. In general, those
solutions do not tackle all parameters at once, which leads to
globally suboptimal solutions.

Overall, reducing WCD in NoCs is indeed a multidimen-
sional problem and, to make things worse, strong dependences
exists between the different parameters. For instance, the
impact of routing in WCD is heavily affected by the mapping
of tasks to cores.

Despite the inter-dependences among these parameters, to
our knowledge no previous work proposes an integral solution
to the problem of WCD reduction simultaneously optimizing
mapping, routing and walloc.

Contribution. In this paper, we cover this gap by propos-
ing NoCo, a wNoC ILP- and stochastic-based optimization
framework that minimizes WCD estimates (and hence WCET
estimates) of applications running in the wNoC-connected
manycores. In particular:
À We analyze the main wNoC parameters that cause vari-
ability in WCD (mapping, routing, and walloc) and how they
relate each other. We propose a modeling approach that allows
deriving the contribution of each wNoC parameter to WCD.
Á We show that reducing WCD is a multidimensional problem
that we decompose into a stochastic-based optimization and an
ILP formulation. The former covers the optimization of the
routing, whereas the latter optimizes mapping and walloc.
Â We show the effectiveness of NoCo compared to hand-
made setups and other approaches that optimize a subset of
the parameters. Our results confirm that our multidimensional
optimization approach achieves performance guarantees that
outperform the other ones evaluated. We also show that
optimizing virtual-channel (VC) allocation provides a subset
of the configurations obtained with walloc, so that optimizing
walloc makes VC not to provide any additional advantage.

We focus on high-performance wormhole NoCs in which
time-predictability is achieved by leveraging an optimal con-
figuration of parameters. This includes features like arbitration
and routing already configurable from software in existing
real wNoC designs. Weight allocation, while to our knowl-
edge it has not been implemented in commercial NoCs yet,
it is widely used in high-performance routers for off-chip

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

(a) (b)
Fig. 1. Mesh basics. (a) Router coordinates in a 4x4 part of a mesh. (b)
Ports and VCs competing for output PE port in a canonical 2D-mesh router.

wormhole networks [8]. Given that the implementation cost
of weighted arbitration is quite low [25], they can be included
with low cost in high-performance on-chip designs. Moreover,
modifications required to implement weighted arbitration are
local in contrast to hardware proposals that require global
changes like, new signals among routers and nodes, different
flow-control, global clocks or the like. We cover these specific
real-time NoC designs in the related work.

The rest of this paper is organized as follows. Section II
shows an approach that allows capturing the impact of every
wNoC component on WCD. Section III presents our approach
to optimize several wNoC components simultaneously. Sec-
tion IV assesses the WCD/WCET estimate reduction and over-
heads of NoCo. Section V presents the most relevant related
works. Finally, Section VI summarizes the main conclusions
of this work.

II. ABSTRACTING SOURCES OF JITTER
(WCD MODELING)

We target standard 2D NxM wormhole mesh NoCs, see
Figure 1(a), as they deliver high performance and are com-
mercially available [2], [32], [41]. Each node comprises the
router that serves as interface to the mesh and a PE (Processor
element). Each router comprises 5 ports, see Figure 1(b),
with routers at the edges having fewer ports. Input ports
comprise a queue to store flits, or several if virtual channels
are implemented, as shown in Figure 1(b). Main memory is
attached to one of the spare ports of one of the routers in
a corner. For arbitration, on round-robin as it is a locally
fair policy that favors time predictability and it is easy to
implement [15].

In our target system critical and non-critical applications
run using disjoint resources, either in time or space [24],
so that non-critical applications do not interfere with critical
ones. For critical applications, communication occurs via main
memory given the difficulties of timing analysis techniques to
account for the impact of coherence management. This fits
software execution models, e.g. avionics for which ARINC
653 [4] uses buffers for intra-partition communication that
can be implemented with global (non-cacheable) variables.
Inter-partition communication occurs also through buffers so
that the sender writes the data, caches are flushed at partition
boundaries, thus consolidating all data in memory, and then
consumers in other partitions necessarily retrieve data from
memory avoiding coherence concerns.

A. Introduction to WCD modeling
The WCD of the packets of an application, and hence the

WCET of the application, is heavily affected by the NoC
parameters. In particular the NoC has a two fold impact.

TABLE I
DEFINITIONS USED IN THIS PAPER.

Term Definition
R(x, y) Router with coordinates (x,y) in the NoC
Fi Flow i: stream of flits traversing the same H-node route
Rj

i For flow Fi is the router at hop j

F̂Xj
i Set of flows targeting the same output port Fi targets at Rj

i
Hi Number of hops in a flow Fi

P j
i No. of requests that may contend for the same Rj

i output
port as Fi under the worst-case contention scenario

ERj
i Rate at which flits of flow Fi can be ejected from Rj

i
in the absence of backpressure

Dj
i Maximum time that a packet of Fi requires to go from

the input port of Rj
i to its destination node

BWi Minimum bandwidth allocated to flow Fi at source node
BW j

i Minimum bandwidth allocated to flow Fi at Rj
i

BW j
i Progated worst-case ejection rate for Fi at Rj

i

NRj
i Number of queues that can potentially contend for an

output port that Fi is targeting at Rj
i

ω(i, j) Function returning the index x of the worst possible desti-
nation flow Fx that starts at Rj+1

i and reaches the worst
destination in terms of indirect blocking of packets of Fi

1) It affects the zero-load latency (zll), i.e. the latency
experienced by a packet to traverse the network from
source to destination in the absence of contention.

2) More importantly, it plays a key role on the contention
delay, bounded by WCD, that the application can suffer.

Finding an optimal network configuration to minimize
WCD/WCET is a multidimensional problem encompassing
several inter-dependent parameters. In order to make the opti-
mization problem tractable, abstractions are needed to capture
the impact of different parameters in a common modeling
framework. This is challenging since existing abstractions are
heterogeneous and not intended to fit ILP models.

In this paper we propose a particular WCD-centric abstrac-
tion to address the main sources of jitter in a wNoC, namely:
placement of tasks (threads) to cores, routing, and weight
allocation (walloc).

Moreover, we also provide an abstraction for VCs that
allows us to show that walloc provides a superset of the
configurations obtained with VCs, so removing the need of
having extra VCs to reduce contention if walloc is in place.

In order to derive the WCD for a flow Fi we build on the
formulation in [26], see Equation 1.

Table I describes the terms used in this paper. The first
multiplicand provides an upperbound to number of rounds
each packet in Fi is stalled until all contending requests in
router Rji are able to progress, which is NRji − 1 for round
robin.

The second multiplicand is the indirect contention delay
each packet of Fi can suffer in each hop due to the worst
possible destination flow Fω(i,j). The worst destination of flow
Fω(i,j) is the one causing the highest contention to Fi in router
Rji . It can be computed iterating all flows until they target
their destination [26]. We also define w(i, j) as a function
that returns the index of the worst-destination flow.

WCDi =

Hi∑
j=1

 (NRji − 1)︸ ︷︷ ︸
ContendingRequests

×
Hω(i,j)∏
m=1

NRmω(i,j)︸ ︷︷ ︸
1/Bandwidth

 (1)

In this paper, we refactor this expression to capture the
impact of walloc in the WCD of a flow Fi. In an arbitrary
network the time required to process a packet, i.e. its network
traversal time, can be computed based on the network band-
width (BW). Let BWi be the bandwidth assigned to Fi, then
its traversal time can be computed as 1/BWi. Note WCD is
the result of adding the time the network requires to process
the NRji − 1 corresponding requests at each of the Hi hops
traversed. Then, from Equation 1 we can derive the minimum
bandwidth BW j

i allocated to any packet at Rji targeting the
same output port Fi targets as follows:

BW j
i =

1∏Hω(i,j)

m=1 NRmω(i,j)

(2)

Alternatively, and with the aim of simplifying ILP formula-
tion, the minimum allocated bandwidth can be derived building
on the concept of worst-case ejection rate (ERji). ER

j
i is the

worst ejection rate for flits of flow Fi in router Rji through
the output port determined by the routing policy whenever the
next router in the path (Rj+1

i) can accept an incoming packet.
ERji can be computed as ERji = 1/P ji where P ji equals
NRji when packets of Fi can be blocked due to contention
and 0 otherwise1. The effect of back-pressure is covered by
the propagated worst-case ejection rate that represents the

minimum bandwidth allocated to Fi in router Rji . Let F̂Xj
i

be the set of flows that contend for the output port targeted
by Fi in Rji the worst-case propagated ejection rate BW j

i can
be formulated as follows:

BW j
i = min

∀Fx∈F̂X

Hw(x,j)∏
k=j

1

P kx

 (3)

In the formulation above when P kx is 0 the ejection rate and
the corresponding allocated bandwidth are defined to be ∞,
representing there is no contention due to backpressure and
the packets of Fi can progress without contention to the next
router. Note also that once in a given router Rji packets of
Fi suffer from contention, P kx values cannot be equal to 0 in
subsequent routers due to back-pressure effects.

Building on BW j
i , we can derive the WCD that a packet

of flow Fi takes to reach its destination node from the input
port of router Rji . To that end, we define Dj

i as the latency
that a packet requires to go from Rji to destination. Overall,
the recursive definition of Dj

i is as follows:

Dj
i =

1

BW j
i

+Dj+1
i (4)

1Note that there are cases in which in spite of the routing does not prevent
flows to contend with Fi no contention with other flows can occur due to the
way the flows are mapped to the physical network.

Fig. 2. Tightness of WCD bounds for a 6x4 and 6x6 wNoC

Note that WCDi is then equivalent to D1
i and can be

obtained recursively by adding the time to move from each
router to the next one, where the time to move from one
particular router Rji to Rj+1

i is upper-bounded by 1/BW j
i

and equal to 0 when BW j
i is ∞.

We have thoroughly validated WCD values computed using
the expressions above by observing WCD values obtained
for XY routing and round-robin arbitration match the ones
obtained with formulations in [26] and [31] for the analyzed
flows. Furthermore, we have assessed the accuracy of our
model in upperbounding the actual contention caused in the
wNoC by empirically reproducing a worst-congestion scenario
using gNoCsim [3]. To that end, we simulate the traffic
generated by a memory-intensive micro-kernel in which all
tasks in the NoC send packets to memory sustainedly. We have
performed this experiment for 2 different network setups. To
ensure a steady congestion state is reached, we have taken
measurements once at least 1,000 packets per node have been
injected. We also repeat the measurement process until all
nodes have sent at least 2 million requests. Figure 2 shows the
comparison of the analytically computed values with the ones
obtained with simulations. The comparison is performed for
the the flows with the minimum and maximum WCD (referred
to as Fmin and Fmax, respectively), and the average across all
flows, referred to as meanF. As it can be seen in the figure our
expressions provide a tight upperbound of the NoC contention.

B. Routing

In this work we consider only routing policies with minimal
distance routes, that is those policies forward packets in each
router in any direction that guarantees that the distance to the
target decreases by one hop. For instance, XY routing meets
this constraint.

Moreover, due to their suitability for critical real-time
systems and their efficiency in terms of implementation, we
further assume deterministic routing policies, so that a given
packet can only be sent to a specific output port in a router, as
dictated by the routing policy. For instance, recalling example
in Figure 1(a), a packet sent from R(2, 2) to R(0, 0) with
XY routing can only move in the X direction until R(0, 2),
and then in the Y direction until R(0, 0). Note that with
deterministic routing, the route to follow by a packet is
independent of whether there is contention in the path. Such
contention may delay progress, but not alter the route.

Routing determines for a packet stored in an input port
queue of the router the other input ports can contend for
a given output port. To simplify the routing algorithm im-
plementation, in the routing policies considered, all flows in
the wNoC share the same routing decisions/restrictions. This
approach is also followed by the majority of on-chip routing

algorithms including XY, dimension-order-routing, segment-
based routing [19], and derivatives.

Routing restrictions help determining the exact number of
requests (P ji) that might contend at router Rji for the same
output port as Fi in the worst-case situation. For instance,
P ji values for a mesh with XY routing and assuming all-
to-all communication are determined as: P ji = 2 if if the
destination is X or X− and P ji = 4 if the destination is
Y or Y− or the PE. For a particular routing policy P ji is
fixed, with different values across routers. Hence, routing can
be abstracted by replacing P kx in Equation 3 by the actual
number of flows that can contend for the output port used by
the routing algorithm at each router Rji . Therefore, by setting
specific routing directions in each router, P ji changes for the
output port of each router and new Dj

i values (per-core WCD)
are obtained for each core.
Deadlock Avoidance. Routing algorithms in wormhole have
to ensure deadlock freedom. Deadlock situations in wNoCs
occur when packets are waiting on each other in a cycle. For
instance, XY algorithm avoids deadlock situations by prohibit-
ing certain turns. We prevent deadlocks by ensuring that there
are not prohibited cycles in the generated routing. This can
be alternatively achieved by impose further restrictions in the
routing inputs of the model or using specific VCs to this end.
This however, is orthogonal to our overall formulation just
removing some routing options.

C. Weight Allocation (Arbitration)

Weighted meshes allow allocating heterogeneous bandwidth
in the routers to the different flows to accommodate the differ-
ent needs of different communication flows in the wNoC [27].
Weighted arbitration can be employed to achieve a globally-
fair (homogeneous) bandwidth allocation across cores [25].
Conceptually, given a NoC with NxM nodes, globally-fair
weighted meshes reduce the bandwidth for nodes whose
allocated bandwidth is above 1

N×M for a given destination
node and increases it for those whose bandwidth is below. This
is achieved by using, for instance, a larger arbitration window
in the case of round-robin, so that a larger number of slots is
given to some ports so that the overall bandwidth allocated to
each core to the destination can be arbitrarily chosen.

So far we have assumed round-robin with homogeneous
weights across flows, so that given P ji flows contending for an
output port in a router, each one is allowed to eject a packet at
a rate ERji = 1

P j
i

whenever the next router in the path accepts
incoming packets. Hence, the total ejection rate of the output
port is 1

P j
i

for each of the P ji flows.

For instance, given P ji = 3 contending flows, the default
round-robin arbitration policy uses arbitration windows with
3 slots, one of which is given to each flow. Hence, each flow
has 1/3 ejection rate. With weighted arbitration, we can set a
window with an arbitrary number of slots (e.g. 5) and allocate
them to flows as wanted. For instance, we could allocate 3 slots
to flow 1 and 1 slot to each other flow, so that their respective
ejection rates would be 3/5, 1/5 and 1/5. Appropriate weights
can be set up to modify the WCD of each core. For instance,
authors in [25] have shown that homogeneous bandwidth can
be achieved by properly allocating weights in routers, which

Fig. 3. Example of VCs and its equivalent walloc design.

homogenizes to some extent WCD values2. In general, weight
allocation can be set as needed – with a granularity limited
by the size of the arbitration window size – and abstracted by
using appropriate P ji values for each flow in each router for
the computation of the Dj

i values.

D. Virtual Channels

In canonical wormhole routers, virtual channels (VCs) are
used to multiplex physical channels: an input queue resource
per port is assigned to a VC. Dynamic VC allocation increases
throughput of the wNoC, however, in the context of critical
real-time, the dynamic allocation of VCs penalizes WCD [26].
Instead, static VC allocation can alleviate contention in a
way that WCD can be reduced by providing isolation if the
particular allocation of VCs allows reducing the overlapping
between the routes followed by the different flows.

With VCs, two different arbitrations take place in the router,
see Figure 1. A first arbitration determines the input port that is
granted access to the output port. A second arbitration selects
the VC that is granted access. For instance, given a router
with 2 VCs that are statically allocated, with 1 flow in the
former (VC1) and 3 in the latter (VC2), the arbiter grants
access alternatively to each VC, and within the second VC in
a round-robin fashion to each flow. Hence, the flow in VC1
has an ejection rate of 1/2, whereas each of the other flows
has an ejection rate of 1/6. As shown, this formulation is
identical to that of the weights for weighted meshes, with the
difference that weights can be allocated as needed at much
finer granularity.

We illustrate how VCs are subsumed by walloc with an
example for a XY −RR 3x2 mesh NoC, see Figure 3(a). Its
representation with no VCs in the form of a tree to access
the memory controller (MC) is shown in Figure 3(b), where
values at the edges indicate the ejection rates for each port.
Figure 3(c) shows the tree with 2 VCs where node 3 is
allocated to VC2 and the rest of nodes are allocated to VC1. In
the mesh without VCs, the bandwidth (BW) is evenly shared
across input ports, which makes node 3 to have only 1/12 of
the BW (see Figure 3(b)). Instead, when we use the particular
VC allocation in Figure 3(c), BW is allocated in a different
manner making node 3 enjoy 1/6 of the total BW. This occurs
because BW allocation is modified in the links from 6 to 5
(6to5) and from 4 to 6 (4to6) since two VCs are multiplexed

2While weights can homogenize bandwidth, they cannot mitigate the
communication cost caused by physical distance to destination (zll), so in
general, WCD cannot be made fully homogeneous.

over the same physical link. In particular, 6to5 BW (1/3) and
4to6 (1/6) are shared between VC1 and VC2. In 6to5, 1/6 of
the BW is allocated to VC1 and the other 1/6 is allocated
to VC2. Thus, the node attached to router 6 gets 1/12 of the
BW and the remaining 1/12 is allocated to the node attached to
router 4. On the contrary, since node 3 uses VC2, its allocated
BW is still the one coming from 6to5 (1/6). Finally, once BW
per core is determined, it is trivial to set the weights that
lead to that particular bandwidth allocation starting from the
destination node and splitting it as needed. In this particular
example, Figure 3(d) shows the walloc that leads to identical
behavior to the case of 2 VCs on XY −RR.

E. Mapping

The WCET of parallel and single thread applications can be
obtained using the formulation below. For parallel applications
WCET is determined by the thread finishing the latest.

The WCET of an individual thread (application) Ti,
WCETi, is computed as shown in Equation 5.

WCETi = ETIji +Nreqi ·Dj
i (5)

The ETIji figure corresponds to the classical notion of
WCET, defining an upper-bound for the execution of Ti in
isolation, under any possible execution scenario. In a NoC,
however, the ETIji bound depends on the node where Ti
executes, and must be defined for all nodes j in the system
(i.e. all different Cartesian distance values). Since ETIji is
independent of contention and we assume routing policies
with minimal distance routes, some nodes will share the same
ETIji . Hence, deriving the worst-case execution time bounds
in isolation of Ti just on a subset of the cores will suffice
to represent all potential distances to the memory node. For
instance, recalling the example in Figure 1(a), and assuming
that memory is located in R(0, 0), we could run Ti in the cores
at routers R(0, 0), R(0, 1), R(0, 2), R(0, 3), R(1, 3), R(2, 3)
and R(3, 3), since, for instance, ETIji will be identical at
R(0, 2), R(1, 1) and R(2, 0) since all them have the same
Cartesian distance to the destination.

Similarly to ETIji , Nreqi captures the worst-case number
of requests triggered by Ti under any possible execution
conditions, with the difference that it does not depend on
the execution node (i.e., it is constant across cores). The
worst-case number of requests is an essential dimension to
consider when bounding contention effects: Nreqi bounds can
be derived either statically [22] or based on measurements [9].
Note that it is fundamental to conservatively consider worst-
case execution time and number of requests separately as the
corresponding scenarios (e.g., input data or execution path) do
not necessarily match [9].

Finally, Dj
i is derived according to Equation 4. Ultimately,

for a given thread-to-core mapping, Dj
i is constant for each

node j (i.e., it is constant once Ti is mapped to a core).
Therefore, the effect of thread-to-core mapping on WCETi

can be abstracted by using the corresponding ETIji and Dj
i

values precomputed for the core where the thread is mapped.

III. FORMULATION

We propose a hybrid NoC Optimization (NoCo) approach
to solve the multidimensional problem of NoC parameter
optimization. Our approach combines optimization algorithms

Fig. 4. Main stages of NoCo.

and ILP formulation to reach its goals. The approach also com-
prises a less important post-processing module. In particular,
building on the analysis Section II, the optimization algorithms
of NoCo cover the variability of routing while mapping and
walloc are optimized via an ILP formulation This is sketched
in the Figure 4.

The overall goal of NoCo is to derive the WCET of the
application factoring in on NoC contention.

Under a given routing, the zll for a given thread is constant
given a specific core c while the WCD for the packets sent by
that core (Dc) depends on the particular routing (r) followed
by the packets of the other cores, walloc (w), and VCalloc (v)
used. Formally stated, Dc = f(r, w, v). In fact, as we show
later, given a routing r, the WCD imposed by a given walloc
w and VCalloc v can be obtained without using VC, since
there exists a walloc w′ that delivers the same WCD across
cores. Hence, Dc = f(r, w, v) = f ′(r, w′).

It is noted that, a holistic approach modeling also routing
as an ILP variable, would cause the optimization problem
to become quadratic as the correlation between bandwidth
quotas assignment and routing cannot be modeled with linear
constraints. In contrast to ILP or MIP (Mixed-Integer Program-
ming) problems, quadratic optimization problems are generally
NP-hard and state-of-the-art solvers are normally incapable of
proving the optimality of any solution possibly found.

For the routing optimization, we opted for a stochastic
approach instead of an heuristic-based one for a two-fold
reason. First, heuristic-based solutions present the problem that
in general it is is not possible to assess their quality, since
they might be subject to local maxima. Furthermore, the use
of routing-only heuristics to find a (local) solution can result in
negative overall results when walloc and mapping optimization
are applied. And second, as detailed later in this section, a
stochastic-based solution allows exploring a restricted number
of routes so with limited exploration time, while allowing to
argue that the best evaluated route belongs to the top X% best
routes.

A. Routing

For time predictability reasons, we stick to static (pre-
dictable) routing that must further avoid deadlocks. In par-
ticular, we explore XY, referred to as ‘0’ in the following
figures, and YX (‘1’) routing for each core. Combining both
allows achieving good malleability in limiting the number of
contenting flows P ji in the routers of a particular flow Fi.
Figure 5 illustrates with an example how the proposed rout-
ing determination algorithm works. Figure 5(a) sketches the
graphical convention we use to represent the routing selected
by each node and the number of flows contending in each
output port. If we apply XY for all nodes, r0 = (000000000),
we obtain the routes in Figure 5(b) and the contention per

Fig. 5. Examples of different routings and pressure on different output ports

output port as shown in Figure 5(c). We can see that some
output ports suffer high contention (up to 6 flows). A different
arbitrary routing r1 = (000010010) presents lower maximum
contention per output port, see Figure 5(d).

It follows that good routes are those that limit the number of
contenting flows P ji in the routers used by of a particular flow
Fi. However, this is a local (i.e. routing-only) optimization.
When combined with mapping and walloc optimization, routes
that create more contention – and hence are less optimal
from the routing point of view – can result in reduced
maxWCD/sumWCD. For instance, let us assume that under
a particular routing one route suffer high contention while the
rest suffers low contention. Further assume a second routing
that much better balance contention. For an application in
which one thread (task) is insensitive to NoC WCD, while
the rest of the threads are, the former (less balanced) routing
results in reduced WCD and hence WCET.

Hence, since a priori we cannot determine what a good route
is, it would be hard to define a standard heuristic approach
to address the problem (e.g. genetic algorithms, simulated
annealing). Besides, those heuristics would not allow assessing
how far a solution (routing) is from the optimal one.

In order to cover both issues, we use a stochastic approach
based on a Monte-Carlo experiment. Basically, we produce
static routings schemes by selecting randomly whether each
node uses XY or YX routing. Hence, from the finite – but
huge – population of all routings, a sample is selected using
random sampling with replacement. This can be done with
following the simple approach shown in algorithm 1: for every
node in the NxM mesh we generate a random integer: if it
is odd we assume XY routing (0) and YX (1) otherwise. We
ensure resulting configurations are deadlock-free by filtering
out the samples in which routing cycles are created [19].

Algorithm 1 Algorithm to generate random routings
1: procedure GEN ROUTE RANDOM(sd,iter,type, ncount)
2: for (i = 0; i < NxM ; i++;) do
3: mapping[i] = random() mod 2;

With this approach we can probabilistically reason on the
quality of a given routing. Let C be the probability that a
sample of random routings contains at least one of the top X
(X ∈ [0..1]) routings, i.e. fraction of routing from the entire
population providing the best results for a given target metric
(e.g. maximum WCD across cores). Let C̄ the complementary
of C, i.e. 1−C. The probability that a single random routing is
not in the top X of the population is (1−X). The probability
that all k mappings do not belong to the top X is, therefore,

(1−X)k. Hence, its complementary, C, is the probability that
the best routing choice in the random sample belongs to the
top X routings. Hence, C = 1− (1−X)k.

TABLE II
C̄ FOR DIFFERENT RANDOM SAMPLE SIZES.

C̄
X 10−2 10−3 10−4 10−5 10−6

102 0.37 0.90 0.99 0.999 0.9999
103 4.3 · 10−5 0.37 0.90 0.99 0.999
104 < 10−43 4.5 · 10−5 0.37 0.90 0.99
105 < 10−300 < 10−43 4.5 · 10−5 0.37 0.90
106 < 10−300 < 10−300 < 10−43 4.5 · 10−5 0.37

As illustrated in Table II, the probability of not having, for
instance, any routing within the top best 0.01% routings (C̄ =
10−4) with a sample size of 100, 000 is of around 4.5 · 10−5

(so 0.0045%). Thus, the probability of having at least one
of those top X = 0.0001 routings is C = 0.999955 (above
99.99%). In general, we observe that a sample size of around
1, 000 random routings allows guaranteeing with very high
confidence that at least one of the top 1% best routings is
observed.

Once a routing is fixed, we can derive the WCD for every
packet going from a given node to the memory. The route
information is encoded in a route, see Figure 4, passed to the
ILP model to optimize mapping and walloc.

B. Mapping and walloc
The worst-case contention delay (WCD) potentially suffered

by a task τi upon each performed memory access, when
executing on a weighted mesh NoC, is determined by the
interrelation of several factors: the router τi is mapped to,
the adopted routing configuration (with its inherent flow con-
straints) and the bandwidth distribution along the mesh 3. The
WCD has to be accounted for in the definition of the worst-
case execution time (WCET) of all tasks. We present an ILP
formulation for optimizing the WCET of a task by finding
an optimal task mapping and bandwidth assignment, under a
given routing configuration.

We consider a 2D mesh NoC comprising a set of routers
R = {R0, . . . , Rs}, with associated computational nodes
N = {N0, . . . , Ns} (such that Nk is attached to Rk) and a
set of tasks T = {τ0, . . . , τn}, that need to be executed on the
mesh NoC. Each task τi is characterized by the a number of
performed memory accesses ai, and an execution time bound
computed in isolation, dependent on the node it executes on:
we use the notation cki to represent the timing bound of τi,
when executed on node Nk (implicitly accounts for the routing
policy). The WCET of a task τi when executed on router Rk,
with a given bandwidth quota, is obtained by inflating the
execution time in isolation with a worst-case delay penalty
for each memory access ai:

WCET ki = WCDk ∗ ai + cki (6)

In turn, the worst-case delay WCDk potentially suffered
by τi when executed on node Nk is determined in particular
by the routing policy in use, and the specific bandwidth
assignment among nodes.

3In this subsection we refer to the walloc optimization problem as band-
width distribution problem.

TABLE III
ILP MODEL NOTATION.

R = {R0, . . . , Rs} Set of routers in the mesh
N = {N0, . . . , Ns} Set of computational nodes in the mesh
T = {τ0, . . . , τn} Task set to be executed on the mesh
ai Number of memory accesses triggered by τi
cki Execution time in isolation of τi when exe-

cuted on node Nk

WCETk
i Worst-case execution time of τi when exe-

cuted on node Nk

WCDk Worst-case delay suffered by a task mapped
to node Nk

M : T 7→ Z Mapping of τi to indexes in the node set N
B : {R ∪N} 7→ IR Mapping of Rk and Nk to a bandwidth

assignment
WCETM,B

i WCET for task τi under mapping M and
bandwidth allocation B

WCDM(i),B WCD suffered by τi, under mapping M and
bandwidth allocation B.

H : R 7→ P(R) List of routers (hops) a packet needs to tra-
verse to reach a destination from a given
source router

L : R 7→ P(R) Map of active links in the mesh
BWRBk Bandwidth assigned to the output port of

router Rk

BWNBk Bandwidth assigned to the output port of the
computational node attached to router Rk

Given a fixed routing policy (configuration), our ILP model
leverages on task mapping and bandwidth assignment to
optimize the WCET of tasks.

B.1. Objective Function
The ILP formulation supports two objective functions repre-

sentative of two typical metrics for assessing the performance
of a wNoC. We are interested in finding the optimal task-to-
node mapping and bandwidth assignment that minimizes:
• SumWCD. For independent workloads, reducing the ad-

dition of the WCD of all tasks/threads, helps optimizing
resource usage and improving overall guaranteed perfor-
mance. Reducing SumWCD ca be done under some con-
straints on the maximum WCD allowed per task. Overall
this metric, which minimizes the WCD experienced by
all requests of all threads in the workload, is particularly
relevant to assess the global efficiency of our approach.

• MaxWCD is derived by computing the total WCD expe-
rienced by all requests for each thread, and minimizing
the maximum WCD value across threads. For parallel
applications, this metric provides information about the
thread experiencing highest contention and hence poten-
tially delaying the completion of the application.

We introduce M(i) : T 7→ Z to define a mapping from
tasks to computational nodes in the mesh, whereM(i) returns
the index k that identifies the node Nk ∈ N such that τi is
mapped to Nk. Note that Nk is by definition attached to router
Rk. Similarly, we define B : {R ∪ N} 7→ IR, mapping from
routers and nodes to a bandwidth quota, where B(Rk) returns
router Rk bandwidth assignment and B(Nk) returns the same
for node Nk. It is worth noting that B depends on the specific
routing configuration.

A formulation for the WCET parametric on task map-
ping and bandwidth assignment would be as follows, where
WCDM(i),B identifies the per-access WCD potentially suf-
fered by τi, under mapping M and bandwidth allocation B.

WCETM,B
i = WCDM(i),B ∗ ai + c

M(i)
i (7)

For maxWCD, the ILP is meant to optimize the time
required to execute the longest activity in the mesh.

min
M,B

max
τi∈T

WCETM,B
i (8)

For sumWCD, instead, ILP aims at minimizing the resources
required to execute whole workload.

min
M,B

∑
τi∈T

WCETM,B
i (9)

B.2. Modeling WCD
Similarly to the execution time in isolation, WCD is affected

by the task location in the mesh and the routing policy in use.
However, while the set of Cki is an input variable to the ILP
model, the WCD is indirectly a decision variable, as a function
of bandwidth allocation. The part taken by the routing policy
in the computation of the WCD have to be made explicit, in the
same way as the mesh bandwidth assignment. The bandwidth
allocated to each element in the mesh is modeled by an explicit
decision variable: BWRBk defines the bandwidth allocated to
the output port of router Rk under bandwidth assignment B,
whereas BWNBk stands for the bandwidth assigned to the
computational node Nk, attached to Rk.

Routing is indeed relevant for determining both the packet
route and the feasible bandwidth split rules. We defined two
abstraction, H and L to capture these relevant aspects.
H : R 7→ P(R) models the list of routers (hops) a packet

needs to traverse to reach a destination from a given source
router. This information is necessary to accumulate the WCD
along the end-to-end flow.
L : R 7→ P(R), instead, is a map of the active links in the

mesh, in accordance to the routing rules. This information is
fundamental to encode the rules for bandwidth allocation.

Given a routing policy defined by the pair < H,L >,
we model bandwidth allocation rules and WCD bound as
follows. First Eq. 10 models the fact that the bandwidth
assigned to the output port of a router Rk is determined by
the bandwidth in the node-local computational node BWNk,
and the cumulative bandwidth propagated by other routers
connected to Rk through an active link.

BWRBk = BWNBk +
∑

Rt∈L(Rk)

BWRBt (10)

Having defined the bandwidth per router, it is possible to
model the WCD for a router Rk as follows:

WCDM,B
i =

1

BWNBM(i)

+
∑

Rt∈H(M(i))

1

BWRBt
(11)

As defined in Eq. 11, the WCD per-access for a task mapped
to router Rk is determined by the cumulative inverse band-
width across all hops in the path from source to destination.
The computed WCD can be used for the WCET computation
in Eq. 7.

B.3. Modeling Constraints
The mesh topology and routing policy allow to derive a

set of constraints to guide bandwidth allocation across routers

and task mapping. Some simple constraints can put on B by
defining the domain space for the ILP variable:
• The WCD is always greater than zero.

WCDM,B
i > 0.0 ∀i,M,B

• Allocated bandwidth per routers must be larger than zero.

BWRBk > 0.0 ∀k,B

• The cumulative amount of bandwidth allocated to all
computational nodes must be exactly one∑

Rk∈R
BWNBk = 1

Similarly, several constraints can be defined on M.
• Each router cannot be assigned to more than one thread

M(i) 6=M(j) ∀i, j

• Each thread can only be assigned to one router

|M(i)| = 1

B.4. Putting it all Together
NoCo optimizes routing with a stochastic approach that

allows assessing the quality of the explored routes. The
alternative approach of expressing the routing as a decision
variable in the problem formulation has the notable drawback
of breaking the linearity of the model. Modeling the routing
as the combination of two new variables, representing the
bandwidth distribution and the flow configuration, would turn
the computation of both the router bandwidth quotas and,
ultimately, the worst-case delay into a quadratic optimization
problem. For each route, an ILP model optimizes mapping and
walloc (bandwidth allocation) to minimize either maxWCD
or sumWCD. In the next section we empirically assess the
benefits of NoCo over other existing approaches.

IV. EXPERIMENTAL EVALUATION

A. Manycore Processor Model
We conduct the evaluation of NoCo on an integrated

simulation framework. It includes an enhanced version of
SoCLib [39], a cycle-accurate multicore processor simulator,
and gNoCSim [3], a cycle-accurate NoC simulator. We model
a tile-based manycore [32], [41] where each tile comprises
L1/L2 cache memories and a core that communicates with
the rest of tiles and memory using a NoC router.

Processor cores implement an in-order pipeline with 32KB
4-way 16B/line IL1 and DL1 caches, where DL1 is write-
through. The manycore also includes a unified distributed
shared L2 cache memory, so that each core has a local
partition of the L2 cache. To increase the predictability of
the cache hierarchy the L2 cache is partitioned and each core
is provided with a 64KB region with 64B per cache line. L2
partitioning does not only avoid inter-task interferences in the
L2 but allows both isolating cache coherence between different
critical and non-critical tasks [18] and/or to disable coherence
support to avoid further NoC interferences.

Memory requests access main memory through the NoC.
Each memory request operates at a granularity equal or smaller
to a L2 cache line, thus transferring up to 16B (128 bits) per
NoC packet, which also has 16 control bits. Overall, packets
with up to 144 bits are sent in a single flit through a 144-bit

Fig. 6. Percentage of load and store in each benchmark

link width, which allows all NoC packets affecting our tasks to
have one-flit. Despite one-flit packets are preferred to reduce
contention, our model is also able to deal with other packet
lengths by computing worst-case ejection rates considering
packets of the maximum length.

Note that routers are connected through 2 links, each
one sending data in one direction. Hence, whereas memory
accesses may experience contention, memory responses cannot
since, at every router only one input port (the one used for
responses) contends for the corresponding output port (the one
to move the response to destination).

B. Workloads
In the real-time domain, manycores are exploited by speed-

ing up single (multithreaded) applications that use several
cores or consolidating multiple single-task applications, which
increases overall throughput. The latter is more frequent in
domains with several software partitions (e.g. IMA [44] in
avionics). In order to cover both scenarios, we design two
types of workloads, namely with independent single-task ap-
plications and with a single parallel application.

In the case of parallel applications, we assume those
supported by the ADA programming language [33], where,
essentially, a single-threaded phase is followed by a parallel
phase where all threads are spawned simultaneously and they
synchronize upon completion with a barrier.

To capture the degree of load that different applications
would put on the NoC, we have generated several benchmarks,
named A, B, ..., H that put specific load on the NoC. In
order to use representative values, we have analyzed the load
imposed by two different reference benchmark suites:
• MediaBench [17] is a well-known benchmark suite com-

prising multimedia and communication applications rel-
evant for many critical real-time systems, especially for
autonomous navigation and driving systems.

• EEMBC Autobench [29] benchmark suite includes auto-
motive applications relevant for critical real-time systems.

As shown in Figure 6, the particular load imposed by the
different benchmarks for both load and store operations varies
significantly, being up to 15% for each type of application. We
create different benchmarks (A, B, ..., H) to impose access
frequencies that include the range of those benchmark suites.
In particular, we consider load and store access frequencies
between 2.5% and 40% so that scenarios evaluated are relevant
for those benchmark suites and for further stressful conditions
where NoC contention could have a higher impact. The
particular details for those benchmarks are shown in Table IV.

From this set of benchmarks, we have generated workloads
with NxN benchmarks for each mesh size analyzed. Some
workloads are homogeneous, thus having all benchmarks of

TABLE IV
GENERATED APPLICATIONS AND THE PERCENTAGE OF LOCAL, LOAD, AND

STORE OPERATIONS THEY HAVE. CORE OPERATIONS ARE THOSE
OPERATION NOT USING THE NOC, I.E. CORE OPERATIONS AND MEMORY

OPERATIONS HITTING IN LOCAL CACHES.

Benchmarks A B C D E F G H

% Load 10 10 40 20 2.5 2.5 10 5
% Store 10 40 10 20 2.5 10 2.5 5
% Local 80 50 50 60 95 87.5 87.5 90

the same type (so 8 workloads in total), whereas others (4
workloads) are heterogeneous by choosing the NxN bench-
marks randomly (with replacement) out of our set of 8.

C. Reference techniques
As reference approaches to compare NoCo against, we use:
• XY −RR deploys predictable XY routing with standard

predictable round-robin arbitration in each router.
• XY − WRR is analogous to XY − RR except that

we modify weights to balance the bandwidth across all
nodes [25]. This makes that the WCD of all nodes ac-
cessing memory is more homogeneous than in XY −RR,
effectively mitigating mapping as a source of variability.

In the rest of this section we refer to our technique as
rILP (m,w) since NoCo optimizes routing, r, first using
the stochastic approach in Section II-B with samples of size
10 for 3x3 experiments and 100 for 4x4 experiments, and
mapping and walloc using the ILP approach, ILP (m,w),
presented in Section III. Results are shown in the form of
WCET reduction w.r.t. the XY −RR case. For instance, the
maxWCET improvement of ILP (m,w) is obtained as:

1−
maxWCETILP (m,w)

maxWCETXY−RR
(12)

D. Incremental evaluation
In order to assess the benefits of optimizing each individual

parameter of a NoC (mapping, routing, and walloc), we present
the results obtained with our approach as it incrementally
optimizes them. In particular we compare these setups:

(a) XY −WRR−ILP (m). Both routing (XY) and weights
(WRR) are fixed. Therefore, NoCo only optimizes map-
ping, i.e. it explores the different mappings of tasks to
cores (ILP (m)).

(b) XY − ILP (m,w). Only routing is fixed (XY) and
NoCo explores (i.e optimizes) both mapping and weight
allocation at the arbitration level (ILP (m,w)).

(c) rILP (m,w). All three NoC parameters are optimized
by NoCo: routing, mapping and walloc.

With this incremental approach we can derive the benefits of
optimizing each parameter: (a) gives the benefits of optimizing
mapping; (b)-(a) the benefits of optimizing walloc; and finally
(c)-(b) the benefits of optimizing routing.

Figure 7 shows the impact of applying the optimization
of the different parameters incrementally. In particular, we
evaluate the 4 heterogeneous 9-task workloads, which we refer
to as MIX1 to MIX4 on a 3x3 mesh NoC. Note that the chart
shows the maxWCET reduction that each technique obtains
over the baseline XY −RR.

Compared to the baseline XY − RR, we can see that
XY −WRR [25] obtains similar results (−1%) for three of
the workloads, while for one workload it is 16% better.

Fig. 7. Effect of incremental optimizations: mapping, walloc, and routing.

Effect of mapping. Compared to the baseline XY − RR,
XY −WRR−ILP (m) obtains maxWCD reductions of 23%
on average, showing the benefits of optimizing task mapping.

Effect of mapping and walloc. The combined effect of
mapping and walloc XY − ILP (m,w) results in further
reductions of maxWCD across all workloads. On average
improvements 37%, so that the benefit of optimizing only
walloc is 14 percentage points.

Full optimization. When NoCo optimizes all three NoC
parameters it produces the tightest WCET estimates, with
maxWCET reductions of 46% on average, so that the benefit
of routing optimization is 9 percentage points.

Overall can see that results are consistent across all work-
loads ranging from 40% to 50%. These results show the
benefits of simultaneously optimizing routing, mapping, and
walloc and how this provides the best WCET reduction results.

We evaluate rILP (m,w) in the rest of this section without
further breaking down experiments incrementally.

E. Optimal routing
In this section we compare the random routing selection to

exploring all possible routings. While the latter is not feasible
in general due to its huge execution time overheads, for the
small set of experiments we evaluate it provides evidence on
the benefits of the stochastic approach to optimize routing.

Figure 8 shows the maxWCET obtained with random rout-
ing selection normalized so that 100% corresponds to the
lowest maxWCET and 0% to the highest maxWCET. Thus,
we show how close to the optimal is the best solution so far.

Fig. 8. Normalized maxWCET of random routing w.r.t the best routing

We have performed two experiments for 3x3 and 4x4
respectively. In both cases, we take 5 samples, each of which
with just 5, 10, 25 and 50 of all possible routings, i.e. 512
for 3x3 and 65,536 for 4x4. Across all five samples we can
see that the maxWCET results obtained with random routing
are very close to those obtained with the best routing with
samples of 50 observations. In the case of 3x3, sample sizes
of 10 already find optimal results. For 4x4, samples for size
10 get on average a solution 85.2% optimal. With samples
of 50, the average is 94.6% and the worst case 88.7%. With

(a) 9 threads

(b) 16 threads
Fig. 9. rILP(m,w) maxWCET results for 9- and 16-thread applications

samples of 100 (not shown in the plot), the average is 98.6%
and with samples of up to 330 (0.5% of the population) the
optimal solution is found in the 5 samples.

F. Homogeneous Workloads
For homogeneous workloads, the optimization goal we

set for NoCo is reducing the WCET of the thread with
longest WCET (maxWCET). For parallel applications using
coarse-grain parallelism, the thread with lowest performance
is usually the one determining the WCET of the application
and thus, optimizing maxWCET minimizes the overall WCET
of the parallel applications.

It is also worth mentioning that for homogeneous workloads
thread mapping plays no role since all threads are identical.
Hence, gains come from walloc and routing optimization only.

Figure 9(a) and Figure 9(b) compare the WCET reduction
of the full NoCo optimization, i.e. rILP (m,w), against the
reference XY − RR and XY −WRR designs for 9-thread
and 16-thread applications, respectively. Those applications we
map to a 3x3 and 4x4 mesh NoCs respectively.

For 9-thread workloads, rILP (m,w) achieves average 74%
WCET reductions w.r.t. XY−RR and 26% w.r.t. XY−WRR.
The rationale behind these results is as follows:
• WCD values for XY −RR are highly heterogeneous and

hence, the WCD experienced by the thread at the core
with highest contention is far higher than that of most of
the other threads.

• By using WRR, WCD values become more homoge-
neous, thus significantly decreasing the opportunities for
optimization in the context of homogeneous workloads.
Yet, even in this case, rILP (m,w) decreases maxWCET
significantly (26% on average).

Results across workloads show that those with higher access
frequencies obtain higher benefits with NoCo, since the impact
of WCD on their WCET is higher. Still, we observe that
decreasing NoC requirements by 4x only decreases gains from
26% to 22%, thus showing the importance of optimizing NoC
configuration to improve performance.

(a) 9 threads

(b) 16 threads

Fig. 10. rILP(m,w) sumWCET results for 9- and 16-task workloads

For 16-thread applications maxWCET reduction follows the
same trend, though improvements are more noticeable. In par-
ticular, rILP (m,w) decreases maxWCET by 88% and 29%
on average w.r.t. XY −RR and XY −WRR respectively, with
increased gains occurring consistently across all workloads.

G. Heterogeneous Workloads
For heterogeneous workloads, NoCo focuses in reducing

sumWCET, hence actually reducing the overall impact – and
wasted resources due to contention. While in the experiments
in this section, NoCo optimizes all three NoC parameters
to reduce sumWCET with unrestricted per-task WCET, our
formulation supports setting specific bounds to the WCET
for some tasks. Unlike homogeneous workloads, for hetero-
geneous ones, (task) mapping plays a role in optimizing
performance – as it was analyzed in Section IV-D.

Figure 10 shows the sumWCET reduction of NoCo with
respect to XY −RR and XY −WRR designs for 9-task work-
loads (Figure 10(a)) and 16-task workloads (Figure 10(b)).

For the 9-task workloads, rILP (m,w) we observe pretty
consistent improvements. In particular, with respect to XY −
WRR improvements are similar to those obtained for ho-
mogeneous workloads ranging from 17% to 22% (19% on
average). We also see that for the heterogeneous workloads,
the results of RR are not as bad as for the homogeneous.
Yet NoCo improves XY − RR by 30% on average. Results
for the 16-task workloads support that rILP (m,w) achieve
consistent reduction w.r.t. the other two techniques.

H. Other Metrics
In previous sections we have used two optimization criteria

sumWCET and maxWCET. NoCo also supports other criteria
such as, for example, limiting the maximum WCET/WCD
of tasks. This is better illustrated with an example that uses
the homogenous 9-thread workload A that we run in a 3x3
network under a fixed mapping. In a first experiment we
run NoCo minimizing sumWCET. This produces the WCET
shown in the upper part (1) of Table V. In a second experiment

we run NoCo, still minimizing sumWCET, but also enforcing
that τ8 cannot exceed 11.56 (million cycles). The result of
this experiment is shown in the lower part (2) of Table V.
As it can be seen, the WCET of τ8 is indeed 11.55, which is
achieved by maintaining its WCD below 3.3. As a side effect,
we observe a small increase in sumWCET, from 87.9 to 88.2.

TABLE V
EFFECT OF LIMITING THE WCET OF ONE THREAD. ET STANDS FOR

EXECUTION TIME IN ISOLATION. TIME SHOW IN MILLION CYCLES.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

ET 4.99 5.81 6.63 5.81 6.63 7.44 6.63 7.44 8.26
1 WCD 2.27 2.89 3.57 2.56 2.97 3.83 2.89 3.28 3.98

WCET 7.26 8.70 10.20 8.37 9.59 11.28 9.51 10.72 12.24
ET 4.99 5.81 6.63 5.81 6.63 7.44 6.63 7.44 8.26

2 WCD 2.55 2.93 3.80 2.56 3.18 3.86 3.07 3.29 3.29
WCET 7.54 8.74 10.43 8.36 9.80 11.30 9.69 10.73 11.55

V. RELATED WORK

We have broadly classified the most relevant related works
into: (1) NoC designs for hard-real time systems, and (2)
optimization approaches to minimize NoC contention.
Real time NoC designs. Contention-free NoCs have been
traditionally considered the best fit to hard-real time ap-
plications. Contention free communication can be achieved
by using time-division multiplexing [12], [20], [35], time-
triggered architectures [23], and other ad-hoc wormhole-based
designs like SurfNoC [43] or PhaseNoC [30]. However, as
the number of cores included in the processor increases
time-division multiplexing approaches loose competitiveness
since differences between worst-case performance and average
performance increase with the number of cores [28]. Further-
more, customized NoCs will naturally find difficulties in being
adopted by industry [40] since their implementation incur
high non-recurrent costs. Priority-based flit-level preemption
NoCs based on customized wormhole NoCs in which different
priorities are assigned to the existing flows in the NoC have
been proposed. The initial approaches [6], [16], [37] are based
on assigning a different virtual-channel to each of the flows in
the NoC such that the impact of NoC contention is accounted
for in the schedulability analysis. Enhanced hardware designs
have been proposed in this context to improve performance
of both, low-criticality and high-criticality traffic [13]. More
recent approaches have shown that virtual channels can be
reduced by ensuring a different priority (virtual channel) is
assigned to the flows that actually share one or more links [21].
Virtual-channel requirements can be further reduced if the
analysis includes the effect of contention of flows sharing
priorities [38]. More recently, authors in [45] have shown
that the model proposed in [37] and later enhanced [16]
has some deficiencies. Based on the findings in [45], authors
in [14] have proposed a tight alternative model for priority-
preemptive real-time networks. Best-effort wormhole NoCs can
also be employed in the context of hard-real time systems by
deriving latency upperbounds as described in [31]. However,
as shown in [26] and [42] these bounds can be pessimistic
when time-composability properties have to be preserved. To
mitigate this problem authors in [25] proposed introducing
packetization and weighted arbitration to improve the latency
bounds provided by best-effort wormhole NoCs.

Wormhole NoCs optimization approaches. In [5] integer
linear programming models of heterogeneous multi-cores are
used to find the optimal task layout that guarantees execution
time. In this approach the internals of the communication
infrastructure are not exposed to the solver. Since the adop-
tion of NoCs as the primary interconnection architecture for
multi/many-cores many works have targeted the problem of
task mapping [34]. Authors in [7] proposed an ILP formulation
for a contention-aware application mapping algorithm in tile-
based NoC using meshes with XY routing to minimize inter-
tile network contention being able to achieve a significant
reduction of packet latency. In [47] the scheduling and map-
ping of tasks is combined to minimize packet latency and
increase predictability in the context of meshes with flexible
routing decisions. To that end, communications have to follow
a regular access pattern. A similar approach is the one in [48]
that in the context of 2D mesh with XY routing that uses
a constraint solver to find the mapping where contention is
minimized. Once the mapping is fixes communication bursts
are mapped onto frames that are time-multiplexed.
Positioning of this paper. Our work targets providing real-
time guarantees in the context of high-performance wormhole
NoCs thus, fitting in the area of best-effort NoCs. We use an
ILP-based optimization approach to allow achieving improved
performance guarantees so its spirit is similar to the one
of the optimization approaches presented above. However,
our approach targets fine-grain communications representing
memory accesses whose behavior is not explicitly handled by
the application or the OS. Also, unlike other proposals that
focus on a subset of NoC parameters our optimization algo-
rithm deals with the most relevant user-controllable parameters
like routing, thread allocation, and weight allocation at once
to leverage the performance provided by wormhole NoCs.

VI. CONCLUSIONS

We have presented NoCo a framework that leverages the
configuration potentials of wormhole NoCs via a hybrid
stochastic/ILP approach. NoCo finds the best routing config-
urations with a stochastic approach and applies ILP to the
generated routing policies to find the optimal mapping and
weights allocation for each of them. We show that NoCo
achieves significant improvements over other optimization
strategies that focus in just a subset of the NoC parameters.
NoCo outperforms reference XY-RR and XY-WRR wNoC
designs for both heterogeneous and homogeneous workloads,
and also in the context of parallel and single-thread workloads.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish Min-
istry of Economy and Competitiveness under grant TIN2015-
65316-P and the HiPEAC Network of Excellence. It also
received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and inno-
vation programme (agreement No. 772773). Carles Hernández
is jointly supported by the MINECO and FEDER funds
through grant TIN2014-60404-JIN. Jaume Abella has been
partially supported by the Spanish Ministry of Economy and
Competitiveness under Ramon y Cajal postdoctoral fellowship
number RYC-2013-14717. Enrico Mezzetti has been partially
supported by the Spanish Ministry of Economy and Compet-
itiveness under Juan de la Cierva-Incorporación postdoctoral
fellowship number IJCI-2016-27396.

REFERENCES

[1] Intel GO Automated Driving Solution Product Brief.
https://www.intel.es/content/dam/www/public/us/en/documents/platform-
briefs/go-automated-accelerated-product-brief.pdf.

[2] Kalray MPPA 256 Many-Core Processor, http://www.kalray.eu/
products/mppa-manycore,.

[3] NanoC: http://www.nanoc-project.eu.
[4] ARINC Inc. ARINC Specification 653: Avionics Application Software

Standard Standard Interface, Part 1 and 4, Subset Services, June 2012.
[5] A. Bender. MILP based task mapping for heterogeneous multiprocessor

systems. In Design Automation Conference, 1996, with EURO-VHDL
’96 and Exhibition, Proceedings EURO-DAC ’96, European, pages 190–
197, Sep 1996.

[6] A. Burns et al. A wormhole NoC protocol for mixed criticality systems.
In 2014 IEEE Real-Time Systems Symposium, pages 184–195, Dec 2014.

[7] C.-L. Chou and R. Marculescu. Contention-aware application mapping
for network-on-chip communication architectures. In 2008 IEEE Inter-
national Conference on Computer Design, pages 164–169, Oct 2008.

[8] D. Crupnicoff et al. Deploying Quality of Service and Congestion Con-
trol in InfiniBand-based Data Center Networks. Mellanox Technologies,
2005.

[9] D. Dasari et al. Response time analysis of cots-based multicores
considering the contention on the shared memory bus. In IEEE
TrustCom, 2011.

[10] R. Ginosar et al. RC64: High performance rad-hard manycore. In 2016
IEEE Aerospace Conference, pages 1–9, March 2016.

[11] M. Girone. Computing Challenges at the Large Hadron Collider (LHC).
Keynote at the European Network on High Performance and Embedded
Architecture and Compilation (HiPEAC) Conference 2018, 2018.

[12] K. Goossens et al. Aethereal network on chip: concepts, architectures,
and implementations. IEEE Design Test of Computers, 22(5):414–421,
Sept 2005.

[13] L. S. Indrusiak et al. Average and worst-case latency improvements in
mixed-criticality wormhole networks-on-chip. In 2015 27th Euromicro
Conference on Real-Time Systems, pages 47–56, July 2015.

[14] L. S. Indrusiak et al. Buffer-aware bounds to multi-point progressive
blocking in priority-preemptive nocs. In 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 219–224, March 2018.

[15] J. Jalle et al. Deconstructing bus access control policies for real-time
multicores. In 2013 8th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 31–38, June 2013.

[16] H. Kashif and H. Patel. Buffer space allocation for real-time priority-
aware networks. In 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 1–12, April 2016.

[17] C. Lee et al. Mediabench: a tool for evaluating and synthesizing
multimedia and communications systems. In Proceedings of 30th Annual
International Symposium on Microarchitecture, pages 330–335, Dec
1997.

[18] M. Lodde and J. Flich. An NoC and cache hierarchy substrate to address
effective virtualization and fault-tolerance. In 2013 Seventh IEEE/ACM
International Symposium on Networks-on-Chip (NoCS), Tempe, AZ,
USA, April 21-24, 2013, pages 1–8, 2013.

[19] A. Mejia et al. Segment-based routing: an efficient fault-tolerant routing
algorithm for meshes and tori. In Proceedings 20th IEEE International
Parallel Distributed Processing Symposium, pages 10 pp.–, April 2006.

[20] M. Millberg et al. The nostrum backbone-a communication protocol
stack for networks on chip. In 17th International Conference on VLSI
Design. Proceedings., pages 693–696, 2004.

[21] B. Nikolic et al. Are virtual channels the bottleneck of priority-
aware wormhole-switched noc-based many-cores? In 21st International
Conference on Real-Time Networks and Systems, RTNS 2013, Sophia
Antipolis, France, October 17-18, 2013, pages 13–22, 2013.

[22] J. Nowotsch et al. Multi-core interference-sensitive wcet analysis
leveraging runtime resource capacity enforcement. In ECRTS, 2014.

[23] R. Obermaisser et al. The time-triggered system-on-a-chip architecture.
In 2008 IEEE International Symposium on Industrial Electronics, pages
1941–1947, June 2008.

[24] M. Panic et al. Parallel many-core avionics systems. In 2014 Interna-
tional Conference on Embedded Software (EMSOFT), pages 1–10, Oct
2014.

[25] M. Panic et al. Improving performance guarantees in wormhole mesh
NoC designs. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1485–1488, March 2016.

[26] M. Panic et al. Modeling high-performance wormhole NoCs for critical
real-time embedded systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–12, April
2016.

[27] H. Park and K. Choi. Position-based weighted round-robin arbitration
for equality of service in many-core network-on-chips. In Proceedings
of the Fifth International Workshop on Network on Chip Architectures,
NoCArc ’12, pages 51–56, New York, NY, USA, 2012. ACM.

[28] M. Paulitsch et al. Mixed-criticality embedded systems - A balance
ensuring partitioning and performance. In 2015 Euromicro Conference
on Digital System Design, DSD 2015, Madeira, Portugal, August 26-28,
2015, pages 453–461, 2015.

[29] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[30] A. Psarras et al. PhaseNoC: TDM scheduling at the virtual-channel
level for efficient network traffic isolation. In 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1090–1095, March
2015.

[31] D. Rahmati et al. Computing accurate performance bounds for best
effort networks-on-chip. IEEE Transactions on Computers, 62(3):452–
467, March 2013.

[32] S. Ramos and T. Hoefler. Capability models for manycore memory
systems: A case-study with Xeon Phi KNL. In 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 297–
306, May 2017.

[33] S. Royuela et al. OpenMP tasking model for ada: Safety and correctness.
In J. Blieberger and M. Bader, editors, Reliable Software Technologies –
Ada-Europe 2017, pages 184–200, Cham, 2017. Springer International
Publishing.

[34] P. K. Sahu and S. Chattopadhyay. A survey on application mapping
strategies for network-on-chip design. Journal of Systems Architecture,
59(1):60 – 76, 2013.

[35] M. Schoeberl et al. A statically scheduled time-division-multiplexed
network-on-chip for real-time systems. In 2012 IEEE/ACM Sixth
International Symposium on Networks-on-Chip, pages 152–160, May
2012.

[36] M. Shekhar et al. Network-on-chip aware scheduling of hard-real-time
tasks. In Proceedings of the 9th IEEE International Symposium on
Industrial Embedded Systems (SIES 2014), pages 141–150, June 2014.

[37] Z. Shi and A. Burns. Real-time communication analysis for on-chip
networks with wormhole switching. In Second ACM/IEEE International
Symposium on Networks-on-Chip (nocs 2008), pages 161–170, April
2008.

[38] Z. Shi and A. Burns. Real-time communication analysis with a priority
share policy in on-chip networks. pages 3–12, July 2009.

[39] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.
[40] J. Sparsø. Design of networks-on-chip for real-time multi-processor

systems-on-chip. In 2012 12th International Conference on Application
of Concurrency to System Design, pages 1–5, June 2012.

[41] Tilera. TILE-Gx Processors Family
http://www.tilera.com/products/TILE-Gx.php.

[42] S. Tobuschat and R. Ernst. Real-time communication analysis for
networks-on-chip with backpressure. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, pages 590–595, March
2017.

[43] Wassel et al. SurfNoC: A low latency and provably non-interfering
approach to secure networks-on-chip. SIGARCH Comput. Archit. News,
41(3):583–594, June 2013.

[44] C. Watkins and R. Walter. Transitioning from federated avionics
architectures to Integrated Modular Avionics. In Proceedings of 26th
Digital Avionics Systems Conference. DASC ’07, 2007.

[45] Q. Xiong et al. Real-time analysis for wormhole NoC: Revisited
and revised. In 2016 International Great Lakes Symposium on VLSI
(GLSVLSI), pages 75–80, May 2016.

[46] L. Yang et al. Task mapping on SMART NoC: Contention matters,
not the distance. In 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, June 2017.

[47] H. Yu et al. Communication-aware application mapping and scheduling
for NoC-based MPSoCs. In Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, pages 3232–3235, May 2010.

[48] C. Zimmer and F. Mueller. Low contention mapping of real-time tasks
onto TilePro 64 core processors. In 2012 IEEE 18th Real Time and
Embedded Technology and Applications Symposium, pages 131–140,
April 2012.

