
An Efficient Knapsack-Based Approach for Calculating the

Worst-Case Demand of AVR Tasks

Sandeep Kumar Bijinemula

Thesis submitted to the faculty of the Virginia Polytechnic Institute and

State University in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Thidapat Chantem, Chair

Ryan Gerdes

Guoqiang Yu

Dec. 6, 2018

Arlington, Virginia

Keywords: Adaptive variable rate task, demand bound function, worst-case demand,

knapsack problem

Copyright 2018, Sandeep Kumar Bijinemula

An Efficient Knapsack-Based Approach for Calculating the Worst-Case

Demand of AVR Tasks

Sandeep Kumar Bijinemula

(ABSTRACT)

Engine-triggered tasks are real-time tasks that are released when the crankshaft arrives at

certain positions in its path of rotation. This makes the rate of release of these jobs a

function of the crankshaft’s angular speed and acceleration. In addition, several properties

of the engine triggered tasks like the execution time and deadlines are dependent on the speed

profile of the crankshaft. Such tasks are referred to as adaptive-variable rate (AVR) tasks.

Existing methods to calculate the worst-case demand of AVR tasks are either inaccurate or

computationally intractable. We propose a method to efficiently calculate the worst-case

demand of AVR tasks by transforming the problem into a variant of the knapsack problem.

We then propose a framework to systematically narrow down the search space associated

with finding the worst-case demand of AVR tasks. Experimental results show that our

approach is at least 10 times faster, with an average runtime improvement of 146 times for

randomly generated task sets when compared to the state-of-the-art technique.

This research was supported in part by the US National Science Foundation (CNS Grant

No. 1618979)

This thesis is based on the paper by Bijinemula et al. [1]

An Efficient Knapsack-Based Approach for Calculating the Worst-Case

Demand of AVR Tasks

Sandeep Kumar Bijinemula

(GENERAL AUDIENCE ABSTRACT)

Real-time systems require temporal correctness along with accuracy. This notion of temporal

correctness is achieved by specifying deadlines to each of the tasks. In order to ensure that

all the deadlines are met, it is important to know the processor requirement, also known as

demand, of a task over a given interval. For some tasks, the demand is not constant, instead

it depends on several external factors. For such tasks, it becomes necessary to calculate the

worst-case demand.

Engine-triggered tasks are activated when the crankshaft in an engine is at certain points in

its path of rotation. This makes their activation rate dependent on the angular speed and

acceleration of the crankshaft. In addition, several properties of the engine triggered tasks

like the execution time and deadlines are dependent on the speed profile of the crankshaft.

Such tasks are referred to as adaptive-variable rate (AVR) tasks. Existing methods to

calculate the worst-case demand of AVR tasks are either inaccurate or computationally

intractable. We propose a method to efficiently calculate the worst-case demand of AVR

tasks by transforming the problem into a variant of the knapsack problem. We then propose

a framework to systematically narrow down the search space associated with finding the

worst-case demand of AVR tasks. Experimental results show that our approach is at least

10 times faster, with an average runtime improvement of 146 times for randomly generated

task sets when compared to the state-of-the-art technique.

Dedicated to my parents.

iv

Acknowledgements

First of all, I would like to thank Dr. Chantem for being an amazing advisor. It has been a

great pleasure to work with and learn from her. She ticks all the boxes for a perfect mentor.

She was always open to new ideas while being patient when I messed up. I’m fortunate to

have received 2 years of her mentorship.

I am grateful to Dr. Fisher for his invaluable suggestions and ideas. He played a crucial role

in shaping my research. I am also thankful to Aaron, my research collaborator, for his hard

work and dedication in completing our project.

I’d like to thank my committee members, Dr. Ryan Gerdes and Dr. Guoqiang Yu, for

their wise advice and insightful comments, which greatly helped me prepare for the RTSS

conference.

I’m blessed to have the greatest parents. They supported me in all my endeavors. If not for

them I’d not be the person I am today. Thank you, Mom and Dad for being who you are. I

dedicate this thesis to you. I’m thankful to my brother, Santhosh, for being my partner in

crime and for always being there for me.

Last but not least, I’d like to thank my girlfriend, Priya, for her unconditional support

through this journey. She has always encouraged me even when I’m in doubt. She has seen

me succeed, she has seen me fail but she never failed to support me. I’m lucky to have her

in my life.

v

Contents

1 Introduction 1

2 Related Work 4

3 Preliminaries 6

3.1 Task Model . 6

3.2 System Dynamics . 8

3.3 Minimum Job Inter-arrival Times . 9

3.4 EDF scheduling [2] . 10

3.5 AVR Task Demand [1] . 12

3.6 Problem Definition . 13

4 Knapsack-based approach for deriving the worst-case demand 14

5 Dominant Speed Sequence 20

6 Approximation Algorithms 24

6.1 LP-relaxation for BPCKP . 26

vi

7 Evaluation 27

8 Conclusions and Future Work 32

Bibliography 33

A Appendix 37

A.1 Table of Notation and Units . 37

A.2 Filtering the Sequences . 38

A.2.1 Finding the Dominant Sequences across Modes 39

A.2.2 Non-decreasing Speed Sequences . 42

A.2.3 Fastest way to reach the right boundary speed 43

A.2.4 Starting Speed of a Dominant Sequence 46

A.3 Summarizing the properties of dominant sequences 48

vii

List of Figures

1.1 Different modes of an AVR task where ci and ωrbi are the execution time and

the right boundary speed of the ith mode, respectively. 3

3.1 Different stages of fuel ignition in a vehicle. 7

3.2 Minimum interarrival time T̃ (ω, ω2) between speeds ω and ω2 where (a) ωp ≤

ωmax and (b) ωp > ωmax. Ascending, flat, and descending lines represent peri-

ods of maximum (αmax), zero, and minimum (αmin) acceleration, respectively. 11

4.1 Example items for our knapsack problem. A job that is higher in the prece-

dence relation is preceded by a job lower in the relation. 16

4.2 Precedence constraints among jobs are expressed using out-trees. Nodes repre-

sent WCETs for the initial speeds and arrows represent minimum inter-arrival

times. The tree demonstrates the various precedence relations and possible

paths. Leaves represent completion of the parent job without adding subse-

quent jobs (i.e. items). Furthermore, each of the leaves has zero execution

since its parent is the final job included in the knapsack. 17

7.1 Graph depicting the log of runtime of different algorithms as a function of the

number of modes of randomly generated AVR task sets. 30

viii

7.2 Demand and Percentage error plots of (a) taskset-1, (b) taskset-2 and (c-l)

Random tasksets . 31

A.1 In a mode, the area under the curve is maximum if jobs are released at the

right boundary speed, ωrbi . 39

A.2 Speeds obtained when maximum acceleration is used from the right boundary

speed of a mode. 39

A.3 (a) An example sequence in which the time left after the release of the last job

is less than the deadline of the next job. (b) An example sequence in which

the last job released at a right boundary speed is replaced by jobs released

when maximum acceleration is used from the right boundary speed. 41

A.4 Other possible sequences among which the dominant sequence is not apparent. 41

A.5 s1 takes the least amount of time to reach ωrbi from ω1 among the sequences

that do have a speed overshoot over ωrbi in the middle of a rotation. 44

A.6 s2 takes the least time to accelerate from ω1 to ωrbi in integer number of

rotations. 45

A.7 The demand does not decrease if all the speeds in the isolated sub-sequence

of the ith mode are replaced by ωrbi . 47

A.8 In a dominant sequence, the speed following a special speed (ωsp) is either the

right boundary speed (using α < αmax) of the current step or Ω(ωsp, αmax)

(using αmax). 47

A.9 Examples of non-decreasing speed sequences that can potentially be dominant

sequences. 49

A.10 Examples of sequences that cannot be dominant sequences. 49

ix

List of Tables

7.1 Task set used by existing work [3, 4] . 28

7.2 A more general task set. 28

7.3 Runtime comparison of different algorithms 29

x

Chapter 1

Introduction

In real-systems both the accuracy of the operation and the time instant at which the oper-

ation is executed are important. An example of such a system is the breaking system of a

car.

The timing constraints in real-time systems are enforced by assigning deadlines to each task.

While meeting deadlines is an important criteria for a system to be classified as a real-time

system, not all the deadlines are equally critical. For some real-time systems, missing a

deadline can cause failure of the system while for others it might be tolerable to miss a few

of the deadlines without any major degradation of the service. For example, the breaking

system of a car is considered as a hard real-time system as a delay in the breaking of a car

is catastrophic while missing a few deadlines in a video streaming application is acceptable.

In several real-time systems like the power-train control module (PCM) of cars, the processing

power is limited. Such systems require good strategies for efficient resource management.

One of the important factors to be considered for devising resource management strategies is

the workload characterization. Workload characterization especially in the worst-case gives

a measure of the maximum resource requirement of a task. This measure is essential when

designing resource distribution strategies in hard real-time systems. It is relatively easy to

1

Sandeep Kumar Bijinemula Chapter 1. Introduction 2

calculate the worst-case workload of tasks which spawn at fixed intervals of time. Such tasks

whose time period is constant are referred to as periodic tasks. PCM of a car manages some

tasks that are periodic and some other tasks like fuel injection and ignition that are event-

triggered and not time-triggered. Some of these event triggered tasks, referred to as the

engine-triggered tasks, are initiated when the car engine’s crankshaft is at certain positions

with respect to fixed points in its path of rotation. The rate of release of these tasks is

proportional to the speed of the crankshaft-as the crankshaft rotates faster, more of these

tasks are released.

Each instance of a task is called a job. If the execution time of the jobs is assumed to be the

same at all speeds, the worst-case resource requirement, also referred to as the maximum

demand, of these tasks can be obtained when the crankshaft rotates at its highest speed.

However, the crankshaft is rarely operated at the highest speed, scheduling tasks assuming

this as the worst-case demand will lead to underutilization of the resources. Moreover, the

engine is stable at high crankshaft speeds due to frequent sensor and actuation updates [5].

Hence, jobs that are released at high speeds can skip certain checks and functions. Reflecting

this, a model called the AVR task model was proposed to describe the engine controlled

tasks [5]. An AVR task is characterized by a set of execution modes, where each mode

is defined over a range of speeds with each mode expressing a different functionality. An

example AVR task is shown in Fig. 1.1. Further, several properties like inter-arrival times

and deadlines of the jobs are also dependent on the crankshaft’s speed profile.

To determine whether an AVR task is schedulable using EDF, the demand bound function

(dbf) is often used [6, 7] to measure the resource requirement over a given time interval. In

a nutshell, dbf determines the worst-case aggregate execution time of the jobs that have

both the arrivals and deadlines within a time interval [t1, t2]. In general, the calculation of

the worst-case demand of an AVR task is not straightforward. Let us consider an example.

In a time interval [t1, t2], assume 15 jobs are released at the highest allowable speed with

each job having an execution time of 50µs. On the other hand, during the same duration,

assume 10 job releases are possible at the lowest speed with each job having an execution

Sandeep Kumar Bijinemula Chapter 1. Introduction 3

𝝎𝒓𝒃𝟏 𝝎𝒓𝒃𝟐 𝝎𝒓𝒃𝟑 𝝎𝒓𝒃𝟒 𝝎𝒓𝒃𝟓

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝟒

𝒄𝟓

𝒄𝒎

Speeds

Ex
e

cu
ti

o
n

 T
im

e
s

o
f

th
e

 M
o

d
e

s

𝝎𝒓𝒃𝒎𝝎𝒓𝒃𝟎

Figure 1.1: Different modes of an AVR task where ci and ωrbi are the execution time and

the right boundary speed of the ith mode, respectively.

time of 100µs. The demand when the jobs are released at the lowest speed (1,000µs) is

greater than when the jobs are released at the highest speed (750µs). Suppose instead that

the jobs that are released at the highest speed have an execution time of 70µs. In this case,

the demand of these jobs is greater than the demand of the jobs that are released at the

lowest speed. Hence, the demand depends on the relationship between the task’s execution

times and speeds, as well as the acceleration profiles of the engine.

Several methods have been proposed to calculate the dbf of an AVR task. Mohaqeqi et al. [4]

proposed an exact analysis, using the Digraph model [8], to transform an AVR task into a

digraph to calculate the exact worst-case demand assuming that the crankshaft can have

multiple acceleration values during a rotation. While this approach represents the state-of-

the-art technique, it is computationally intensive and unlikely to be suitable for large problem

instances. In this thesis, we propose a knapsack-based method to efficiently calculate the

exact worst-case demand of an AVR task.

Chapter 2

Related Work

Buttle [5] in his keynote at ECRTS 2012 conference, was the first to identify the problem

of analysis of rate dependent tasks in the ECUs of vehicles. Kim et al. [9] then studied

the usage of multiple worst-case execution times and periods for engine-controlled tasks.

They proposed the rhythmic task model and obtained basic schedulability results. How-

ever, their analysis is limited to a single AVR task scheduled along with periodic tasks using

fixed-priority scheduling in which the AVR task has the highest priority. Pollex et al. [10],

perform sufficient real-time analysis on rate dependent tasks assuming arbitrary but a con-

stant angular speed. In a later work, Pollex et al. [11] expand their analysis by assuming

a non-zero acceleration, hence allowing speed variations and mode changes and present suf-

ficient schedulability tests. However, they quantize the speed domain. Since speed is a

continuous variable, quantization of the speed domain introduces pessimism in the analysis.

David et al. [12] present several sufficient schedulability tests for rate-dependent tasks. Guo

and Baruah [13] proposed a sufficient schedulability test for EDF scheduling. Evaluations

show that employing these simple tests provides a better performance than treating AVR

tasks as sporadic tasks [14].

Biondi et al. [3] presented the calculation of the processor requirement of AVR tasks in

fixed priority scheduling as a search problem in the speed domain. They transformed the

4

Sandeep Kumar Bijinemula Chapter 2. Related Work 5

problem into a search tree, where the nodes at each level of the tree are obtained based

on the acceleration and speed limits of the crankshaft. The infinite paths from the root to

the leaves in the search tree were narrowed down by employing certain criteria. A similar

method of filtering through the infinite state space was applied and exact schedulability tests

were dervied for rate monotonic [6] and EDF scheduling [7]. These works make a simplying

assumption that the acceleration of a crankshaft remains constant through a rotation.

In a recent paper, Biondi et al. [15] propose a task model to express some realistic fea-

tures of AVR tasks and present linear-time and quadratic-time schedulability tests based on

utilization bounds.

In a different line of research, Biondi et al. [16] propose methods to calculate the speed of the

crankshaft at each point in its point of rotation. In yet another direction of research, Biondi

et al. [17] present optimization techniques to model the switching states of AVR tasks.

Mohaqeqi et al. [4] partitioned the speed ranges into sub-ranges and represented each of

these sub-ranges as a node of a directed graph. The worst-case demand was then calculated

by employing a search from each of these nodes. Mohaqeqi et al. [4] were also the first

to relax the assumption of constant acceleration within a rotation. Though their approach

gives the accurate value of the worst-case demand, many of the paths that are considered in

the digraph are redundant and add unnecessary overhead to the calculation of the demand.

In this thesis, we present a method to eliminate all the unnecessary paths and compute the

worst-case demand significantly faster.

Chapter 3

Preliminaries

In this chapter, we introduce the task model and provide some background on the physical

properties of the crankshaft. We then formally define the problem.

3.1 Task Model

The PCM of an automotive engine performs certain tasks at each of the stages of the rotation

of a crankshaft as shown in Fig. 3.1. For the optimal performance of the engine, these tasks

should occur at precise angles with respect to the top dead center position of the engine.

Further, as the rate of arrival of the crankshaft at a given angle varies with the speed

of the engine, the rate of release of the above tasks is not fixed, instead it depends on

the speed profile of the crankshaft. At high speeds, a large number of instances of these

tasks are released and the PCM could be overloaded which can lead to several deadline

misses. In order to schedule using Earliest deadline first (EDF scheduling), it is necessary

to calculate the worst-case resource requirement of these tasks over time. For these tasks,

the worst-case demand can be obtained by assuming that the crankshaft rotates at the

maximum speed always. While this may give the accurate value, it is not practical to

6

Sandeep Kumar Bijinemula Chapter 3. Preliminaries 7

Figure 3.1: Different stages of fuel ignition in a vehicle.

assume that the crankshaft rotates at the maximum speed always. This assumption results

in the underutilization of resources. In order to tackle this problem, the execution time of

these tasks is made a function of the speed of the crankshaft. Taking into account the fact

that the engine is stable at higher speeds [5], the functionality of these tasks and hence their

execution time is reduced as the speed increases as shown in Fig. 1.1. Since their execution

time varies with the speed, they are referred to as Adaptive Variable Rate (AVR) tasks.

The state space is divided into modes where the range of speeds having the same execution

time belong to a mode. The border speeds of the modes are called the boundary speeds

of the mode. The speeds where the crankshaft switches modes are referred to as the right

boundary speeds of the modes and they are collectively defined as Ωrb = {ωrb1 , . . . , ωrbm},

∀ω ∈ (ωrbi−1
, ωrbi], speed ω is in the ith mode. The execution time of the ith mode is

represented by ci. Additionally, the execution time corresponding to a speed ω, is denoted

by c(ω).

The minimum (ωmin) and maximum (ωmax) allowable speeds of rotation of the crankshaft are

equal to ωrb0 and ωrbm respectively. The maximum allowable acceleration and deceleration

are denoted by αmax and αmin, respectively. In this thesis, we make a simplifying assumption,

αmax = |αmin|. For consistency we assume speed (ω) to be in rev/min and acceleration (α)

to be in rev/min2. A table of notations used in the thesis can be found in Appendix A.1.

Sandeep Kumar Bijinemula Chapter 3. Preliminaries 8

We assume that a single instance of an AVR task, i.e a single job, is released in a rotation.

Further, without the loss of generality, the jobs are assumed to be released at the top dead

center position. So, the speed at the top dead center position determines the execution time

of the job.

3.2 System Dynamics

In this section, we review some basic kinematics formulae.

The angular distance traversed by the crankshaft when the initial speed is ω and a constant

angular acceleration of α is applied for a time t, ∆θ is [18],

∆θ = ωt+
1

2
αt2 (3.1)

The total angular distance covered by the crankshaft over a time interval [t1, t2] can also be

calculated as [18],

∆θ =

∫ t2

t1

ω(t)dt. (3.2)

This implies that the angular distance, ∆θ, is equal to the area under the ω vs. time curve.

Since a single job is assumed to be released for every rotation, the number of jobs released

increases for every 2π radian (= 1 rotation) covered by the crankshaft.

The speed after an angular displacement of ∆θ when the initial speed is ω and a constant

angular acceleration of α is applied is [18],

Ω(ω, α,∆θ) =
√
ω2 + 2α∆θ. (3.3)

Since speed (ω) is in rev/min and acceleration (α) is in rev/min2, angular displacement

is measured in number of rotations. So, ∆θ = 1 indicates a complete rotation. Hence,

from Equation 3.3, the speed after one complete rotation when an initial speed of ω, and a

Sandeep Kumar Bijinemula Chapter 3. Preliminaries 9

constant acceleration of α is assumed is, Ω1(ω, α) =
√
ω2 + 2α. In general, the speed after n

complete rotations of constant acceleration of α is [4],

Ωn(ω, α) =
√
ω2 + 2nα. (3.4)

Multiple AVR tasks that have the same phase and period and which are activated by the

same source can be modeled as a single AVR task, called the representative AVR task [6].

Hence, the analysis in this thesis can also be extended to multiple AVR tasks.

Definition 1 (Reachable Speeds). Consider two speeds ω1 and ω2 such that ω2 ≥ ω1. ω2 is

said to be reachable from ω1 if Ω1(ω1, αmax) ≥ ω2. In other words, ω2 is said to be reachable

from ω1 if it is possible to accelerate from ω1 to ω2 in a single rotation while obeying the

acceleration bounds.

3.3 Minimum Job Inter-arrival Times

Consider two speeds ω1 and ω2 such that ω2 ≥ ω1 and ω2 is reachable from ω1. The minimum

inter-arrival time (T̃ (ω1, ω2)) is the shortest time it takes for the crankshaft to initiate the

release of a job at ω1 and the next job at ω2. Since the speed at the end of the current rotation

is the initial speed of the next rotation, mininum inter-arrival time can also be defined as

the minimum time duration from the start of a rotation at ω1 till the end of the rotation at

ω2. Most existing work [3, 6, 7] assume a constant acceleration within a rotation. However

Mohaqeqi et al. [4] prove that assuming a constant acceleration does not always give the

minimum inter-arrival time. So, we consider the possibility of acceleration variations within

a single rotation.

We present the minimum inter-arrival time equations by Mohaqeqi et al. [4] below for read-

ability. Minimum inter-arrival time is obtained by first accelerating from ω1 to a speed

ωp(ω1, ω2), or simply ωp, using αmax and then using αmin to decelerate from ωp to ω2. The

Sandeep Kumar Bijinemula Chapter 3. Preliminaries 10

value of ωp is given by,

ωp(ω1, ω2) = ωp =

√
αmax · ω2

2 − αmin · ω2
1 − 2αmin · αmax

αmax − αmin
(3.5)

If ωp(ω1, ω2) ≤ ωmax,

T̃ (ω1, ω2) =
ωp − ω1

αmax
+
ω2 − ωp
αmin

If ωp > ωmax, then minimum time is obtained by using αmax from ω1 till ωmax is reached for

a time duration of (t∗1). Then the acceleration is made zero for some time (t∗2). Finally, αmin

is used from ωmax till ω2 for a duration of (t∗3).

t∗1 = (ωmax − ω1)/αmax

t∗2 =
1

ωmax

(
1− ω2

max − ω2
1

2αmax
− ω2

2 − ω2
max

2αmin

)
t∗3 = (ω2 − ωmax)/αmin

T̃ (ω1, ω2) = t∗1 + t∗2 + t∗3

The two cases are defined below and Figure 3.2,

T̃ (ω1, ω2) =


ωp−ω1

αmax
+ ω2−ωp

αmin
ωp(ω1, ω2) ≤ ωmax

t∗1 + t∗2 + t∗3 ωp(ω1, ω2) > ωmax

(3.6)

Note that the value of Equation 3.6 is not altered when ω1 and ω2 are interchanged.

3.4 EDF scheduling [2]

We first briefly describe the relatively simple case of calculating demand of a periodic task

scheduled by EDF scheduling. Consider a system with only periodic tasks, τi. Each of these

Sandeep Kumar Bijinemula Chapter 3. Preliminaries 11

(a) T̃ (ω, ω2) |ωp ≤ ωmax (b) T̃ (ω, ω2) |ωp > ωmax

Figure 3.2: Minimum interarrival time T̃ (ω, ω2) between speeds ω and ω2 where (a) ωp ≤ ωmax

and (b) ωp > ωmax. Ascending, flat, and descending lines represent periods of maximum

(αmax), zero, and minimum (αmin) acceleration, respectively.

tasks has a time period (Ti), an absolute deadline (D̃i) and an execution time (Ci). Each

job of a task has a release time (Rij), and a relative deadline (d̃ij). EDF scheduling is a

dynamic priority scheduling policy where the job with the earliest absolute deadline is given

the highest priority.

The processor time demanded by all the jobs of a task that are released on or after ta and

end on or before tb is called the demand of a task in a time interval [ta, tb]. Formally, the

demand can be mathematically expressed as,

Dτi(ta, tb) =
∑

j:(Rij≥ta)∧(Rij+d̃ij≤tb)

ci (3.7)

According to the processor demand criterion [19], if the demand of all the tasks in a uni-

processor environment does not exceed the available time, then the task is schedulable under

EDF scheduling. Mathematically a taskset is schedulable if,∑
i

Dτi ≤ tb − ta (3.8)

To measure the schedulability of AVR tasks under EDF scheduling, we need to calculate

Sandeep Kumar Bijinemula Chapter 3. Preliminaries 12

their demand. Since the demand of AVR tasks might change depending on the speed profile

of the crankshaft, we need to calculate the worst-case demand of AVR tasks to ensure

schedulability in all the scenarios. In the following sections of this chapter, we present a

mathematical formula for the worst-case demand of AVR tasks and also formally define the

problem.

3.5 AVR Task Demand [1]

Let ω(t) denote the speed at time t and W represent the set of all feasible speed functions

(i.e., ω(t) is any continuous function following the physical constraints of the crankshaft).

For any job released at time t′, we assume that the relative deadline is given by d̃(ω) =

T̃ (ω(t′),min(Ω1(ω(t′), αmax), ωmax)) and the absolute deadline is t′ + T̃ (ω(t′),min(Ω1(ω(t′),

αmax), ωmax)). That is, any job must be completed before the first possible release of the

next job. AVR tasks that set deadlines this way are referred to as minimum angular

deadline AVR task [15]. Assuming that consecutive jobs are released at times {t1, t2, . . .},

Equation 3.7 can be modified for AVR tasks as,

Dω(t)(ta, tb) =
∑

i:(ti≥ta)∧(ti+d̃(ω(ti))≤tb)

c(ω(ti)). (3.9)

The upper envelope on the demand over any interval of length δ > 0 for ω(t) is given by,

dbfω(t)(δ) = max
t′≥0
{Dω(t)(t

′, t′ + δ)}. (3.10)

The worst-case demand of an AVR task over any δ-length interval can be obtained by

choosing the speed schedule that maximizes the upper envelope in Equation 3.10:

dbf(δ) = max
ω(t)∈W

{dbfω(t)(δ)}. (3.11)

If any speed function ω(t) with job releases at speeds/times ω(t1), ω(t2), . . . is modified so

that the crankshaft completes a rotation in the minimum time given by Equation 3.6, the

Sandeep Kumar Bijinemula Chapter 3. Preliminaries 13

resulting demand will be at least as much as the original. So, the problem of finding the

function ω(t) that gives the worst-case demand can be reduced to identifying the sequence

of job release speeds that gives the worst-case demand.

The objective of this thesis can be reiterated as finding the sequence of job release speeds

that give the worst-case AVR task demand (dbf) defined in Equation 3.11.

Definition 2 (Valid Sequence [1]). A sequence of jobs released at speeds ω1, ω2, . . . , ωk is

said to be valid if ∀i ∈ {1, 2,k}, ωi is reachable from ωi−1.

3.6 Problem Definition

Given a minimum angular deadline AVR task triggered by a crankshaft with feasbile speed

[ωmin, ωmax] and acceleration [αmin, αmax] ranges, such that αmax = |αmin| and is characterized

by a set of modes bounded by Ωrb = {ωrb1 , . . . , ωmax} and their corresponding execution

times c(ωrbi), i = 1, . . . ,m, the objective of this thesis is to present efficient methods to

calculate its worst-case demand (dbf(δ) (Equation 3.11)) while assuming that the acceleration

of the crankshaft can change within a single rotation.

Chapter 4

Knapsack-based approach for deriving

the worst-case demand

In this chapter, we describe the problem transformation from calculating dbf(δ) to a variant

of the knapsack problem. This chapter both provides context for and relies upon several

properties and lemmas defined in the next chapter (Chapter 5). Briefly, dominant speed

sequences are sequences of job release speeds whose demand is equivalent to the maximum

demand of a task over a given interval length (i.e., the demand of a dominant speed se-

quence coincides with the value of Equation 3.11. These dominant speed sequences are

non-decreasing (see Lemma 1, Chapter 5) and start at right boundary speeds (see Lemma 2,

Chapter 5).

We start off with the traditional knapsack problem. Consider a set of items each having a

weight (wi) and a profit (pi) associated with it. Further, assume that there is a container

(or a knapsack) of a fixed size Wc. The aim is to fill the knapsack with the items such that

the profit is maximized. As the size of the knapsack is finite, the number of items that can

fit is limited and it is clear that to obtain the maximum profit inclusion of an item in the

knapsack might lead to the removal of another. So, an optimal allocation of items is required

to maximize the profit. As such, it is a combinatorial optimization problem. Mathematically

14

Sandeep Kumar Bijinemula Chapter 4. Knapsack-based approach 15

it can be expressed as,

maximize
∑
i

pi (4.1)

s.t.
∑
i

wi ≤ Wc (4.2)

In a knapsack problem, called the bounded knapsack problem, it is possible to have multiple

copies of an item i. Assuming that item i has bi identical copies of itself, the optimization

problem can be restated as,

maximize
∑
i

bi · pi (4.3)

s.t.
∑
i

bi · wi ≤ Wc (4.4)

In yet another variant of the knapsack problem, an item might require the inclusion of

another item in the knapsack. That is, for an item to be inserted in the knapsack there can

be another item or a series of other items that need to be put in the knapsack. This variant

of the knapsack problem is called the precedence constraint knapsack problem.

We now transform the problem of finding dbf(δ) into a variant of the knapsack problem that

is a combination of the bounded and precedence constraint knapsack problems. We consider

a job as an item. Since we assume that a single job is released in a rotation, an item can

also be considered to be equivalent to a rotation. The minimum inter-arrival time of a job

is the weight of the item and the job’s execution time is the profit. Further, the length of

the time-interval is considered as the size of the knapsack. So, the goal is to maximize the

demand (profit) over a time-interval (δ).

Since each speed in a dominant sequence should be reachable from its preceding speed, the

number of jobs that can follow a given job is a finite set. So, our problem is a bounded

precedence constraint knapsack problem (BPCKP) [20, 21]. Our problem is represented by

Sandeep Kumar Bijinemula Chapter 4. Knapsack-based approach 16

→ →→ → →

Figure 4.1: Example items for our knapsack problem. A job that is higher in the precedence

relation is preceded by a job lower in the relation.

a visual representation in Fig. 4.1. Precedence constraints are represented by the use of

subscripts.

An effective way to model the precedence constraints among jobs is by using out-trees. The

sequences beginning at each of the root nodes are independent of each other (i.e., sequences

beginning at each of the right boundary speeds according to Lemma 2). An example is shown

in Fig. 4.2. Each vertex in the tree (GI = (VI , AI)) corresponds to a job in a dominant

sequence. An edge (represented by (j, k) ∈ AI) is drawn from a job j to the next job k in a

dominant sequence and its value denotes the inter-arrival time. A path from the root to the

Sandeep Kumar Bijinemula Chapter 4. Knapsack-based approach 17

Figure 4.2: Precedence constraints among jobs are expressed using out-trees. Nodes repre-

sent WCETs for the initial speeds and arrows represent minimum inter-arrival times. The

tree demonstrates the various precedence relations and possible paths. Leaves represent com-

pletion of the parent job without adding subsequent jobs (i.e. items). Furthermore, each of

the leaves has zero execution since its parent is the final job included in the knapsack.

Sandeep Kumar Bijinemula Chapter 4. Knapsack-based approach 18

leaf constitutes a dominant sequence. Our BPCKP can be formally defined as follows:

maximize
x

∑
j

Mδ∑
r=1

c(ωj) · xrj (4.5)

subject to
∑

j,k|(j,k)∈AI

Mδ∑
r=1

T̃ (wj, wk) · xrj ≤ δ (4.6)

∑
k|(j,k)∈AI

x1
k ≤ 1, ∀j (4.7)

x1
j ≥ x1

k, ∀(j, k) ∈ AI (4.8)

xrj ≥ xr+1
j , ∀j, r ∈ {1, 2, 3, ...,Mδ − 1} (4.9)

xrj ∈ {0, 1}, ∀j, r ∈ {1, 2, 3, ...,Mδ} (4.10)

where Mδ represents an upper bound on the number of jobs released in a time-interval of

length δ and the binary variable xrj is 1 if at least r jobs are included at speed ωj in the

knapsack; else, xrj is 0 (Equations 4.9 and 4.10). Equation 4.5 gives the worst-case AVR

task demand defined in Equation 3.11. Equation 4.6 restricts the selection of only those jobs

whose deadlines fall within the δ-length interval. Equation 4.7 ensures that only a single

child of a parent node is added to the knapsack i.e. it ensures that a single path from the

root node to the tail is selected. Equation 4.8 enforces the precedence constraint that a child

node be added only if its parent is present.

Algorithm 1 shows our pseudocode for the dynamic programming approach to solve the

bounded precedence constraint knapsack problem. The CalculateDemand function is initially

called with the parameters ω ∈ Ωrb and δ, the total time length. The maxDemand parameter

keeps track of the highest demand computed until the current instance of the recursive loop.

In each recursive instance, the next speed is chosen from the list of possible next job release

speeds according to Theorem 1 (Chapter 5). The variable Dw (Equation 3.9) tracks the

accumulated demand of the current sequence.

Sandeep Kumar Bijinemula Chapter 4. Knapsack-based approach 19

Algorithm 1 DP for Calculating dbf(δ)

1: function CalculateDemand(ω,δ):

2: maxDemand ← 0

3:

4: if StoredDemand(ω, t) 6= φ then

5: return StoredDemand(ω,δ)

6:

7: if δ < d̃(ω) then

8: return 0

9:

10: for ω′ in nextPossibleSpeed(ω) do . See Theorem 1

11: δ ← δ − T̃ (ω, ω′)

12: Dw ← c(ω)+ CalculateDemand(ω′,δ)

13:

14: if Dw > maxDemand then

15: maxDemand ← Dw

16:

17: StoredDemand(ω,δ) ← maxDemand

18: return maxDemand

Chapter 5

Dominant Speed Sequence

The previous section outlined how the problem of calculating the dbf(δ) can be transformed

to BPCKP using dominant speed sequences. This section defines them and presents the

Lemmas 1,2 and 3 used in the transformation to BPCKP.

Variation of execution time with angular speed is one of the main challenges in determining

the worst-case demand of an AVR task. It was shown in previous work, e.g., Mohaqeqi et

al. [4] that speed sequences from a finite set of speeds are enough to maximize the demand.

These methods however, still consider a large number of speed permutations. We propose a

method that greatly reduces the number of permutations.

In this chapter, we restate some of the lemmas from [1]. To describe them, we present some

definitions. A sequence whose demand is equal to the maximum demand of an AVR task

over a given interval is defined as a dominant speed sequence. A set of speed sequences that

contain a dominant speed sequence is defined as a dominant sequence set.

Lemma 1 (Dominant Non-Decreasing Speed Sequences [1]). Given a valid, dominant speed

sequence S over interval [ta, tb], the sequence SA, obtained from reordering the speeds of S in

a non-decreasing order, is valid and has equivalent demand.

20

Sandeep Kumar Bijinemula Chapter 5. Dominant Speed Sequence 21

Proof. Refer to the Appendix for intuition. Please refer to [1] for a formal proof.

Lemma 2 (Starting Speeds of a Dominant Sequence). For any non-decreasing dominant

sequence Sorig the sequence obtained by replacing the first k jobs in the ith mode with jobs

released at the right boundary speed of mode i, i.e., ωrbi, does not decrease the demand of the

sequence.

Proof. Please refer to the Appendix for intuition. Refer to [1] for a formal proof.

It is worth noting that the above lemma eliminates all the speeds from the first step except

the first right boundary speed from being a part of the dominant speed sequence.

Lemma 3 (Speeds Between Right Boundary Speeds in a Dominant Sequence). Consider a

non-decreasing dominant speed sequence, S, such that job, Ja, released at ωa is the last job

in the i− 1th mode (i > 1) and job, Jc, is the first job in the i + 1th mode. The jobs in the

ith mode, Jb (a < b < c), should be released at speeds, ωb, such that ∀ b ∈ (a, c),

ωb = min(ωrbi ,Ω1(ωb−1, αmax)) (5.1)

Proof. Please refer to the Appendix for an intuition. Refer to [1] for a formal proof.

Lemma 1 eliminates all the decreasing speed sequences. Lemma 2 states that a dominant

speed sequence starts at a right boundary speed. Lemma 3 gives the speeds that a dominant

speed sequence can contain. Now we show what the actual dominant sequence set is.

Let Ψ be a non-decreasing ordered set of speeds called the dominant speed set formally

defined as follows:

Ψ =
{

Ωn(ωrbi , αmax)|(n ∈ Z+) ∧ (ωrbi ∈ Ωrb)
}
. (5.2)

where, Z+ is the set of positive integers including 0.

Let nextPossibleSpeed(ωk) be a function that returns the set of speeds that can be chosen

for the next job given the current speed, ωk(∈ Ψ). Let nextPossibleSpeed(ω0) denote that

Sandeep Kumar Bijinemula Chapter 5. Dominant Speed Sequence 22

we are choosing the first speed in the dominant sequence. Since Lemma 2 states that a

dominant sequence starts from a right boundary speed, nextPossibleSpeed(ω0) returns the

right boundary speeds. For any ωk, k > 0, according to Equation 5.1, nextPossibleSpeed(ωk)

indicates that the crankshaft should maximally accelerate to the next speed. In addition, if ωk

is a right boundary, it should also return ωk and the next reachable speed, ωl (< Ω(ωk, αmax)),

if ωl ∈ Ψ. Formally,

nextPossibleSpeed(ωk) = Ωrb if k = 0

{Ω1(ω, αmax)} ∪ {ωrbi ∈ Ωrb(ωk)} if k > 0

(5.3)

where, Ωrb(ωk) denotes the set of reachable right boundary speeds from ωk.

Let S(δ) be a set of speed sequences defined as follows:


(ω1, . . . , ω|S|) ∈ 2Ψ |(
∀k ∈ N|S|−1

0 , ωk+1 ∈ nextPossibleSpeed(ωk)
)

∧
(∑|S|−1

`=1 T̃ (ω`, ω`+1) + Ω1(ω|S|, αmax) ≤ δ
)
 (5.4)

Theorem 1. The set S(δ) must contain a dominant speed sequence for any interval of length

δ > 0.

Proof. The correctness of the theorem lies in proving that nextPossibleSpeed(ωk) always

returns a dominant sequence. By Lemma 1 only non-decreasing sequences are considered.

In Equation 5.3, k ≥ 0. According to Lemma 2, the first speed of a dominant sequence must

be a right boundary speed, this proves Equation 5.3 when k = 0. We need to prove it when

k > 0.

When k > 0, there are several possibilities for the kth speed:

Case 1 (kth job is the first job in mode i > 1): In this case, (k − 1)th speed may or

may not be a right boundary speed. Applying Equation 5.1, kth speed will be replaced

Sandeep Kumar Bijinemula Chapter 5. Dominant Speed Sequence 23

by min(Ω1(ωk−1, αmax), ωrbi), proving Equation 5.3 for Case 1.

Case 2 (kth speed is the right boundary speed of mode i): Equation 5.1, when applied for ωk

will guide us to replace ωk by ωk itself because we assumed ωk = ωrbi , proving Case 2.

Case 3 (kth speed is an intermediate speed in the middle of mode i): This case follows on

the application of Equation 5.1.

In addition, only jobs that are released and whose deadlines fall within an interval of length

δ can be part of the dominant sequence. This can be verified by examining the definition of

the demand bound function dbf(δ) in Equation 3.11.

Together, Lemmas 1, 2, and 3 allow for elimination of unnecessary sequences from the

dynamic programming search while Theorem 1 ensures the sequences produced by Algorithm

1 are dominant speed sequences whose demand coincide with Equation 3.11.

Chapter 6

Approximation Algorithms

The current AVR task model, which has only two dimensions, can be extended to multiple

dimensions by considering the effect of physical properties like temperature and pressure

on the speed and execution time. Another direction of extending the work is to relax the

assumption of symmetric accelerations (αmax == |αmin|) and achieving an improvement

in runtime over the state-of-the-art, the DRT approach. Each modification to the current

problem increases its complexity. To handle this complexity and obtain a pessimistic solution

in a shorter time (milliseconds or less), we present an approximation algorithm. It can be

used as a first line of check before using the exact algorithms.

The traditional knapsack problem is a well studied problem and several approximation al-

gorithms have been proposed over the years to calculate sub-optimal solutions. Since our

problem is a variant of the traditional knapsack problem, some of the approximation algo-

rithms applicable to the traditional knapsack can be applied to our BPCKP. In this chapter,

we will describe Linear Programming Relaxation approximation of our BPCKP.

First, we’ll describe approximation algorithms in the context of the traditional knapsack

problem and then extend it to our BPCKP. The approximation algorithms for the traditional

knapsack problem are present in the book [22]. Here we briefly describe them for readability.

24

Sandeep Kumar Bijinemula Chapter 6. Approximation Algorithms 25

Consider a set of items, bj ∈ B. Assume that an item bj has a profit pj and a weight wj.

Efficiency of an item is defined as the amount of profit per unit weight of the item, i.e.

pj
wj

. For ease of explanation, we assume that the items {b1, b2, . . . , bn} are arranged in the

decreasing order of efficiency for the rest of the chapter. Now, we will describe one of the

basic approximation algorithms for a Knapsack, called the Greedy-1 algorithm.

Greedy-1:

Add the items to the knapsack in the decreasing order of efficiency. When an item that

does not fit in the Knapsack is encountered, move on to the next item until all the items are

considered. Let us call this solution G1.

There is a variant of this algorithm called the Greedy-2 approximation algorithm.

Greedy-2:

Greedy-2 is mostly the same as Greedy-1, except that the process of adding items into the

knapsack is stopped the first time an item that cannot fit in the knapsack is encountered.

Let the solution be represented by G2. Let us assume that the first s− 1 elements can fit in

the knapsack. So, the solution can be represented as,

G2 =
s−1∑
j=1

pj (6.1)

Now, we describe the linear programming approximation of the knapsack problem which is

derived from Greedy-2 algorithm.

Linear Programming Relaxation (LP-relaxation):

In LP-relaxation, the procedure is same as Greedy-2 in that the items are added in the

decreasing order of the efficiency but when the first item that does not fit in the knapsack

is encountered, the fraction of the item that fits in the knapsack is added, i.e., a fraction of

the sth element is added to the knapsack. So, the solution of LP-approximnation, zLP can

be represented as,

Sandeep Kumar Bijinemula Chapter 6. Approximation Algorithms 26

zLP =
s−1∑
j=1

pj +

(
c−

s−1∑
j=1

wj

)
· ps
ws

(6.2)

where, c is the capacity of the knapsack.

It can be shown that zLP gives a 2-factor approximation to the traditional knapsack problem,

i.e., 2z∗ ≥ zLP , where z∗ is the exact solution of the traditional knapsack problem.

6.1 LP-relaxation for BPCKP

Now, we describe the application of LP-relaxation on our BPCKP. The first step is to arrange

the items in the increasing order of efficiency. Since, we know that in each mode, the speed of

the crankshaft is the highest at the right boundary speeds, the inter-arrival time, which is the

weight of the item, is the least for the right boundary speeds. So, in a mode, the efficiency is

the highest for the items released at the right boundary speeds. Since multiple jobs can be

released at the right boundary speeds, intuitively, the LP-relaxation of our BPCKP consists

of only the items released at the right boundary speed which has the highest efficiency.

From Lemma 3, there are two choices of next jobs from a right boundary speed - release the

next job at the right boundary speed (say item-1) or use maximum acceleration through the

rotation and release the next job in the next mode (say item-2). Among the two item types

possible, item-2 has a higher efficiency because, it has a smaller inter-arrival time. So it has

to be the first item in the knapsack. If precedence constraints are to be followed, items of

the next mode, which have a smaller efficiency than item-1 have to be filled in the knapsack.

However, the LP-relaxation is only a bound, precedence constraints need not be followed.

So, after item-2 is added to the knapsack, the knapsack is filled with copies of item-1 and

the last item when the capacity exceeds is replaced by a fraction of item-1.

Chapter 7

Evaluation

In this section, we compare our algorithm with the state-of-the-art for solving the problem

at hand, the DRT algorithm proposed by Mohaqeqi et al. [4]. As explained in the related

work chapter, Mohaqeqi et al. partition each of the modes into several sub-ranges each

defined as a node in the Digraph and employ a search for the sequence with the highest

demand starting at each of these nodes. Our approach explores a subset of speeds considered

by Mohaqeqi et al. [4], and so we inherit the same upper bound on number of speeds:

O
(
m · ω

2
max−ω2

min

2·αmax

)
. Note that computing these speeds takes a negligible amount of time (less

than 1%) when compared to exploring through all the permutation of these speeds. Even

though our algorithm shares similar time complexity with the DRT algorithm with respect

to computing these speeds, our algorithm significantly reduces the search space resulting

in a much faster computation of the worst-case demand. Since the final search space in

our algorithm is a BPCKP, the search complexity is the same as any bounded precedence

constraint knapsack problem. We compare the accuracy and runtime of the algorithms

using two experiments. For all experiments, a maximum acceleration of 600,000 rev/min2

and maximum deceleration of -600,000 rev/min2 were assumed as in previous work [4,6,7,12].

In each experiment, the worst-case demand is calculated for 100 time intervals in [0, 1s] in

steps of 10 ms. The experiments were performed using Python 3.6.5 on a 3.40 GHz, quad-core

27

Sandeep Kumar Bijinemula Chapter 7. Evaluation 28

Table 7.1: Task set used by existing work [3, 4]

ith mode 1 2 3 4 5 6 ωrbm

ωrbi 500 1500 2500 3500 4500 5500
6500

c(ωrbi) 965 576 424 343 277 246

Table 7.2: A more general task set.

ith mode 1 2 3 4 5 6 ωrbm

ωrbi 1200 2200 3200 4200 5200 6200
7200

c(ωrbi) 965 576 424 343 277 246

processor with 8 GB of RAM. While the results are platform dependent, the general trend

showing the relative performance of the proposed approach against the DRT algorithm should

be representative. Each experiment is run 10 times and the average values are reported. The

code and the original data used for this publication can be found on the artifact evaluation

page [23].

In the first experiment, two task sets were used. The first task set appeared in existing

publications [3,4] (Table 7.1). Note that this task set is not ideal, as some boundary speeds

can be reached from the others in an integer number of rotations using maximum accelera-

tion, which reduces the number of speed partitions simplifying the search for the worst-case

demand. The results are shown in Table 7.3(a). Though both approaches were able to find

the worst-case demand, our algorithm is 13.5 times faster.

Since the first task set is not ideal, as described earlier, we created another task set (Table

7.2) to better illustrate the improvement achieved by our algorithm. This task set is more

general in the sense that the right boundary speeds are not reachable from one another in

integer number of rotations when using αmax. Since the number of dominant speeds for this

taskset are higher, we expect that the algorithms will require longer running times to find

Sandeep Kumar Bijinemula Chapter 7. Evaluation 29

Table 7.3: Runtime comparison of different algorithms

Demand (in µs) over [0,1s] Runtime

DRT Alg. 26,568 3 min. 31 sec.

Our Alg. 26,568 15.63 sec.

(a) An existing task set

Demand (in µs) over [0,1s] Runtime

DRT Alg. 35,892 17 min. 2 sec.

Our Alg. 35,892 19.24 sec.

(b) A more general task set

the worst-case demand of this task set. The results are shown in Table 7.3(b). As before

both approaches were able to find the worst-case demand but our algorithm is 53.1 times

faster.

For the second experiment, we generated multiple random AVR tasks using an algorithm

presented by Biondi et al. [6]. The execution times and modes of these tasks are combined

and they are modeled as a single task, called the representative AVR task. The modes of the

representative AVR task are generated by assuming a fixed value of 0.25 for the maximum

utilization factor of the modes. Again, the same worst-case demands were found by both

algorithm, but overall, our approach is 146 times faster on average and up to 250 times

faster, as shown in Fig. 7.1.

Now, the above two experiments are repeated to compare our algorithm and the LP-

relaxation of BPCKP. Since the LP-relaxation typically finishes in less than a few milli

seconds, only the percentage error plots (Fig. 7.2) are generated. In the figures, the error is

large for smaller time intervals and it decreases as the length of the time intervals increases.

This is because for smaller time intervals, when only a few job releases are possible, a fraction

of an item can generate a huge error in the output.

Sandeep Kumar Bijinemula Chapter 7. Evaluation 30

Figure 7.1: Graph depicting the log of runtime of different algorithms as a function of the

number of modes of randomly generated AVR task sets.

Sandeep Kumar Bijinemula Chapter 7. Evaluation 31

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.2: Demand and Percentage error plots of (a) taskset-1, (b) taskset-2 and (c-l)

Random tasksets

Chapter 8

Conclusions and Future Work

This thesis presented an efficient method for calculating the exact worst-case demand and

also its approximate solution. First, a knapsack-based dynamic programming approach was

proposed to efficiently find the worst-case demand given this smaller dominant sequence

set. Second, a collection of necessary conditions were presented to reduce the search space

and find the dominant sequence set. Then, an approximation algorithm was presented to

compute an approximate solution. Experimental results confirm that the proposed approach

is much faster than the state-of-the-art technique.

This work can be extended by relaxing the assumption of αmax == |αmin|. More dimensions

like pressure and temperature can also be added to the AVR model. Another direction of

extension can be studying AVR tasks that have different phases and which are released by

independent sources.

32

Bibliography

[1] S. K. Bijinemula, A. Willcock, T. Chantem, and N. Fisher, “An efficient knapsack-based

approach for calculating the worst-case demand of AVR tasks,” in 2018 IEEE Real-Time

Systems Symposium (RTSS), Dec 2018.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a

hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, Jan. 1973. [Online].

Available: http://doi.acm.org/10.1145/321738.321743

[3] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo, “Exact interference

of adaptive variable-rate tasks under fixed-priority scheduling,” in 2014 26th Euromicro

Conference on Real-Time Systems, July 2014, pp. 165–174.

[4] M. Mohaqeqi, J. Abdullah, P. Ekberg, and W. Yi, “Refinement of Workload Models

for Engine Controllers by State Space Partitioning,” in 29th Euromicro Conference

on Real-Time Systems (ECRTS 2017), ser. Leibniz International Proceedings in

Informatics (LIPIcs), M. Bertogna, Ed., vol. 76. Dagstuhl, Germany: Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 11:1–11:22. [Online]. Available:

http://drops.dagstuhl.de/opus/volltexte/2017/7159

[5] D.Buttle, “Real-time in prime-time,” keynote speech at the 24th Euromicro Conference

on Real-Time Systems, Pisa, Italy, July 12, 2012.

[6] A. Biondi, M. Di Natale, and G. Buttazzo, “Response-time analysis for real-time tasks

in engine control applications,” in Proceedings of the ACM/IEEE Sixth International

33

Sandeep Kumar Bijinemula Bibliography 34

Conference on Cyber-Physical Systems, ser. ICCPS ’15. New York, NY, USA: ACM,

2015, pp. 120–129. [Online]. Available: http://doi.acm.org/10.1145/2735960.2735963

[7] A. Biondi, G. Buttazzo, and S. Simoncelli, “Feasibility analysis of engine control tasks

under edf scheduling,” in 2015 27th Euromicro Conference on Real-Time Systems, July

2015, pp. 139–148.

[8] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time task model,” in

2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium,

April 2011, pp. 71–80.

[9] J. Kim, K. Lakshmanan, and R. R. Rajkumar, “Rhythmic tasks: A new task model

with continually varying periods for cyber-physical systems,” in Proceedings of the 2012

IEEE/ACM Third International Conference on Cyber-Physical Systems, ser. ICCPS

’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 55–64. [Online].

Available: http://dx.doi.org/10.1109/ICCPS.2012.14

[10] V. Pollex, T. Feld, F. Slomka, U. Margull, R. Mader and G. Wirrer, “Sufficient

real-time analysis for an engine control unit with constant angular velocities,” in

Proceedings of the Conference on Design, Automation and Test in Europe, ser. DATE

’13. San Jose, CA, USA: EDA Consortium, 2013, pp. 1335–1338. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2485288.2485607

[11] V. Pollex, T. Feld, F. Slomka, U. Margull, R. Mader, and G. Wirrer, “Sufficient real-time

analysis for an engine control unit,” in Proceedings of the 21st International Conference

on Real-Time Networks and Systems, ser. RTNS ’13. New York, NY, USA: ACM,

2013, pp. 247–254. [Online]. Available: http://doi.acm.org/10.1145/2516821.2516838

[12] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests for tasks with

variable rate-dependent behaviour under fixed priority scheduling,” in 2014 IEEE 19th

Real-Time and Embedded Technology and Applications Symposium (RTAS), April 2014,

pp. 51–62.

Sandeep Kumar Bijinemula Bibliography 35

[13] Z. Guo and S. Baruah, Uniprocessor EDF scheduling of AVR task systems. Association

for Computing Machinery, Inc, 4 2015, pp. 159–168.

[14] T. Feld, A. Biondi, R. I. Davis, G. Buttazzo, and F. Slomka, “A survey of

schedulability analysis techniques for rate-dependent tasks,” Journal of Systems

and Software, vol. 138, pp. 100 – 107, 2018. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0164121217303102

[15] A. Biondi and G. Buttazzo, “Modeling and analysis of engine control tasks under dy-

namic priority scheduling,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2018.

[16] A. Biondi and G. Buttazzo, “Real-time analysis of engine control applications with

speed estimation,” in 2016 Design, Automation Test in Europe Conference Exhibition

(DATE), March 2016, pp. 193–198.

[17] A. Biondi, M. Di Natale, and G. Buttazzo, “Performance-driven design of engine

control tasks,” in Proceedings of the 7th International Conference on Cyber-Physical

Systems, ser. ICCPS ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 45:1–45:10.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2984464.2984509

[18] H. C. Verma, Concepts of Physics - Vol. 1. Bharati Bhawan Publishers and Distribu-

tors, 2010.

[19] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and complexity

concerning the preemptive scheduling of periodic, real-time tasks on one processor,”

Real-Time Systems, vol. 2, no. 4, pp. 301–324, Nov 1990. [Online]. Available:

https://doi.org/10.1007/BF01995675

[20] G. Cho and D. X. Shaw, “A depth-first dynamic programming algorithm for the tree

knapsack problem,” INFORMS Journal on Computing, vol. 9, no. 4, pp. 431–438,

1997. [Online]. Available: https://doi.org/10.1287/ijoc.9.4.431

Sandeep Kumar Bijinemula Bibliography 36

[21] D. S. Johnson and K. A. Niemi, “On knapsacks, partitions, and a new dynamic

programming technique for trees,” Mathematics of Operations Research, vol. 8, no. 1,

pp. 1–14, 1983. [Online]. Available: https://doi.org/10.1287/moor.8.1.1

[22] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer Berlin Heidel-

berg, 01 2004.

[23] S. K. Bijinemula, A. Willcock, T. Chantem, and N. Fisher, “Code for

the paper-efficient knapsack-based approach for calculating the worst-case de-

mand of avr tasks,” 2018. [Online]. Available: https://github.com/bsk1410/

Efficient-Knapsack-for-AVR-tasks-RTSS2018

Appendix A

Appendix

A.1 Table of Notation and Units

ω Angular speed (rev/min)

ωrb Right boundary speed (rev/min)

Ωrb Set of right boundary speeds

ωmax Maximum angular velocity (rev/min)

α Angular acceleration (rev/min2)

αmax Maximum angular acceleration (rev/min2)

αmin Minimum angular acceleration (rev/min2)

t Time (sec)

ω(t) Instantaneous angular velocity (rev/min)

c(ω(t)) Worst-case execution time (sec.)

θ Angular position (rev)

∆θ Change in angular distance (rev)

Ωn Angular velocity at the end of ‘n’ rotations (rev/min)

T̃ Minimum interarrival time (sec.)

ωp Peak angular velocity (rev/min)

37

Sandeep Kumar Bijinemula Appendix 38

f Angular velocity at the end of a rotation (rev/min)

d(ω) Relative deadline (sec.)

Dω Demand (sec.)

dbf Demand Bound Function (sec.)

δ Time interval length (sec.)

GI Dependency graph

VI Vertices

AI Edges

Z+ Positive integers

S Speed sequence

pj Profit of an item

wj Weight of an item

G1 Solution of Greedy Approximation Algorithm - 1

G2 Solution of Greedy Approximation Algorithm - 2

A.2 Filtering the Sequences

Here, we give some intuition to the lemmas that are presented in chapter A.2.4. We provide

some properties that a dominant speed sequence has and eliminate all those sequences that

do not follow these properties from the dominant sequence set.

Lemma 4 (Highest demand in a mode). For a sequence of jobs released in the ith mode, the

highest demand in a time interval [t1, t2], is obtained when the jobs are released at ωrbi.

Proof. Consider the speed vs. time graph in Fig. A.1. The horizontal line indicates the jobs

released at ωrbi while the other lines represent the other possible sequences in a time interval

[t1, t2]. As can be seen from the figure, the area under the curve is the highest if the jobs

are released at ωrbi . As a single mode is considered, the execution time is the same. So, the

highest demand in a mode i is obtained if the jobs are released at ωrbi .

Sandeep Kumar Bijinemula Appendix 39

Figure A.1: In a mode, the area under the curve is maximum if jobs are released at the right

boundary speed, ωrbi .

Figure A.2: Speeds obtained when maximum acceleration is used from the right boundary

speed of a mode.

A.2.1 Finding the Dominant Sequences across Modes

Intuitively, from Lemma 4, it might seem logical to only consider the jobs released at the

right boundary speeds in all the modes. However, this might not always give the worst-case

demand when multiple modes are considered. For example, assume a sequence as shown in

the Fig A.3a. ωrbi and ωrbi+1
are the right boundary speeds of two consecutive modes (as

shown in Fig. A.2).

ω1, ω2, ω3, ω4, ω5 are speeds in the next step such that

Sandeep Kumar Bijinemula Appendix 40

ω1 = Ω(ωrbi , αmax), ω2 = Ω(ω1, αmax),

ω3 = Ω(ω2, αmax), ω4 = Ω(ω3, αmax),

ω5 = Ω(ω4, αmax) (A.1)

The demand in the case of A.3a is given by,

(Dω)A.3a = 4 · c(ωrbi) (A.2)

Assume that the time left after the last job is released in A.3a is just short of the relative

deadline of that job. Now, if the last job in the sequence A.3a is replaced by a job that

is released when the crankshaft rotates at the maximum acceleration (αmax) i.e. at ω1, the

time left might be just more than the inter-arrival time of the next job, ω2 (as shown in the

Fig. A.3b). In this case, the demand is given by,

(Dω)A.3b = 3 · c(ωrbi) + c(ω1) + c(ω2)

c(ω1) = c(ω2)

(Dω)A.3b = 3 · c(ωrbi) + 2 · c(ω1) (A.3)

Depending on the values of c(ωrbi) and c(ω1), (Dω)A.3b can be greater than (Dω)A.3a. There

can be several other combinations of job releases spanning across multiple modes as shown

in Fig. A.4. So we need to consider speeds other than the right boundary speeds in our

analysis. Since there is no mode before the first mode, this reasoning does not apply to the

speeds of the first mode. Next we show that only the right boundary speed of the first mode

is to be considered to be a part of the dominant speed sequence.

Lemma 5. In mode 1, only the jobs released at ωrb1 can be a part of the dominant sequence.

Proof. According to lemma 4, all the speeds of the first mode are dominated by its right

boundary speed. Hence the lemma follows.

Sandeep Kumar Bijinemula Appendix 41

(a) (b)

Figure A.3: (a) An example sequence in which the time left after the release of the last job

is less than the deadline of the next job. (b) An example sequence in which the last job

released at a right boundary speed is replaced by jobs released when maximum acceleration

is used from the right boundary speed.

(a) (b)

Figure A.4: Other possible sequences among which the dominant sequence is not apparent.

Sandeep Kumar Bijinemula Appendix 42

A.2.2 Non-decreasing Speed Sequences

Property 1. For every non-increasing speed sequence, s1, there exits a corresponding non-

decreasing speed sequence, s2, during the same duration, such that s2 is a mirror image of

s1.

Lemma 6. Consider a non-increasing speed sequence speed, s1, and a corresponding non-

decreasing speed sequence, s2, during the same duration, such that s2 is a mirror image of

s1. The demand of s2 is always greater than or equal to the demand of s1.

Proof. Since the jobs are released at the beginning of the rotation, the execution times of

the jobs depends on the initial speed of rotation. As the execution time vs. speed graph is

a decreasing step function, the jobs that are released during rotation from one mode to the

other in s2 are released at higher execution times than the corresponding jobs in s1. Since

the number of jobs is the same in both the cases, the demand of s2 is no less than s1.

The previous lemma eliminates all the non-increasing speed sequences but sequences in which

there is mixture of increasing and decreasing speeds are not eliminated. We need to consider

speeds other than the right boundary speeds and from Lemma 4 we know that the highest

demand in a mode is obtained if the jobs are released at the right boundary speed, so if the

crankshaft is at any speed ω, we need to find the sequence of accelerations that increase the

speed of the crankshaft to the right boundary speed of the mode in the shortest duration

possible. However, depending on the choice of accelerations, the right boundary speed may

or may not occur at at the end of a rotation. So, we divide the sequences into two types-those

that reach the right boundary speed in an integer number of rotations and the others that

reach the right boundary speed in the middle of a rotation as discussed next.

Sandeep Kumar Bijinemula Appendix 43

A.2.3 Fastest way to reach the right boundary speed

In this segment, we find the sequence of accelerations that increase the crankshaft’s speed

from ω1 at time t1 in the ith mode to the right boundary speed of the mode, ωrbi in the

shortest time. If there is no restriction of integer number of rotations, the minimum number

of rotations taken to reach ωrbi from ω1 is obtained when αmax is used from ω1 to ωrbi which

is given by,

n′min =
ω2
rbi
− ω2

1

2παmax
(A.4)

Unless n′min is an integer, ωrbi is obtained at some point in the middle of the dn′mineth rotation,

in which case, the crankshaft enters the next mode.

Finding the sequence of accelerations to reach the right boundary speed in in-

teger number of rotations

In any mode i, we need to find the sequence of accelerations that increase the crankshaft’s

speed from ω1 at time t1 to ωrbi in integer number of rotations. Consider the example in

Fig. A.5. s1 is obtained when maximum acceleration is used from the speed ω1 until ωrbi is

reached at time t′ and zero acceleration is applied from t′ to t2 to finish the current rotation.

Ideally, if the number of rotations from ω1 to ωrbi is an integer, the value of t2 − t′ will be

0. s2 is an arbitrary sequence during the same time interval [t1, t2] such that it starts at ω1

and uses accelerations α1,α2,α3 during [t1, t2].

Since, the shortest distance to travel to reach ωrbi is 2πn′min from Equation A.4, the minimum

number of integer rotations is the next highest integer, which is given by,

nmin = dn′mine (A.5)

This value of nmin signifies the minimum number of rotations required to traverse when

Sandeep Kumar Bijinemula Appendix 44

Figure A.5: s1 takes the least amount of time to reach ωrbi from ω1 among the sequences

that do have a speed overshoot over ωrbi in the middle of a rotation.

accelerating from ω1 to ωrbi . In other words, it is not possible to reach ωrbi from ω1 without

traveling a minimum angular distance of nmin rotations. From t1 to t′, the maximum area

under the speed vs. time curve is obtained when maximum acceleration is used from ω1.

If the speed at any point in the middle of a rotation does not exceed the right boundary

speed, the maximum area under the curve from t′ to t2 is given by the rectangle formed by

the horizontal lines speed = ωrbi and the time axis and, the vertical lines time = t′ and

time = t2. So, s1 has a higher area than any sequence that does not go over the right

boundary speed. From Eqn. A.4, we know that the number of rotations completed by

sequence s1 from t1 to t′ is n′min. If we assume that the number of rotations traversed from

t′ to t2 is nmin − n′min, the total distance which is also the area under the curve cannot be

nmin for any other curve. Since, nmin is the minimum number of complete rotations required

to be traversed to reach ωrbi from ω1, any curve that does not go over the right boundary

speed and that does not complete nmin rotations cannot take shorter amount of time than

s1 to accelerate from ω1 to ωrbi .

The above discussion proves that s1 in Fig. A.5 takes the shortest amount of time to

Sandeep Kumar Bijinemula Appendix 45

Figure A.6: s2 takes the least time to accelerate from ω1 to ωrbi in integer number of rotations.

accelerate from a speed ω1 of mode i to its right boundary, ωrbi , among the sequences in

which, the speed does not overshoot over ωrbi while ensuring that integer number of rotations

are completed. Here, we used the variable acceleration in the last rotation. However, we

know that to achieve the minimum time to complete a rotation we need to use T̃ (from

Equation 3.6). This is obtained when αmax is used for a part of the rotation and αmin is used

for the rest of the rotation. This is shown in the example in Fig. A.6. s1 is the same as in

Fig. A.5 and s2 is equivalent to s1 till t′ and the crankshaft continues with an acceleration

of αmax from t′ to ta and then decelerates till it reaches ωrbi .

The above discussion shows that in a dominant sequence αmax is used when the crankshaft

is at a non-boundary speed until the right boundary speed of the current mode is reached.

Intuitively, this restricts that the next job in the sequence should not be released at speeds

lower than the current speed.

Sandeep Kumar Bijinemula Appendix 46

A.2.4 Starting Speed of a Dominant Sequence

We now show that only those sequences that start at a right boundary speed can be a part

of the dominant sequence set.

Definition 3 (Isolated sub-sequence). The sub-sequence from the release of the first job of

the sequence to the instant where there is a mode change is called an Isolated sub-sequence.

Lemma 7 (Starting Speeds of a Dominant Sequence). For any non-decreasing dominant

sequence s1 over the interval [ta, tb] where the first k jobs (denoted s1 = (ω1, ω2, . . . ωk)) are

released in the ith mode, the sequence s2 obtained by replacing this first k jobs with jobs

released at the right boundary speed of mode i, i.e., ωrbi, does not decrease the demand of the

sequence in [ta, tb].

Proof. Assume that s1 and s2 in Fig. A.7 are two isolated sub-sequences during a time

interval [t1, t2], such that the sub-sequences following s1 and s2 are the same. In the iso-

lated sub-sequence of s2, all the jobs are released at the right boundary speed of ith mode

whereas in the isolated sub-sequence s1, accelerations α1, α2, . . . , αk are used to release jobs

at ω1, ω2, . . . ωk. The area under s2 is greater than that in s1 ∀α1, α2, . . . , αk. Since the area

under the curve is a measure of the distance traversed by the crankshaft and since a job is

released for every 2π radian distance travelled by the crankshaft, the demand of s2 is not

less than that of s1.

Definition 4. In a speed sequence any job released at speed ω(t1) at time t1 such that

ω < ωrbi < Ω(ω, αmax),∀i is said to be released at a special speed. It is represented by ωsp

(refer Fig. A.8). It is worth noting that the speed at the beginning of the last rotation in s1

and s2 in Figures A.5 and A.6 is a special Speed.

The next job in a dominant sequence when the current speed is a special speed is either the

right boundary speed of the current mode or accelerating maximally. Proved in Theorem 1.

Sandeep Kumar Bijinemula Appendix 47

Figure A.7: The demand does not decrease if all the speeds in the isolated sub-sequence of

the ith mode are replaced by ωrbi

Figure A.8: In a dominant sequence, the speed following a special speed (ωsp) is either the

right boundary speed (using α < αmax) of the current step or Ω(ωsp, αmax) (using αmax).

Sandeep Kumar Bijinemula Appendix 48

A.3 Summarizing the properties of dominant sequences

A dominant sequence has the following properties.

1. It starts at a right boundary speed.

2. Maximum acceleration is used at all the speeds except at special speeds and right

boundary speeds.

3. At special speeds, two acceleration values are possible - maximum acceleration and a

non-max acceleration. This is equivalent to a sequence splitting into two.

4. At right boundary speeds, two values of acceleration are possible - maximum acceler-

ation and zero acceleration.

5. Multiple jobs are released only at right boundary speeds.

Fig. A.9 gives two examples of non-decreasing speed sequences that can potentially give

the worst-case demand during a time interval [0,t]. In Fig. A.9(a), the sequence starts at

ωrbi at t = 0 and αmax is used till the splitting speed, ωsp and a non-maximum value of α1

is used till the next right boundary speed, ωrbi+1
is reached. Finally, αmax is used till ‘t’.

Similarly, in A.9(b), the sequence starts at ωrbi and crankshaft rotates at this speed till t1.

Then the maximum acceleration is used till the splitting speed, ωsp. At ωsp, a non-maximum

acceleration of α is used till ωrbi+1
is reached. The crankshaft stays at this speed till ‘t’.

Fig. A.10(a) and Fig. A.10(b) cannot be a dominant sequence as multiple jobs are released

at a ω 6∈ Ωrb and a combination of non-decreasing and non-increasing speed sequences is

used in Fig. A.10(a) and Fig. A.10(b) respectively.

Sandeep Kumar Bijinemula Appendix 49

Figure A.9: Examples of non-decreasing speed sequences that can potentially be dominant

sequences.

Figure A.10: Examples of sequences that cannot be dominant sequences.

